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Abstract 
 
We determine the scoring rule that is most likely to select a high-ability candidate. A major 
result is that neither the widely used plurality rule nor the inverse-plurality rule are ever optimal, 
and that the Borda rule is hardly ever optimal. Furthermore, we show that only the almost-
plurality, the almost-inverse-plurality, and the almost-Borda rule can be optimal. Which of the 
“almost” rules is optimal depends on the likelihood that a candidate has high ability and how 
likely committee members are to correctly identify the abilities of the different candidates. 
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1 Introduction

Voting rules are typically analyzed on an axiomatic basis. This study adopts a more applied

approach by considering the problem where a �rm establishes a three-member committee

to hire a single individual from three possible candidates. Each candidate can have either

high or low ability. The number of high-ability candidates is uncertain, and the candidates'

abilities cannot be veri�ed before a choice is made. However, each committee member

receives noisy signals of every candidate's ability and ranks the candidates accordingly. As

the committee uses a scoring rule to make its choice,1 each committee member assigns a �xed

score to the candidate he ranks �rst, a (possibly di�erent) �xed score to the candidate he

ranks second, and a (possibly di�erent) �xed score to the one he ranks third. The candidate

receiving the highest total score is selected. Among all scoring rules, we determine the rule

that is most likely to select a high-ability candidate.2

Surprisingly, we �nd that the widely used plurality rule is never optimal. The explanation

is that the plurality rule ignores relevant information when it leads to a tie and the �nal

selection therefore is made by a draw among the tied candidates. In particular, the plurality

rule is dominated by what we will refer to as the almost-plurality rule. The latter is similar

1 Scoring rules are also referred to as \positional rules" (N�u~nez and Laslier, 2014) or as \point-voting
schemes" (Nitzan, 1985). For an analysis of scoring rules, see Saari (2001) and Nurmi (2002). The advantages
of scoring rules include, among other things, their ability to guarantee the existence of an outcome (Sen,
1970, and Mueller, 2003); their ability to satisfy desirable properties (Young, 1975, Chebotarev and Shamis,
1998, Baharad and Nitzan, 2002, Garc��a-Lapresta et al., 2010, and Llamazares and Pe~na, 2015); and the
existence of a metric according to which the selected alternative is the closest to the preference pro�les (Lerer
and Nitzan, 1985).

2 For an axiomatization of the Borda rule, see Young (1974), Nitzan and Rubinstein (1981), and Saari
(1990); for the plurality rule, see Richelson (1978) and Ching (1996); and for the inverse plurality rule,
see Baharad and Nitzan (2005). The latter rule is also referred to as \anti-plurality" (Saari, 1995) and as
\negative voting" (Myerson, 2002). We focus our analysis on the desirability of di�erent rigid scoring rules.
Thus, we do not consider exible scoring rules such as approval voting (see Brams and Fishburn, 1978)
and single-approval multiple-rejection voting (Baharad and Nitzan, 2016). See Ahn and Oliveros (2016)
for an analysis that includes both rigid scoring rules and approval voting. They show that under strategic
voting, approval voting dominates rigid scoring rules. While Ahn and Oliveros (2016) study large electorates
and choose the best scoring rule in their setting, we analyze voting in small committees and compare the
desirability of di�erent possible scoring rules.
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to the plurality rule, except that a committee member also gives a small positive score to

the candidate that he ranks second. As a consequence, the almost-plurality rule leads to

the same outcome as the plurality rule except for when the outcome of the plurality rule is

determined by a draw. The additional information used by the almost-plurality rule makes

it more likely that a high-ability candidate will be selected.

Similarly, the inverse-plurality rule is never optimal as it also ignores relevant information

when the �nal selection is made by a draw.3 In particular, the inverse-plurality rule is

dominated by what we will refer to as the almost-inverse-plurality rule, which is similar to

the inverse-plurality rule except that a committee member gives a slightly smaller score to his

second-ranked candidate than to his �rst-ranked candidate. The almost-inverse-plurality rule

therefore leads to the same outcome as the inverse-plurality rule except when the outcome of

the inverse-plurality rule is determined by a draw. The additional information used by the

almost-inverse-plurality rule would then increase the likelihood that a high-ability candidate

is selected.

We also establish that the well-known Borda rule is hardly ever optimal. The explanation

is that the outcome of the Borda rule is an equal mixture of the outcomes of the almost-

plurality rule and the almost-Borda rule, where the latter is similar to the Borda rule except

that a committee member assigns his second-ranked candidate a slightly higher weight than

under the Borda rule. The Borda rule can therefore be optimal only if these two other rules

are simultaneously optimal, which we will show is practically impossible.4

In general, we establish that the only scoring rules that can be optimal are the three

\almost" rules: the almost-plurality, the almost-Borda, and the almost-inverse-plurality

3 Under the inverse-plurality rule, committee members vote for every candidate except their least preferred
one and the candidate with the highest total score is selected. When the voting leads to a tie, we assume
that the �nal selection is made by a draw among the tied candidates.

4 We also show that what we refer to as the two-third rule (formally de�ned below) is never optimal as
it is an equal mixture of the outcomes of the almost-inverse-plurality rule and the almost-Borda rule.
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rule. Which of these \almost" rules is optimal depends on the likelihood that a candidate

has a high-ability and on the likelihoods that committee members correctly identify the high-

and low-ability candidates. For instance, if committee members are su�ciently more likely

to correctly identify a high-ability than a low-ability candidate, then the almost-inverse-

plurality rule is optimal, while if the opposite is true, then the almost-Borda rule is optimal.

