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Abstract

A major concern about the use of simulation models regards their relationship with the
empirical data. The identification of a suitable indicator quantifying the distance between
the model and the data would help and guide model selection and output validation. This
paper proposes the use of a new criterion, called GSL-div and developed in Lamperti (2015),
to assess the degree of similarity between the dynamics observed in the data and those
generated by the numerical simulation of models. As an illustrative application, this approach
is used to distinguish between different versions of the well known asset pricing model with
heterogeneous beliefs proposed in Brock and Hommes (1998). Once the discrimination ability
of the GSL-div is proved, model’s dynamics are directly compared with actual data coming
from two major stock market indexes (EuroSTOXX 50 for Europe and CSI 300 for China).
Results show that the model, once calibrated, is fairly able to track the evolution of both the
two indexes, even though a better fit is reported for the Chinese stock market. However, I
also find that many different combinations of traders behavioural rules are compatible with
the same observed dynamics. Within this heterogeneity, an emerging common trait is found:
to be empirically valid, the model has to account for a strong trend following component,
which might either come from a unique trend type that heavily extrapolates information
from past observations or the combinations of different types with milder, or even opposite,
attitudes towards the trend.
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1 Introduction

Empirical validation is crucial for all modelling efforts that attempt at providing support

to policy decisions, independently of their theoretical background. Even though Agent Based

Models (ABMs) have often been advocated as promising alternatives to neoclassical models

rooted in the dogmatic paradigms of rational expectations and representative agents, there are

still some concerns about how to bring them down to the data (Windrum et al., 2007; Gallegati

and Richiardi, 2009; Grazzini and Richiardi, 2015). In macroeconomics, for example, Giannone

et al. (2006), Canova and Sala (2009) and Paccagnini (2009) provide details about how to

estimate and validate Dynamic Stochastic General Equilibrium models. However, their approach

cannot be extended to settings where an analytical solution of the model (or an equilibrium)

does not exist, which are typical cases in ABMs, system dynamics and complex systems more

in general. Broadly speaking, these numerical models are validated through a comparison of

the statistical properties emerging from simulated and real data. In many cases, this amounts

at replicating the largest possible number of stylized facts characterizing the phenomenon of

interest (see Dosi et al., 2010, 2013, 2015 for business cycle properties, credit and interbank

markets or Pellizzari and Forno, 2006; Jacob Leal et al., 2015 for financial markets). Recent

attempts are trying to enrich empirical validation going beyond simple replication of empirical

regularities, thereby requesting models to generate series that exhibit the same dynamics (Marks,

2013; Lamperti, 2015), conditional probabilistic structure (Barde, 2015) and causal relations

(Guerini and Moneta, 2016) as those observed in the real world data. At least partially, such

contributions have been motivated by the unsatisfactory results delivered by calibration. In

general, it is difficult to justify the choice of one specification of model parameters over another,

and calibration can be though as the exercise of selecting the best values of the parameter set

reproducing real data. In those cases where the model is sufficiently simple and well behaved, it is

possible to derive a closed form solution for the distributional properties of a specific output of the

model, and then to estimate the parameters governing such distributions accordingly (Alfarano

et al., 2005, 2006; Boswijk et al., 2007). However, in the majority of cases, policy oriented

models do not allow such procedures (see, for example, contributions in Dawid and Fagiolo,

2008 and LeBaron and Winker, 2008). When models’ complexity prevents to obtain closed form

solutions, more sophisticated techniques are required. Bianchi et al. (2007) and Bianchi et al.

(2008) target a specific medium-scale macroeconomic agent based model and estimate some of

its parameters by indirect inference (Gourieoux and Monfort, 1997). Starting from the same

procedure, Gilli and Winker (2003) and Winker et al. (2007) introduced an algorithm and a

set of statistics leading to the construction of an objective function used to estimate models of

exchange rate and to push them closer to the properties of real data.1 Recently, Grazzini and

Richiardi (2015) proposed the approach of simulated minimum distance for estimation of ergodic

ABMs, both in the long run equilibrium and during transitional dynamics, while Recchioni et al.

(2015) used a simple gradient-based calibration procedure to conveniently sample the parameter

space minimizing a standard loss function based on the cumulative squared errors. The key

choice of a calibration exercise seems to boil down to the function that measures models’ fit
1On the use of indirect inference see also Fabretti (2012).
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with the data. According Winker et al. (2007), the moments and the statistics used in the

objective function must be robust, reflect statistical properties of the real data and exhibit the

potential to discriminate between alternative models or parameter values. Not all calibration

procedures appears persuasive in this respect. For example, Amilon (2008) estimates a relatively

simple model of financial markets with 15 parameters (but only 2 or 3 agents) by efficient

method of moments and reports an high sensitivity of the model to the assumptions on the noise

term and stochastic components, questioning the performance of calibration exercises more in

general. In addition, it appears straightforward that even if calibration delivers one or more

array of parameters that maximise model’s fit with the data, it is not automatic that this fit is

a reasonably good one. Therefore, one of the objectives of validation exercises should be the

assessment of somehow calibrated models in reproducing, ex-post, various properties of the real

data and, in addition, to inform about the behaviour of the model within large regions of the

parameter space (see also Grazzini et al., 2015).2

In this paper I present an application of the GSL-div developed in Lamperti (2015)

to validate model’s output against real word data and explore the behaviour of the model

quantifying the distance between the dynamics observed in the data and those numerically

simulated. Validation is achieved capturing the ability of a given model to reproduce the

distributions of time changes (that is, changes in the process’ values from one point in time to

another) in the real-world series, without the need to resort to any likelihood function or to

impose requirements of stationarity. The GSL-div adds something that seems missing in the

literature: a precise quantification of the distance between the model and data with respect to

their dynamics in the time domain. On this side, my work builds on Marks (2013) and extend it

by capturing and emphasizing the dynamical nature of time series models, which is, for example,

loosely represented by the longitudinal moments used in many calibration exercises. The GSL-div

is tested on the series produced by the well known asset pricing model with heterogeneous

traders developed in Brock and Hommes (1998).

