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Abstract: 

Recent studies documented a sufficient forecasting performance of shadow-rate 

models in the low yields environment. Moreover, it has been shown that including 

the macro-variables into the shadow-rate models further improves the results. We 

build on these findings and evaluate for the U.S. Treasury yields, whether the lower 

bound proximity was truly the only issue to reflect in the interest rate modeling 

since the Great Recession. Surprisingly, we discover that the relative importance of 

yield curve factors has changed as well. More specifically, instead of macroeconomic 

factors, financial market sentiment factors became dominant since the recent 

financial turmoil. Based on such finding, we show, that extending the macro-finance 

interest rate models by financial market sentiment proxies further improves the 

forecasting performance. 
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1 Introduction

The low yields environment present in the U.S. since the Great Recession opened

a discussion about the validity of canonical affine Gaussian dynamic term struc-

ture models (DTSMs). In an important paper, Christensen and Rudebusch (2016)

document a significant drop of the forecasting ability of a standard DTSM in the

lower bound proximity. Furthermore, they show an improvement of the forecast-

ing accuracy after using a shadow-rate DTSM. An identical finding is obtained by

Bauer and Rudebusch (2016), who additionally utilize a set of macro-factors to build

a macro-finance shadow-rate DTSM. As they show, the macro-finance version of

the shadow-rate DTSM performs the best, compared to both yields-only and non-

shadow-rate (Gaussian) DTSMs. Consequently, the latter study has shown, that

the macro-finance DTSM framework, popular prior to the Great Recession, remains

best-performing also in the new environment, after reflecting the lower bound prox-

imity.

In these studies, a technical feature of the new environment (an asymmetry of

the yields due to the lower bound) has been well reflected. Contrary, a discussion

of economic features of post-crisis yield dynamics have been largely neglected. In

practice, the macro-variables introduced by Bauer and Rudebusch (2016) into the

macro-finance shadow-rate DTSM represent real activity and price dynamics. Such

approach is close to the macro-finance DTSMs prior to the Great Recession, when

real activity, price dynamics and often also a monetary policy variable were usually

introduced into the macro-finance models.

We fill this gap in the present macro-finance literature by evaluating, whether

variables related to real activity, price dynamics and the monetary policy are still

the optimal external factors to be included into macro-finance models. To do so,

in the first part of the analysis, we start by estimating a canonical DTSM (Duffie

and Kan 1996). Using the estimated model, we decompose yields into risk-neutral

yields and term premia. Reason for performing the decomposition is a possibility of a

different response of each of the components to various macroeconomic and financial

shocks. As a next step, we estimate a relation of the components and a set of

macroeconomic and financial variables within a vector auto-regression (VAR) model.

Using a historical decomposition of the shocks from each variable, we evaluate the

importance of each macroeconomic or financial variable for explaining the evolution

of the components, and consequently also the yields. The analysis is conducted on a

rolling-window, covering periods both prior to and since the Great Recession.

Our findings are encouraging. As we show, the traditional macro-variables were

particularly important in the period prior to and during the recent financial turmoil.

Contrary, after the crisis, the importance of factors reflecting a financial market
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sentiment and portfolio allocation shifts increased1. More precisely, the financial

market sentiment dynamics is tightly related to the term premium, which has played

a dominant role in explaining the volatility of U.S. yields over last years, whereas

the risk-neutral yields reflecting macroeconomic conditions became less volatile. Our

findings are in line with the empirical evidence: as an example, in July 2016, the

U.S. yields reached the lowest-ever level despite favorable economic conditions and

positive expectations about a future monetary policy rates evolution. Contrary, a

market reaction to the result of the Brexit referendum related to a high level of global

markets uncertainty and a sizable portfolio reallocation was the most important

factor. Since U.S. bonds are considered a safe-haven asset, the demand for them

raised in relation to this event, which reduced the yields. Furthermore, as a second

related finding, we additionally confirm that the two components of yields (the risk-

neutral yields and the term premium) truly often respond differently to shocks, both

in the extent and the sign.

In the light of our findings, the performance of macro-finance models under post-

crisis conditions could be further improved, beyond the improvement offered by intro-

ducing shadow rates into the models (Christensen and Rudebusch 2016). To evaluate

such possibility quantitatively, we advance to the second part of the analysis and pro-

pose adjustments of the canonical interest rate models. These adjustments follow our

previous findings: we add proxies for the financial market sentiment into the set of

factors entering the models, and also replace yield data entering the models by the

separated yield components.

Afterwards, we compare the forecasting performance of a wide set of interest rate

models. Apart from the DTSM used for the yields decomposition, we utilize also the

Dynamic Nelson-Siegel (DNS) framework introduced by Diebold and Li (2006) and

a simple time series analysis. The utilization of multiple modeling frameworks sup-

ports the robustness of our results: due to the economic background of our findings

(a change of yield factors), any interest rate model should benefit from the proposed

adjustments. All modeling frameworks are used in both the traditional representa-

tions and in the versions including our newly proposed adjustments. As we show, the

proposed adjustments result in an improvement of the forecasting accuracy. More

precisely, the separate inclusion of yield components into the models is crucial for

achieving the best forecasting performance for yields of the shortest maturities. On

the other hand, for longer maturities, introducing the market sentiment variables is

necessary to achieve an improved forecasting accuracy.

1Macroeconomic news are a frequent source of changes of the financial market sentiment. How-
ever, in the recent history, market uncertainty and sentiment shifts were often triggered by forces,
which were not directly related to the U.S. macroeconomic conditions, for example August 2015
and January 2016 market crashes or the weeks following UK EU-leave referendum. Consequently,
in this paper, shocks to the market sentiment are considered as autonomous, not being triggered by
macro-news. In the vector autoregression model specification described in the section 5, we obtain
such shock identification by ordering macro-variables first.
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Consequences of the lower bound proximity are handled carefully in our method-

ology. An asymmetry of yields near the lower bound needs to be reflected in all

steps of our analysis: the estimation the DTSM and yield components, the VAR

analysis as well as the forecasting exercise. To keep the interpretation of our results

straightforward, we do not use the shadow-rate macro-finance DTSM as of Bauer and

Rudebusch (2015). Instead, we propose a simplified approach: First, we convert ob-

served yields into shadow yields (rates), using Krippner (2013) and Christensen and

Rudebusch (2014) methodology. Afterwards, all steps described above (the decom-

position of yields, the VAR analysis and the forecasting performance evaluation) are

done using these shadow rates. Consequently, out results are related to the shadow

rates rather than the observed yields. However, it can be argued that our conclusions

are valid generally, since a conversion of the shadow rates to the observed yields is

straightforward.2

The rest of the paper is structured as follows: the next section covers the related

literature, which the paper builds on. The third section presents modeling frame-

works used for obtaining the shadow rates, for their decomposition as well as for the

forecasting. Data are described in the fourth section. The fifth section presents ob-

tained components and results of the VAR analysis linking together yields and their

factors. The sixth section compares forecasting performance of a wide set of model

specifications, both gathered from the literature and newly proposed, motivated by

the previous section results. We particularly focus on the forecasting accuracy im-

provement following the introduction of the market sentiment proxies into the models

and the benefits of modeling the yield components separately. Finally, the last section

concludes.

2 Related Literature

A theoretical basis for the DTSM framework builds on short rate models of Vasicek

(1977) and Cox et al. (1985). In their setup, the evolution of the whole yield curve is

governed by dynamics of a short rate. Under a risk-neutral measure, the expectation

hypothesis is used to derive longer yields as an average of expected future short rates.

