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Abstract

We provide a general theoretical characterization of how firms’ technology
choice on a technology frontier determines the long-run elasticity of substitu-
tion between capital and labor. We show that the shape of the frontier deter-
mines factor shares and the elasticity of substitution between capital and labor.
If there are adjustment costs to technology choice, the short- and long-run
elasticities differ, with the long-run always higher. If the technology frontier
is log-linear, the production function becomes Cobb-Douglas in the long run
but, consistent with empirical evidence, short-run dynamics are characterized
by gross complementarity. The approach is easily implementable and yields a
powerful way to introduce CES-type production functions in macroeconomic
models. We provide an illustration within an estimated dynamic general equi-
librium model and show that the use of our production technology provides a
good match for the short- and medium-run behavior of the US labor share.
JEL Classification: E25, O33, O40.
Keywords: Balanced growth, appropriate technology, elasticity of substitu-
tion.
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Non-technical summary 

In macroeconomics, we typically model production by specifying a ‘production function,’ which 

tells us how much output is produced with given quantities of the ‘factors of production,’ often 

taken simply as capital and labour. Factor shares refer to the proportion of the income earned by 

production that goes to each factor, so the labour share is the proportion of this income that is 

earned by workers through supplying labour. There are various issues with how we measure 

factor shares, but a key aspect of what is known as ‘balanced growth’ is the idea that as income 

grows over long periods of time, the labour share remains approximately constant.  

Some researchers dispute the idea of balanced growth, arguing for example that the labour share 

is currently declining. What there is no disagreement about is the fact that these factor shares are 

far more stable in the long run than they are in the short run. This creates a problem in the way 

we specify production functions. For example, the assumption of balanced growth has led Cobb-

Douglas production functions to become standard in macroeconomic models because they 

imply constant factor shares with perfectly competitive markets. This, however, makes it more 

difficult to capture  short- and medium-run fluctuations in factor shares. Market failures such as 

wage and price rigidities allow us to explain some of these fluctuations, but it is unlikely that they 

account for all of the fluctuations we see in factor shares, particularly in the medium run.  

When the relative price of capital (to labour) rises, firms hire relatively less capital and more 

labour. The elasticity of substitution between capital and labour quantifies this effect; it tells us 

by how many percent the capital-labour ratio declines when the relative price of capital goes up 

by 1%. With Cobb-Douglas production functions, this elasticity is always one. However, much 

of the empirical evidence finds support for an elasticity below one. Indeed, production functions 

with an elasticity below 1 typically capture short-run fluctuations in factor shares significantly 

better than Cobb-Douglas. However, they have very important long-run consequences for 

income distribution. If the elasticity is different to one, productivity changes can cause the labour 

share to change. Since we have observed permanent changes in the productivity of investment 

goods in the last 30 years, an elasticity below one would lead to unbalanced growth with an 

increasing labour share, whereas typically researchers think that it is either constant or declining. 

In this paper we propose a solution to this problem, using the idea of “appropriate technology.” 

This is the idea that firms not only choose the quantities of capital and labour to employ, but 

also make a technology choice – how labour- or capital-intensive they want production methods 

to be. This trade-off is expressed graphically by a technology frontier: technologies that are more 

efficient in using labour are less efficient in using capital and vice-versa. Given a change in factor 

prices, firms change their position on the frontier. We show how the shape of the frontier 

determines the long-run elasticity of substitution and long-run factor shares. Importantly, if firms 

face adjustment costs when changing their choice of technology, the short-run elasticity will be 

lower than the long-run elasticity. This provides a way of modelling production that is very easy 

to implement in macroeconomic models but that is flexible enough to be compatible with both 

short- and long-run data. The short-run elasticity can be calibrated to capture short-run 

fluctuations in factor shares in line with the evidence, while the shape of the frontier captures the 

properties of long-run growth. There is a specific shape of frontier that implies balanced growth. 

Here elasticity of substitution is below one in the short-run but adjusts towards one in the long 

run. We use this to provide a quantitative example for the US economy. The results support the 

use of this new production function because it improves the model’s ability to explain the 

business cycle and medium-run behaviour of the labour share. 



1 Introduction

As well known among economists, Uzawa’s (1961) Steady State Growth Theorem
(henceforth SSGT ) states that balanced growth1 requires either all technical progress
to be labor-augmenting or the elasticity of substitution between capital and labor
to equal one in the long run (see Jones and Scrimgeour, 2008, for a useful proof).
Evidence that factor shares are approximately constant in the long run, such as shown
in figure 1, has led to balanced growth being a standard baseline description of long-
run data and also a standard constraint for most solution methods in dynamic macro
models. However, as discussed below, the assumption that technical progress is indeed
purely labor augmenting is difficult to justify. On the other hand, Cobb-Douglas,
which imposes a unitary capital-labor elasticity of substitution, sits at odds both
with the substantial cyclical fluctuations observed in factor shares and the weight
of evidence (reviewed in e.g. Chirinko, 2008, and León-Ledesma et al., 2010) which
supports a value of this elasticity significantly below unity at standard frequencies.
Specifying an elasticity less than unity might be beneficial in modelling fluctuations,
but doing so precludes long-run balanced growth unless all technical progress is labor
augmenting. It is in this sense that the theorem constrains modelling practice.

We propose a method of relaxing this constraint by deriving a general production
function in which the elasticity of substitution between capital and labor is lower in the
short run than in the long run. The special case where the long-run elasticity σLR = 1
allows flexibility in modelling short-run dynamics (since the modeller can choose any
short-run elasticity σSR such that 0 < σSR < 1) while retaining general compatibility
with balanced growth. A particular focus here is in providing a tractable method
to achieve this flexibility. In comparison to alternative approaches, this method can
be more easily applied in a wide range of macroeconomic models commonly used for
policy making, where the nature of technical progress is not the primary research
question.

The framework is based on considering technology choice among firms. The ap-
propriate technology literature (see Atkinson and Stiglitz, 1969, Caselli and Coleman,
2006 and Jones, 2005) analyses this type of technology choice among firms and forms
the basis for the current paper. Here we particularly build on Caselli and Coleman
(2006; henceforth CC). Following an important idea in CC, firms face a standard con-
stant elasticity of substitution production function where output Y is derived from a
CES production function

Y = [AρKρ +BρLρ]1/ρ , (1)

where, in addition to choosing capital K and labor L, the firm also chooses its tech-
nology A ≥ 0 and B ≥ 0 subject to (A,B) lying within a given technology frontier.2

1Here, balanced growth refers to a long-run growth path consistent with Kaldor’s facts. In
particular, with constant factors shares, constant great ratios, as well as constant real interest rate.

2CC draw a world technology frontier. In CC, there are three inputs, capital, unskilled labor and
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Since optimal technology choices will vary with factor prices, and technology choice in-
fluences the quantities of factors employed, technology choice also alters the elasticity
of substitution (provided ρ 6= 0 as assumed throughout).

Importantly, here we assume that it is costly for firms to adjust their choice of
technology. The expressions ‘short run’ and ‘long run’ in the paper refer respectively
to the situations where (following a shock say) no adjustment has occurred and where
adjustment is complete. In (1) the short-run elasticity σSR is therefore simply σSR =

1
1−ρ . Given σSR, we characterise how the nature of technological choice (that is the

shape of the frontier) determines the long-run elasticity σLR. The slope of the frontier
in the space of the log efficiencies determines the capital share. A straightforward
intuitive explanation of this is given in the paper: the capital share is directly related
to the slope of the iso-quants in this space. Given an interior solution, we show that
we always have σLR > σSR and it is the curvature of the frontier, in conjunction with
σSR , that determines σLR. The paper provides sufficient conditions for the existence
of such an interior solution, the principal one being that the curvature of the frontier
is not ‘too pronounced.’

It follows from the above that a log-linear frontier implies a constant long-run
capital share – effectively long-run Cobb-Douglas – and therefore balanced growth. We
also provide functional forms for the shape of the frontier that result in a more general
long-run CES production function. Thus one can write down a general production
function which is CES in both the long- and the short-run limits but has different
elasticities at these horizons, with σLR > 1 > σSR. Finally, using the key case
with σLR = 1 for compatibility with balanced growth, we present an illustrative
dynamic macro model that, despite its simplicity, captures well the empirical short-
and medium-run behavior of the labor share.

Empirical Context. Suppose we take compatibility with long-run balanced growth
as a model requirement.3 An alternative approach to reconcile evidence of cyclicality

skilled labor and the firm chooses the efficiencies (constrained by a technology frontier) of skilled and
unskilled labor (which empirical evidence suggests are gross substitutes) rather of capital and labor
(which have short-run gross complementarity) as in our case. Since it is hard to argue that balanced
growth applies to these two inputs, this issue (and more generally the time variation of the elasticity
of substitution) is not of great relevance in CC.

3Some recent literature (see e.g. Piketty, 2013 and Karabarbounis and Nieman, 2014) has argued
that current trends suggest that the capital share is increasing over time, and so growth is not
balanced but best described by σLR > 1. This argument is far from settled, since observations
on the capital share and the capital-output ratio are disputed due to measurement issues (see e.g.
Elsby et al., 2013, Bonnet et al, 2014, and Bridgman, 2014). It is important to note that since
short-run evidence favors σSR < 1, either of these two views of long-run growth suggest σLR > σSR.
We can argue in fact that the Piketty view point actually strengthens the argument for modelling
technological choice. With a conventional CES production function, the assumption that technical
progress is purely labor-augmenting may (at least theoretically) reconcile evidence that σSR < 1
with evidence that long-run labor share is constant. A falling long-run labor share with constant
real interest rates would however require some form of capital-augmenting regress. The approach
outlined in this paper can reconcile either view.
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Figure 1: Historical capital and labor shares for the US and UK. Sources: US, Piketty
and Saez (2003), UK, Mitchell (1988) updated by Bank of England.

in labor shares with the requirements of balanced growth is to introduce wage and/or
price rigidity in a model with a Cobb-Douglas production function. This may gener-
ate short-run variations in factor shares if they produce cyclical fluctuations in firm
markups. While such rigidities are likely to affect the labor share at business cycle
frequencies, at medium-run frequencies we might expect wages and prices to adjust.
Following the Comin and Gertler (2006) methodology, we do in fact find significant
medium-run fluctuations in factor shares which rigidities are less likely to explain. As
indicated by Beaudry (2005), technical change might play a role in explaining such
medium-run phenomena. Furthermore, estimates of capital income built by directly
calculating the real user cost as in Klump et al. (2007) display considerable busi-
ness cycle fluctuations that cannot be attributed to changing markups. Bentolila and
Saint-Paul (2003) also find evidence that changes in the labor share are significantly
driven by technological shifts unrelated to labor market rigidities.

As discussed above, the primary alternative offered by the SSGT is the assumption
that technical progress is purely labor-augmenting in the long run. If σSR = σLR 6= 1,
permanent labor-augmenting technology shocks will produce short-run fluctuations in
factor shares, potentially allowing models to match the data while satisfying balanced
growth.4 However, it is difficult to make a clear theoretical case as to why any
permanent technical progress should be purely labor augmenting.5 Investment-specific

4Note also that the joint assumptions of a CES production function and purely labor-augmenting
technical progress imply long-run cointegration of the log of the capital share and the log of the user
cost of capital. See figure A1 in appendix B, where this issue is discussed at length.