The rest of the paper is organized as follows. Section 2 introduces the GSL-div, discusses

its main properties and provides a simple example; section 3 summarizes the mathematical

structure of the model that will be used throughout the paper and validated against historical

data; section 4 constitutes the core of this contribution, it illustrates and discusses the results I

obtained. Finally, section 5 concludes the paper and provides some insights into future research.

2 Validation and the GSL-div

2.1 Validation

Validation is a complex task that encompasses diverse aspects of the overall modelling

activity. In this paper I interpret validation as the exercise of assessing the fit of one or different

models with empirical data. To provide a general context, Manson (2002) distinguishes between

output validation and structural validation. The latter asks how well the simulation model

represents the (prior) conceptual model of the real-world system, while the former asks how

2As will be briefly discussed below, I refer here to what is called output validation.
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successfully the simulations’ output exhibits the historical behaviours of the real-world target

system. Output validation can be directly related to what Leombruni et al. (2006) define as

empirical validity of a model, i.e. validity of the empirically occurring true value relative to its

indicator. Following Rosen (1985), it is useful to think of two parallel unfolding: the evolution

of the system (an economy, a market or whatever) and the evolution of the model of the system.

If the model is correct, properly calibrated and initial conditions have been fixed according to

the initial status of the real system, the simulation should mirror the historical evolution of such

system with respect to the variables, or statistics, of interest.

In our context, a model is broadly defined as a representation of a system that is able to

produce some synthetic output tracking the evolution of the system itself. Formally, the output

of a model can be represented by the collection of all micro-states at time t, Xt ≡ {xi,t} with

i = 1, ..., N and t = 1, ..., T such that

xi,t = fi(θ, Xt−1), (1)

where fi can be any (deterministic or stochastic) real valued function and θ ∈ Θ ⊂ Rd

is a vector of d parameters. I assume that, for each model, θ and X0 are exogenously given.

In other words, the model has already been calibrated: initial conditions and parameters are

assigned precise values. In addition, real world data are defined as the empirically observable

elements of the system.

2.2 The GSL-div

The GSL-div is a measure, developed in Lamperti (2015), that determines the degree of

similarity between the dynamics observed in real data and those produced by the numerical

simulation of a model. The only input it requires are the real and simulated series. It should

be noticed that such a comparison might involve objects having different dimensions. While

real quantities can be observed once and only once, if the model is stochastic, many different

realizations might be obtained varying the seed of the random number generator. To the contrary,

if the model is deterministic, a unique (or many identical) series will be obtained for each variable

of interest. The GSL-div can be used in both the two cases, but it has been thought to treat

stochastic models, which I see as the most relevant cases, provided that many economic decision

or events (e.g. innovation outcome) are inherently uncertain.

The estimation of the GSL-div follows a simple, three steps procedure that is proposed

and briefly discussed here:

1. Time series (both real and simulated) are symbolized

2. Distributions of time-changes are estimated for windows of different lengths

3. The distance between distributions from real and simulated data are evaluated and

aggregated.

The first step consists in series’ symbolization. This procedure is carried out to constrain

them to take only a finite set of values. Let {x(t)}T
t=1 be a time series of total length T where each

x(t) is a real number. To symbolize it, I firstly take the real interval [xmin; xmax] and partition

it in b ∈ N0 subintervals, each of equal length. These intervals are numbered increasingly from 1
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to b, with 1 assigned to [xmin; xmin + (xmax−xmin)
b

). The parameter b controls for the precision

of the symbolization: for b = 1 the symbolized series takes one and only one value (namely 1)

while for b → ∞ we are back to the (scaled) real-valued process. The symbolization is simple

and works as follows: each {x(t)}T
t=1 is mapped into the natural number corresponding to the

partition interval where it falls. As an example, consider the following time series x(t) with

T = 3: {0; 0.4; 1}. Choosing b = 2, the symbolized series will be xs(t) = {1, 1, 2}, while choosing

b = 9 the symbolized series becomes xs(t) = {1, 4, 9}, where the apex s stands for symbolized.

Obviously, increasing b the information loss about the behaviour of the stochastic process due to

the symbolization becomes smaller and smaller. However, I will show that the GL-div is very

precise in recognizing similarity in time series dynamics even with very low values of b.

Now, I iteratively construct blocks of symbols having lengths l = 1, ..., L with L ≤ T by

pasting together successive symbolized observations. Each of the resulting blocks with l > 1

corresponds to a realized pattern of time to time changes in the process. For example, with b = 9

and l = 1 previous symbolized time series, xs(t), comprehends blocks {1, 4, 9}; with l = 2 it

comprehends {14, 49}, indicating two increasing trends with the second being more pronounced

than the first. Let Sl,b =
(Ab

l

)

be an alphabet of symbols where Ab = {1, 2, ..., b}. That is, Sl,b is

the set of all the l-combinations of Ab and represents the set of all possible blocks with length l.

The cardinality of the alphabet is defined as al,b = 2Si = bl, ∀l = 1, ..., L and corresponds to the

number of different symbols that blocks of length l might be associated to once b is chosen. It is

relevant to see that, with l fixed, blocks might overlap. This is a relevant feature allowing to

capture each possible pattern of time changes independently of the initial (and final) observation

in the sample. If series are of length T , T − l + 1 blocks will be obtained for each value of l. L

represents the maximum length of the windows which are used to compare the behaviour of the

real data with the synthetic ones. It has to be chosen considering both (i) the nature of the

phenomenon of interest and (ii) the size of the available real-world time series.

Now, frequency of symbols in each series are estimated. Let xs(t) and ys(t) be two

symbolized time series. Sl is the alphabet at length l once b has been chosen, and f, f′ are vectors

collecting the occurrence frequencies of all available symbols. Similarity in the behaviour of

the time series is inferred comparing symbols’ frequency distributions obtained from the two

time series for different blocks’s length, which obviously corresponds to consider windows of

different length to observe time to time changes. This allows, for example, to isolate and separate

similarities at different time scales. For each value of l = 1, ..., L the distance between fl and fl

is evaluated through the L-divergence (Lin, 1991). Their aggregation gives instead the GSL-div

between couples of distributions.