A transfer to the real-world (data-generating) measure is then done by introducing a

term (risk) premium. The approach became especially popular after an introduction

of an affine class of short-rate models by Duffie and Kan (1996). The affine represen-

tation became the canonical dynamic term structure modeling approach thanks to

its ability to derive a closed-form formula for the yields dynamics, which allows for

an efficient estimation of the model. Duffee (2002) uses the affine model (originally

designed for fitting the term structure) also for capturing real-world dynamics and

particularly for forecasting. In one of the most important macro-finance papers, Ang

2The methodology is outlined in the section 3 of this paper.
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and Piazzesi (2003) extend the framework by macroeconomic factors, i.e. form the

affine Gaussian macro-finance term structure model.

The second framework used in the paper builds on a functional representation of

the term structure of interest rates as proposed by Nelson and Siegel (1987). Diebold

and Li (2006) view the parameters of the function (so-called level, slope and curvature

of the yield curve) as dynamic factors, which form the dynamic Nelson-Siegel (DNS)

model. Thanks to its parsimony, the approach became popular both in the academia

and in the modeling practice. The macro-financial extension of this framework was

subsequently introduced by Diebold et al. (2006). Later, Christensen et al. (2011)

specified an affine no-arbitrage version of the DNS model, which linked together DNS

and DTSM frameworks3.

Macroeconomic factors included into the macro-finance models (both DTSM and

DNS) usually represent business activity, price dynamics and a monetary tool or a

monetary aggregate. Diebold et al. (2006) include manufacturing capacity utiliza-

tion, the Federal funds rate and an annual price inflation. Ludvigson and Ng (2009)

and De Pooter et al. (2010) utilize a large dataset including macroeconomic and fi-

nancial variables and use the most important principal components representing the

common factors. Based on their relation to the original series, De Pooter et al. (2010)

show, that the first principal component is related to real activity, the second compo-

nent to price dynamics and the third component to monetary variables. A similar set

of variables is utilized also in later studies, building mostly on the DTSM framework:

Kim and Wright (2005) studied a specific role of the inflation for explaining yield

dynamics, Dai and Philippon (2005) focused on an importance of fiscal policy and

Bikbov and Chernov (2010) offered an enhanced approach to measure the association

among financial and macroeconomic factors. Ludvigson and Ng (2009) and Wright

(2011) aim at explaining the macro-drivers of only one component of yields: the

term-premium. Recently, Joslin et al. (2014) raised questions about the validity of

affine macro-finance DTSMs. Authors show, that a large proportion of the macroe-

conomic variation is not spanned by the yield curve, which contradicts canonical

DTSM implications. Authors build a new “unspanned” affine DTSM model solving

this caveat, and call for a replacement of the canonical macro-finance DTSM by the

new framework. However, Bauer and Rudebusch (2015) show a statistic insignifi-

cance of the added value of the unspanning restrictions, and reject the necessity to

replace the prevailing macro-finance DTSM framework.

Apart from these advances, an important part of the interest rate modeling dis-

cussion is concerned with the implications of a presence of a lower bound4. Several

3In practice, the affine no-arbitrage DNS model is considered as a member of the DTSM family
of models. To avoid confusion, we refer to this model as to an affine DTSM model, since the
no-arbitrage property is the crucial feature of the model.

4The existence of the lower bound is explained by the availability of physical currency. Conse-
quently, investors can escape negative bond yields by converting their funds to physical currency.
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studies evaluated consequences of the post-crisis low yield environment for the canon-

ical models’ forecasting performance. Trück and Wellmann (2015) detect a drop in

the DNS model (without macro factors). Similarly, Chung and Iiboshi (2015) com-

pare the forecasting accuracy of affine and quadratic macro-finance DTSMs, and

show a reduced performance of the affine DTSM near the lower bound. An extensive

overview of negative consequences of using affine DTSM in the lower bound proxim-

ity offers Krippner (2015). Author presents a range of shadow-rate models, which

build on the methodology of Black (1995) and view the observed bond price (i.e. also

the observed yield) as a difference between a shadow bond price (a price of a bond

in a hypothetical world without physical currency) and a value of a option cover-

ing the possibility, that yields would be negative5. The shadow rates are used also

by Christensen and Rudebusch (2014), who incorporate them into an affine DTSM.

Christensen and Rudebusch (2016) use this model to show an improved forecast-

ing performance of the shadow-rate affine DTSM compared to the canonical affine

DTSM. Bauer and Rudebusch (2016) use the shadow-rate affine DTSM extended

by a set of macro-factors and document, that the macro-finance affine shadow-rate

DTSM outperforms the ”yields-only” models.

3 Models

In order to capture macro-financial linkages, the paper utilizes an extensive set of

yield curve modeling frameworks. These are used in three separate steps. First,

the shadow-rate affine DTSM introduced by Christensen and Rudebusch (2014) and

Krippner (2013) is used to transform observed U.S. yields into shadow rates6, i.e.

hypothetical yields “as if” no physical currency was present in the U.S. economy.

By doing this, the paper ensures that the subsequent modeling steps are not influ-

enced by consequences of the lower bound proximity (an asymmetry of the yields, in

particular). Consequently, all further calculations utilize only these shadow rates7.

As a second step, a canonical DTSM model is used to extract two components of

the (shadow) yields. These components then enter a VAR model explaining their

response (and the response of the yields) to macroeconomic and financial shocks.

Using the model, we quantitatively evaluate the importance of various shocks for the

yield dynamics. Third, and finally, the DTSM together with a DNS model are used

in many sub-versions including both “yields-only” and macro-financial specifications

Nevertheless, due to additional costs related to holding physical currency, the lower bound does not
need to be exactly at the zero level. We use the term “lower bound” without assuming any exact
level of the bound, however expecting it to be reasonably close to zero.

5The shadow rate is defined as a yield of a shadow bond.
6The term “shadow yields” would be more precise. However, the literature usually focuses only on

short shadow yields, for which the term “rates” is meaningful. Consequently, we use both “shadow
rates” and “shadow yields” interchangeably.

7For simplicity, we keep using the term “yields” in the following text, which however always refers
to the shadow rates (yields).
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to compare the forecasting performance of particular models.

In order to present the methodology in this section, it is useful to start with

outlining the canonical frameworks (DTSMs and DNS models) used for the decom-

position and the forecasting. The advanced methodology related to shadow rates is

an extension of the DTSM and therefore is explained at the end of this section.

The paper utilizes two frameworks: a DNS approach as introduced by Diebold

and Li (2006) and macro-extended by Diebold et al. (2006), and a macro-finance

affine DTSM similar to the model used by Ang and Piazzesi (2003). In the section

comparing the forecasting performance of the models, for each of these frameworks,

we estimate both a “yields-only” version and a macro-finance version including a set

of additional macroeconomic and/or financial variables. Additionally, a random walk

process serves as a baseline model. Apart from the canonical models described in this

section, several newly introduced model specifications are utilized for the forecasting

as well – their description is postponed to the section 5.