5Theoretical reasons for why technical progress may be purely labor-augmenting are examined
in the “induced innovation” strand of the literature, going back to Hicks (1932), Kennedy (1964),
Samuelson (1965), Drandakis and Phelps (1966) and Kamien and Schwarz (1968) and including
more recently Acemoglu (2002, 2003, 2007) and Zeira (1998) amongst others. An adequate survey is
beyond the scope of this paper, but the question of whether the induced innovation literature as a
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technical change (henceforth IST ) has also taken an empirically important role in
macroeconomics in the past two decades (see e.g. Greenwood et al. 1997 and 2000, and
Fisher, 2006, who find IST to be one of the key drivers of macroeconomic fluctuations
in the US economy). IST is clearly not temporary, and, moreover, relative price
data for investment goods, a proxy for IST, are clearly trended. Since IST has
similar implications for balanced growth as capital-augmenting technical progress,
trends in IST will not result in balanced growth in conventional models with a CES
production function. Nonetheless, our approach provides a justification for the use
of CES production functions in modelling short-run dynamics, since any such model
can potentially be made compatible with balanced growth by the introduction of
technology choice.6

Related Theory. This paper is most closely related to that ‘appropriate technology’
literature that describes models of technological choice. Prominent examples are CC,
and Jones (2005), in turn extended in various interesting ways by Growiec (2008 and
2013). In these approaches, the firm typically makes a technological choice by selecting
e.g. a pair (A,B) that represents the efficiency of two inputs of production. The space
of available technologies might take the form of a deterministic frontier in (A,B) space
(CC), or represent an accumulated stock of arrived individual technologies (Ai, Bi)
drawn stochastically from given distributions (Jones, 2005 and Growiec, 2008 and
2013).

In Jones (2005), firms choose the most appropriate of the technologies that have
arrived, each of which is Leontief (or CES with a low elasticity of substitution). In
the short run, while the firm remains on the current technology, the elasticity of
substitution is zero (or low), but in the long run switching to new technologies will
cause the elasticity of substitution to increase. The intuition for this is shown in
figure 2, which is very similar to figure 1 of Jones (2005). The isoquants of the
‘global’ production function that incorporates endogenous technology choice are the
convex hull of the isoquants of the individual technologies, and therefore the former
should have less curvature than the latter. Jones (2005) shows that if A and B are
drawn from independent Pareto distributions, the elasticity of substitution is unity
in the long run. Like our present approach, it produces Cobb-Douglas at the firm
level in the long run, rather than as a result of aggregation.7 Growiec (2013), in turn,

whole produces the outcome of balanced growth without overly-restrictive assumptions on the nature
of innovation is not clear (see Acemoglu, 2003, for a useful discussion). One purpose of this paper is
also to allow researchers to relax the SSGT constraint without formally modelling innovation when
this is not essential to the research question.

6The introduction of CES production technologies in business cycle analysis has gained relevance
in recent years due to an increasing interest in the drivers of factor income shares (see Choi and Ŕıos-
Rull, 2009). Cantore et. al (2014), for instance, show that the effect of technology shocks on hours
worked can solve the technology-hours correlation puzzle when the elasticity of factor substitution
differs from one and there are biased technology shocks.

7The aggregation approach is taken by Houthakker (1955-56). Jones (2005) and Lagos (2006)
provide useful discussions of this classic paper. Lagos (2006), in the spirit of Houthakker, derives
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Figure 2: Isoquants of the long- and short-run production functions

shows how the use of Weibull distributions can lead to long-run CES.
While these papers provide a rich and elegant description of technical progress,

applying these ideas in a conventional macroeconomic modelling framework is difficult.
For instance, due to the fact that firms switch to the best available technology, the
dynamics in Jones (2005) have an extreme value property that makes simulation
difficult in a conventional forward-looking macroeconomic setting such as a DSGE
using the usual solution techniques.8 CC (see foonote 2) is not explicitly related to
balanced growth. However, as we show here, extending the CC framework to address
this and the more general question of creating a production function with a time-
varying elasticity of substitution results in a formulation that is very straightforward
to introduce into conventional macroeconomic models.

The rest of the paper is organized as follows. The next section contains the key
theoretical results. It presents the production technology and its core characteristics,
dynamics, and relationship to balanced growth. Section 3 presents an application
of this approach to modelling the behavior of the labor share of income. Section 4
concludes.

a Cobb-Douglas form for the aggregate production function by aggregating Leontief production
technologies at the firm level using a model with search frictions (assuming an exogenous rental on
capital). Since we principally aim at providing a production function, the aims are very different
from those here and are primarily directed at accounting for the determinants of observed TFP.

8The extreme value property will also have a significant impact on the short-run dynamics of
factor shares, increasing the likelihood of sharp adjustments. Here, a standard adjustment cost
mechanism results in smoother changes in factor shares.
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2 The Production Technology

Though firm heterogeneity is likely to be of importance when considering technology
choice, we leave this for future research in order to focus on the simplest possible
setting. Since constant-returns-to-scale is the most important assumption for many
of our results, we begin with a generalisation of (1). Suppose for all firms output Y
is given by the following production function

Y = F (AK,BL) ≡ F (eaK, ebL) (2)

where F (., .) is a standard twice continuously differentiable constant returns to scale
production function with FK , FL > 0 and FKK , FLL < 0.

The efficiencies of capital and labor are A and B respectively, and a and b their
logs. As well as choosing K and L, the firm now chooses these efficiencies constrained
by a given technology frontier. This choice represents the choice of relative efficiency
of both inputs of production. For instance, capital might make a relatively greater
marginal contribution to output in a firm providing web-based customer support ser-
vice compared to a telephone-based one. A firm may decide whether to change to a
new factory design where the organisation of machinery and operators changes their
relative marginal contribution to output by changing to web-based provision. This
choice of factory, however, is limited by the available designs for new factories de-
termined by the state of knowledge of the economy. In contrast to Jones (2005), we
use a continuous technology frontier as in CC. In CC, the technology frontier takes a
specific functional form (see again footnote 2). In order to examine balanced growth
and other outcomes, we are interested in exploring different possible shapes of the
frontier.

In this section, we proceed as follows. We first briefly discuss the frontier and
introduce notation and two definitions of equilibrium corresponding to the short and
long run (section 2.1). We then present the main results regarding balanced growth
(section 2.2). Section 2.3 presents more general results in addition to providing the
second order conditions necessary for the balanced growth results. In section 2.4, we
consider the specific case where production takes the CES form in both the short- and
long-run limits but with differing elasticities of subsitution. Finally, in section 2.5, we
formally introduce adjustment costs in technology choice.

2.1 The technology frontier

We can draw the frontier in the space of the efficiencies A and B, or their logs a and
b. When we do the latter, we refer to “log-efficiencies” or the “log-frontier.” Just as
the capital-labor ratio k ≡ K

L
is clearly fundamental to the concept of the elasticity

of substitution, with technological choice, the ratio of the efficiencies, here denoted
θ ≡ B/A ≡ eb−a, also plays an important role. The quantity k

θ
is then the ratio of

capital to labor in efficiency units.
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The frontier can only intersect a given ray B = θA at one point9 which we call
(A(θ;x), B(θ;x)), introducing a shift parameter x that represents the ‘level’ of technol-
ogy. Hence we can label any point on the frontier by the ratio of efficiencies θ at that
point. The log-efficiencies are a(θ;x) ≡ lnA(θ) and b(θ;x) ≡ lnB(θ) = ln θ + a(θ;x).
Note that the function a(θ;x) defines the shape of the frontier. We assume throughout
that that a(θ;x) is twice continously differentiable, so the frontier is continuous and
“smooth.” We also assume the frontier is strictly downward-sloping but not vertical
(i.e. a(θ) is strictly decreasing and θa(θ) is strictly increasing in θ) so its slope is
always defined; we denote this slope s(θ;x) < 0.

The left panel of figure 3 shows an example of a technology frontier in (A,B) space
together with two rays through the origin B = θ1A and B = θ2A; the right panel
shows the same frontier and rays in the (a, b) space.10

b

b
[A(θ1), B(θ1)]

[A(θ2), B(θ2)]

θ = θ1

θ = θ2

B

A

(a) The frontier in efficiency space

b [a(θ1), b(θ1)]

θ = θ1

θ = θ2

b=ln(B)

a=ln(A)

isoquants

(b) The frontier in log-efficiency space

Figure 3: The technology frontier. Left panel, the technology frontier in (A,B) space.
Right panel, the frontier in log space.

We assume that technical progress takes the following form: an increase in x, ∆x,
represents an equi-proportionate shift from each point (A,B) on the frontier to the
point

(
Ae∆x, Be∆x

)
. We will see below that this implies that firms will not change

their optimal long-run capital-labor ratio or choice of technology if factor price ratios
stay constant. So effectively we are assuming Hicks-neutral technical progress. In
log-efficiency space, this corresponds to a parallel shift of the log-frontier along 45◦

9By contradiction: if it intersects the ray at two points, the technology represented by the point
closest to the origin cannot lie on the frontier since it is dominated by the one further from it.

10In the paper we use the word “ray” to mean lines of constant θ that go though the origin when
drawn in (A,B) space. Movement along a ray represents a proportionately equal change in the
efficiencies of both inputs. When these lines are redrawn in (a, b) space, they will not in general go
through the origin but we will still refer to them as “rays” as they retain the same economic meaning.
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lines. An example is shown in figure 4. Under this type of expansion, the slope of the
frontier will not change as we move along a ray. Hence s(θ;x) ≡ s(θ) is independent of
x as are in fact a′(θ) and b′(θ) (mathematically, this is what implies Hicks-neutrality).
Note that

s(θ) ≡ b′(θ)

a′(θ)
=

1

θa′(θ)
+ 1. (3)

b

b

b

B

A

(a) In efficiency space

b

b
b

b

b

b

b

a

(b) In log-efficiency space

Figure 4: Technological progress: an increase in x. Left panel represents the shift in
(A,B) space. Right panel represents the shift in log space.

We also assume perfect competition throughout. The firm’s problem is to choose
the quantities of its inputs and its technology subject to the factor prices of labor and
capital, w and r + δ respectively, to maximise its profits Y − (r + δ)K − wL. Due
to constant returns to scale, the solution to this problem determines the capital-labor
ratio k in terms of the factor price ratio Λ ≡ w

r+δ
. For the moment, we do not introduce

explicitly adjustment costs in technology choice. However, given that we will assume
adjustment is costly, it is useful to have two definitions of equilibrium that correspond
to the cases of complete adjustment in technology choice (the long-run equilibrium)
and to that of no adjustment (the short-run equilibrium). In the short run, the firm
only chooses the optimal input mix within a given factory. In the long run, however,
the firm can also choose the type of factory from a design on the technology frontier,
which can be indexed by θ.