Definition 2.1. (GSL-div between distributions)

Assume that b and L have been fixed. Let xs(t) and ys(t) be two symbolized time series exhibiting

respectively frequencies fx and fy over the alphabet Sl. We define the Generalized Subtracted
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L-divergence between the two distributions as

DGSL(fx ||fy) =
L

∑

i=1

wi



−2
∑

s∈Si

mi(s) logal
mi(s) +

∑

s∈Si

fy,i(s) logal
fy,i(s)





=
L

∑

i=1

wi

(

2HSi(mi) − HSi(fy,i)
)

, (2)

where the symbol HSi(·) indicates the Shannon entropy of a distribution over the state space Si

and ai the cardinality of the alphabet available at length l = i.

When dealing with a deterministic model, the use of (2) might be satisfactory in the

characterization of the distance between real and simulated dynamics, since all the available

information has already been exploited. In the more interesting case of stochastic models, in

principle, one might want to estimate the distance between data and model relying on the

probabilistic structure of the latter. For example, one would like to fed the GSL-div with the

true probability that the model assigns to each sequence of symbols rather than its frequency.

However, if the model is not solvable analytically, the only information about the stochastic

process underlying the aggregate behaviour of these models is available through the synthetic

series they produce. Now, imagine to take an ensemble of independent runs of the same,

previously calibrated model. In this context, the following proposition is proved and discussed

in details in Lamperti (2015, appendix B).

Proposition 1. Let pµ(s) be the average probability that model µ assign to each symbol in the

interval t ∈ [1, .., T ] and p(s) the frequency of the same symbol observed in the real data. The

GSL-div between pµ(s) and p(s) is given by

GSL(p(s) || pµ(s)) =
L

∑

i=1

wi E



−2
∑

s∈Si

mi(s) logai
mi(s) +

∑

s∈Si

f(s) logai
f(s)





+
L

∑

i=1

wi





Bm
i − Cm

4Ti
−

B
pµ

i − Cpµ

2Ti



 + O(T −2). (3)

where E(·) is the expectation over an ensemble of independent runs, wi are arbitrary positive

weights such that
∑

i wi = 1, Bj is the cardinality of the support of j = {m, pµ} and Bj ≥ Cj ≥ 1

.

The use of a sufficiently large ensemble of runs allows to capture the overall degree of

similarity between models and the data, washing away run-specific effects. Since ABMs might

typically exhibit chaotic dynamics, stochastic shocks and/or tipping points, one run of the model

might be completely different from the others.3 To adequately explore behaviour of the model,

a relatively large number of runs have to be considered and, when it comes to validation (after

3See the discussion in section 3.3 of Pyka and Fagiolo (2007) and, for a recent contribution on the issue of
tipping points in macroeconomic agent based models, Gualdi et al. (2015).
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having conveniently calibrated and/or estimated the model) different runs should ideally exhibit

relatively similar dynamics. Finally, it is relevant to underline that, the application of (3) in the

case of a deterministic model boils down exactly to (2).

Now, the only element that remains to be determined is the vector of aggregation weights,

wi with i = 1, ..., L. In general, they are chosen to increase with l for two reasons. On one

side, such choice reflects the grater importance assigned to patterns of similar behaviour lasting

over longer time-windows and, on the other, it compensates for the increasing value of the

logarithms’ base al. A detailed discussion about weights’ selection is found in Lamperti (2015,

section 2.3), together with different robustness exercises showing results’ poor sensibility to the

choice of weights. For the purpose of this paper we consider additively progressive weights, that

is, weights such that their first difference is constant and collectively sum up to one. This choice

is additionally justified by the fact that additively progressive weights are unique; once L is fixed

there is a unique vector satisfying previous requirements:

wl+1 = wl +
2

L(L − 1)
with l = 1, ..., L.

The GSL-div exhibits a set of interesting properties, even though it is important to recall

it does not satisfy triangular inequality and, therefore, it is not a metric. In particular,

1. The GSL-div is well defined for all p and pµ

2. 0 < GSL(p || pµ) < 2

3. GSL(p || pµ) = H(p) ⇐⇒ p = pµ ∀ l = 1, ..., L and s ∈ Sl,b.

The first property guarantees that for any couple of probability vectors, the GSL-div

between the two exists and can be computed independently of their support, which might either

be the same or not.4 The second property indicates that the GSL-div is bounded both from

above and below. This is interesting and desirable for validation purposes, because benchmarks

for extreme cases are naturally provided. Finally, property 3. shows the effective lower bound

for the GSL-div: it is equal to the entropy of the real time series if and only if for every block

length model µ assigns each symbol the same probability the observed time series does. This

would be the case of perfect matching between the dynamics of the simulated series and the

data, whose patterns are mirrored exactly in all model’s runs. Conversely, the GSL-div moves

towards its upper bound, indicating that two series exhibit completely different behaviours, as

soon as they tend to constantly persist over different states (i.e. symbols). For example, if we

were to compare the dynamics of the inflation rates between two countries, this approach would

detect maximally divergent behaviours when prices are constant in one country (zero inflation)

but constantly rising (or falling) in the other or, in the same way, when deflation affects the

first and hyperinflation the second.5 However, it should be noticed that the upper bound of 2

constitutes a theoretical value, which is extremely unusual to be reached in practice. In Lamperti

(2015) a more detailed set of properties is proved and discussed, including the link between the

4This constitutes a direct advantage vis-á-vis, for example, the Kullback-Leilbler divergence (Kullback and
Leibler, 1951).

5Note that in these example the observation units are inflation rates, and not price levels, which would deliver
different results.
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GL-div and the famous AIC (Akaike, 1973), which can be seen as a particular case of the present

approach.

2.3 A simple example

Here I propose a simple and brief example showing how the GSL-div estimation works in

practice. I consider three time series of length T = 10, called x, y and z respectively, and omit

dependence on time to ease notation. In particular,

x = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

y = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1}

z = {2, 2.5, 3, 3.5, 4, 4.5, 4, 4.5, 5, 5.5}.

These series might be thought as a real quantity (say, x) and the output of two deterministic

competing models (y and z). Figure 1 graphically shows these three time series. By inspection,

we notice that z behaves much more closely to x than y does; even though they have different

slopes, they are both increasing over time, apart from one downward step in z. To the contrary, y

is always decreasing, at a constant pace, which exactly corresponds to the opposite with respect

to x’s one. Therefore, x and y touch the same states, each once and only once, but with reversed

dynamics.