Both DTSM and DNS frameworks result in a model, which can be defined in a

state-space form. In this representation, yields are a linear function of factors, which

follow a VAR(1) process:

yt (τ) = f (Lt,Mt, τ) + εy,t (τ) (1)[
Lt

Mt

]
= α+ Γ

[
Lt−1

Mt−1

]
+ εLM,t (2)

The vector Lt includes latent (unobservable) factors, whereas the vector Mt in-

cludes observable macroeconomic and financial variables. Depending on the partic-

ular model version, Mt is either empty (i.e. “yields-only” model), includes the tra-

ditional macro-variables (representing real activity and price dynamics), or includes

also a set of newly proposed variables (further described in the section 5). The func-

tion f (•) is given by the Nelson and Siegel (1987) function in the DNS model; in

case of the affine DTSM, the function results from a no-arbitrage assumption under

the equivalent martingale (risk-neutral) measure (see Appendix I. for details on the

methodology). Additionally, α and Γ are a vector and a matrix of parameters, and τ

represents the maturity. Measurement error terms εy,t (τ) are forming a N×1 vector

error term εy,t ∼ N (0,R), where N is the total number of maturities included into

the sample. The vector εLM,t ∼ N (0,Q) represents the random disturbances in the

factors process. As usual for the basic state space representation, εy,t and εLM,t are

assumed to be mutually uncorrelated.

Apart from the multiple model specifications, also the estimation methods allow

for multiple approaches. Both frameworks can utilize the Kalman filter procedure

and the maximum likelihood estimation as a single-step estimation method. However,

the function f (•) can be non-linear in parameters, which makes the estimation non-
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trivial. Consequently, two-step estimation approaches were developed to allow for a

straightforward estimation, at costs of imposing additional restrictions.

In case of the affine DTSM, the two-step estimation is based on a transformation

of the latent factors Lt to observable factors. Such approach was utilized by Ang

et al. (2006) and further promoted by Joslin et al. (2011). In practice, we follow this

by using the first three principal components of yields as proxies for the factors. The

transition equation (Equation 2) can be then estimated using least squares, either

including only the principal components or adding the macro-financial factors as

well. Afterwards, the parameters of the measurement equation (Equation 1) can be

obtained using the least squares as well.

The various specifications of the affine DTSM used in the analysis are summarized

in the Table 1. For the Kalman filter approach, the macro-finance specification is not

included because of the size of the resulting model, which would made the estimation

procedure slow and path-dependent.

Table 1: Canonical Affine Models

model name estimation method type

AFpcsPF observable factors & LS yields-only
AFpcsMB observable factors & LS macro-finance
AFkalPF Kalman filter & MLE yields-only

The symbol “AF” represents the affine DTSM framework; “pcs” and “kal” is related to the estimation
approach (principal components and LS fit vs. Kalman filter with MLE); “PF” and “MB” represent pure-
financial (i.e. yields-only) and macro-basic (i.e. the traditional macro-finance) specification. AFkalPF is also
used to decompose yields to risk-neutral yields and term premia. LS means least-squares estimation; MLE
means the maximum likelihood estimation.

In case of the two-step DNS estimation, the first step involves fitting the Nelson

and Siegel (1987) function (i.e. estimating the measurement equation) in each period

independently, using the least squares method. Afterwards, the obtained parameters

of the function are considered as extracted latent factors. The transition equation can

be then estimated directly. Furthermore, the DNS framework includes an exponential

decay parameter, which can be also set in multiple ways. In a single-step estimation

approach, the parameter can be estimated within the Kalman filter procedure using

the maximum likelihood estimation. In the two-step approach, the parameter needs

to be fixed before the estimation of the model. In this case, its value can be set either

empirically, providing a desired shape of the yield curve, or at the level ensuring an

optimal fit (described into detail in Appendix I.). Again, both these approaches

are tested in order to obtain robust results. The set of utilized model versions of

the DNS family is summarized in the Table 2 (again without the newly proposed

specifications, which are introduced in the section 5).

After the models are estimated, the forecasts are obtained by iterating the

vector of factors forward through the transition equation, utilizing the fact that

E [εLM,t] = 0. The forecasts of the yields are then calculated directly from the mea-
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Table 2: Canonical Dynamic Nelson-Siegel Models

model name estimation method type

NSfixPF two-step, λ set by curvature location yields-only
NSfixMB two-step, λ set by curvature location macro-finance
NSoptPF two-step, λ set by optimal fit yields-only
NSoptMB two-step, λ set by optimal fit macro-finance
NSkalPF Kalman filter & MLE, λ estimated directly yields-only
NSkalMB Kalman filter & MLE, λ estimated directly macro-finance

The symbol “NS” represents the DNS framework; “fix”, “opt” and “kal” is related to the estimation approach;
“PF” and “MB” represent pure-financial (i.e. yields-only) and macro-basic (i.e. the traditional macro-finance)
specification. MLE means maximum likelihood estimation.

surement equation.

Apart from the forecasts, the affine DTSM has the ability to decompose yields into

two components: a risk-neutral yield and a term premium. We utilize this feature, as

each of the components can react differently to macroeconomic and financial shocks,

so the decomposition can offer a detailed insight into the actual dynamic properties of

yields. To obtain the components, the estimated AFkalPF model8 is used to generate

forecasts of the short rate, which can be considered as estimates of expectations about

the future risk-free rate development. For each maturity, an average of the short rate

predicted on a horizon equal to the particular maturity represents the risk-neutral

yield. The difference between the observed (shadow) yield and the risk-neutral yield

forms the term premium.

Returning to the very first step of the analysis, a shadow-rate DTSM is used to

convert observed yield data into the shadow yields (rates). The model can be specified

identically to the DTSM as captured by the equations 1 and 2, only with the shadow

rates replacing the observed yields yt (τ). The link between the shadow rates and the

observed yields lies in the possibility for the investors to hold the physical currency

with a zero return in case the actual return from their financial asset (the bond)

would be negative. As proposed by Black (1995), a value of such possibility can

be calculated as a value of a put option. Christensen and Rudebusch (2014) and

Krippner (2013) further elaborate on this approach and obtain an affine shadow-rate

DTSM with a closed-form solution for yields.9 Because of a relative robustness of

this model, we utilize it in a specification including three latent factors.10

8 As discussed by Bauer et al. (2014), least squares methods can lead to biased results of the
decomposition. A small sample bias adjustment method is utilized by authors to obtain unbiased
results. In order to avoid the estimation bias, we take a different approach: we use the one-step
approach and estimate the model (without macro-financial factors) using the Kalman filter and the
maximum likelihood estimation. The results of our approach presented in the next section are very
close to results of the decomposition performed by Bauer et al. (2014) using the bias-adjustment
method.

9As the specification of the model is extensive and is not directly related to the topic of this paper,
we omit it here. The full description of the model can be found in Christensen and Rudebusch (2014)
and Krippner (2013).

10 It must be admitted, that a three-factor model is shown for example in Christensen and Rude-
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4 Data

Yield Data and Shadow Rates

To estimate the models and evaluate their performance, a set of U.S. Government

zero-coupon bond yields is utilized. More specifically, ten maturities are included,

ranging from Bills of maturities 3, 6 and 12 months, over US Notes (2, 3, 5, 7 and 10

years) up to 20 and 30 year Bonds. We use constant maturity rates available in FRED

(2016) database. These rates are calculated by the U.S. Treasury by interpolating

the yield curve of non-indexed Treasury securities.11

Monthly frequency of yields was chosen using the end-of-month data. Such fre-

quency provides a sufficient number of observations. At the same time, the monthly

frequency allows us to match the observations of yields and the macroeconomic se-

ries, for which the monthly frequency is usually the highest available. The data cover

a period since December 1993 until June 2016. The beginning of the period roughly

coincides with an introduction of a new paradigm into the monetary policy, empha-

sizing the role of the interest rate as a monetary policy tool (described for example

in Mankiw 2001). We consequently avoid a monetary policy structural break related

to the change in monetary policy instruments (shifting from monetary aggregates to

interest rates).