The main objective of the paper is thus to rank the di�erent \almost" rules based on

their optimality under the various possible combinations of probabilities that a candidate has

high ability and that high- and low-ability candidates are identi�ed as such. We therefore

shed light on the old social-choice questions regarding the identi�cation of the best voting

rule and the comparison of particular voting rules.

For the sake of simplicity we present our results in a three candidates { three committee

members setting.5 The combinatorial expressions with more candidates and/or committee

members are more complicated and do not give additional insight. Indeed, as discussed

later, the intuition behind the optimality of the \almost-" rules carries over to any number

of candidates and committee members. Likewise, we later argue that our results are robust

to allowing for candidate abilities to take more than two values.

2 The Model

Consider a �rm that is in the process of hiring a new worker. We focus on the �nal decision,

in which there are three qualifying candidates. Every candidate can have either high or low

ability. The �rm wishes to hire a high-ability candidate, and has established a three-member

committee that has to carry out the hiring decision. The problem facing the committee is

that the abilities of the di�erent candidates may not be perfectly observable. Each committee

member does, however, receive noisy signals of the candidates' abilities.

5 Saari (1999), Saari and Tataru (1999), Saari and Valognes (1999), Myerson (2002) and Giles and Postl
(2014) also utilize a three-alternative setting.
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The �rm guarantees strategy-proofness by nominating external committee members who

are anonymous to each other. This is commonly the case with, for example, referee reports,

recommendation letters, and expert witnesses. One member's voting will then not be inu-

enced by that of the others. Furthermore, in due course, the quality of all the candidates

will be commonly known, and each member will be evaluated according to the correctness

of his ranking of the candidates. Thus, we can henceforth assume sincere voting.

Every candidate is associated with a probability p 2 (0; 1) of having either high or low

ability. This probability is independent of the other candidates' abilities. If a candidate is

a high-ability worker, then a committee member receives a correct signal of the candidate's

ability with probability x 2 [1
2
; 1), and an incorrect signal that the candidate has low ability

with probability 1 � x. Similarly, if a candidate is a low-ability worker, then a committee

member receives a correct signal of the candidate's ability with probability z 2 [1
2
; 1), and an

incorrect signal that the candidate has high ability with probability 1� z. We assume that
1
4
< xz and that the signals are conditionally independent over candidates and committee

members.

Each committee member independently ranks the candidates according to the signals he

has received. Should a member receive the same signal for more than one candidate, then the

ranking among these candidates is determined randomly. The committee makes the hiring

decision using a scoring mechanism where each member assigns one point to the candidate

he ranks �rst, � 2 [0; 1] point to the candidate he ranks second, and zero point to the last-

ranked candidate. The candidate with the highest total score is chosen. If there are two or

three candidates with the same highest total score, the selected candidate is determined by

a lottery among those candidates.

Since the committee considers three candidates and consists of three members, there are

seven equivalent classes of scoring rules in the sense that all scoring rules within the same

class yield the same outcome (see Appendix A for a formal proof). We refer to the seven
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equivalent classes as follows:

� Plurality rule (� = 0): The scoring vector is (1; �p; 0), where �p = 0.

� Almost-plurality rule (0 < � < 1
2
): The scoring vector is (1; �ap; 0), where �ap 2 (0; 12).

� Borda rule (� = 1
2
): The scoring vector is (1; �B; 0), where �B =

1
2
.

� Almost-Borda rule (1
2
< � < 2

3
): The scoring vector is (1; �aB; 0), where �aB 2 (12 ;

2
3
).

� Two-third rule (� = 2
3
): The scoring vector is (1; �tt; 0), where �tt =

2
3
.

� Almost-inverse-plurality rule (2
3
< � < 1): The scoring vector is (1; �aip; 0), where

�aip 2 (23 ; 1).

� Inverse-plurality rule (� = 1): The scoring vector is (1; �ip; 0), where �ip = 1.

The plurality, Borda, and inverse-plurality rules are well known, while we have named the

two-third rule and the three \almost" rules.

The optimal scoring rule maximizes the probability of selecting a high-ability candidate.

Which scoring rule is optimal depends on how certain the committee members are about

the correctness of their ranking and on the probability that a candidate has high ability.

Suppose, for example, that it were known that there is exactly one high-ability candidate.

Then, the more a committee member believes that his �rst-ranked candidate is the correct

choice, and hence that his second-ranked one is an incorrect choice, the less interested he

is in having this second-ranked candidate chosen. Accordingly, a class of scoring rules with

smaller value(s) of � would be preferred in order to reduce the likelihood that his second-

ranked candidate will be chosen. As another example, suppose that it were known that there

are exactly two high-ability candidates. Then, the more a committee member believes that

his �rst- and second-ranked candidates have high ability, the more he wants to avoid the
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choice of his third-ranked candidate. Thus, a class of scoring rules with higher value(s) of �

would be preferred in order to reduce the likelihood that his last-ranked candidate is chosen.

Hence, which scoring rule is optimal depends both on the probability p that a candidate has

high ability and on the probabilities x and z that committee members receive correct signals

of the high or low ability of a candidate.