Figure 1: Three simple time series.

Now we want to employ the GSL-div to detect similarities between x and both y and z.

Obviously, we expect it to identify a much closer dynamics between x and z rather than between

x and y. First, we proceed with the symbolization process using b = L = 3. These values are

chosen for exposition reasons; on one hand they are quire low, thereby making it more difficult

for the GL-div to capture similarities in series’ behaviour, on the other they allow for a relatively
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short alphabet, which eases the representation of symbols. Table 1 reports symbols observed in

the symbolized version of each series and their frequency. Each symbol represents a pattern that

is observed in the data and its frequency measures the recursion of such symbol over time. The

more similar frequency distributions over the different alphabets, the more time series exhibit

analogous dynamics.

Table 1: Observed symbols and their frequencies for time series x, y and z.

x y z

length observed symbols

1 {1}, {2}, {3} {1}, {2}, {3} {1}, {2}, {3}

2
{11}, {12}, {22}, {11}, {21}, {22}, {11}, {12}, {22},
{23}, {33} {32}, {33} {23}, {32}, {33}

3
{111}, {112}, {122}, {222}, {111}, {211}, {221}, {222}, {111}, {112}, {122}, {223},
{223}, {233}, {333} {223}, {233}, {333} {232}, {233}, {323}, {333}

frequencies

1 0.4; 0.3; 0.3 0.4; 0.3; 0.3 0.3; 0.3; 0.4

2
0.33; 0.11; 0.22; 0.33; 0.11;0.22; 0.22; 0.11; 0.11;
0.11; 0.22 0.11; 0.23 0.22; 0.11; 0.22

3
0.25; 0.125; 0.125; 0.125; 0.25; 0.125; 0.125; 0.125; 0.125; 0.125; 0.125;
0.125; 0.125; 0.125; 0.125; 0.125; 0.125; 0.125; 0.125; 0.125

Some similarity of behaviour between x, y and z can be singled out just watching at the

symbols reported in Table 1. Considering length equal to one (l = 1), the focus falls on the

persistence of each series within each state. Moving to l = 2 patterns of length two are analysed.

At this level it starts emerging the key difference between our three series: two are (almost

always) increasing while the other decreases over time. This translates in the fact that supports

of the distribution of time changes for x and z share a larger number of elements than it happens

with y.6 Beyond such similarities, the present approach recognizes from the very beginning the

presence of a decreasing episode in z, which is absent in x. When blocks of length three are

studied, the same evidences already emerged are confirmed and, in addition, we capture the fact

that z’s downward phase lasts one period only.

The straightforward application of (2) leads then to the comparison of GSL-divs for the

couples (x, y) and (x, z). As expected, DGSL(fx | fy) = 1.037 > 0.799 = DGSL(fx | fz), which

gives some insight into the capacity of the present approach to identify similarities and differences

in time series’ dynamics even with low precisions (b and L) and extremely short time series.

3 The Brock and Hommes Asset Pricing Model

To show the approach proposed in this paper more extensively, I rely on the widely known

asset pricing model with heterogeneous agents proposed in Brock and Hommes (1998). The

6Some symbol is still present in three supports because of the low precision of the symbolization process, which
does not allow to readily capture the strictly monotonic nature of series x and y. With b = 10 for example, x and
y’s supports at l = 2 would be completely different.
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model is ideal for illustrative purposes. It is relatively simple and costless to simulate but, on

the other side, it offers variegate dynamics that are linked to a rich parameter space. Further,

it has already been used as a test-model for different calibration and validation exercises (e.g.

Boswijk et al., 2007; Recchioni et al., 2015).

There is a population of N traders that can either invest in a risk free asset, which is

perfectly elastically supplied at a gross return R = (1 + r) > 1, or in a risky one, which pays an

uncertain dividend y and has a price denoted by p. Wealth dynamics is given by

Wt+1 = RWt + (pt+1 + yt+1 − Rpt)zt, (4)

where pt+1 and yt+1 are random variables whose behaviour will be clarified in few lines

and zt is the number of the risky asset shares purchased at time t. In the market there is

publicly available information on past prices and dividends, so that we can define the conditional

expectation, Et, and variance Vt. Traders are heterogeneous in terms of their expectations

about future prices and dividends and are assumed to be myopic mean-variance maximizers. In

particular, each agent demands a number of shares that solves

max
zh,t

{

Eh,t(Wt+1) −
α

2
Vh,t(Wt+1)

}

, (5)

which implies

Zh,t = Eh,t(pt+1 + yt+1 − Rpt)/(ασ2), (6)

where h denotes a trader-specific quantity, α controls for the agents’ risk aversion and σ

indicates the conditional volatility, which is assumed to be equal across traders and constant

in time. In the case of zero supply of outside shares and of different trader types, the market

equilibrium equation can be written as

Rpt =
∑

nh,tEh,t(pt+1 + yt+1, (7)

where nh,t denotes the share of type h traders at time t. In presence of homogeneous

traders, perfect information and rational expectations it is possible to derive the following

no-arbitrage market equilibrium condition:

Rp∗

t = Et(p∗

t+1 + yt+1), (8)

where the expectation is conditional on all histories of prices and dividends up to time t

and where p∗ indicates the fundamental price. In case the process of dividends is independent

and identically distributed with time unvarying mean, equation (8) has a unique solution where

the fundamental price is constant and such that p∗ = E(yt)/(R − 1). In what follows it is

convenient to express prices as their deviations from the fundamental, xt = pt − p∗

t .