Figure 1: Observed Yields
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The historical evolution of the U.S. yields is included in the Figure 1. As ap-

parent from the figure, the lower bound close to a zero level significantly influenced

busch (2014) to provide less robust results than a two-factor model. However, as all the models
in the paper are set as three-factor, we need at least three factors to be driving the shadow rates.
Otherwise, a problem of multi-colinearity could arise in the subsequent steps of the analysis.

11See FED (2016) and U.S. Treasury (2016) for detailed description of the calculation method.
30-years maturity yields data are missing in the period between February 2002 and February 2006.
However, an adjustment term is offered by the U.S. Treasury, which allows us to approximate the
missing observations.
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yields since the end of 2008. As discussed by Krippner (2015), the effective lower

bound implies biased results of canonical models, including their forecasts and the

decomposition of yields. Consequently, as described the previous section, we utilize

the methodology of Christensen and Rudebusch (2014) and Krippner (2013) and es-

timate shadow rates (yields), which are not influenced by the lower bound proximity.

The extracted shadow rates are illustrated in the Figure 2.

Figure 2: Shadow Yields
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Source: author’s computations

When compared to the observed yields, the shadow rates are significantly lower

for the yields that were originally close to zero, but only slightly different from the

yields distinctively far from zero. This is in line with the shadow rates methodology,

where the difference between the yields (more precisely, the difference between related

bond prices) is viewed as a value of a call option on the shadow bond with a strike

price at par (Christensen and Rudebusch 2014). As already noted in the previous

section, only these shadow rates are utilized in the subsequent analyses, since the

observed rates are biased by the lower bound proximity. For simplicity and clarity of

the further text, the term ”yields” will be kept, however meaning always the shadow

rates.

Macroeconomic and Financial Market Sentiment Data

The usual set of macro-variables introduced into macro-finance models represents real

business activity, price dynamics and monetary policy development.12 We follow this

approach and use the industrial production index (IPI) as a proxy for real activity,

the CPI index to represent price dynamics and the adjusted monetary base (MBA)

to represent monetary policy steps. IPI is preferred to a GDP growth because of

its monthly frequency. In the models, we also tried to replace MBA by the Fed

funds rate, but the results were not significantly altered by this change. However, as

12The reference is included in the section 2.
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the unconventional monetary policy is not directly reflected by the Fed funds rate

changes, we believe that MBA is a better proxy for the monetary policy steps in the

present environment.

This set of variables is supposed to reflect most of the economic conditions de-

velopment. However, recent events have shown, that yields can move significantly

also in a response to financial market sentiment changes unrelated to new economic

information. For example, during the stock market drop in January 2016 or after

the UK Brexit referendum, the financial market uncertainty motivated investors to

reallocate their portfolios into U.S. bonds, which represent a safe haven asset. This

resulted in a significant decrease of yields of the 10 year U.S. Treasuries unrelated

to a development in U.S. business activity, price dynamic or the monetary policy

stance.

Following this motivation, in order to allow the models to capture the relation

of the U.S. yields to financial market sentiment shocks explicitly, we augment the

models by a set of three additional variables. First, we include the S&P 500 index.

By doing so, we are able to capture changes in interest rates triggered by stock market

crashes and the subsequent flight to safety – reallocation from U.S. stocks to U.S.

bonds. Afterwards, we utilize a dataset of Baker et al. (2015), which includes news-

based measures of an economic policy uncertainty in selected countries. Using data

for EU, China, Japan and Russia, we extract the first principal component, which we

call “Economic policy uncertainty - the rest of the world” (EPU-ROW). We consider

changes in this variable to be a proxy to international shocks motivating capital

flows to or from U.S. Treasuries, again because of their position as the safe haven

financial instrument. Finally, we use the same data to get also the U.S. economic

policy uncertainty (EPU-US). Reason for using EPU-US alongside with the S&P 500

index is a possible U.S. economic policy shocks, which may not be fully reflected by

the stock market. Moreover, as the economic policy uncertainty measure in the U.S.

and the rest of the world can be tightly related because of their news-based nature,

EPU-US serves as a control variable allowing us to consider EPU-ROW changes as

purely foreign shocks.

To link a response of yields to the macroeconomic and financial impulses correctly,

IPI, CPI and EPU variables are one month lagged. The lag also ensures that when

producing the forecasts, only the data available at the moment of the forecast are

used. Except the EPU, the variables are taken as logarithms. For purposes of the

section 5 (in-sample relations), all the variables including yields are transformed

to first differences. For the forecasting purposes in the section 6, we stick to the

literature and use the yields in levels despite their non-stationarity (evaluated using

the Augmented Dickey-Fuller test – results are included in the Appendix II). In order

to avoid a loss of information, also the other macro-financial variables are used in

levels for the forecasting purposes, except for CPI and MBA, which follow a strong
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trend and their inclusion in levels would result in estimates producing diverging

forecasts. The historical evolution of macroeconomic and financial market sentiment

variables is included in the Figure 3.

Figure 3: Macroeconomic and Financial Market Sentiment Variables
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Source: FRED (2016), Baker et al. (2015), author’s computations.

A VAR model is utilized in the next section. Within its specification, ordering

of the variables is an important issue. As the shocks to macro-variables can be con-

sidered to have a contemporary impact on the financial market sentiment variables,

they are ordered first. Such specification strengthens the interpretation of the shocks

to financial sentiment variables as being unrelated to changes in macroeconomic con-

ditions.

5 In-sample dynamic relations

Procedure

In this section, we aim at evaluating a relative importance of factors determining

changes of yields and their components: the term premium and the risk-neutral yield.

As the Great Recession could result into structural changes in the Treasuries market,

it is preferred to observe the results dynamically, i.e. capture their development over

time. In order to obtain such outcome, the estimation procedure described below is

repeated over a rolling window. The sample window size is set at 10 years in order

to include enough data for the estimation while being able to capture changes in the

results over time.

As a starting point, the sub-sample 1993/12–2003/11 is used. Based on this sub-

sample, first, the yields are used to estimate the AFkalPF model. The estimated
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model is then used to obtain the two components. For each maturity in the sample,

these components together with macroeconomic and financial market sentiment vari-

ables enter a first order VAR model. The macroeconomic variables are ordered first in

the model (in the order IPI, CPI, MBA), followed by the financial market sentiment

variables (EPU-ROW, EPU-US, S&P 500) and the two yield components. From the

estimated VAR model, impulse-response functions (IRFs) are derived. Furthermore,

residuals (considered to be estimates of shocks) are used to obtain a historical decom-

position of the yield changes: after pre-multiplying the residuals by IRFs, the changes

of the two components in the last period of the particular sub-sample are expressed

as a sum of responses to the contemporary and past shocks from the macroeconomic

and financial variables. Finally, shares of the particular responses serve as a measure

of the relative importance of each variable for explaining the changes of yields with

respect to the last period of the given sub-sample.

Afterwards, the sample window is moved one month forward, keeping its length

fixed. By this procedure, 152 sub-samples are evaluated, the last being from 2006/07

to 2016/06. Moreover, to increase the robustness, the two components ordered at the

end of the VAR vector are ordered in both ways (the term premium the first, the risk-

neutral yield the second and vice versa) and the results are compared. Consequently,

the results of the analysis are 3-dimensional: 152 sub-samples, 2 ways of ordering

and 10 various maturities.