Definition: Given factor prices r + δ and w and a frontier a(θ;x), an interior
long-run equilibrium is a pair (k∗, θ∗), that satisfies the standard first order con-
ditions YK = r + δ, YL = w and Yθ = 0 and which, if all firms choose θ = θ∗ and
k = k∗, is such that no firm can increase its profits by deviating from this choice.

8



Given factor prices r + δ and w and current technology (a, b), an interior short-
run equilibrium is a capital-labor ratio k∗, that satisfies the standard first order
conditions YK = r + δ and YL = w and which, if all firms choose k = k∗, is such that
no firm can increase its profits by deviating from k = k∗ holding (a, b) fixed.

2.2 Balanced growth

Let us now return to figure 3. Holding K and L fixed, we can draw “efficiency”
isoquants in (a, b) space (shown by the dotted lines in the right panel). Let sI(a, b)
represent the the slope of the isoquant through the point (a, b). Note that

− sI(a, b) =
Ya
Yb

=
KeaF (eaK, ebL)

LebF2(eaK, ebL)
=
KYK
LYL

. (4)

Equation (4) applies in and out of equilibrium. The ratio of the marginal gains
from increasing capital efficiency to those from increasing labor efficiency must depend
on the ratio of capital to labor employed. Beyond that, it depends on the marginal
rate of technical substitution between capital and labor, since both efficiency gains and
factor quantity increases raise production via efficiency units of the relevant factor.
In (an interior long-run) equilibrium, however, we know that the firm must choose a
technology on the frontier at which the slope of the frontier must equal the slope of
the technology isoquants (i.e. Yθ = 0). The expression on the right-hand side of (4)
must also equal the ratio of capital to labor income. Hence we must have

− s(θ) =
k

Λ
=

α

1− α
, (5)

where α is the capital share. Despite its simplicity, equation (5) is a very useful one.
If the log-frontier is linear, the capital share will remain constant in the long run
and thus we will have balanced growth – provided we remain at an interior long-run
equilibrium.

From equation (3), for the capital share α to remain constant in (5), we require
the following functional form for a(θ), upto a constant:

a(θ) = x+ (α− 1) ln θ. (6)

Substituting in (2), then gives,

Y = F (exθα−1K, exθαL) (7)

We summarise the above results in the following lemma:

Lemma 1 Suppose output is given by equation (7), where 0 < α < 1 is constant, x
represents the level of technology, and F (., .) is a standard constant returns to scale
production function. If θ is a choice variable of the firm, it can be interpreted as
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representing technology choice on a log-linear technology frontier. If the solutions to
the first-order conditions YK = r + δ, YL = w and Yθ = 0 maximise firm profits for
all x in a given interval, then the capital share is constant and equal to α along the
growth path as x increases in that interval.

Lemma 1 is potentially powerful because it shows that long-run balanced growth
does not depend on the shape of F (., .). If changing technologies is costly in the short
and medium run, however, the shape of F (., .) will influence dynamics at these time
horizons. Hence, we are be able to choose the shape of F (., .) to best model these short
and medium run dynamics while knowing that technology choice will ensure balanced
growth in the long run. Thus for example one can choose a CES production function
to model short- and medium-run phenomena, without the restrictive assumptions
imposed by Uzawa’s (1961) BGP theorem.

However, we are yet to establish any restrictions on F (., .) that imply that the
solution to the first order conditions does indeed maximize the profits of the firm.
This is discussed further below and in appendix A.2. If F (., .) takes the form (1), we
show that a sufficient condition is that ρ < 0. Since gross complementarity between
capital and labor is the empirically preferred assumption for modelling short- and
medium-run fluctuations in the labor share, this is unlikely to prove too restrictive.
More generally, if, for any given θ, capital and labor are always gross complements
in F (., .) then there is a unique solution to the first order conditions. This globally
maximises firm profits if an additional regularity condition holds (closely related to
the concept of strict essentiality in production functions; see appendix A.2).

2.3 Some general results

Without technology choice, if Y has constant returns to scale in K and L, and is
‘well-behaved,’ the standard condition YKK < 0 is necessary and sufficient to ensure
that appropriate second order conditions are satisfied in the firm’s problem. Our
aim is thus to develop an equivalent condition with technology choice for a general
(non-linear) log-frontier.

Suppose we are at a solution (k∗, θ∗) to the first order conditions YK = r + δ,
YL = w and Yθ = 0. Since we assume technology is sticky in the short-run, the short-
run elasticity σSR(k∗, θ∗) between capital and labor is determined purely by the shape
of F (., .) at (k∗, θ∗): it describes how k responds to the factor price ratio Λ ≡ w

r+δ

holding technology (i.e. θ) fixed,

σSR(k∗, θ∗) =
∂ ln k∗

∂ lnΛ

∣∣∣∣
θ=θ∗

=
YKYL
YKLY

. (8)

The standard expression for the elasticity of substitution on the far right-hand side
of equation (8) only applies because we hold θ constant. This short-run elasticity
determines the curvature or convexity of the efficiency isoquants in figure 3b. In
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contrast, the long-run elasticity σLR(k∗, θ∗) gives the response of k∗ to a change in Λ
when the firm can also optimally choose θ in response to this change.

A measure of the the convexity of the frontier is given by the elasticity η(θ) of the
slope of the log-frontier s(θ) with respect to θ:

η(θ) =
θs′(θ)

s(θ)
. (9)

It is straightforward to show that the log-frontier is strictly convex [concave] wherever
η(θ) > 0 [ η(θ) < 0 ]. We can see from figure 3b that there is a natural upper
bound on the curvature of the log-frontier for the first-order-conditions solution to
locally maximise firm profits: the log-frontier must at least be less convex than the
efficiency isoquants (i.e. Yθθ < 0). If the firm only chose technology, this would also
be a sufficient condition. However, since the firm has an additional dimension of
optimisation in the choice of the capital-labor ratio, this in general is not the case.11

However, the necessary and sufficient condition given below takes a similar form:

Proposition 2 The solution to the first order conditions (k∗, θ∗) locally maximises
firm profits if and only if

η(θ∗) < 1− σSR(k∗, θ∗). (10)

Proof. See appendix A.1.
This is the second order condition for technology choice. The appendix also pro-

vides a set of sufficient conditions for a solution to the first order conditions to be
unique and globally maximise firm profits, and therefore constitute an interior long-
run equlibrium.12 Assuming condition (10) holds, we now derive an expression for the
long-run elasticity of substitution, σLR(k∗, θ∗). Note that since F (., .) has constant
returns to scale, the partial derivatives F1(., .) and F2(., .) are homogeneous of degree
zero, so we can write

Λ =
YL
YK

=
θ∗F2(ea(θ∗)K, θ∗ea(θ∗)L)

F1(ea(θ∗)K, θ∗ea(θ∗)L)
=
θ∗F2(k∗/θ∗, 1)

F1(k∗/θ∗, 1)
≡ θ∗g

(
k∗

θ∗

)
(11)

11It can be shown that the log-frontier is less convex than the efficiency isoquants at (k∗, θ∗) if and
only if:

η(θ∗) <
1− σSR(k∗, θ∗)

σSR(k∗, θ∗)
.

This is always implied by condition (10).
12For example, if condition (10) holds for all k and θ, then it can be shown that the marginal

rate of technical substitution between labor and capital is strictly monotonic in k (given an optimal
choice of θ conditional on k) and therefore any solution to the first order conditions is unique. It
remains therefore to exclude corner solutions, and a variety of conditions might allow this depending
on the shape of the log-frontier and F (., .). One such set is given in the appendix A.2.
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for some differentiable function g(.). Let ψ be the elasticity of g(.) with respect to k/θ
at k∗/θ∗. Let us now take logs and partial derivatives of equation (11) with respect to
ln Λ, holding θ∗constant:

1 = ψ
∂ ln k∗

∂ ln Λ
. (12)

It follows from this (and equation 8) that ψ = 1/σSR (dropping arguments for
convenience). Noting this, and now taking logs and total derivatives of both first
order conditions (11) and (5), we have respectively

d ln θ∗ +
d ln k∗ − d ln θ∗

σSR
= d ln Λ (13)

and
η(θ∗)d ln θ∗ = d ln k − d ln Λ. (14)

Therefore, assuming condition (10) is satisfied, straightforward algebra gives

σLR =
d ln k∗

d ln Λ
=

1− σSR − ησSR
1− σSR − η

= σSR +
(1− σSR)2

1− σSR − η
> σSR. (15)

We can see that in the specific case of a log-linear frontier where η = 0, as discussed
in section 2.2, the long-run elasticity will be one, ensuring balanced growth with
a constant capital share of income. If the short-run production function is Cobb-
Douglas, then so is the long-run one since then technology choice only amounts to
choosing total factor productivity (there being an interior solution if the log-frontier
is concave). Otherwise, (15) provides a general confirmation of the intuition discussed
in the introduction: whenever we have an interior solution with technology choice,
the long-run capital-labor elasticity of substitution will always exceed or equal the
short-run elasticity. Because technology choice allows the firm to choose a factory
design more appropriate to a new capital-labor ratio, it augments the response of the
capital-labor ratio to a change in factor price ratios. The more convex the log-frontier
is, the greater is the impact of technology choice on the optimal capital-labor ratio.
In fact, the restriction that capital and labor can be no more than perfect substitutes
places an upper bound on the convexity of the frontier;13 this is the same upper bound
given in the second order condition (10) necessary for an interior solution. We cannot
have an interior solution at a point where the frontier is too convex since the incentive
for the firm to deviate from this point will be too strong.

13This is perhaps clearer if (15) is rearranged as η = (1−σSR) σLR−1
σLR−σSR

. The upper bound reached
as σLR →∞ is 1− σSR.
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2.4 Long- and short-run CES production functions

The previous results were obtained for any generic twice continuously differentiable
production function. We now assume that the short-run production function takes
the form given in equation (1) which, given the above notation, is equivalent to

Y =
[
eρa(θ;x)Kρ + θρeρa(θ;x)Lρ

]1/ρ

, (16)

Hence the short-run elasticity of substitution, when the firm chooses only K and L,
is given by σSR = 1/1−ρ. Given short-run gross complementarity between capital and
labor, we also assume that σSR < 1. In section 2.2 we showed that if the log-frontier
was linear, then the long-run production function that emerges from technology choice
is Cobb-Douglas. However, suppose we prefer to construct a model where the long-run
production function takes a CES form with an elasticity σLR > σSR not necessarily
equal to one. For example, we might wish to have a model with σSR < 1, in line with
evidence on short-run dynamics, but where σLR > 1 for reasons described in Piketty
(2013) and Karabarbounis and Neiman (2014).