Trading happens over a number of periods, denoted by t = {1, 2, ..., T}. At the beginning

of each trading period t, agents make expectations about future prices and dividends. I assume

that agents are heterogeneous in that they have different forecasts of pt+1 and yt+1. Beliefs
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about future are assumed to take the following form:

Eh,t(pt+1 + yt+1) = Et(p∗

t+1) + fh(xt−1, ..., xt−L) (9)

for all t and h. In words, investors believe that, in a heterogeneous world, prices may

deviate from the fundamental value by some function fh(·) depending upon past deviations from

the fundamental price. Many forecasting strategies have been implemented in the economic

literature, specifying different trading behaviours and attitudes (Banerjee, 1992; Brock and

Hommes, 1997; Lux and Marchesi, 2000; Chiarella et al., 2009). I follow Brock and Hommes

(1998) in using a simple linear representation of beliefs:

fh,t = ghxt−1 + bh (10)

where gh is said to be the trend component and bh the bias of trader type h. If bh 6= 0,

we call agent h a pure trend chaser if gh > 0 (strong trend chaser if g > R) and a contrarian

if g < 0 (strong contrarian if g < R). If gh 6= 0, type h is said to be purely biased (upward

resp. downward biased if bh > 0 resp. bh < 0. The simple predictors in equation (10) could

be considered as the simplest idealization of overreacting securities analysts or overreacting

investors. In the special case gh = bh = 0, we obtain (pure) fundamentalists, who believes that

prices return to their fundamental value. It is also possible to include a prototype of rational

agent, who is characterized by frational,t = xt+1. Rational agents have perfect foresight but, to

obtain such a good prediction they are subjected to the payment of a cost C.7

To the purposes of the present application, I use a simple model with only two types of

agents, whose behaviours vary according to the choice of trend components, biases and perfect

forecasting costs. Combining equations (7), (9) and (10) it is possible to derive the following

equilibrium condition:

Rxt = n1,tf1,t + n2,tf2,t, (11)

which allows to compute the price of the risky asset (in deviation from the fundamental)

at time t. Traders’ strategy is updated over time on the basis of accumulated wealth, which

evolves according to equation (4). In particular the model allows for a switching behaviour that

is governed by a parameter β in the following way. Each type h is associated with a fitness

measure of the form:

Uh,t = (pt + yt − Rpt−1)zh,t − Ch + ωUh,t−1 (12)

where ω ∈ [0, 1] is a weight attributed to past profits. As time goes by, a strategy may

become more profitable than the other one in term of fitness. All agent starts with their own

(pre-specified) strategy, however at the beginning of each successive period they reassess the

profitability of their own type relatively to others. The probability that a trader chooses the

7More in general, one could allow for the possibility that a positive a cost might be by paid also by non-rational
traders; this is to mirror the fact that some trader might want to buy additional information which, however,
might not be able to use (e.g. because of computational mistakes).
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strategy h is given by “Gibbs” probability:

nh,t =
exp(βUh,t)

∑

h exp(βUh,t)
. (13)

The rewind algorithm is designed so that the successful strategy gains a higher number of

followers. In addition, algorithm introduces a certain amount of randomness, and more profitable

strategies has a finite probability not to be preferred over less successful ones. In this way, the

model capture imperfect information and bounded rationality of agents. This randomness also

helps unlocking the system from the situation where all traders ends up with the same strategy

h. The parameter β ∈ [0, +∞) controls for the intensity of choice of the traders: the higher its

values, the larger the likelihood of switching.

4 Model Selection and Validation

In this section I will illustrate and discuss the results obtained applying the GSL-div to

the Brock and Hommes model described above, with two trader types denoted as 1 and 2. In

particular, two main exercises are presented. First, I will show that the GSL-div is an adequate

measure to distinguish between different versions and parameter configurations of the model.

This is, for example, an explicit requirement in Winker et al. (2007). Secondly, I will move to

the comparison of simulated dynamics, obtained through a calibrated version of the model, with

real data from two major stock market indexes, namely the EuroSTOXX 50 and the CSI 300

(which represent the main European and Chinese markets respectively).

4.1 Discriminating among different models

To illustrate the ability of the GSL-div in distinguishing amongst different models, a

known Data Generating Process (DGP hereafter) is needed, as it will be used as a benchmark

against alternative and competing model configurations. Given the relatively high number of

parameters in the model, a nearly infinite number of choices, delivering a wide and variegate

array of dynamics (see Brock and Hommes, 1998) were available at this stage. To the purposes

of the present exercise, the selection has tried to balance, on one side, the need to be clear and

concise and, on the other, that of discriminating among objects that are inherently different

but produce a relatively similar behaviour. Five models, in addition to the DGP, have been

chosen and their configurations summarized in table 2. Despite the low number, they account

for many different behaviours of the traders. The DGP is characterized by two trend-follower

trader types, with the second extrapolating much stronger than the first, who is also upward

biased while the other is not. The switching parameter (β), which might take any positive value,

is relatively low and in line with the numerical exercises carried out in Brock and Hommes

(1998). The other models M1-M5 are obtained using the DGP as reference and modifying one or

more characteristics defining the attitude of traders, while leaving unchanged those parameters

that represents broader context conditions (e.g. the risk-free interest rate, r, or the volatility of

the asset σ) and summarized in the lower part of table 2. M1 and M2 modify the DGP in the

intensity of choice of the two types, implying a much higher (M2) and lower (M1) likelihood of
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switching towards the strategy delivering higher payoffs. M3 simply differs in the initial share of

traders of first type, which is exactly balanced in the DGP while exhibits a strong dominance of

second type in this model configuration. M4 maintains the bias of type 1 traders but assumes

they are trend contrarians rather than followers, while type 2 keep their strategy but extract

significantly more information from previous prices. Finally, M5 considers a fundamentalist

trader vis-á-vis a trend follower, with the same switching attitude as modelled in the DGP. In

addition to these features, it is relevant to point out that an element of randomness is included

to enrich the framework and show the performance of the GSL-div in presence of noise and

stochastic models. As in Brock and Hommes (1998), the dividend process, {yt}
T
t=1, follows a

stochastic process such that yt = ȳ + ǫt where the noise term ǫt is i.i.d. uniformly distributed

between -0.5 and +0.5 and, in our case, ȳ = 0. This formalization of the dividend process is

kept unchanged for all the models considered.

Table 2: Parameters’ value for Data Generating Process (DGP) and different models.

Parameter Brief description DGP M1 M2 M3 M4 M5

β intensity of choice 4 2 40 4 4 4
n1 share of type 1 traders 0.5 0.5 0.5 0.1 0.5 0.5
b1 bias of type 1 traders 0.2 0.2 0.2 0.2 0.2 0
b2 bias of type 2 traders 0 0 0 0 0 0
g1 trend component of type 1 traders 0.2 0.2 0.2 0.2 -0.2 0
g2 trend component of type 2 traders 1.2 1.2 1.2 1.2 1.8 1.2

C cost of obtaining type 1 forecasts 0 0 0 0 0 0
ω weight to past profits 0.5 0.5 0.5 0.5 0.5 0.5
σ asset volatility 0.1 0.1 0.1 0.1 0.1 0.1
α attitude towards risk 10 10 10 10 10 10
r risk-free return 0.1 0.1 0.1 0.1 0.1 0.1

Note: The symbol n1 is used to indicate the initial (at t = 0) share of type 1 traders.