Results

For each of 152 sub-samples, the components are estimated for each period of the

sub-sample. For the particular sub-sample, these components then enter the VAR

model described above and are used in the forecasting exercise as well. However, from

the full sample perspective, the sub-samples are overlapping, so multiple estimates

of the components are available for most periods. These estimates are generally

different, since various sub-samples result in different estimations. Consequently, in

order to illustrate the historical evolution of the components graphically, an average

of all available estimates was used for each period. Such representation is offered in

the Figure 4.

As obvious from the figure, the shorter rate is governed mostly by the risk-neutral

yield, whereas for the longer yield, the term premium is important as well. Results

confirm so-called Greenspan’s conundrum13 in 2005 as being explained by a drop of

the term premium. Moreover, the 10-year yields term premia are rather counter-

cyclical, which is in line with the prevailing consensus in the literature (see Bauer

et al. 2014 for discussion). Since 2014, the risk-neutral yield is rising, which is in

line with improving U.S. economic conditions. The most recent drops of yields in

13Greenspan’s conundrum is related to the inability of the U.S. Federal Reserve Board to influence
yields of longer maturities by increasing the short rates.
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Figure 4: Yield Components
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The components for each period were obtained by calculating an average value of all estimates for the

particular period. Actual yields display the shadow rates.

January 2016 and June 2016 are explained by a drop of the term premium, which is

in line with the above-expressed intuition about the flight-to-quality behavior in case

of adverse financial market conditions. All these stylized facts confirm the validity

of extracted components as being in line with the economic and financial conditions.

The calculated shares of particular factors for explaining changes of (shadow)

yield components are robust to the ordering of the two components, so only results

for the term-premium ordered in front of the risk-neutral yield are displayed. As

the shares are related to the last observation of each sub-sample, they are calculated

for the periods 2003/11–2016/06. For purposes of a graphical representation of the

shares, they are aggregated (i) by summing the shares of the three macroeconomic

variables (to create a joint “fundamental” share) and of the three financial market

sentiment variables (to create a joint “market mood” share), and (ii) by summing

the response of the two components to calculate the final response of yields. Aggre-

gated results for 1-year and 10-year yields are included in the Figure 5. Since the

shares estimated from the single sub-samples are quite volatile, the figure displays a

12-month moving average of the estimated shares so that the long-term trends are

apparent. Figures displaying a detailed (unaggregated) split of the shares of partic-

ular variables for explaining changes of the single components are included in the

Appendix III.
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Figure 5: Aggregated Shares of Factors
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Fundamental shocks include an aggregated share of shocks from IPI, CPI and MBA. Market mood shocks

include an aggregated share of shocks from EPU-ROW, EPU-US and S&P 500. The unexplained share

includes shocks from the term premium and the risk-neutral yield themselves. The shares are smoothed by

a 12-period moving average, results for the first 12 periods are not displayed. The year marks show a start

of the year.

At the aggregate level, the figure demonstrates a growth of the share of yield

moves explained by the market sentiment shocks. At the end of the sample, their

(smoothed) share is close to 30 % for the 1-year maturity and more than 40 % for the

10-year maturity. In both cases, the share roughly doubled over the whole period

and fluctuated between 20 % and 50 % over the last five years. On the other hand,

the share explained by shocks to macroeconomic variables is usually below 20 %,

maximum reaching in 2009 during the U.S. recession period.

According to the detailed unaggregated results (Appendix III.), the market sen-

timent factors EPU-ROW and S&P 500 are the most important drivers of the term

premium movements. EPU-US contributed to the variations significantly until 2014,

its share is diminishing since then. S&P 500 is an important factor for explaining the

risk-neutral yield changes as well, as this variable can be seen as implicitly includ-

ing expectations about the health of the U.S. economy. Nevertheless, the shocks to

IPI are the most important source of the risk-neutral yield variation. A temporary
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growth of MBA share over 2009 can be explained by Federal Reserve Board policy

steps during the economic slowdown.

The detailed results discovered, that the market sentiment shocks are primarily

related to the term premium changes. At the same time, as obvious from the Figure 4,

the term premium is (since the Great Recession) a dominant source of a variation

in longer yields, compared to its lesser role in a variation of the short yields. This

explains the higher importance of the market sentiment shocks for explaining changes

of yields of longer maturities.

The presented shares of yield dynamics attributable to particular factors support

the initial idea to extend the models by financial market sentiment variables. The

results also highlight a different response of the two components on different shocks.

To evaluate the link between the variables and the components explicitly, impulse-

response functions are utilized. For each sub-sample, a response (at a 1-year horizon)

of the components to the shocks to macroeconomic and financial sentiment variables

are gathered. Results for yields of maturity 10 years are shown in the Figure 6 and

the Figure 7, the presented findings are roughly valid also for the other maturities.

Figure 6: Responses of Yield Components to Macroeconomic Shocks
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The plots capture dynamics of 12-month horizon responses. The gray area displays the 90 % confidence
interval obtained by bootstrapping.

Responses of the risk-neutral yield and the term premium to the shocks to macroe-

conomic variables are opposite in many cases. This is in line with the procyclicality

of the risk-neutral yields and the counter-cyclicality of the risk premium at the same

time. Regarding the responses to the financial market sentiment shocks, since 2011,

the response of the term premium to a growth of EPU-ROW is significantly nega-

tive. Such development signals strengthening of the position of U.S. Treasuries as a

safe haven asset. In case of an increased global uncertainty, the investors require a

smaller premium to hold U.S. Treasuries. A similar pattern is obvious in the relation
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of the term premium to the S&P 500 index. A positive shock in the equity market

motivates investors to reallocate their portfolios towards equity (which leads to an

increase of bond yields), and vice versa, a drop in the equity market causes the flight

to safe U.S. Treasuries. Finally, also a growth of EPU-US results into the flight-to-

quality behavior. However, in this case, the estimated significance of the channel is

smaller, as part of the dynamics was already included in the S&P index change.

Figure 7: Responses of Yield Comp. to Market Sentiment Shocks
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The plots capture dynamics of 12-month horizon responses. The gray area displays the 90 % confidence
interval obtained by bootstrapping.

Newly proposed models

Following the described results, we propose two extensions of the models. First, we

extend the set of three macroeconomic variables used in the macro-finance models

NSfixMB, NSoptMB, NSkalMB and AFpcsMB by the financial market sentiment

variables, as these were shown to explain an important share of yield movements. The

extended models are called NSfixME, NSoptME, NSkalME and AFpcsME (“ME”

meaning “macro-extended”).

Second, the results have also shown a significantly different response of the two

components (the term premium and the risk-neutral yield) to macroeconomic and

financial shocks. Consequently, when estimating a response of their sum (i.e. the

yield) to the shocks, as the canonical models do, the responses of the components

are partially mutually compensated. This leads to a loss of information about the

underlying movements. To reflect this, we propose introducing both components sep-

arately into the models. In practice, we estimate the DNS model (NSfix.. and NSopt..

versions) for components instead of yields, using the two-step estimation approach.

In the first step, for each component, we estimate the Nelson-Siegel function in each

period and so obtain three latent factors per component. In the second steps, we
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link the three factors from both components together within a VAR model (the tran-

sition equation in DNS). That means, that the resulting “yields-only” VAR model

with separated components includes six variables. As in the other models, these fac-

tors can be accompanied by the macroeconomic and financial variables (“MB” and

“ME” models). We name the models with separated components by adding “sep”

to the end of the model code.