In order to achieve this, we are interested in the following question given factor
prices r + δ and w: for what shape of frontier a(θ) does the firm choosing K, L,
and θ in production function (16) always choose the same capital-labor ratio as it
would if, instead, it only chose K and L with Y given by a standard CES production
technology:

Y =

ex
(
αKR + (1− α)LR

) 1
R when R 6= 0

exKαL1−α when R = 0.
(17)

Thus the long-run elasticity of substitution is σLR = 1
1−R where ρ < R < 1. We

call the former problem with technology choice P1 and the latter (standard) problem
without it P2. We would like to know when they have the same solutions. Note that
in P2, if R > 0 (i.e. σLR > 1) neither input is essential to production and a firm

choosing either L = 0 or K = 0 would obtain output Y = exαK or Y = ex(1− α)
1
RL

respectively. Hence, if σLR > 1, we can only have a symmetric equilibrium where all
firms choose the same capital-labor ratio if the following conditions, as we assume,
are both satisfied:14

14See Akerlof and Nordhaus, 1967, and La Grandville, 2012; see also the conditions for a symmetric
equilibrium in the main proposition of CC. We can see that if X grows over time and r+δ is constant,
then condition (18) must at some point in the growth path be violated and a symmetric equilibrium
can no longer prevail. Related to this, La Grandville (2012) shows that if K and L are gross
substitutes and there is permanent capital-augmenting technical progress, the long-run growth path
must have the property that r+δ is unbounded over time. La Grandville (2012) therefore argues that
a CES production function with σ > 1 is incompatible with competitive equilibrium in the presence
of any sustained capital-augmenting progress. Note, however, that this is a general property of CES
production functions, rather than being related to the derivation of CES via a model of technology
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exα
1
R ≤ r + δ (18)

ex(1− α)
1
R ≤ w. (19)

We can then prove the following proposition.

Proposition 3 Consider the following function form for the shape of the frontier
a(θ;x) :

a(θ;x,R) =

{
x+ 1

Rζ ln
(
αζ + (1− α)ζθ−Rζ

)
when R 6= 0

x+ 1
ρ

[
α lnα + (1− α) ln(1− α)

]
− (1− α) ln θ when R = 0

(20)

where the constant ζ ≡ ρ
ρ−R .15 The functions for the slope and elasticity of the frontier

implied by (20) are:

s(θ;R) = −
(

α

1− α

)ζ
θRζ ; η(θ;R) = Rζ = (1− σSR)

σLR − 1

σLR − σSR
< 1− σSR. (21)

Then, if P2 has an interior equilibrium solution, the unique interior solution to P1

will result in identical outcomes for y ≡ Y/L and k ≡ K/L if and only if the function
takes the form given by equation (20).

Proof. See appendix A.3.
Since σLR > σSR, equation (21) implies that η is increasing in σLR, so increasing

the long-run elasticity of substitution corresponds to increasing the convexity of the
log-frontier.

2.5 Adjustment costs in technology choice

Now consider the explicit introduction of adjustment cost as follows. Suppose a change

in θ implies a loss of output ϕ
(

θt
θt−1

)
Y where ϕ > 0, ϕ(1) = ϕ′(1) = 0 and ϕ′′(.) > 0.

Given factor prices for capital and labor rt + δ and wt respectively, the firm chooses
θt, Kt and Lt to maximise

∞∑
t=0


 t∏
s=0

(
1

1 + rs

)Yt(1− ϕ
(

θt
θt−1

))
− (rt + δ)Kt − wtLt

 , (22)

choice. In fact technology choice potentially removes some of the reassurance that La Grandville’s
argument offers: it is possible to have a frontier such that the labor share falls to zero asymptotically
in the long-run growth path, but where σ tends to 1 asymptotically from above in such a way as to
imply that condition (18) is always satisfied. In fact, many simple piecewise polynomial functional
forms for the log-frontier satisfy this property.

15Note that, since ζ → 1 as R → 0 and that ∂ζ
∂R |R=0 = 1

ρ , it follows by L’Hôpital’s rule that

a(θ;x,R) is continuous in R.
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where Yt is given by (16) and the frontier takes the form (20). The transition between
the short- and long-run depends on the speed of adjustment and hence how costly
it is to change θ. We now consider an empirical application which corresponds to
the balanced growth case where the long-run production function is Y = exKαL1−α

implying the frontier has the form a(θ) = x + 1
ρ

[
α lnα + (1− α) ln(1− α)

]
− (1 −

α) ln θ.

3 The short and medium run dynamics of the labor

share

The production technology of section 2 has a wide range of applications in macroe-
conomics and growth models where the value of the elasticity of substitution matters
for both cyclical and long-run phenomena.16 In this exercise, we examine how the
production function (22) performs in the simplest possible model of macroeconomic
fluctuations, with a particular view to modelling the labor income share. Business
cycle models typically embody a concept of balanced growth in steady state that
is consistent with the well known Kaldor stylized facts. Because of this, we limit
ourselves to the specific case of a linear log-frontier so that the long run production
function is Cobb-Douglas (see, however, footnote 3) and the short-run production
function is assumed to take the form given in equation (1). As a result, Yt in (22) is
given by:

Yt = Xt

(
(θα−1
t Kt)

ρ + (θαt Lt)
ρ
) 1
ρ . (23)

where we have written Xt = ext . An increase in Xt represents a Hicks-neutral expan-
sion of the technology frontier as described above.

We compare the performance of the model with technology choice (henceforth the
TC model) to an equivalent model with the two standard production functions used in
modelling macroeconomic fluctuations: Cobb-Douglas and CES. In the CES produc-
tion function, in order to be compatible with balanced growth, we have to replace the
Hicks-neutral shock Xt with a labor-augmenting shock Zt. Since technology choice is
absent, the associated adjustment costs disappear so (1− ϕ)Yt in (22) is replaced by

Yt =
(
αKρ

t + (1− α)(ZtLt)
ρ
) 1
ρ . For Cobb-Douglas, it is replaced by Yt = XtK

α
t L

1−α
t .

Given the focus in this exercise on the evolution of the labor share, we intro-
duce investment specific technical change (IST) into the model. Due to the observed

16For instance, the analysis of factor-bias in cross-country technology differences (Caselli and
Coleman, 2006), the production of “appropriate technologies” and their impact on cross-country
income gaps (Acemoglu and Zilibotti, 2001 and Basu and Weil, 1998), and the effect of taxes on
factor shares (Chirinko, 2002). In business cycle models, Cantore et al, (2014) show the important
of capital-labor substitution for the response of hours to technology shocks, and Di Pace and Villa
(2016) its relevance to match labor market moments in search and matching models.
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decline in the relative price of investment goods, this has been considered an impor-
tant source of macroeconomic fluctuations (Greenwood et al., 1997, 2000 and Fisher,
2006). Permanent investment-specific shocks, however, traditionally have required the
restrictive assumption of a Cobb-Douglas functional form for the production function,
preventing any fluctuations in factor shares. The combination of investment-specific
permanent shocks with the observed volatility of factor income shares17 (see Growiec
et al., 2015 for an overview) thus presents a puzzle in macroeconomics. To capture
IST, capital accumulation in the model is given by

Kt+1 = Qt

(
(1− ϕ (Ωt))Yt − Ct

)
+ (1− δ)Kt (24)

where Qt represents investment specific technical change.
Though counterfactual, in the CES model, shocks toQt have to be made temporary

for compatibiliy with balanced growth. We can interpret Qt as a proxy for technical
progress in producing investment goods. In a two sector model with consumption
and investment goods, with each sector having an identical production structure, we
would obtain an equation like (24) with Qt representing Hicks-neutral efficiency in
the investment goods sector. In the model with technology choice, an increase in Qt

might represent the impact of an expansion of the technology frontier in the investment
goods sector (which for simplicity would also be assumed linear with the same slope
as the technology frontier in the consumption goods sector).18

In order to highlight the role of technology choice, these production technologies
are compared in an otherwise standard real business cycle model which abstracts
from some of the rigidities and frictions emphasized by the business cycle literature.
Because these rigidities form important amplification and persistence mechanisms,
such an exercise can have limited success in matching the various aspects of the data
that we might analyse. Since the impact of such rigidities might be expected to
diminish at medium-run frequencies, we also examine the ability of the models to
match medium-run moments in the data following Comin and Gertler (2006). Given
these constraints, we show that the behavior of the labor share generated by this
simple model with technology choice matches reasonably well its observed counter-
cyclicality in the short run and mild pro-cyclicality in the medium run, as well as the
shape of its dynamic response conditional on technology shocks.

3.1 The Data

Table 1 presents the behavior of some key macroeconomic aggregates using quar-
terly data for the US for the 1948Q1:2013:Q3 period. The way we filter the data

17As mentioned earlier, factor income shares fluctuations appear to be driven also by factors
unrelated to cyclical fluctuations in mark-ups. As we will see below, even at medium-run frequencies
when wage and price rigidities are diminished, we observe substantial fluctuations in the labor share.

18Note the short-run dynamics implied by this simple interpretation would in reality be complicated
by the adjustment costs in technology choice.
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follows Comin and Gertler (2006). They distinguish between short- and medium-run
frequencies of the data to capture medium-run cycles. The medium-run cycle is ob-
tained using a band pass filter that includes frequencies between 2 and 200 quarters,
i.e. it filters the data using a very smooth nonlinear trend. The medium-run cycle
is made up of a short-run component (frequencies between 2 and 32 quarters) and a
medium-run component (frequencies between 32 and 200 quarters). Since most of the
data are nonstationary in levels, we applied the filters to the growth rate of the series
and reconstructed the filtered levels using their cumulative sum.19 Note that, although
the filter includes frequencies of 200 quarters, in the time domain, this translated into
cycles of around 10-12 years as in Comin and Gertler (2006). In the results below,
we present the standard deviation of the variables relative to output, the correlation
with output, and the 95% GMM confidence intervals for this correlation.

The construction of the data follows standard procedures in the literature (see
appendix C for details and sources). Output (Y ) was measured as output of the
non-farm business sector over civilian non-institutionalized population, consumption
(C) is real non-durable and services consumption over civilian non-institutionalized
population, investment (Inv) is real private fixed investment plus durable consump-
tion over civilian non-institutionalized population, wages (W ) are compensation per
hour in the non-farm business sector, and hours worked (L) are measured as all hours
in the non-farm business sector over civilian non-institutionalized population. La-
bor productivity (Prod) is measured as Y/L. The labor share measure is important
for our exercise. However, measuring the labor share of income is complicated by
problems related to how certain categories of income should be imputed to labor and
capital owners. Supplementary appendix C contains a more thorough discussion of
the measures of the labor share we used and their construction. Following Gomme
and Rupert (2004), we present three different measures. The first (LSH1) is the
labor share of income in the non-farm business sector as reported by the Bureau of
labor Statistics. The second (LSH2) is the labor share of the domestic corporate
non-financial business sector, which is calculated as one minus corporate profits and
interests net of indirect taxes over value added. The third measure (LSH3) also fol-
lows Gomme and Rupert (2004) and calculates the labor share as unambiguous labor
income over unambiguous capital income plus unambiguous labor income. We also
obtained quarterly data for the labor share for Australia, Canada, The Netherlands,
Spain, and the UK reported in Table 2. The countries were chosen on the basis of
data availability, and supplementary appendix C gives details of the sources and data
construction.