Figure 2 collects plots of a randomly chosen realization of the price process (in deviation

from the fundamental value) produced both by the DGP (in red) and the various competing

models (in blue). Direct inspection shows that notwithstanding each model accounts for different

trading attitudes of the two types, the dynamics are quite similar, at least for an unaided eye.

The relevant exception is provided by model M5, which robustly generates a continuously falling

price. Whatever device, tool or methodology that aims at validating models, should be able to

distinguish between those configurations yielding a truly different dynamics and, on the other

side, to pull together those producing reasonably alike ones.

In our case, which treats an asset pricing model, dynamics are observed and compared

with reference to two different quantities, that is, prices and normalized returns. More formally,

if xt is the price of a given asset at time t and τ is the sampling frequency, the logarithmic

difference of prices gives the returns:

rt = log(xt) − log(xt−τ ) ≈
xt − xt−τ

xt−τ
, (14)

which can be normalized subtracting the longitudinal mean over the sample of interest
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and dividing by the standard deviation,

nrt =
rt − 〈r〉

σr
, (15)

where σr is the standard deviation and 〈·〉 the time average over the considered period.

Returns are normalized in many applications in order symmetrize their distribution and to wash

away the effects of their long run volatility.

The simulation setup is simple and constructed to mirror a real problem. The DGP is used

to obtain a single realization, which is then labelled as the real world data. As it happens in

practice, this series will be the unique term of comparison for all the five competing models and

the DGP itself. I will test the ability of different models to replicate the dynamics observed in the

data and I will rely only on the output of the simulations. Therefore, each of the configurations

included in table 2 is initialized with the same conditions (but n1 in the case of M3) and used to

Figure 2: Randomly chosen realizations of Data Generating Process and other models.

(a) Data Generating Process (b) Model 1

(c) Model 2 (d) Model 3

(e) Model 4 (f) Model 5

14



generate an ensemble of R = 500 independent runs each of length T = 1000.8 Then, the GSL-div,

as expressed in equation (3), is employed to assess the similarity between what we have called

real world data and models output. It is relevant to remark that the two free parameters in the

procedure leading to the estimation of the GSL-div, that is, the precision of the symbolization (b)

and the maximum blocks’ length (L) are set accordingly to Lamperti (2015).9 Table 3 reports

both the distances estimated for different lengths of symbols and the GSL-div.

Table 3: GSL-div between data and models for price and normalized returns.

Prices

block length weights DGP M1 M2 M3 M4 M5
1 0.05 0.739640 1.000337 0.859058 0.739736 0.741820 1.565000
2 0.10 0.610180 0.764265 0.681810 0.610093 0.673059 1.031640
3 0.14 0.565688 0.683830 0.622171 0.565782 0.590420 0.854371
4 0.19 0.542423 0.646385 0.592035 0.542455 0.558736 0.774315
5 0.24 0.528241 0.634290 0.573849 0.528183 0.539089 0.747396
6 0.29 0.516632 0.631058 0.559819 0.516771 0.526844 0.750571

GSL-div 0.550845 0.672557 0.604071 0.550887 0.569079 0.834717

MC s.d. 0.008300 0.013780 0.014007 0.008000 0.006480 0.000000

Normalized Returns

block length weights DGP M1 M2 M3 M4 M5
1 0.05 0.934609 1.042379 0.971981 0.934126 0.980297 1.544845
2 0.10 0.921512 1.011694 0.951396 0.921089 0.966483 1.294408
3 0.14 0.916102 0.996014 0.944651 0.915776 0.959992 1.178728
4 0.19 0.908012 0.969536 0.932853 0.907875 0.954991 1.173793
5 0.24 0.879335 0.925125 0.902374 0.879559 0.939477 1.262931
6 0.29 0.810996 0.887263 0.849655 0.812325 0.903309 1.267832

GSL-div 0.877173 0.946722 0.907140 0.877470 0.939545 1.251746

MC s.d. 0.009960 0.027033 0.009171 0.009290 0.010230 0.006670

As a first observation, one can notice that the GSL-div distinguishes clearly among the

majority of proposed models, both for what concerns the dynamics of prices and those of returns,

delivering consistent results. In particular, the DGP is correcly identified as the closest model

to the real world data, and the low Monte Carlo standard deviation allows to conclude that

its distance is statistically different from those found for any other model but one (M3).10

This result is extremely reasonable and helps prove the good performance of the GSL-div. In

particular, M3 exhibits the same parametric structure of the DGP and differs only in the initial
8The unique exception is the DGP, which is run R + 1 times. Then one of these realizations is randomly

selected as the real data while the others R are used to compare the DGP with these data.
9Therefore, b = 5 and L = 6. In Lamperti (2015) the GSL-div is proved to be robust to changes in these two

parameters. Their choice is problem-specific and depends on the degree of precision requested by the modeller, the
number of competing models or configurations, the time scale of interest and the available computational power.
In practical situations, as a rule of thumb, one can select the combination of b and L starting by b = L = 2 and
then increasing their value one at the time stopping when any further increase in one and the other parameter do
no change the order of models provided by the GSL-div. That will be the minimum order or complexity which is
needed to discriminate robustly among a set of models. In my experience, b = 5 and L = 6 are generally sufficient
to the scope.

10The Monte Carlo standard deviation is simply the standard deviation of the GSL-div computed in (2) across
the ensemble. Being the latter composed by 500 independent runs of the same model, it is possible to interpret it
as a Monte Carlo exercise on the seed of the random number generator
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number of type 1 traders. However, being n1 = 0.1 a dis-equilibrium starting point, β = 4 a

reasonably high intensity of choice and having M3 the same stable steady state as DGP (see

Brock and Hommes, 1998, for details on steady states of the model with two types), the share

of type 1 traders suddenly converges to the equilibrium value and then fluctuates around it

because of the effects introduced by the random noise. From this point on, M3 and DGP can be

seen as completely identical models and, therefore, it is a good signal that the GSL-div cannot

distinguish significantly between the two. Finally, as a consistency check, it is worth remarking

that M5, which exhibits a dynamics of prices clearly at odds with the real data, is successfully

found as the most distant model.