Moreover, we additionally propose a set of simplified models including single

maturities. For each maturity, the risk-neutral yield and the term premium enter

directly a VAR model, either by themselves (TSvarPFsep model) or together with

macroeconomic (TSvarMBsep) and financial market sentiment (TSvarMEsep) vari-

ables.14 The set of all newly proposed models is included in the Table 3.

Table 3: Newly Proposed Models

model name based on extension type

NSfixME NSfixMB fin. market sentiment variables macro-finance extended
NSoptME NSoptMB fin. market sentiment variables macro-finance extended
NSkalME NSkalMB fin. market sentiment variables macro-finance extended
AFpcsME AFpcsMB fin. market sentiment variables macro-finance extended

NSfixPFsep NSfixPF separated components yields-only
NSfixMBsep NSfixMB separated components macro-finance basic
NSfixMEsep NSfixME separated components macro-finance extended
NSoptPFsep NSoptPF separated components yields-only
NSoptMBsep NSoptMB separated components macro-finance basic
NSoptMEsep NSoptME separated components macro-finance extended

TSvarPFsep time series separated components yields-only
TSvarMBsep time series separated components macro-finance basic
TSvarMEsep time series separated components macro-finance extended

The symbols “NS” and “AF” represent the DNS and ATSM frameworks; “fix”, “opt”, “pcs”, “kal” and “var”
are related to the estimation approach; “PF”, “MB” and “ME” represent pure-financial (i.e. yields-only),
macro-basic (i.e. the traditional macro-financial) and macro-extended (including financial market sentiment
variables) specifications; “sep” at the end represents models utilizing separated components of yields. “TS”
symbol reflects the simple time-series VAR analysis.

6 Forecasts Comparison

To confirm and further extend the findings from the previous section, we present re-

sults of a yield forecasting exercise in this section. We generate forecasts of (shadow)

yields on a rolling window, using the sub-samples identical to the in-sample analysis.

For each sub-sample, the variables are gathered: yields, yield components (estimated

for that particular sample) and macroeconomic and financial market sentiment vari-

ables. Afterwards, using these data and the methods described in the section 3, the

14Such approach was not included in the original set of canonical models, as usually considered as
performing poorly for forecasting purposes – for example in De Pooter et al. (2010). However, by
using the components instead of yields, we believe the performance may increase.
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models are estimated and yields are predicted. All the models from the Tables 1–3

are used to generate the forecasts.

Yield forecasts are calculated up to 12 months ahead. Results for the longest

horizon are displayed below; for shorter horizons, the results were generally similar,

however slightly less conclusive. To compare the forecasting performance of the

models prior to and after the recent crisis, the set of sub-samples is split into two

sample groups. The first sample group starts with the first sub-sample (ending

2003/11, i.e. the first forecast is calculated for 2004/11) and ends with the sub-

sample ending 2008/08 (one month before the Lehman Brothers collapse. The period

of the crisis is not evaluated, since structural changes were present in that period.

For our purposes, we arbitrarily set the end of the crisis period at the end of 2009 to

obtain a sufficiently wide gap. Consequently, the second sample group consists of the

sub-samples ending between 2010/01 and 2015/06 (included), i.e. the last forecast is

generated for the most recent observation in the whole sample (2016/06). The first

(second) sample group includes 58 (66) sub-samples.

For each sample group, model and maturity, an average of squared differences

between the predicted values and the actual realizations (mean squared error, MSE)

is calculated (the mean is taken over all sub-samples in the particular sample group).

Moreover, to evaluate the robustness of our results, we use bootstrapping, i.e. we cal-

culate multiple MSEs for sub-samples randomly drew from the given sample group.

Afterwards, we take a difference of the MSE calculated for the random walk fore-

casts15 (i.e. the forecasts set at the level of the last observation in each sub-sample)

and the single MSEs from the bootstrapping. This difference (MSEdif) shows an av-

erage improvement of a model’s forecasting accuracy over the accuracy of the random

walk.

The aim of the forecasting exercise is to evaluate the change of the forecasting

accuracy after (i) introducing macroeconomic and/or financial market sentiment fac-

tors into the models, and (ii) replacing yield data by the separated components. To

do so, we aggregate MSEdifs according to two criteria. First, focusing on factors

entering the models, we group together MSEdifs of all “PF” (“MB”, “ME”) models

(each group includes 5000 bootstrapped MSEdifs per each model included in that

group). Second, using the components separation as the second criterion, we simi-

larly split all MSEdifs into two groups: the first group includes the MSEdifs of all

“sep” models (see Table 3), whereas the second group includes MSEdifs of all other

models (we call this group as “joint” models).

Below, we display forecasting results for three maturities: 3 months, 1 year and

10 years (Figure 8). For each group of models and each sample period, a box plot

displays the median, the upper and the lower quartile and the extremes calculated

15More specifically, we bootstrap over the random walk forecast as well. For each model, the set
of 5000 MSEs generated by the bootstrapping is compared to the set of 5000 MSEs of the random
walk. Such approach should provide quite robust results.
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over all MSEdifs in the particular group. The number indicates by how much the

MSE of the random walk is higher than of the particular model group (in basis

points), i.e. a positive numbers indicates that a forecast of the particular model

group is better than of the random walk. The detailed results for particular models

(unaggregated) are included in the Appendix IV.

Figure 8: Aggregated Forecasting Results
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The y-axis measures an average improvement (if positive) of the particular model group over the random-

walk forecasts, measured in basis points. “PF” = yields-only models, “MB” = macro-finance models with a

“traditional” set of macroeconomic variables, “ME” = models including financial market sentiment variables.

“joint” models include yield data or their factors, whereas “sep” models include separated yield components

(or their factors) instead. Whiskers show the maximum and the minimum and boxes display the interquartile

range, both calculated using bootstrapping with 5000 iterations.
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The canonical macro-financial (“MB”) models resulted in the most accurate fore-

casts in the period prior to the Great Recession. Such finding is in line with the lit-

erature, for example Diebold and Li (2006) and De Pooter et al. (2010). Adding the

financial market sentiment variables leads to poorer results. Similarly, modeling the

yield components separately doesn’t generally improve the results, although reduces

the variance of the forecasting accuracy for long maturities.

The situation is significantly different in the period since the Great Recession.

First of all, none of the models is able to systematically outperform the random

walk forecasts in the low yield environment. Such finding is common in the recent

literature (Christensen and Rudebusch 2016). Furthermore, the change of the rela-

tive importance of yield factors documented in the previous section influenced the

forecasting results as well. The added value of the “MB” models over the yields-only

(“PF”) models is kept only for long maturities. Contrary, the models with financial

market sentiment factors (“ME”) perform better, as their median accuracy outper-

forms the “MB” model group median accuracy for all maturities. Similarly, replacing

the yields in the models by their components proves as highly beneficial, since the

forecasts generated by the “sep” models are generally more accurate and with a lower

variance than the canonical “joint” models.

The results consequently show, that both presented adjustments of the models

have a positive implications for the forecasting accuracy of the models. However,

the impact is different for short and long maturities. For the short maturities, it is

advisable to include the components (the term premium and the risk-neutral yields)

separately into the models. This is in line with the findings of the previous section:

the shocks have often different impact on both components. If the yield is included

directly (i.e. as a sum of the two components), a significant amount of informa-

tion is lost, which weakens the results. Contrary, for the long maturities, including

the financial market sentiment variables is crucial for improving the forecasting re-

sults. The intuition is straightforward: for the longer maturities, the term premium

explains a significant share of the yield movements. As it has been shown in the

previous section, since the recent crisis, the term premium is explained by the fi-

nancial market sentiment factors in a large extent. Consequently, these factors are

increasingly crucial to capture the long yields’ movements. The separation of the

components is less important for longer maturities, as the dominance of the term

premium movements for explaining the long yields variation is relatively high (so the

amount of information lost by not separating the components is quite small).