The behavior of consumption, investment and labor market variables is standard,
and the short- medium-run split displays the same behavior as that reported in Comin
and Gertler (2006). The standard deviations of all variables, except for investment,

19For stationary variables this procedure and filtering directly the level series yielded virtually the
same results.
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Table 1: US data moments, 1948Q1:2013:Q3

Short-run cycle Medium run cycles (CG filter)
Std/Std(Y) Cor(X,Y) 95% CI Std/Std(Y) Corr(X,Y) 95% CI

C 0.370 0.799 0.746 0.866 0.803 0.837 0.837 0.877
Inv 2.101 0.884 0.835 0.933 2.070 0.918 0.918 0.937
W 0.441 0.166 0.056 0.364 0.750 0.656 0.656 0.708
L 0.853 0.866 0.827 0.904 0.902 0.574 0.574 0.734
Prod 0.490 0.452 0.401 0.654 0.722 0.664 0.664 0.766
LSH1 0.469 -0.243 -0.398 -0.093 0.335 0.203 -0.025 0.432
LSH2 0.590 -0.416 -0.521 -0.247 0.434 0.181 -0.049 0.412
LSH3 0.481 -0.426 -0.533 -0.319 0.410 0.362 0.181 0.543

Table 2: Other countries: labor share moments

Short run cycle Medium run cycles (CG filter)
Sample (Q) Std/Std(Y) Cor(X,Y) 95% CI Std/Std(Y) Cor(X,Y) 95% CI

Australia 1960:Q1-2010:Q4 0.729 -0.382 -0.542 -0.240 0.331 -0.245 -0.432 -0.058
Canada 1981:Q1-2010:Q4 0.894 -0.555 -0.735 -0.374 0.625 -0.430 -0.644 -0.215
Netherlands 1988:Q1-2013:Q3 1.148 -0.668 -0.815 -0.521 0.272 -0.463 -0.713 -0.213
Spain 1995:Q1-2010:Q4 0.672 -0.232 -0.612 0.148 0.308 -0.313 -0.690 0.064
UK 1960:Q1-2010:Q4 0.999 -0.507 -0.663 -0.351 0.539 0.277 0.099 0.454

increase in the medium run relative to output. Correlations with output also increase
with the exception of hours worked, which become less pro-cyclical in the medium-run.
The labor share displays a clear counter-cyclical behavior at short-run frequencies,
with a standard deviation that is about 50% that of output for the US, and even larger
for the other countries in the sample. In the long run, if balanced growth holds, factor
income shares should display no variation or correlation with output. We observe
that, at medium-run frequencies, the standard deviation of the labor share falls, and
its correlation with output becomes positive, although not significant for two out of
the three measures. For the rest of the countries, the standard deviations of the labor
share also fall when compared to short-run frequencies, and the medium-run counter-
cyclical behavior becomes milder. In the case of the UK, the medium-run correlation
with output is positive, but only marginally significant. Overall, hence, we observe
that the business cycle counter-cyclical behavior of the labor share tends to fade
at medium run frequencies, as does its volatility, indicating a process of convergence
towards balanced growth in the long run. In the medium run, the labor share becomes
mildly pro-cyclical in some cases. We use these results as a benchmark for the model
developed next.

3.2 The model

We use a standard RBC model with optimizing representative households and firms.
Households maximize their lifetime utility defined over their stream of consumption
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and leisure, and firms maximize profits. We use a decentralized version of the model
where households own the capital and rent it to firms. Note that by including a
labor-augmenting efficiency term in the production function (23), we get:

Yt = Xt

(
(θα−1
t Kt)

ρ + (θαt ZtLt)
ρ
) 1
ρ . (25)

This gives a general model that nests the three models described at the beginning
of section 3 firms. Each specific model is arrived at by appropriately setting the
parameters that govern the evolution of the efficiency terms Xt and Zt and adjustment
costs. For example the technology choice model is arrived at by setting Zt = 0. For
Cobb-Douglas we set both Zt = 0 and adjustment costs to zero, whereas for the CES
model we set Xt = 0 and adjustment costs to a very large value. Since this simplifies
the exposition, we describe this general model below.20

For the sake of brevity, we skip some of the detail for the explanation of the
standard parts of the model. Households choose consumption (Ct), hours worked
(Lt), capital stock (Kt+1) and one-period non-contingent bonds (Bt+1) to maximize
their expected lifetime utility U(·):

Max
Ct,Lt,Kt+1,Bt+1

E0

∞∑
t=0

βtU (Ct, Lt),

subject to the budget constraint,

Ct + It +Bt+1 = rKt Kt + wtLt + (1 + rt)Bt, (26)

and the law of motion for capital,

Kt+1 = (1− δ)Kt +QtIt. (27)

It is investment in new capital stock, rKt is the rental rate of capital, rt is the interest
rate on one-period bonds, wt are wages, and δ is the rate of depreciation of capi-
tal. Investment-specific technical change enters the capital accumulation equation by
increasing the productivity of new investment goods. In this model, Qt is also the
inverse of the price of investment relative to consumption goods. We specify a utility
function separable in consumption and labor:

Ut = logCt − υ
L1+µ
t

1 + µ
, (28)

where µ is the inverse of the Frisch elasticity, and υ is a shift parameter.

20In appendix D, we compare the performance of several other models nested by this general model
featuring different combinations of shocks. In two of them, we introduce labor augmenting-shocks
in our technology choice model. There, Zt is not seen as a shock to the frontier, but as a shock
that affects labor productivity independently of how the firm organises production. This is just
implemented to check the robustness of alternative specifications of the shocks.
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The firm’s problem is to choose Kt, Lt and θt to maximize (22) subject to the
technology constraint given by the production function (25) and the adjustment costs

to a change in technology, ϕ
(

θt
θt−1

)
. The law of motion for technology shocks is given

by:

d logZt = (1− κZ)νZ + κZd logZt−1 + (1− κZ)εZ , (29)

d logXt = (1− κX)νX + κXd logXt−1 + (1− κX)εX , (30)

d logQt = (1− κQ)νQ + κQd logQt−1 + (1− κQ)εQ, (31)

so that technological progress is specified as (permanent) rate of growth shocks with
drifts νi and persistence parameters κi for i = Z,X,Q. The innovations εi are zero
mean normally distributed with covariance matrix Σ. This specification nests the
pure random walk when νi = 0, κi = 0, and all the off-diagonal elements of Σ are
zero.

Defining Ωt = θt
θt−1

and dropping the expectations operator from forward-looking
variables for notation convenience, the first order conditions for households and firms
yield:

Ct+1

Ct
= β(1 + rt+1), (32)

wt = υhµt Ct, (33)

1 + rt+1 =
(1− δ)Qt

Qt+1

+ rKt+1Qt, (34)

{
1− ϕ (Ωt)

} (
θα−1
t Xt

)ρ( Yt
Kt

)1−ρ

= rKt , (35)

{
1− ϕ (Ωt)

}
(θαt XtZt)

ρ

(
Yt
Lt

)1−ρ

= wt, (36)

α
{

1− ϕ (Ωt)
}
− rKt Kt

Yt
−
{

Ωtϕ
′ (Ωt)−

Ωt+1

1 + rt
ϕ′(Ωt+1)

Yt+1

Yt

}
= 0. (37)

The capital accumulation equation is given by (24) introduced earlier. Equations
(32)-(36) are standard in RBC models: a consumption Euler equation (32), labor
supply (33), an arbitrage condition in capital markets (34), and the two factor demand
equations (35)-(36). The final equation (37) is the first order condition for θt with
adjustment costs. Note that, if there were no adjustment costs, the equation would

reduce to α =
rktKt
Yt

, i.e. the economy is always in the long-run equilibrium where
production is Cobb-Douglas.
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An equilibrium in this context is a set of decision rules Dt = D(Kt, Zt, Xt, Qt)
for Dt = {Ct, Lt, Kt+1, Bt+1, θt} such that (23), (24) and (32)-(37) are satisfied. The
model is then appropriately stationarised by dividing all trended variablesKt, Ct, Yt, wt, θt

by their stochastic trends. The trend forKt, Ct, Yt, wt is defined by Ȳt = ZtX
1

1−α
t (Qt−1)

α
1−α ,

whereas the trend for θt is given by Θ̄t = (XtQt−1)
1

1−α .
The functional form for the technology adjustment costs is assumed to be a sym-

metric exponential function21 ϕ(θt/θt−1) = 1−e−
1
2
τ(θt/θt−1−1)2 . Parameter τ determines

the speed of adjustment. The model then nests a standard RBC with Cobb-Douglas
when τ = 0, and an RBC model with CES production function as τ → ∞. Note
that, in the latter case, only the Zt process can be allowed to contain stochastic or
deterministic trends. Given the observed decline in the relative price of investment,
forcing Qt to be temporary is counterfactual.

Before entering into the parameterisation and estimation details of the model, it is
worth analysing the transmission of the two key shocks, Qt and Xt to the labor share.
Figure 5 presents the impulse response of the labor share to a 1% shock to Xt and
Qt. The parameter values used are explained in more detail in the next subsection.
They take standard values in the literature (see Table 3 below). We also used a short
run σ of 0.2, a rate of growth persistence of shocks of 0.2 and a τ value of 20.22
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Figure 5: Impulse response for the labor share to a 1% X, and Q shocks. τ = 20,
σ = 0.2, κi = 0.2.

We can observe that the Xt shock leads to an initial fall and then an overshooting
after around 15 quarters akin to the empirical overshooting to TFP shocks in US data
found in Choi and Ŕıos-Rull (2009) and Ŕıos-Rull and Santaeulàlia-Llopis (2010).
Without choice of technologies, a Hicks neutral shock would lead to an initial fall
in the labor share and then an increase as the economy accumulates capital. The
labor share would end up higher than the initial level. However, as θt adjusts and

21Other functional forms (e.g. quadratic) do not change the results quantitatively.
22Section 3.5 contains a more detailed analysis of the transmission of shocks in the data and the

model.

21



the elasticity of substitution converges to one, the labor share falls back to its initial
level, explaining the overshooting effect. The Qt shock leads to an initial fall on
impact, but the labor share immediately increases and then falls monotonically. This
is because, on impact, investment experiences a large increase and consumption falls,
leading to an increase in labor supply and a fall in wages. Because of the short-run
gross complementarity, this leads to a fall in the labor share on impact. Afterwards,
the shock acts much like a capital-augmenting process which increases the labor share
with ρ < 0.

3.3 Calibration and estimation

In order to simulate the model, we obtain parameter values by a combination of
calibration and estimation. We calibrate those parameters for which we can obtain
an observable steady state condition or use information from previous studies, and
estimate the rest of the parameters. Table 3 presents the calibration values in the
first eight rows. We used a standard value for the steady state capital share of 0.33.
β is set to 0.99 as we are matching quarterly data, whereas the depreciation rate is
a standard 2.5% per quarter. Parameter µ is set to 0.33, which is consistent with
macroeconomic estimates of a Frisch elasticity between 2 and 4 (see Peterman, 2012
and Chetty, 2009). For the parameters driving the law of motion of investment-
specific technical change, we estimated equation (31) using data for the relative price
of investment goods for the 1948Q1-2013:Q3 period. The data were obtained using
the implicit deflator for fixed investment and durable goods over the price deflator
for non-durables and services consumption. All data were obtained from the BEA.
We estimated a drift coefficient of 0.0018 per quarter, a persistence of 0.266, and a
standard deviation of the residual of 0.0067.