LetM(�; i; x; z) denote the probability that a scoring rule which assigns the score � to the

second-ranked candidate selects a high-ability candidate, given that there are i 2 f0; 1; 2; 3g

high-ability ones among the three applicants. Since the probability that there is exactly

zero, one, two, or three high-ability candidates equals (1 � p)3, 3p(1 � p)2, 3p2(1 � p), and

p3, respectively, the probability of choosing a high-ability candidate for a given scoring rule

is

(1�p)3M(�; 0; x; z)+3p(1�p)2M(�; 1; x; z)+3p2(1�p)M(�; 2; x; z)+p3M(�; 3; x; z): (1)

As it is not possible to choose a high-ability candidate if no such candidate applies, it follows

that M(�; 0; x; z) = 0 for every scoring rule, and as a high-ability candidate is necessarily

chosen if only high-ability candidates apply, it also follows that M(�; 3; x; z) = 1 for every

scoring rule. Accordingly, the cases in which there are either zero or three high-ability

candidates do not a�ect which scoring rule is chosen. Therefore, selecting a scoring rule

to maximize (1) is equivalent to selecting a scoring rule to maximize the probability of

choosing a high-ability candidate if either one or two high-ability candidates have applied,

i.e., to maximize6

A(p; �; x; z) � (1� p)M(�; 1; x; z) + pM(�; 2; x; z): (2)

Let the three candidates be denoted by a, b, and c. Further, let a ranking pro�le be

de�ned as a non-ordered three-tuple of the committee members' rankings. For example, the

6 Note that (1�p)=p is the probability that there is one high-ability candidate relative to the probability
that there are two high-ability candidates.
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ranking pro�le fabc; acb; bcag indicates that one committee member ranks a higher than b,

and b higher than c; one committee member ranks a higher than c, and c higher than b;

and one committee member ranks b higher than c, and c higher than a. However, since the

ranking pro�le is non-ordered, it does not associate a particular committee member with a

speci�c ranking. Hence, corresponding to this ranking pro�le, there are six ordered three-

tuples of the committee members' rankings. If, instead, the ranking pro�le is fabc; abc; bcag,

there would be only three ordered three-tuples of the committee members' rankings.

3 One High-Ability Candidate

Suppose that there is one high-ability and two low-ability candidates. Let a denote the high-

ability candidate, and b and c the low-ability ones. Further, let qj denote the probability

that a committee member ranks a at the jth position, j 2 f1; 2; 3g. Since b and c are low-

ability candidates whose signals are identically and independently distributed, it follows, for

example, that the probability that a is ranked �rst, b is ranked second, and c is ranked third,

is the same as the probability that a is ranked �rst, c is ranked second, and b is ranked

third.7

In Appendix B we show that

q1 = 1
3
(xz + x+ z2);

q2 = 1
3
(�2xz + x� 2z2 + 3z);

q3 = 1
3
(�2x+ xz + z2 � 3z + 3):

Table 1 lists all the possible ranking pro�les, the number of ordered 3-tuples, the prob-

ability of each ordered 3-tuple, and the probability that a high-ability candidate is selected

for a given scoring rule.

7 Similarly, the probability that a is ranked second and b is ranked �rst is the same as the probability
that a is ranked second and c is ranked �rst. The probability that a is ranked third and b is ranked �rst is
the same as the probability that a is ranked third and c is ranked �rst.
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3.1 The Probability of Choosing the High-Ability Candidate

Based on the values given in Table 1, we can compute the probability M(�; 1; x; z) that a

scoring rule selects the sole high-ability candidate. Table 2 shows the probabilities for the

di�erent scoring rules both as functions of q1, q2, and q3, and of x and z.

In Figure 1, the curve labelled m1
ap;aB plots the combinations of x and z for which the

almost-plurality rule and the almost-Borda rule (as well as the Borda rule) are equally satis-

factory and strictly dominate the other rules given that there is one high-ability candidate.

Likewise, the curve labelled m1
aB;aip plots the combinations of x and z for which the almost-

Borda rule and the almost-inverse-plurality rule (as well as the two-third rule) are equally

satisfactory and strictly dominate the other rules given that there is one high-ability can-

didate. The almost-plurality rule is strictly preferred to all other rules for combinations of

x and z in the area to the left of the m1
ap;aB-curve; the almost-Borda rule is strictly pre-

ferred to all other rules for combinations of x and z in the area between the m1
ap;aB- and

m1
aB;aip-curves; and the almost-inverse-plurality rule is strictly preferred to all other rules for

combinations of x and z in the area to the right of the m1
aB;aip-curve.

The intuition for Figure 1 can be understood by examining the relationship between

the value of � and the accuracy of the information available to the committee members,

and thus the correctness of their ranking of the candidates. More speci�cally, for a given

x, the higher z is, the better will a committee member be able to identify the low-ability

candidates and, therefore, the less likely it is that one of the low-ability candidates is ranked

�rst and the high-ability candidate is ranked second. Thus, the higher is z, the smaller is

the value � that should be assigned to the second-ranked candidate. For example, suppose

the committee member has a very high probability x of correctly identifying a high-ability

candidate. When z is relatively small, this committee member is more likely to incorrectly

perceive a low-ability candidate as having high ability. In order to correctly reect the

committee members' preferences, the optimal scoring rule should assign the candidate that

8



is ranked second a higher weight, i.e., a higher � (making the almost-inverse-plurality the

optimal rule).

4 Two High-Ability Candidates

Suppose now that there are two high-ability candidates and one low-ability candidate. The

probabilities in Table 2 of the di�erent scoring rules choosing the only high-ability candidate

can be used to derive the probabilities of the di�erent scoring rules choosing one of the

two high-ability candidates as follows: Since 1 � z is the probability that the single low-

ability candidate is erroneously thought to have high ability, and 1 � x is the probability

that any one of the two high-ability candidates is erroneously thought to have low ability,

M(�; 1; 1� z; 1�x) is the probability that the low-ability candidate is chosen. Accordingly,

the probability that one of the high-ability candidates is selected is given by M(�; 2; x; z) =

1�M(�; 1; 1�z; 1�x). The value ofM(�; 2; x; z) is calculated in Table 3 both as functions

of r1, r2, and r3, where ri denotes the probability that the low-ability candidate is ranked

at the ith place, and as functions of x and z.