To conclude, the proposed extensions of the interest rate models resulted in a par-

tially improved forecasting accuracy. This confirms that the economic consequences

of the new environment since the Great Recession had an impact on the models’

performance and should be carefully reflected. On the other hand, our forecasting

results are still relatively worse compared to the performance of interest rate models
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prior to the recent crisis. It can be argued, that a part of the economic consequences

of the new environment could represent a new feature of the yields dynamics that

can not be addressed by the models directly. An example could be a possible lower

persistence of the financial market shocks, compared to the macroeconomic shocks.

The difference in the persistence of shocks is however not quantified in this paper

and the issue is left opened for a further research.

7 Summary and Conclusions

The paper evaluates economic consequences of the environment following the Great

Recession for the interest rate modeling and forecasting. By this, the paper goes

beyond the recently popularized shadow-rates models, which focus primarily on the

technical consequences of the lower bound proximity. As a result, the aim of the

presented analysis is to contribute to the discussion about the causes of the post-

crisis drop of the forecasting performance of canonical interest rate models.

Using shadow rates extracted from the U.S. Treasury yields of ten maturities, we

evaluate dynamic relations of yields, yield components, macroeconomic and finan-

cial market sentiment variables. Our results clearly show, that shocks unrelated to

macroeconomic news have become an increasingly important source of yields varia-

tion since the Great Recession. These shocks represent changes of the financial mar-

ket sentiment triggered by political and purely financial events, for example Brexit

or recent Chinese stock market drops. Furthermore, the two yield components often

respond to shocks in an opposite way. Consequently, the final response of yields

includes partially compensated responses of these two components and a significant

amount of information about the underlying dynamics can be lost.

To reflect these findings, we propose two modifications of the canonical mod-

els. Namely, we extend them by the financial market sentiment proxies, and replace

the (shadow) yield data by their separated components. Afterwards, we compare

the forecasting performance of a wide set of the canonical models with these newly

enhanced. As we find out, our extensions truly improve the forecasting accuracy,

although the extent of the improvements depends on the yield maturity. More specif-

ically, as we show, the forecasting accuracy of the short yields improves after using

the separated yield components. On the other hand, for the longer yields, intro-

ducing the financial market sentiment variables explicitly into the models is crucial.

Despite these advances, we still fail to obtain a forecasting accuracy comparable to

the performance of models prior to the recent crisis. We argue that this can signal

new features of the yields dynamics, for example a lower persistence of the shocks,

which cannot be reflected by the present modeling techniques. However, this question

remains opened and is left for a further research.

With the U.S. economy gradually leaving the lower bound proximity, the technical
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problems related to the low yield environment could became less crucial. On the other

hand, the new macro-financial factor dynamics and the way how it impacts the yield

curve can remain. In that case, further advances in the analysis of the yield factors

and the responses of the yield components would be necessary, which opens a wide

area of the future research.
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Appendices

Appendix I: Models setup

Dynamic Nelson-Siegel Approach

The basic building block of the Dynamic Nelson-Siegel model is the Nelson and Siegel

(1987) representation of the yield curve as a function of the maturity τi:

y (τi) = β1 + β2

(
1− e−λτi
λτi

)
+ β3

(
1− e−λτi
λτi

− e−λτi
)

(3)

where β1, β2, β3 and λ are parameters. Later, the function was further extended by

Svensson (1995) by including an extra term to enhance a flexibility of the function

when fitting the term structure. However, the original form is often considered as

being flexible enough, so the additional element is not utilized in order to maintain

parsimony.

The three indexed beta parameters are of a special interest, as they can be con-

sidered as representatives of the main characteristics of the term structure of interest

rates: the latent factors. For example Diebold and Li (2006) show, that these factors

can be, following their factor loadings, viewed as a level, a slope and a curvature of

the yield curve. Such specification is plausible, being in line with the nature of the

first three principal components extracted from the yield curve data set, as shown

by Litterman and Scheinkman (1991). Finally, when allowing for the three factors to

be time-varying following Diebold and Li (2006), the static functional form changes

to the Dynamic Nelson-Siegel model, which can be written in a form of a state space

model:

yt (τi) = β1,t + β2,t

(
1− e−λτ

λτi

)
+ β3,t

(
1− e−λτi
λτi

− e−λτi
)

+ εy,t (τi) (4)

βt = α+ Γβt−1 + εβ,t (5)

where βt = (β1,t, β2,t, β3,t)
′, whereas α and Γ are a vector and a matrix of parameters.

The measurement error terms εy,t (τi) are forming a N × 1 vector error term εy,t ∼
N (0,R). A 3 × 1 vector εβ,t ∼ N (0,Q) represents random disturbances in the

latent factors process. As usual for the basic state space representation, εy,t and εβ,t

are assumed to be mutually uncorrelated.

Following Diebold et al. (2006), the macro-financial extension of the model can be

done directly. The measurement equation does not change, however the state vector

is enriched by m observable macroeconomic and/or financial variables θt, forming a

new (3 +m)-dimensional state vector ηt =
(
β′t,θ

′
t

)′
. The new transition equation is:

ηt = µ+ Φηt−1 + εη,t (6)
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where µ, Φ and εη,t are similar to α, Γ and εβ,t, differing only in their dimensions. As

the macro-variables θt do not enter the measurement equation, they do not influence

the yields directly, but only through their joint dynamics with the original yield

factors βt.

Two estimation methods can be used. A one-step estimation includes the usual

methodology for estimating state space models: the maximum likelihood estimation

within the Kalman filter procedure. Contrary, a two-step approach begins with

fitting the yield curve by the Nelson-Siegel function (the Equation 3) in each period

separately, using least squares. Obtained parameters βt then enter a VAR(1) model.

An advantage of the one-step method, compared to the two-step approach, is an

optimal estimation of βt factors with respect to the measurement and transition

random errors. Contrary, in the two-step approach, the measurement errors are

minimized first. The transition equation is then estimated keeping the extracted

factors (i.e. also the measurement errors) fixed.

Within the estimation method, a determination of the λ parameter is crucial.

In the two-step estimation method, λ must be determined before the estimation.

Two possible approaches can be used. First, following Diebold and Li (2006), λ can

be chosen arbitrarily to ensure that the yield curve will maintain a “usual” shape.

Diebold and Li (2006) set λ equal to 0.0609, which maximizes the curvature fac-

tor loading at the maturity 30 months. The second approach is less arbitrary: λ

minimizing the measurement error is employed. In this case, the first step of the

two-step estimation method (fitting the yield curve in each period) is run repeat-

edly for various values of λ, until the sum of squared measurement errors over all

maturities and all periods is minimized. In both cases, the final λ value is fixed for

all periods. For the single-step approach, the two-step λ values can be used as well.

As an alternative, the parameter can be also estimated directly using the maximum

likelihood method within the Kalman filter procedure.