Table 3: Calibrated parameters and priors

α 0.33
µ 0.33
β 0.99
δ 0.025
ρ -9/-2.3
κQ 0.266
νQ 0.0018
stdv(εQ) 0.0067

Priors
stdv(εi) InvGamma(0.001, 1)
νi Normal(0.005, 0.01)
κi Beta(0.1, 0.1)
τ Gamma(10, 5)
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The values used for the short-run elasticity of substitution ranged from 0.1 to 0.3
(implying a ρ coefficient between -9 and -2.3). Time series estimates of the elasticity of
substitution for the US range from 0.4 to 0.7 (see León-Ledesma et al. 2010 and 2014).
In our context, these estimated elasticities would be capturing the average value during
the adjustment towards unity in the long run. Hence, the short run elasticity must
be below these benchmark values. In order to test this effect, we simulated the model
with a short run elasticity of 0.2 and an adjustment speed coefficient τ = 20.23 We
then simulated time-series for the data and estimated the elasticity of substitution
using an OLS regression on the log first order condition for labor. The estimated
value for the elasticity of substitution was 0.6, which is comfortably in the range of
estimates from previous studies. Hence, low values in the range of 0.1-0.3 for the
short-run elasticity of substitution are consistent with the estimates offered in the
literature.

The rest of the parameters were estimated using Bayesian likelihood methods
based on the state-space representation of the model and now standard in the DSGE
literature. The bottom part of Table 3 presents the prior distributions used to obtain
posterior modes using MCMC methods. The priors are standard in the estimated
DSGE literature. The standard deviation of shocks (other than εQ) follows an Inverse
Gamma distribution as they are bounded below by zero and unbounded above, drifts
follow a Normal distribution, and persistence coefficients follow Beta distributions as
they are restricted to the open unit interval. The prior for the adjustment speed τ is
drawn from a Gamma distribution as it excludes negative draws.

We estimated different versions of the model, allowing for a variety of shocks
(see section 3.4 below and supplementary appendix D). All the models contained
combinations of two technology shocks and hence we only used a maximum of two
observables given that non-singularity requires the same number of observables and
shocks.24 The observables we used were the first difference of the log of labor produc-
tivity (d log(Prodt)) and hours per-capita (Lt). We also used alternative variables as
observables such as the growth rate of output per capita, consumption growth, invest-
ment growth, and the labor share. However, the results remained robust to the choice
of observable variables. Given that we estimated a large number of models, we do not
report here all the estimation results.25 It suffices to mention that, in the overwhelm-
ing majority of cases, posteriors appeared to be far from the priors, indicating that
data are adding relevant information in the estimation process. Standard deviations
of shocks vary by specification, but generally match well the volatility of output. Drift
parameters are also consistent with the average rate of growth of per capita variables
in the economy. Finally, the estimated posterior mode for τ was generally found to
be close to 20.26

23A τ of 20 is a common value obtained from the estimates discussed below.
24We do not add ad hoc measurement errors.
25A complete set of results, data, and codes are available upon request.
26A value of 20 implies that a 1% change in θt incurs a reasonable output cost of 0.1%.
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For the RBC model with Cobb-Douglas, the estimation follows the same procedure,
but τ is restricted to be zero. For the CES model, as discussed above, investment-
specific technical change is specified as a stationary AR(1) process with persistence
and standard deviations estimated as above. Finally, for the CES model also, we
calibrated the elasticity of substitution to 0.5, a higher value than the technology
choice model, as there is no adjustment towards Cobb-Douglas.

3.4 Model and data moments

Synthetic data for the macroeconomic variables considered were generated using cal-
ibrated values and posterior means of the estimated parameters. We simulated 2,000
data points and kept the last 261 to have the same sample size as in the data. We then
applied the same data filters, so we can consistently compare the short and medium
run moments with those in the data. We compare a large number of models with
Cobb-Douglas, CES, and technology choice with different combinations of shocks.
Details of this comparison are available in supplementary appendix D. As mentioned
earlier, we focus on three models, each of which has two technology shocks:

1. RBC: is a standard RBC model with Cobb-Douglas and both Hicks-neutral and
investment-specific shocks.27

2. CES: a model with short and long run CES with permanent labor-augmenting
and temporary investment-specific shocks.

3. TC: a model with technology choice and permanent Hicks-neutral and investment-
specific shocks.

It is obvious from the outset that the RBC model is unable to generate any dynamics
in the labor share. On the other hand, because IST shocks can only be temporary, the
CES model is inconsistent with the observed trends in the relative price of investment.
These are clear a priori disadvantages of these models. Nevertheless, we can compare
them in terms of other data moments to see whether the introduction of technology
choice comes at the cost of missing important features of the data relative to other
models. We present the results for the short-run moments in Table 4 and for the
medium-run moments in Table 5. For ease of comparison, we report again the data
moments. For the labor share, we used the simple average of the three measures for
the US economy. Nevertheless we will refer back to table 2 for the rest of countries
when necessary. For the TC models, we used a short-run elasticity of substitution of
0.2 (ρ = −4). Italics denote statistically insignificant correlations using 95% GMM
confidence intervals.

27With Cobb-Douglas, Hicks-neutral and labor-augmenting shocks are proportional and have the
same effects on the dynamics.
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In the short-run, the RBC model with Cobb-Douglas reflects well known results in
the literature. Consumption appears to be more volatile than in the data, and labor
market moments perform poorly, with an excess volatility of wages relative to hours
worked. The CES model does a better job at matching the correlation of wages with
output. However, the CES model generates twice the volatility of investment relative
to the data, and an almost zero consumption correlation. The TC model is able to
generate lower consumption volatility and an investment volatility closer to the data.
However, it is not able to match well the labor market moments, just as in standard
business cycle models without rigidities.28 Finally, regarding the short run moments
of the labor share, the CES model generates an excessive counter-cyclical behaviour,
although it matches well its volatility. The TC model does a better job at generating
a reasonable counter-cyclical behavior, especially when compared to the moments for
other countries in Table 2. Overall, in the short run, the RBC and TC models perform
better in terms of matching data moments, with the TC model performing best in
terms of the behavior of the labor share.

It is for the medium-run where the performance of the model with technology
choice (TC) is best relative to the data and other models. The model outperforms
the basic RBC and CES in most counts. Importantly, the short run counter-cyclical
behavior of the labor share now becomes slightly pro-cyclical, but not significant, in
line with the data. There is also a substantial fall in its volatility relative to output.
However, this volatility still appears lower than in the data. As the long-run elasticity
of substitution approaches unity, both its volatility and counter-cyclicality fall when
we look at medium run frequencies.

In conclusion, the TC model does the best job at fitting labor share moments,
and only slightly worse at fitting some of the labor market moments only in the short
run. The lack of success at reproducing labor market moments is, however, common
to most standard macroeconomic models without frictions. The introduction of other
mechanisms such as indivisible labor or search and matching frictions (see di Pace
and Villa, 2016) should improve all models’ moments, but is beyond the scope of our
illustration. Our conclusions are also supported by the fuller comparison of models
provided in supplementary appendix D.

It is also worth mentioning that a model comparison based on posterior odds ratios
between the models with choice of techniques and a standard RBC with Cobb-Douglas
or CES only, favor dramatically the former. In most cases, if we assign equal prior
model probabilities, the posterior probability of the models with choice of techniques
is always higher than 0.99.

28We introduced indivisible labor in several versions of the model following Hansen (1985). Indi-
visible labor increases the volatility of hours and reduces the volatility of wages as expected. But, in
the models with choice of technology, the short- and medium-run behavior of the labor share remains
consistent with the data. This is a promising avenue for future research as it would help matching
not only the labor share, but the joint cyclical behavior of its components.
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3.5 Dynamic transmission in the data and in the model

The performance of the model to reproduce the behavior of the labor share can also be
assessed in terms of its ability to match the dynamic transmission of shocks observed
in the data. In order to do so, we first identify the effect of technology shocks on
the labor share using a structural VAR (SVAR) on the data. We then compare this
response with that of model-generated data. To do so, we take the following steps:

1. Using a SVAR, identify investment-specific and “neutral” technology shocks in
the data, and analyze the impulse responses of the labor share to these shocks.

2. Generate simulated data from the theory model driven by investment-specific
and “neutral” stochastic shocks.

3. Apply the same SVAR to the artificial data and obtain impulse responses.

4. Compare impulse responses from data and simulated data.

By “neutral” in this context we mean shocks that do not affect the relative price of
investment goods in the long run (i.e. Xt in our model), following naming conventions
in the literature. The reason we compare model and data this way follows Chari et
al. (2008) who express concerns about the ability of SVARs with long-run restrictions
to identify model shocks. Comparing data and model with the same (potentially
mispecified) metric, we ensure we are carrying out an appropriate model evaluation.

For the identification of the two shocks, we follow Fisher (2006). Intuitively, the
identification strategy is that only investment-specific technology shocks can have
permanent effects on the price of investment relative to consumption and that both
investment-specific and neutral shocks can have a long-run impact on labor produc-
tivity. This intuition can then be used to construct a SVAR with long run restrictions.
The basic information set in Fisher (2006) consists of [∆Prod ∆Prel lnh]′. ∆Prod
is the rate of growth of labor productivity, ∆Prel is the inverse rate of growth of the
relative price of investment, and lnh is the log of hours worked. We use this informa-
tion set and add the (log) labor share ordered last.29 The SVAR can be represented
as a structural Vector Moving Average (VMA) if it satisfies invertibility and stability
conditions. Thus, the structural VMA in our case is:


∆Prodt
∆Prelt

lnht
LSHt

 =


C1,1(L) C1,2(L) C1,3(L) C1,4(L)
C2,1(L) C2,2(L) C2,3(L) C2,4(L)
C3,1(L) C3,2(L) C3,3(L) C3,4(L)
C4,1(L) C4,2(L) C4,3(L) C4,4(L)




ε∆prod,t
ε∆prel,t
εh,t
εlsh,t

 , (38)

29Ordering the labor share last or before (log) hours does not affect the results.
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Table 4: Theoretical and data moments: short run

RBC CES TC Data
Std(X)/Std(Y) Cor(X,Y) Std(X)/Std(Y) Cor(X,Y) Std(X)/Std(Y) Cor(X,Y) Std(X)/Std(Y) Cor(X,Y)