In Figure 2, the curve labelledm2
ap;aB represents the combinations of x and z for which the

almost-plurality and almost-Borda rules (as well as the Borda rule) are equally satisfactory

and strictly dominate the other rules, given that there are two high-ability candidates.

Similarly, the curve labelled m2
aB;aip represents the combinations of x and z for which the

almost-Borda and almost-inverse-plurality rules (as well as the two-third rule) are equally

satisfactory and strictly dominate the other rules, given that there are two high-ability

candidates. Thus, if there are two high-ability candidates, the almost-plurality rule is strictly

preferred to all other rules for combinations of x and z in the area to the left of the m2
ap;aB-

curve; the almost-Borda rule is strictly preferred to all other rules for combinations of x and

z in the area between the m2
ap;aB- and m

2
aB;aip-curves; and the almost-inverse-plurality rule

is strictly preferred to all other rules for combinations of x and z in the area to the right of
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the m2
aB;aip-curve.

5 Ranking of Scoring Rules

In this section we compare the di�erent scoring rules and rank their performance in selecting

a high-ability candidate if there are 0,1,2 or 3 of such candidates. Our analysis takes into

account that each of the three candidates has a high ability with an independent probability

p. Since we have shown that maximizing the probability of selecting a high-ability candidate

is equivalent to maximizing the probability of choosing a high-ability candidate given there

are one or two high-ability candidates, the mechanism for ranking the di�erent rules is based

on a comparison of A(p; �; x; z) (as de�ned in equation (2)) for di�erent � values.

For the same reason as with exactly one or exactly two high-ability candidates (the cases

discussed in Sections 3 and 4), the plurality rule is dominated by the almost-plurality rule,

and the inverse-plurality rule is dominated by the almost-inverse-plurality rule. Furthermore,

the Borda rule is an equal-weighted mixture of the almost-plurality rule and the almost-

Borda rule. The Borda rule is therefore hardly ever optimal and is strictly inferior to one

of these rules except in the borderline case where the almost-plurality and almost-Borda

rules are equally likely to choose a high-ability candidate. Similarly, the two-third rule is an

equal-weighted mixture of the almost-Borda rule and the almost-inverse-plurality rule and

is hardly ever optimal.

5.1 The Strict Inferiority of the Plurality Rule

A comparison between the plurality rule and the almost-plurality rule yields

Proposition 1: A(p; �p; x; z) < A(p; �ap; x; z).

Proof: It follows from Table 2 that

M(�p; 1; x; z)�M(�ap; 1; x; z)

10



=
1

6
(1� z) (x+ z � 1)

�
xz � z + z2 � 1

� �
x+ xz + z2

�
which has the same sign as xz� z+ z2�1 and is therefore negative. Hence, M(�p; 1; x; z) <

M(�ap; 1; x; z).

It follows from Table 3 that

M(�p; 2; x; z)�M(�ap; 2; x; z)

=
1

6
x
�
�2x� z + xz + x2

�
(x+ z � 1)

�
�3x� 2z + xz + x2 + 3

�
which has the same sign as�2x�z+xz+x2 and is therefore negative. Hence,M(�p; 2; x; z) <

M(�ap; 2; x; z).

SinceA(p; �p; x; z) is the weighted average ofM(�p; 1; x; z) andM(�p; 2; x; z), andA(p; �ap; x; z)

is the weighted average ofM(�ap; 1; x; z) andM(�ap; 2; x; z) with the same weights, it follows

that A(p; �p; x; z) < A(p; �ap; x; z). �

This proposition shows that the almost-plurality rule strictly dominates the plurality rule.

The intuition is that for some pro�les relevant information is lost when using the plurality

rule. Thus, when two candidates are tied for the �rst place under the plurality rule, then a

lottery between them is applied to determine the winner. That is, no importance is given to

whether a candidate is ranked second or third. In contrast, the almost-plurality rule uses the

information about a candidate's ranking. Since it is more likely that a high-ability candidate

is ranked second than third, it follows that the almost-plurality rule performs better than

the plurality rule.

5.2 The Strict Inferiority of the Inverse Plurality Rule

A comparison between the inverse-plurality rule and the almost-inverse-plurality rule yields

Proposition 2: A(p; �ip; x; z) < A(p; �aip; x; z).
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Proof: It follows from Table 2 that

M(�ip; 1; x; z)�M(�aip; 1; x; z)

=
1

16
(q2 � q1)

�
4q1q2 + 8q1q3 + 4q2q3 + q

2
1 + q

2
2

�
;

which has the same sign as q2 � q1. Since

x+ z > 1

) (x+ z � 1)(1� z) > 0

) 1
3
(�2xz + x� 2z2 + 3z) < 1

3
(xz + x+ z2)

) q2 � q1 < 0;

it follows that M(�ip; 1; x; z) < M(�aip; 1; x; z).

It follows from Table 3 that

M(�ip; 2; x; z)�M(�aip; 2; x; z)

= � 1

216
[Wp(x; z) +Wn(x; z)] ; (3)

where

Wp(x; z) � 66x+ 159z + 45xz3 + 252x3z + 3x5z + 192x2z2 + x3z3 + 3x4z2 + 171xz

+324x2 + 237x4 + 23x6 + 36;

Wn(x; z) � �210xz2 � 348x2z � 69x4z � 21x2z3 � 66x3z2 � 473x3 � 69x5 � 39z2 � z3:

We want to show that (3) is negative and therefore need to verify that Wp(x; z) +Wn(x; z)

is positive. Since Wp(x; z) is positive and increases in x and z, and Wn(x; z) is negative and

decreases in x and z, it is su�cient to show that Wp(x; x) +Wn(x + �; x + �) > 0, and by

continuity, that Wp(x; x) +Wn(x; x) > 0. Now,

Wp(x; x) +Wn(x; x)
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= 3
�
75x+ 152x2 � 344x3 + 242x4 � 75x5 + 10x6 + 12

�
= 3(75x� 75x5 + 10x6 + 12) + 6x2(76� 172x+ 121x2)

> 6x2(76� 172x+ 121x2)

> 0;

where the latter inequality follows from the fact that 76�172x+121x2 reaches its minimum

value of 14:876 at x = 86=121. Hence, (3) is negative.