Affine No-arbitrage Model

To specify an affine model, we build on the work of Duffie and Kan (1996) and

a discrete-time specification presented by Ang and Piazzesi (2003). Under a risk-

neutral measure (Q), a value of a zero-coupon bond Pt(τ + 1) equals the expected

value of the bond one period forward, discounted by an instantaneous (short) interest

rate rt:

Pt(τ + 1) = EQ

[
Pt+1(τ)

ert

]
(7)

where EQ denotes expectations under the risk-neutral measure. Discounting by the

short (risk-free) interest rate is perfectly consistent under the risk-neutral measure,

as risk neutrality is equivalent to an absence of a term premium.
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The model is affine, which means that the short rate can be expressed as an affine

function of a l-dimensional vector of latent factors Lt:

rt = a0 + aT1Lt (8)

where a0 is a scalar parameter and a1 is a l-dimensional vector of parameters. The

latent factors follow a first-order VAR process:

Lt = γ0 + Γ1Lt−1 + ΣLεt (9)

where γ0 is a l× 1 vector and Γ1 represents a l× l matrix of parameters, whereas εt

is a l-dimensional random term assumed to follow N(0, I). Moreover, ΣL term is in

this case a l × l matrix of coefficients.

Under such specification, utilizing the fact that Pt(0) = 1, the model is fully

defined under the Q-measure. To shift between Q-measure and the data-generating

(real-world) P-measure, a time-varying market price of risk λt is employed.16 The

market price of risk is an affine function of the latent factors:

λt = λ0 + λ1Lt (10)

with λ0 being a l-dimensional vector and λ1 being a l × l matrix of parameters.

The market price of risk is used to convert the measures. Within the conversion,

a Radon-Nikodym derivative is utilized and a stochastic discount factor (pricing

kernel, a P-measure analogy of the risk-free discount factor e−rt) is derived. A full

description of the conversion can be found for example in Ang and Piazzesi (2003).

The only variables determining (recursively) the bond prices under the P-measure

are rt (from the Equation 7) and the measure-converting λt. Both rt and λt are an

affine function of the latent factors. As a result, bond prices as well as the yields can

be expressed in terms of the latent factors, which are the only source of the bond

price dynamics. An elegant advantage of the affine class of no-arbitrage models is

that this relation has a convenient form (Duffie and Kan 1996):

Pt(τ) = eB1(τ)+BT
2 (τ)Lt (11)

yt(τ) = − lnPt(τ)

τ
= −B1(τ)

τ
− B

T
2 (τ)Lt
τ

= C1(τ) +CT
2 (τ)Lt (12)

Ang and Piazzesi (2003) show, that the functions B1(τ) and B2(τ) are defined

16 The λt symbol is used in order to follow the notation common in the literature, although having
a different interpretation than the λ symbol in the Nelson-Siegel function.
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recursively for increasing maturities:

B1(1) = −a0, B2(1) = −a1 (13)

B1(τ + 1) = B1(τ) +BT
2 (τ) (γ0 −ΣLλ0) +

1

2
BT

2 (τ)ΣLΣT
LB2(τ)− a0 (14)

BT
2 (τ + 1) = BT

2 (τ) (Γ1 −ΣLλ1)− aT1 (15)

Consequently, the whole model can be written in the state-space representation:

yt(τ) = C1(τ) +CT
2 (τ)Lt + εy,t(τ) (16)

Lt = γ0 + Γ1Lt−1 + εL,t (17)

where the inclusion of εy,t(τ) results from the fact that the observed yields might not

be fitted perfectly, i.e. some measurement error is present. Similarly to the Dynamic

Nelson-Siegel model, εy,t (τ) are forming a N×1 vector error term εy,t ∼ N (0,R). A

l×1 vector εL,t ∼ N (0,Q) is a rewritten form of the ΣLεt term from the Equation 9

(Q = ΣLΣT
L) and represents random disturbances in the latent factors process. εy,t

and εL,t are assumed to be mutually uncorrelated.

The presented state-space representation of the affine no-arbitrage model is very

close to the Dynamic Nelson-Siegel form. Consequently, the macro-financial exten-

sion is done in a similar way, enriching the original Lt vector by a θt vector of

macroeconomic and/or financial variables to form an extended macro-financial state

vector. However, in case of the affine model, the θt vector enters directly also the

measurement equation (the Equation 16), so a change of the observed macro-financial

factors has a direct impact on the yield curve.

Similarly to the Dynamic Nelson-Siegel model, either a one-step or a two-step

estimation approach is possible. The one-step approach utilizes the Kalman filter

and the maximum likelihood estimation. The two-step approach firstly finds a proxy

for the latent factors, making them observable. For example, the common approach

is to use the principal components of yields, representing yields of some bond port-

folios, in line with Joslin et al. (2011). A VAR process of these observable factors

Lt is then estimated (the Equation 17). Afterwards, a proxy for the short rate is

found (for example an over-night money market rate) a the Equation 8 is estimated.

Finally, all remaining parameters of the Equation 16 are obtained by minimizing the

measurement errors over the remaining parameters of the equations 13–15.
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Appendix II: Results of stationarity tests

Table 4: Augmented Dickey–Fuller Test Results

variable test statistic of a model:
in levels in differences

3-month yield -0.6524 -4.3921
6-month -0.6561 -4.5422
1-year -0.6630 -5.2732
2-year -0.6768 -6.3237
3-year -0.6777 -6.8038
5-year -0.6568 -7.2470
7-year -0.6326 -7.4999
10-year -0.6080 -7.7752
20-year -0.5802 -8.2854
30-year -0.5743 -8.5016

monetary base 5.1970 -7.3099
CPI 6.8707 -7.4827
IPI 4.3673 -6.7734
S&P 500 1.4648 -4.4208
EPU U.S. -1.1999 -8.9163
EPU rest of world -0.9982 -10.2898

critical value (90%) -2.58
critical value (95%) -1.95
critical value (99%) -1.62

Only the first estimation sub-sample is used for testing the stationarity. Shadow rates are not

tested, they are very close to the observed yields in the first estimation sub-sample. For the model

in differences, the first difference is used.
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Appendix III: In-sample results

Figure 9: Shares of Factors: 1-year Yield Components

Consumer price index EPU − rest of world EPU − US

Industrial production index Monetary base S&P 500

Unexplained

0

20

40

60

0

20

40

60

0

20

40

60

2006 2008 2010 2012 2014 2016

time

sh
ar

e

Split of factor shares − term premium

Consumer price index EPU − rest of world EPU − US

Industrial production index Monetary base S&P 500

Unexplained

0

20

40

60

0

20

40

60

0

20

40

60

2006 2008 2010 2012 2014 2016

time

sh
ar

e

Split of factor shares − risk−neutral yield

The unexplained share includes shocks from the term premium and the risk-neutral yield themselves.

The shares are smoothed by a 12-period moving average, results for the first 12 periods are not

displayed. The year marks show a start of the year.
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Figure 10: Shares of Factors: 10-year Yield Components
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The unexplained share includes shocks from the term premium and the risk-neutral yield themselves.

The shares are smoothed by a 12-period moving average, results for the first 12 periods are not

displayed. The year marks show a start of the year.

32



Appendix IV: Forecasting results

Figure 11: Detailed Forecasting Results: 2003/11–2008/08
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The y-axis measures an average improvement (if positive) of the particular model group over the random-walk

forecasts, measured in basis points. The description of the particular models is included in the tables 1–3.

Whiskers show the maximum and the minimum and boxes display the interquartile range, both calculated

using bootstrapping with 5000 iterations.
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Figure 12: Detailed Forecasting Results: 2010/01–2015/06
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The y-axis measures an average improvement (if positive) of the particular model group over the random-walk

forecasts, measured in basis points. The description of the particular models is included in the tables 1–3.

Whiskers show the maximum and the minimum and boxes display the interquartile range, both calculated

using bootstrapping with 5000 iterations.
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