4.2 Validation against real data

Once the GSL-div has been proven to successfully discriminate amongst different models, it

can be used to validate them against actual data. To this purpose I draw on the results obtained

in Recchioni et al. (2015), where a particular version of the Brock and Hommes model described

in section 3 has been estimated using real stock market data. Specifically, this simplified model

does not include dividends and has been constrained to incorporate two particular types of

agents, namely a pure fundamentalist (g1 = b1 = 0) and an unbiased trend follower (g2 > 0 and

b2 = 0), and it has been calibrated using daily data covering the period ranging from February

25, 2011 to December 16, 2011, for a total of 200 observations. In what follows, I refer exactly

to this interval and target two major stock market indexes, namely the EuroSTOXX 50 (which

is an index composed by main corporations in the Euro area) and the CSI 300 (which is one of

the most important Asian indexes, designed to replicate the performance of 300 stocks traded

in the Shanghai and Shenzhen stock exchanges). Table 4 collects the values of parameters set

or calibrated in Recchioni et al. (2015). In the exercises that follows some of these parameters

will be used as benchmark. Figure 3 shows the behaviour produced by the model calibrated

Table 4: Parameters of the calibrated model for EuroSTOXX 50 and CSI 300.

β g1 g2 α p∗ C ω σ

EuroSTOXX 50 0.642 0 2.0 18.207 0.746 0 1 0.1
CSI 300 0.078 0 1.996 13.999 0.682 0 1 0.1

on the EuroSTOXX (top two panels) and on the CSI (bottom two panels), together with the

real data and the share of traders following one or the other strategy along the simulation. It

is evident that, despite being a simple model, it provides a reasonably good performance in

tracking the real indexes. The additional value brought by the use of ABMs should be the

possibility to analyse the micro-determinants of these macro-behaviours and, for example in

this case, to single out differences in the attitude of traders operating in different geographical

areas. In what follows I perform two different exercises by means of the GSL-div. First, I

explore the similarity between real data and model configurations obtained maintaining the

same structure (fundamentalists vs. trend followers) and parameter values as in table 4, but

I let the trend-following component, g2, and the switching parameter, β, to considerably vary.

Second, I allow the model to account for richer combinations of traders’ attitudes (e.g. two trend
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Figure 3: Actual prices and model simulation in the calibration interval. Source: Recchioni et al.
(2015).

Note: This figure is composed by four panels. The first two from the top refers to the EuroSTOXX index and the
corresponding model, while the bottom two to the CSI. For each index, the first (top) panel plots the behaviour
of the price (observed and simulated) in the time interval used for calibration, while the second (bottom) the
share of the two types of traders in the same time interval.

followers, one trend-follower and one contrarian, one contrarian and one fundamentalist) and I

check whether some of them are able to provide a better account for the dynamics observed in

the data. Obviously enough, if the calibrated model turns out to be the closest to the data both

for EuroSTOXX and CSI indexes and, keeping fixed its structure, no combinations of relevant

parameters (e.g the intensity of choice) produce significantly better results, I will conclude in

favor of the empirical validity of the model, at least for what concerns its ability to track the

historical behaviour of the targeted system.11

To start with, I need to build a convenient subspace of parameters whose points will be used

to construct model configurations that, in turns, will serve to produce simulated output to fed

the GSL-div. In the case of the first exercise, I consider all possible combinations of parameters’

values found in a two-dimensional grid obtained using the following intervals 1 ≤ β ≤ 40 and

−2 ≤ g2 ≤ 2, where the former is discretized in 21 equally spaced segments, while the latter in

11This paper only presents an illustration of the features, performance and exercises that is possible to obtain
using the GSL-div. A more complete analysis would be needed to assess exhaustively the empirical validity of the
model.
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41. For the second exercise, instead, the same interval used for g2 is allowed to characterize the

trend component of the first trader type.12 This procedure leads to the inclusion of 861 model

configurations for the first exercise and 1681 for the second. All these models are run starting

from the same initial conditions and for T = 200 periods. The GSL-div is used to measure their

distance with respect to the real data (both EuroSTOXX and CSI). Figure 4 shows the results

obtained for the first (a) and second (b) exercise using EuroSTOXX data, while figure 5 does

the same for the CSI index.

Figure 4: GSL-div between model and EuroSTOXX50 for different portions of the parameters
space.

(a) Space generated by β and g2 (g1 = 0). (b) Space generated by g1 and g2 (β = 0.642).

Different remarks apply. To begin with, subfigures 4a and 5a contains two insights. On

one hand they show that, in large parts of the explored parameters’ subspace, the dynamics of

the Brock and Hommes model with a trend follower and a fundamentalist types are guided by

g2, that is, by the strength at which the trend followers extrapolate information on the basis of

past observations. This finding is partially in line with Teräsvirta (1994), Boswijk et al. (2007)

and Recchioni et al. (2015), where it is shown that the intensity of choice has little significance

in switching models. However, a notable difference emerges: β seems not to affect the distance

between models and data for the majority of values, but in those cases where it is much higher

than data would admit, having the correct specification of the trend-following attitude does

not suffice to obtain behaviours consistent with the data. Moreover, the Brock and Hommes

model is found to be as much sensitive to changes in the switching parameter with respect to

the best values as it is to g2, as confirmed by the steepness of the GSL-div function represented

in subfigures 4a and 5a. Such sensitivity appears stronger when the model is calibrated to CSI

data. Pushing forward these reasoning one can notice that the model is deeply affected by

tipping points in the space of parameters, that is areas where the behaviour of the model changes

suddenly and dramatically in response to small variations in conditions (see also Gualdi et al.,

2015). For example, in the case of the EuroSTOXX calibration, subfigure 4a shows a not so

small area where g2 is around -1.5 and the model shifts immediately its behaviour in response to