Since A(p; �ip; x; z) is the weighted average of M(�ip; 1; x; z) and M(�ip; 2; x; z), and

A(p; �aip; x; z) is the weighted average of M(�aip; 1; x; z) and M(�aip; 2; x; z) with the same

weights, it follows that A(p; �ip; x; z) < A(p; �aip; x; z). �

Hence, the almost-inverse-plurality rule dominates the inverse-plurality rule, and the

reason is similar to why the almost-plurality rule dominates the plurality rule. That is, if

two candidates are tied for the �rst place under the inverse-plurality rule, then a lottery

between these two candidates determines the winner, with no importance given to whether

a candidate is ranked �rst or second. In contrast, the almost-inverse-plurality rule uses the

information about a candidate's ranking, and since it is more likely that a high-ability candi-

date is ranked �rst than second, it follows that the almost-inverse-plurality rule outperforms

the inverse-plurality rule.

5.3 The Inferiority of the Borda Rule

A comparison between the Borda rule and the almost-plurality and almost-Borda rules yields

Proposition 3: A(p; �B; x; z) � maxfA(p; �ap; x; z); A(p; �aB; x; z)g.

Proof: When the almost-plurality and the almost-Borda rules yield the same outcome,

then this outcome is also obtained by the Borda rule. If the outcomes of the almost-plurality

and almost-Borda rules are di�erent, then the Borda rule yields an outcome that is equal

to either the one of the almost-plurality rule or to the one of the almost-Borda rule with
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equal probabilities. Hence, the Borda rule is an equal mixture of the almost-plurality and

the almost-Borda rules, and it is therefore weakly dominated by at least one of these rules.

In order to prove that the Borda rule is strictly inferior to one of these rules, we need to

show that A(p; �ap; x; z) 6= A(p; �aB; x; z), which we proceed to do in the following.

From Table 2 we get

M(�B; 1; x; z) =
1
2
[M(�ap; 1; x; z) +M(�aB; 1; x; z)];

from which it follows thatM(�B; 1; x; z) < maxfM(�ap; 1; x; z);M(�aB; 1; x; z)g ifM(�ap; 1; x; z) 6=

M(�aB; 1; x; z), and thatM(�B; 1; x; z) =M(�ap; 1; x; z) ifM(�ap; 1; x; z) =M(�aB; 1; x; z).

Similarly, from Table 3 we obtain

M(�B; 2; x; z) =
1
2
[M(�ap; 2; x; z) +M(�aB; 2; x; z)];

from which it follows thatM(�B; 2; x; z) < maxfM(�ap; 2; x; z);M(�aB; 2; x; z)g ifM(�ap; 2; x; z) 6=

M(�aB; 2; x; z), and thatM(�B; 2; x; z) =M(�ap; 2; x; z) ifM(�ap; 2; x; z) =M(�aB; 2; x; z).

Note that (i) M(�ap; 1;
1
2
; 1
2
) = M(�aB; 1;

1
2
; 1
2
) = M(�B; 1;

1
2
; 1
2
) and M(�ap; 2;

1
2
; 1
2
) =

M(�aB; 2;
1
2
; 1
2
) = M(�B; 2;

1
2
; 1
2
), and (ii) M(�ap; 1; 1; 1) = M(�aB; 1; 1; 1) = M(�B; 1; 1; 1)

and M(�ap; 2; 1; 1) =M(�aB; 2; 1; 1) = M(�B; 2; 1; 1) entail that if x and z were both equal

to 1
2
, or both equal to 1, the Borda rule would yield the same outcome as the almost-

plurality and almost-Borda rules. Since Lemma 1 (Appendix C) shows thatM(�ap; 1; x; z) =

M(�aB; 1; x; z) traces z as an increasing and strictly convex function of x, while Lemma

2 (Appendix C) shows that M(�ap; 2; x; z) = M(�aB; 2; x; z) traces z as an increasing

and strictly concave function of x, it follows that it is practically always the case that

A(p; �ap; x; z) 6= A(p; �aB; x; z). Consequently, the Borda rule is practically always strictly

inferior to either the almost-plurality or the almost-Borda rule and always weakly inferior

to one of these two rules. �

The outcome of the Borda rule is an equal mixture of the outcome of the almost-Borda

and the almost-plurality rule and hence can never outperform both of these \almost" rules.
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In fact, Proposition 3 shows that the Borda rule is inferior to either the almost-plurality or

the almost-Borda rule.

5.4 The Inferiority of the Two-Third Rule

A comparison between the two-third rule and the almost-inverse-plurality and the almost-

Borda rules yields

Proposition 4: A(p; �tt; x; z) � maxfA(p; �aB; x; z); A(p; �aip; x; z)g.

Proof: The proof is similar to that of Proposition 3. When the almost-Borda and the

almost-inverse-plurality rules yield the same outcome, then this outcome is also obtained by

the two-third rule. If the outcomes of the almost-Borda and almost-inverse-plurality rules

are di�erent, then the two-third rule yields either the same outcome as with the almost-

Borda rule or as with the almost-inverse-plurality rule, with equal probabilities. Hence,

the two-third rule is an equal mixture of the almost-Borda and the almost-inverse-plurality

rules, and it is therefore weakly dominated by (at least one of) these rules. In order to

prove that the two-third rule is strictly inferior to one of these rules, we need to show that

A(p; �aB; x; z) 6= A(p; �aip; x; z).