C 0.641 0.775 0.789 0.003 0.650 0.967 0.370 0.799
Inv 2.790 0.900 4.270 0.866 2.173 0.976 2.101 0.884
W 0.692 0.898 0.632 0.184 0.651 0.968 0.441 0.166
L 0.486 0.779 0.631 0.547 0.313 0.499 0.853 0.866
Prod 0.692 0.898 0.841 0.779 0.886 0.952 0.490 0.452
LSH na na 0.371 -0.933 0.207 -0.669 0.510 -0.362

Table 5: Theoretical and data moments: medium run

RBC CES TC Data
Std(X)/Std(Y) Cor(X,Y) Std(X)/Std(Y) Cor(X,Y) Std(X)/Std(Y) Cor(X,Y) Std(X)/Std(Y) Cor(X,Y)

C 0.932 0.953 0.867 0.937 0.811 0.967 0.803 0.837
Inv 1.583 0.844 1.707 0.881 1.732 0.940 2.070 0.918
W 0.940 0.974 0.876 0.950 0.812 0.969 0.750 0.656
L 0.229 0.368 0.114 0.480 0.323 0.668 0.902 0.574
Prod 0.940 0.974 0.951 0.995 0.820 0.956 0.722 0.664
LSH na na 0.154 -0.473 0.108 0.056 0.390 0.248
Italics indicate not significantly different from zero using GMM 95% confidence intervals.
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where ε∆prod,t, ε∆prel,t, εh,t, εlsh,t are contemporaneously correlated shocks with vari-
ance covariance matrix V . Since these shocks are correlated, they cannot be in-
terpreted as structural innovations. The problem is to identify structural shocks
[εN,t, εIST,t, εh,t, εlsh,t]

′. Here, εN,t and εIST,t are the neutral and investment specific
structural innovations of interest to us. The variance of εt is normalised to 1 so
that E(εtε

′
t) = I. To transform εt into orthogonal innovations, we pre-multiply times

matrix D−1 such that εt = D−1εt. D is an invertible 4x4 matrix such that DD′ = V .
Defining the vector of observables as Yt, then the VMA model (38) can be written

in terms of structural shocks as Yt = Gεt, where G = CD and the elements of C
are Ci,j(L) in (38). The restriction that DD′ = V gives us 10 equations, but V has
16 elements. Thus, to identify the orthogonal shocks we need 6 restrictions. We
use restrictions on the long-run impact matrix derived from theory. Define G(1) as

the long-run cumulative impact matrix such that G(1)i,j =
∑∞

s=1 G
(s)
i,j . G(1)i,j is the

cumulative impact on variable i of shock j. By imposing restrictions on these elements,
we can identify the orthogonal shocks εt.

The first set of restrictions we use come from Fisher (2006). It implies that only
IST shocks can have a cumulative impact on ∆Prelt (i.e. a permanent level effect on
the relative price of investment). This implies that G(1)1,2 = G(1)1,3 = G(1)1,4 = 0.
The second set of restrictions come from the well known Gaĺı (1999) identification
assumption that only productivity shocks can have long-run effects on labor produc-
tivity. In our case this implies that both IST and neutral shocks can have effects on
labor productivity, but not the other two shocks: G(1)2,3 = G(1)2,4 = 0. This gives
us 5 restrictions. The final restriction comes from the chosen VAR ordering, but it
is not important in our context as we are only interested in the effect of neutral and
IST shocks on the labor share since these are the shocks present in our theory model.
Since we ordered the labor share last, we impose the restriction that G(1)3,4 = 0, that
is, that labor share shocks cannot have an effect on the cumulative impulse response
of hours.30 Note that, since both hours and the labor share enter in levels, none of
the shocks can have an impact on their level in the long run.

The data used for the vector of observables are the same used for the analysis of
the data moments and estimation of the DSGE model. The results reported below use
the LSH2 measure of the labor share but, as explained below, we also used the other
measures. The VAR is estimated using Bayesian methods with a standard Minnesota
prior. We used a lag length of 2 for the VAR. We then draw 1,000 times from the
posterior distribution of the parameters and obtain impulse responses to the neutral
and IST technology innovations and plot the median and the 68% credible sets. We
repeat this with the simulated data for the model as explained above. We used the
TC model with permanent Xt and Qt shocks reported above. We simulate 2,000 time
series for the variables of interest and drop the first 1,738 so we are left with the same

30If we ordered hours last, the restriction implies that hours shocks cannot have a long-run effect
on the cumulative labor share.
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number of observations as for the actual data. The parameters used for the simulation
come from the estimation/calibration in the previous sub-section.
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Figure 6: Impulse responses of the labor share to a 1% Neutral (left), and IST (right),
shock from the structural VAR. In red, the IRF obtained using actual data, in blue
the IRF using model-simulated data. The solid lines are the median IRF and the
dotted lines the 68% credible sets.

Figure 6 displays the resulting impulse responses for the data (in red) and the
model-generated data (in blue). For the neutral shock, the pattern and the shape
of the response of the labor share in both datasets look remarkably similar, save
for two aspects. First, the IRF for the data seems to peak later than in the model
generated data. Second, the model generated data appears to display less persistence.
Nevertheless, the credible sets overlap for most of the periods. For the IST shock,
the result is not as satisfactory. However, save for the impact response, both data
and model generate IFRs displaying an initial increase of the labor share. The model,
however, cannot generate the persistence present in the data IRF. The simple structure
of the theory model is not well suited to generate the amplification and persistence we
observe in the data. However, this is a well known common problem of DSGE models,
particularly those that do not include standard short-run rigidities. With that in mind,
the IRF comparison shows that the model does a reasonably good job at reproducing
the dynamic transmission of technology shocks for the labor share. More complex
structural models including technology choice are left for future research.

We finally carried out some robustness exercises that we only comment briefly for
reasons of space. We first experimented with the three measures of the labor share.
With the exception of the first measure (LSH1), for which the response to IST shocks
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leads to a fall with large uncertainty bands, the other measures give similar patterns,
especially regarding neutral shocks. We also used the Fernald (2010) measure of
utilization adjusted TFP instead of labor productivity, leading to results that were
remarkably close to the original ones. We also carried out a sample split before and
after 1983, a period around which important changes in the US macroeconomy took
place. The results for the post-1983 sample are close to those for the whole sample.
For the pre-1983 sample, the neutral shocks display a similar pattern, but the IST
shocks show the opposite response, albeit with a large degree of uncertainty. Finally,
since the identification of the orthogonal innovations does not require the use of hours
as an observable, we dropped it for both the actual and simulated data. The results
in this case still show a close link between theory generated and actual data IRFs,
but the pattern for the neutral shocks does not display the hump-shaped response we
see for the original set of observables.31

4 Conclusions

We argue that modelling firms’ technology choice on a technology frontier presents at
least two distinct advantages for macroeconomic modelling. The first is that the shape
of a technology frontier determines the long-run elasticity of substitution between
capital and labor. Thus, the frontier determines jointly how the capital/labor share
and the long-run elasticity of substitution evolve along the long-run growth path.
We provide a theoretical characterisation of this process for any generic well behaved
production function.

The second advantage is that technology choice naturally leads to a situation
where the elasticity of substitution between capital and labor is larger in the long
run than in the short run. Our framework allows for a long-run elasticity that can
be unity (Cobb-Douglas) or any other value (larger than the short-run elasticity). If
there are adjustment costs to technology choice, then the short- and long-run elas-
ticities will differ after an exogenous shock. A particular focus of our framework is
to provide a tractable and easily implementable resolution to the ‘balanced growth
conundrum’ created by the balance growth path theorem without requiring explicit
models of R&D. If balanced growth is a good description of the long-run growth
path, this prevents the inclusion of certain kinds of permanent technical progress in
macroeconomic models when, in accordance with empirical evidence, the elasticity of
capital-labor substitution is below one. Using the above framework, we show that,

31Note that the VAR identification scheme is only able to distinguish between neutral and IST
shocks. However, the theory model can have two types of neutral shocks (Xt and Zt). Identifying
separately these two neutral shocks would require additional restrictions as the model would be
under-identified. A combination of long-run and sign restrictions has the potential of dealing with this
problem by selecting among IRFs from the under-identified model. We leave this for future research
as it departs from the main focus of this paper. However, provisional estimates give promising results
in support of our model with technology choice.

30



if the technology frontier is long-linear, the elasticity of capital-labor substitution is
less than one in the short run but converges to one in the long run. This leads to
a class of production functions that are consistent with balanced growth even in the
presence of permanent investment specific or other kinds of biased technical progress,
but where short-run dynamics are characterised by gross complementarity.

As an application, we present a stochastic general equilibrium business cycle model
with the production technology and estimate it using US data for the 1948:Q1-2013:Q3
period. We show that the model does a good job at matching the behavior of the
labor share of income at short and medium run frequencies: the labor share is counter-
cyclical and volatile in the short run, and almost a-cyclical and smoother in the
medium run. The model also performs well in terms of data moments and statistical
behavior against a standard RBC model with Cobb-Douglas, and an RBC model
with short and long run CES only. It is also capable of reproducing the overshooting
of the labor share in reaction to a technology innovation obtained from structural
VAR estimates. Extensions of this approach for further research could consider its
introduction in multi-sector growth models, the estimation of technology frontiers, a
more detailed specification of the labor market, and a richer set of non-technology
shocks.
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A Proofs

A.1 Proof of Proposition 2

The solution to the first order conditions (k∗, θ∗) locally maximises firm profits if and
only if

η(θ∗) < 1− σSR(k∗, θ∗). (A1)

Proof. Given te Y = F (ea(θ)K, eb(θ)L), we need to show that the Hessian

H =

 YKK YKL YKθ
YKL YLL YLθ
YKθ YLθ Yθθ



1



is negative semi-definite whenever the first-order conditions are satisfied. Due to
constant returns, we have

YLL = −kYKL = k2YKK . (A2)

We can also write Y = F (ea(θ)K, eb(θ)L) = F (ea(θ)K, θea(θ)L) = θea(θ)Lf(k/θ). Then,
taking partial derivatives of both sides, we can show that

YK = ea(θ)f ′
(
k/θ
)

; YL = θea(θ)

{
f

(
k

θ

)
− k

θ
f ′
(
k

θ

)}
; YKK =

ea(θ)

θL
f ′′
(
k

θ

)
.