12These intervals allow to encompass many values of relevant parameters that are treated in the literature (see
Brock and Hommes, 1998; Boswijk et al., 2007).
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a small change in the strength of the trend chasers attitude and irrespectively of β; then it keeps

constant for a while (relatively to the real data) and shifts again. A second remark concerns

the general behaviour of the model calibrated in Recchioni et al. (2015). Surfaces constructed

through the GSL-div confirm that a switching parameter below 3 coupled with a trend-following

intensity really close to 2 deliver, by far, the most similar dynamics with respect to the data

in both the two analysed markets. Finally, comparing the EuroSTOXX and CSI cases one can

notice that the role of the switching parameter is much more important in the Asian market

rather than in the European one, meaning that the latter is more compatible, in relative terms,

with a larger set of values for β. This is rapidly explained by the different behaviour of the data,

where it is possible to see that, in the considered period, CSI exhibits an approximately linear

negative trend while the EuroSTOXX does not. Since the switching parameters controls, other

things being equal, for the steepness of the downward dynamics (larger β corresponds to an

s-shaped behaviour with increasing steep of the s), it is natural that a linear trend is compatible

only with a much more restricted portion of the parameter space.

Figure 5: GSL-div between model and CSI300 for different portions of the parameters space.

(a) Space generated by β and g2 (g1 = 0). (b) Space generated by g1 and g2 (β = 0.078).

Even though the calibrated Brock and Hommes model accounting for trend followers and

a pure fundamentalists is decently able to replicate the dynamics observed in the real data,

much more caution is suggested by subfigures 4b and 5b. They indicate that, keeping fixed other

parameters, there are many combinations of traders attitudes that guarantee approximately

the same behaviour with respect to the data. This finding is robust across the different stock

markets considered and, in a comparative perspective, it is more evident for the EuroSTOXX

case, where there are two separate areas delivering a good matching with the data. This simple

problem of multiple minima in the subspace of parameters spanned by g1 and g2 might be

particularly harmful for the empirical validity of the model, because it supports the claim

that many different combinations of traders’ attitudes are compatible with the same dynamics

observed in the data. In addition, since the estimated GSL-divs for these model configurations

are pretty much close one to the other, it hardly arguable why one (e.g. involving trend followers

and fundamentalists) should be preferred to another (e.g. involving two trend follower types
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with different extrapolation strengths) in the attempt to explain some dynamics of the price.

To better investigate this issue I enlarged the possible combinations of traders’ attitudes

by considering a new grid where g1 and g2 are allowed to take values ranging from −4 (which

models a really strong trend contrarian type) and +4 (which models a really strong trend follower

type). As a result, 861 additional model configurations are tested against the EuroSTOXX and

CSI by means of the GSL-div. Table 5 reports the configurations yielding the lowest ten values

of the GSL-div.

Table 5: Model configurations yielding the 10 lowest GSL-div values.

EuroSTOXX 50 CSI 300

rank g1 g2 GSL-div g1 g2 GSL-div

1 1.2 0.8 0.450575 1.2 0.8 0.394348
2 1.4 0.6 0.450963 1 1 0.395828
3 1 1 0.451525 1.4 0.6 0.400041
4 0 2 0.457319 1.6 0.4 0.414634
5 1.6 0.4 0.457503 0 2 0.418405
6 1.8 0.2 0.461868 1.8 1.2 0.424130
7 2.2 -0.2 0.462625 2.2 -0.2 0.425081
8 2.4 -0.4 0.476489 2.4 -0.4 0.440627
9 2.6 -0.6 0.491565 2.6 -0.6 0.456078
10 2.8 -0.8 0.504789 2.8 -0.8 0.470646

Variegate combinations of the behavioural strategies adopted by the two traders types

are found within the ten cases that are closest to the data, and the configuration assuming a

pure fundamentalist and a trend follower does not provide the best result in any of the two

markets analysed in this paper. What emerges as a general trait is that the sum of the trend

components for the two agents has be close to 2 in order for the model to be consistent with the

dynamics in the data. While the same happens considering parameters estimated in Boswijk

et al. (2007) and Recchioni et al. (2015) (confirming again the GSL-div provide results consistent

with other methodologies), it is now showed that what matters is not the strict presence of

mean-reverting and trend follower types (as in Boswijk et al., 2007). Rather, the model has to

account for a strong trend following component, which might either come from a unique type

that heavily extrapolates information from past observations or the combinations of different

types with milder, or even opposite, attitudes towards the trend. However, results suggests that

if one of the traders types follows the trend too strongly, a compensating trend contrarian type

reduces the bullish pressure created in the market. Summing up, this paper uses the GSL-div to

explore and validate the Brock and Hommes asset pricing model and finds it reasonably able to

resemble dynamics observed in actual stock markets, provided that it accounts for a balanced

trend following attitude, which destabilizes the asset market from the fundamentals but not so

strongly to create large bubbles (with price diverging to +∞).
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5 Conclusions

Validation of simulated models is still an open issue. One way of tackling this problem is

via the identification of a measure quantifying the distance between simulated and real-world

data with respect to the observed dynamics. This paper presents an illustrative application on

the use of the GSL-div developed in Lamperti (2015) to the validation of simulated models. In

particular, different versions of the asset pricing model proposed in Brock and Hommes (1998)

are analysed. The proposed approach is found to successfully discriminate amongst alternative,

competing models with reasonable precision, both when price or return dynamics are at stake.

The Brock and Hommes model calibrated in Recchioni et al. (2015) is then validated against

data from two major stock market indexes, namely the EuroSTOXX 50 and the CSI 300. What

emerges is that when the model is constrained to include two specific types of traders (namely

a fundamentalist and a trend follower) it seems to achieve a reasonable similarity with the

real data; however, when different combinations of traders’ types are allowed, it is difficult to

argue what configuration should be preferred over another, since many different attitudes are

compatible with the same dynamics as those observed in actual data. However, what emerges as

a general trait, is that empirical validity of model, requires to account for a strong trend following

component, which might come both from a unique trend follower type that heavily extrapolates

information from past observations or the combinations of different, milder, or even opposite,

trend follower types. Finally, it is worth to recall that even though in this paper the GSL-div is

used as a validation tool applied to already calibrated models, an interesting application will be

the development of a calibration procedure including it in the objective function.
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