From Table 2 we get

M(�tt; 1; x; z) =
1
2
[M(�aB; 1; x; z) +M(�aip; 1; x; z)];

from which it follows thatM(�tt; 1; x; z) < maxfM(�aB; 1; x; z);M(�aip; 1; x; z)g ifM(�aB; 1; x; z) 6=

M(�aip; 1; x; z), and thatM(�tt; 1; x; z) =M(�aB; 1; x; z) ifM(�aB; 1; x; z) =M(�aip; 1; x; z).

Similarly, from Table 3 we obtain

M(�tt; 2; x; z) =
1
2
[M(�aB; 2; x; z) +M(�aip; 2; x; z)];

from which it follows thatM(�tt; 2; x; z) < maxfM(�aB; 2; x; z);M(�aip; 2; x; z)g ifM(�aB; 2; x; z) 6=

M(�aip; 2; x; z), and thatM(�tt; 2; x; z) =M(�aB; 2; x; z) ifM(�aB; 2; x; z) =M(�aip; 2; x; z).
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Now, observe that

M(�aB; 1; x; z) =M(�aip; 1; x; z)

, 1

12
(x+ z � 1)

�
7xz2 + x2z � 14xz3 + 6xz4 � 4x2z2 + 3x2z3 � x2 + 9z3 � 10z4 + 3z5

�
= 0

, 7xz2 + x2z � 14xz3 + 6xz4 � 4x2z2 + 3x2z3 � x2 + 9z3 � 10z4 + 3z5 = 0;

, x = �
3
2
z3=2 (4� 3z)1=2 + 7

2
z2 � 7z3 + 3z4

z � 4z2 + 3z3 � 1 ;

which is only satis�ed for speci�c combinations of x and z. It then follows that

A(p; �aB; x; z) = A(p; �aip; x; z)

, (1� p)M(�aB; 1; x; z) + pM(�aB; 2; x; z) = (1� p)M(�aip; 1; x; z) + pM(�aip; 2; x; z);

(the equality entails that the two-third rule, the almost-Borda rule, and the almost-inverse-

plurality rule will choose a high-ability candidate with the same probability) will hardly ever

be the case as it occurs only for a zero measure of combinations of x, z, and p. �

6 The Optimal Rule: The General Case

Figure 3 is obtained by combining Figures 1 and 2. For all values of p, the almost-plurality

rule is preferred in the area which is to the left of the m2
ap;aB-curve (since the m

2
ap;aB-curve is

to the left of the m1
ap;aB-curve), the almost-Borda rule is preferred in the area which is to the

right of them1
ap;aB-curve and to the left of them

2
aB;aip-curve, and the almost-inverse-plurality

rule is preferred in the area which is to the right of the m1
aB;aip-curve (since the m

1
aB;aip-curve

is to the right of the m2
aB;aip-curve). In the area enclosed by the m

2
ap;aB-, m

2
aB;aip- and m

1
ap;aB-

curves, the almost-plurality rule is preferred if there is one high-ability candidate while the

almost-Borda rule is preferred if there are two high-ability candidates. Since the probability

of choosing a high-ability candidate if only one high-ability candidate has applied relative

to the probability of choosing a high-ability candidate if two high-ability candidates have

applied decreases with p, it follows that for a given (x; z) in this area there exists a critical
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value of p such that the almost-plurality rule is preferred if p exceeds this critical value while

the almost-Borda rule is preferred if p is less than this critical value.

Similarly, in the area to the left of the m2
ap;aB-curve and to the right of the m

2
aB;aip-curve,

the almost-plurality rule is preferred if there is one high-ability candidate while the almost-

Borda rule is preferred if there are two high-ability candidates. It follows that for a given

(x; z) in this area there exists a critical value of p such that the almost-Borda rule is preferred

if p exceeds this critical value while the almost-inverse-plurality rule is preferred if p is less

than this critical value.

Finally, in the area enclosed by them1
ap;aB-,m

1
aB;aip- andm

2
aB;aip-curves, the almost-Borda

rule is preferred if there is one high-ability candidate while the almost-inverse-plurality rule

is preferred if there are two high-ability candidates. Therefore, for a given (x; z) in this area

there exists a critical value of p such that the almost-inverse-plurality rule is preferred if

p exceeds this critical value while the almost-Borda rule is preferred if p is less than this

critical value.

7 Conclusion

This study has considered a three-member committee established to choose the best out

of three candidates whose abilities are not known with certainty. Each committee member

votes according to the signals he has obtained regarding the ability of each candidate. The

hiring committee uses a scoring rule to aggregate its members' preferences when selecting a

candidate.

We have determined the scoring rule that is most likely to select a high-ability candidate.

A major result is that neither the widely-used plurality rule nor the inverse-plurality rule are

ever optimal, and that the Borda rule is hardly ever optimal. Furthermore, we show that the

set of optimal rules is comprised of the almost-plurality, the almost-inverse-plurality, and the

almost-Borda rules. In particular, the optimality of a speci�c \almost" rule depends on how
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likely committee members are to correctly identify the abilities of the di�erent candidates. If

a low-ability candidate is correctly identi�ed with a high likelihood, then the almost-plurality

rule is optimal. If a high-ability candidate is correctly identi�ed with a high likelihood, then

the almost-inverse-plurality rule is optimal. In some intermediate cases the almost-Borda

rule is optimal.

The intuition behind the superiority of the almost-plurality rule over the plurality rule

and the almost-inverse-plurality rule over the inverse-plurality rule is related to the occur-

rence of ties, which are the only cases where the \almost" rules may yield an outcome that

is di�erent from the corresponding plurality and inverse-plurality rules. In such cases, the

lottery that breaks the tie ignores relevant information about the committee members' pref-

erences regarding the candidates that are ranked second. This information is conveyed in

the \almost" rules that eliminate the possibility of ties (except in the case of cyclical prefer-

ences) and thus avoid the undesirable use of a lottery. For example, under the plurality rule

where each candidate receives exactly one vote, each of these candidates will be chosen with

the same probability. Thus, this rule ignores the information embodied in the committee

members' ranking of the candidates, and, in particular, the distinction between the second-

and third- ranked ones. However, this information is being utilized by the almost-plurality

rule in a way that increases the probability that a higher-ability candidate is selected.

Concerning the almost-Borda rule, the intuition for its superiority over the Borda rule is

that the latter is an equal mixture of the almost-plurality and the almost-inverse-plurality

rules. Hence, the Borda rule is optimal only if both of these other two rules are simultane-

ously optimal, which is hardly ever the case.

We have considered two possible types of candidates: high- and low-ability ones. One

may wonder whether expanding the range of possible candidate types (e.g., considering

intermediate-ability type of candidates) would change the results. The answer to this ques-

tion is negative. Allowing for more than two ability types does not change the superiority of
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the \almost" rules relative to the \classical" rules, since every committee member has pre-

determined scores (for a given rule) that he assigns to the candidates, and these scores are

not a�ected by the possible range of abilities. The reason is that this superiority is caused

by the possibility of ties which is more likely under the classical rules both if the abilities of

the candidates can take only two values and if they can take many di�erent values.8 We

therefore use only two types of abilities to convey the message.

The superiority of the \almost" rules holds also with more than three candidates and/or

more than three committee members, since the likelihood of ties is then higher under the

classical rules. This is true even though the di�erence between the two types of rules de-

creases with the number of candidates and the number of committee members. The intuition

is that: (1) relative to the plurality rule, under the almost-plurality rule committee mem-

bers reveal more information regarding their preferences concerning the full ranking of the

candidates. This decreases the probability of a tie; (2) relative to the Borda rule, the almost-

Borda rule is asymmetric in that being ranked twice at the second place is not equivalent to

being ranked once at the �rst place. This also decreases the probability of a tie; (3) relative

to the inverse-plurality rule, it is not only the case that under the almost-inverse-plurality

rule committee members reveal more information regarding their preferences concerning the

full ranking of the candidates, but also that the almost-inverse-plurality rule is asymmetric

in that being ranked once at the second place is not equivalent to being ranked once at the

�rst place. However, our main objective was not to focus on the advantages of the \almost"

rules that use more information, but to study when each of the \almost" rules is optimal.

In this paper we have focused on the special case of applying voting theory to the case

of a �rm that is in the process of hiring workers. However, our results are applicable and

readily implementable in other areas requiring aggregation of decision makers' signals, such

8 However, a wider range of candidate abilities would improve the performance of both the classical and
the \almost" rules since it reduces the likelihood of ties under both rules.
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as policy making, project selection, and investment decisions.
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Appendix A

The Seven Equivalent Classes of Scoring Rules

We examine the case where two candidates, say a and b, are tied with the same highest

score. Let S1a and S
2
a denote the number of committee members who rank candidate a �rst

and second, respectively, and similarly S1b and S
2
b the number of committee members who

rank candidate b �rst and second, respectively. Since a and b are tied for the �rst place

S1a � 1 + S2a � � = S1b � 1 + S2b � �

) S1a � S1b = (S2b � S2a) � �

If S2b = S2a, then S
1
b = S1a, in which case either S

2
b = S2a = 0, which rules out the

possibility of a tie, or S2b = S2a = 1, which, given that a and b are tied, implies cyclical

preferences. In such a case, all rules yield a lottery between the three candidates.

If S2b 6= S2a, then � = (S1a � S1b )=(S2b � S2a). Since S1a; S2a; S1b ; S2b 2 f0; 1; 2; 3g, the possible

values for � are 0; 1
3
; 1
2
; 2
3
; 1. The case of � = 1

3
is ruled out since a and b are then not

selected. The case of � = 0 corresponds to the plurality rule, the case of � = 1
2
to the Borda

rule, the case of � = 2
3
to the two-third rule, and the case of � = 1 to the inverse-plurality

rule. The intermediate cases where 0 < � < 1
2
correspond to the almost-plurality rule, where

1
2
< � < 2

3
to the almost-Borda rule, and where 2

3
< � < 1 to the almost-inverse-plurality

rule.
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Appendix B

Derivation of q1

To determine q1, observe that a is ranked �rst in only the following cases:

� The committee member receives correct signals from all three candidates, which hap-

pens with probability xz2.

� The committee member receives a correct signal from candidate a, and from only one

of the candidates b and c, which happens with probability 2xz(1 � z). The ranking

between candidate a and the candidate from whom an incorrect signal was received is

determined randomly. Hence, a is ranked �rst with probability 1
2
�2xz(1�z) = xz(1�z).

� The committee member receives a correct signal from candidate a and incorrect signals

from candidates b and c, which happens with probability x(1 � z)2. The ranking

between candidate a and the other two candidates is determined randomly. Hence, a

is ranked �rst with probability 1
3
x(1� z)2.

� The committee member receives an incorrect signal from candidate a and correct sig-

nals from candidates b and c, which happens with probability (1� x)z2. The ranking

between candidate a and the other two candidates is determined randomly. Hence, a

is ranked �rst with probability 1
3
(1� x)z2.

Accordingly, q1 is given by

q1 = xz2 + xz(1� z) + 1
3
x(1� z)2 + 1

3
(1� x)z2

= 1
3
(xz + x+ z2):
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Derivation of q2

To determine q2, observe that a is ranked second in only the following cases:

� The committee member receives a correct signal from candidate a, and from only one

of the candidates b and c, which happens with probability 2xz(1 � z). The ranking

between candidate a and the candidate from whom an incorrect signal was received

is determined randomly. Hence, a is ranked second with probability 1
2
� 2xz(1 � z) =

xz(1� z).

� The committee member receives a correct signal from candidate a and incorrect signals

from candidates b and c, which happens with probability x(1 � z)2. The ranking

between candidate a and the other two candidates is determined randomly. Hence, a

is ranked second with probability 1
3
x(1� z)2.

� The committee member receives an incorrect signal from candidate a and correct sig-

nals from candidates b and c, which happens with probability (1� x)z2. The ranking

between candidate a and the other two candidates is determined randomly. Hence, a

is ranked second with probability 1
3
(1� x)z2.

� The committee member receives an incorrect signal from candidate a, and a correct

signal from only one of candidates b and c, which happens with probability 2(1 �

x)z(1� z). The ranking between candidate a and the candidate from whom a correct

signal was received is determined randomly. Hence, a is ranked second with probability

1
2
� 2(1� x)z(1� z) = (1� x)z(1� z).

It follows that q2 is given by

q2 = xz(1� z) + 1
3
x(1� z)2 + 1

3
(1� x)z2 + (1� x)z(1� z)

= 1
3
(�2xz + x� 2z2 + 3z):

23



Derivation of q3

Finally, to determine q3, observe that a is ranked third in only the following cases:

� The committee member receives a correct signal from candidate a and incorrect signals

from candidates b and c, which happens with probability x(1 � z)2. The ranking

between candidate a and the other two candidates is determined randomly. Hence, a

is ranked third with probability 1
3
x(1� z)2.

� The committee member receives an incorrect signal from candidate a and correct sig-

nals from candidates b and c, which happens with probability (1� x)z2. The ranking

between candidate a and the other two candidates is determined randomly. Hence, a

is ranked third with probability 1
3
(1� x)z2.

� The committee member receives an incorrect signal from candidate a, and a correct

signal from only one of candidates b and c, which happens with probability 2(1 �

x)z(1� z). The ranking between candidate a and the candidate from whom a correct

signal was received is determined randomly. Hence, a is ranked third with probability

1
2
� 2(1� x)z(1� z) = (1� x)z(1� z).

� The committee member receives incorrect signals from all candidates, Hence, a is

ranked third with probability (1� x)(1� z)2.

Thus, q3 is given by

q3 = 1
3
x(1� z)2 + 1

3
(1� x)z2 + (1� x)z(1� z) + (1� x)(1� z)2

= 1
3
(�2x+ xz + z2 � 3z + 3):
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Appendix C

The Relationship Between Z(�) and x

Let Z(�i; �i0 ; j; x), where i 6= i0, denote the value of z for which the �rm is indi�erent

between the rules for which the scores are (1; �i; 0) and (1; �i0 ; 0), given that there are

j 2 f1; 2g high-ability candidates. Formally, Z(�i; �i0 ; j; x) is de�ned by

M [�i; j; x; Z(�i; �i0 ; j; x)] =M [�i0 ; j; x; Z(�i; �i0 ; j; x)]:

Lemma 1: Z(�ap; �aB; 1; x) is an increasing and strictly convex function of x.

Proof: For the sake of simplicity, in the following we omit the arguments of Z(�i; �i0 ; j; x).

We have that

M(�ap; 1; x; Z) =M(�aB; 1; x; Z)

, 1
12
(x+ Z � 1) (x+ xZ + Z2) (�x+ xZ + 2Z2 � Z3 � xZ2) = 0:

By setting �x+ xZ + 2Z2 � Z � xZ2 = 0, we obtain

x =
2Z2 � Z3
1� Z + Z2 :

Hence,
dx

dZ
=
(Z2 � Z + 4) (1� Z)Z

(Z2 � Z + 1)2
;

which is positive, and
d2x

dZ2
=
2 (Z + 1) (2Z � 1) (Z � 2)

(Z2 � Z + 1)3
;

which is negative. Therefore, limZ!1=2 x =
1
2
and limZ!1 x = 1, so that x is an increasing

strictly concave function of Z. Hence, Z (and the values of z for which z = Z) is an increasing

and strictly convex function of x. �

Lemma 2: Z(�ap; �aB; 2; x) is an increasing and strictly concave function of x.
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Proof: We have that

M(�ap; 2; x; Z) =M(�aB; 2; x; Z)

, 1
12
(�3x� 2Z + xZ + x2 + 3) (Z + x2Z � xZ � 2x2 + x3) (x+ Z � 1) = 0

, (�3x� 2Z + xZ + x2 + 3) (Z + x2Z � xZ � 2x2 + x3) = 0

, Z + x2Z � xZ � 2x2 + x3 = 0

, Z =
2x2 � x3
1� x+ x2 ;

where we have used that �3x� 2Z + xZ + x2 + 3 > 0 since its left-hand side decreases in x

and converges to zero as x converges to 1.

Now, d2 [(2x2 � x3)=(1� x+ x2)] =dx2 has the same sign as 2x3 � 3x2 � 3x+ 2, which is

negative since 2x3�3x2�3x+2 = 0 for x = 1
2
, and decreases in x. Hence, M(�ap; 2; x; Z) =

M(�aB; 2; x; Z) traces Z (and the values of z for which z = Z) as an increasing and strictly

concave function of x. �
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