(A3)
It follows that

YKθ = a′(θ)YK −
K

θ
YKK ; YLθ = b′(θ)YL +

kK

θ
YKK . (A4)

We now evaluate the Hessian at the solution to the first order conditions, where we
have Yθ = 0. Since

Yθ = a′(θ)KYK + b′(θ)LYL = 0 (A5)

we have

− b′(θ)

a′(θ)
= − 1

θa′(θ)
− 1 = k

YK
YL

=
Y

LYL
− 1. (A6)

The following three equations are implied by ((A4)) and ((A6)):

YLθ = −kYKθ (A7)

YKθ = a′(θ)YK

(
1− KYKK

θa′(θ)YK

)
= a′(θ)YK

(
1− YKLY

YLYK

)
= a′(θ)YK

(
1− 1

σSR

)
(A8)

YKK =
θa′(θ)

KσSR
YK . (A9)

Equations (A2) and (A7) imply that detH = 0, so, as in the standard case, there is one
zero eigenvalue. This simplifies the form of the characteristic polynomial − det(H −
λI), which then is

λ3 −
[
YKK + k2YKK + Yθθ

]
λ2 +

{(
1 + k2

)
(YθθYKK − Y 2

Kθ)
}
λ. (A10)

The two remaining eigenvalues will be strictly negative if and only if the term in the
square brackets in (A10) (the sum of the eigenvaules) is strictly negative and the term
in the curly bracket (their product) is strictly positive. Since YKK < 0, the latter
condition

YθθYKK > Y 2
Kθ. (A11)

implies the former and so it both necessary and sufficient.
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To analyse (A11), note that from (A5) and (A2)

Yθθ =
KYKa

′(θ)

θ

{
θa′′(θ)

a′(θ)
− θb′′(θ)

b′(θ)

}
+KYKθ

{
a′(θ)− b′(θ)

}
. (A12)

Noting that η(θ) = θb′′(θ)/b′(θ)− θa′′(θ)/a′(θ), we have from (A8)

Yθθ = −KYKa
′(θ)

θ

{
η(θ) + 1− 1

σSR

}
. (A13)

From (A8), (A9) and (A13), the condition (A11) holds if and only if the condition
given in the proposition (A1) holds.

A.2 Additional regularity conditions

Proposition 2 gives a necessary and sufficient condition for the a solution to the first
order conditions to locally maximise firm profits. Clearly, we would be interested
in whether such a solution would also be a global maximum. In general this will
depend on the global properties of both the frontier and the production function
F (., .). Suppose we replace condition (10) in the proposition by the condition that,

η(θ) < 1−max
k
σSR(k, θ) ∀ θ (A14)

i.e. condition (10) holds for all k and θ. Clearly if F (., .) is given by a CES form such
as in equation (1), the right-hand side of (A14) takes a very simple form. Condition
(A14) implies (the derivation being almost identical to that of equation 15) that
we always have ∂ lnMRTS/∂ ln k > 0 where MRTS is the marginal rate of technical
substitution between labor and capital (MPL/MPK). Hence any solution to the first
order conditions must be unique.

Any global solution to the firm’s problem must be an interior one or a corner
solution. Hence if (A14) holds, since any interior solution is unique, then we only
need to verify that no corner solutions maximise firm profits, that is no firm chooses
k = 0, k =∞, θ = 0 or θ =∞. Note that if a firm makes a corner choice in k it will
be optimal to make a corner choice in θ, so any corner choice must have the property
that θ = 0 or θ =∞. Sufficient conditions for this yielding zero profits are as follows.

Let us assume that F (., .) satisfies a slight modification of the property of strict
essentiality (see e.g. Barro and Sala-i-Mart́ın, 2003). Strict essentiality states that a
strictly positive amount of each input is required for strictly positive production. We
assume the slightly stronger condition that as the quantity of any input tends to zero,
then F (., .) always does too even if the quantity of the other tends to infinity. If F (., .)
takes the form given in (1), this is true if and only if ρ < 0 (it excludes Cobb-Douglas).
In this case, a sufficient condition to exclude a corner solution is that the shape of
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the frontier satisfies a property we might refer to as weakly bounded efficiency : that is
choosing an infinite efficiency in one input must imply choosing zero efficiency in the
other. Weakly bounded efficiency can be shown to be equivalent to the conditions

lim
θ→∞

a(θ) = lim
θ→0

b(θ) = −∞. (A15)

Clearly, θ = 0 or θ =∞ must then imply zero output: thus the global solution to the
firm’s problem must be the unique interior solution to the firm’s first order conditions.
Note that these conditions are sufficient but not necessary for the solution to be a
global maximum. This is further discussed in the proof of proposition 3.

Finally note that if F (., .) takes the CES form (1) and the log-frontier is linear,
then a necessary and sufficient condition for a solution to the first order conditions
to be a global solution to the firm’s problem is that ρ ≤ 0 i.e. capital and labor are
gross complements. If ρ < 0, then the two conditions above are satisfied. If ρ = 0,
we just have a standard Cobb-Douglas. If ρ > 0 then the solution to the first order
conditions cannot maximise the firm’s profits from proposition 2.

A.3 Proof of proposition 3

In problem P2, firms choose K and L to maximise Y − (r + δ)K − wL given factor
prices r + δ and w and a CES production technology with elasticity of substitution
σLR = 1

1−R with R < 1:

Y =

X
(
αKR + (1− α)LR

) 1
R when R 6= 0

XKαL1−α when R = 0.
(A16)

In problem P1, firms choose K, L and θ to maximise Y − (r + δ)K − wL where,
writing x = lnX, Y is given by

Y =
[
eρa(θ;x)Kρ + θρeρa(θ;x)Lρ

]1/ρ

, (A17)

where we assume R > ρ. Proposition 3 then is as follows.

Proposition 3 : Consider the following function form for the shape of the frontier
a(θ;x) :

a(θ;x,R) =

{
x+ 1

Rζ ln
(
αζ + (1− α)ζθ−Rζ

)
when R 6= 0

x+ 1
ρ

[
α lnα + (1− α) ln(1− α)

]
− (1− α) ln θ when R = 0

(A18)
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where the constant ζ ≡ ρ
ρ−R .32 The functions for the slope and elasticity of the frontier

implied by (A18) are:

s(θ;R) = −
(

α

1− α

)ζ
θRζ ; η(θ;R) = Rζ = (1− σSR)

σLR − 1

σLR − σSR
< 1− σSR. (A19)

Then, if P2 has an interior equilibrium solution, the unique interior solution to P1 will
result in identical outcomes for y ≡ Y/L and k ≡ K/L if and only if the function takes
the form given by equation (A18).
Proof. For problem P2, we obtain

1− α
α

k1−R = Λ. (A20)

If problem P1 has an interior solution, equations (5) and (11) imply that

θρk1−ρ = Λ, (A21)

− kρ

θρ
= s(θ). (A22)

Equations (A20), (A21) and (A22) must have the same solution for k for any factor
price ration Λ. Hence we must have

θρ =
1− α
α

kρ−R (A23)

and

s(θ) =
1

θa′(θ)
1 = −

(
α

1− α

)ζ
θζR. (A24)

where ζ ≡ ρ
ρ−R . The differential equation (A24) has the following solution for a(θ)

a(θ;R) =

{
c1 + 1

Rζ ln
(
αζ + (1− α)ζθ−Rζ

)
when R 6= 0

c2 − (1− α) ln θ when R = 0
(A25)

For problem P2, writing y = Y/L, (17) implies

y =

X
(
αkR + (1− α)

) 1
R when R 6= 0

Xkα when R = 0.
(A26)

32Note that, since ζ → 1 as R → 0 and that ∂ζ
∂R |R=0 = 1

ρ , it follows by L’Hôpital’s rule that

a(θ;x,R) is continuous in R.
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Substituting from (A25) and (A22) into equation (A25) should give us expressions for
y equivalent to (A26). This enables us to extract the constants c1 and c2:

c1 = lnX = x (A27)

c2 = x+
1

ρ

[
α lnα + (1− α) ln(1− α)

]
.

So assuming that P1 has an interior solution, the shape of the frontier specified by
(A25) and (A27) is then both necessary and sufficient to ensure that P1 and P2 have
identical outcomes for y and k. The functional forms for s(θ;R) andη(θ;R) given in
the proposition follows immediately from (A24).

It remains to justify the assumption of an interior solution for P1. Because equa-
tions (A19) imply that (A14) if always satisfied in section A.2, there is at most one
interior solution. Thus we need only exclude corner solutions. Since again if a firm
makes a corner choice in k it will be optimal to make a corner choice in θ, any corner
choice must have the property that θ = 0 or θ = ∞. When R < 0, the property
of weakly bounded efficiency given in section (A.2) of the appendix also applies, and
hence there must be an interior solution. Suppose R > 0. Using (A18), when ρ < 0
and θ =∞, or when ρ > 0 and θ = 0, the production function takes the form

Y = Xα
1
RK. (A28)

Similarly when ρ > 0 and θ =∞, or when ρ < 0 and θ = 0, the production function
takes the form

Y = X(1− α)
1
RL. (A29)

Thus if P2 has an interior solution, i.e. conditions (18) and (19) hold, then so must
P1 since a corner solution must yield negative profits.

B The user cost of capital and the capital share

Since the production technology developed in the main paper is Cobb-Douglas in the
long run, there is no long-run relationship between the capital share and the real user
cost of capital. Thus a trend in the real user cost of capital – due, for example, to
changes in depreciation rates – would cause no trend in the capital income share.
Because the production function is CES in the short run, from the marginal product
of capital condition, the short-run elasticity between these two quantities will be
1−σ. Suppose instead we had a standard CES production function in both the short
and long run, with purely labor augmenting progress for compatibility with balanced
growth. In that case, in addition to the short-run correlation, we would expect a
long-run co-integrating relationship between the log of the capital share and the log
of the real user cost with an elasticity 1− σ.

6



Figure A1 plots the joint evolution of the log of the capital income share of the
non-farm private business sector and the log of the real user cost for the US for the
1952:Q1-2004:Q4 period.33 The capital income share is calculated as a residual after
deducting wages and imputed self-employed income from the private sector GDP. The
real user cost is simply the ratio between this imputed capital income and the capital
stock.  
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Figure A1: Log of the capital income share (solid) and log of the real user cost (dashed)

A close correlation between the two series can be observed in the short run. Using a
Band Pass filter to separate trend and cyclical components, the correlation coefficient
between the cyclical components is 0.91. Regressing the cyclical components yields an
estimated σ of 0.42. In the long-run, however, there is a sizeable departure between
the two series, and the two series are clearly not co-integrated. Though the short run
correlation is consistent with a CES production function, the long-run pattern is more
akin to the one arising from a Cobb-Douglas. Clearly, this is far short of making this
empirical distinction a rigorous one, but it provides evidence that the short/long-run
properties of the production technology may at least be consistent with the data.

C Data sources and construction

C.1 The labor share

Measuring the share of labor in total income is complicated by problems associated
with how to impute certain categories of income to labor and capital owners. The
existence of self-employment income, the treatment of the government sector, the
role of indirect taxes and subsidies, household income accruing from owner occupied
housing, and the treatment of capital depreciation, are common problems highlighted

33We used data from Klump et al (2007).
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in the literature. These have been discussed at length in Gollin (2002) and Gomme
and Rupert (2004). In constructing the labor share data for the US, where data on
income sources is richest, we use three different measures. The first is directly taken
from the BLS, and the other two are based on Gomme and Rupert (2004). For other
countries, where available, we will use similar measures. However, data availability
limits the extent to which we can obtain corrected labor share measures and, in many
cases, we work with rough estimates of labor shares.

C.1.1 US labor share

The three measures used for the US are constructed using data from the BLS and the
BEA NIPA Tables and are as follows:

1. Labor share 1 : Labor share in the non-farm business sector. This is taken
directly from BLS.34 The series considers only the non-farm business sector. It
calculates the labor share as compensation of employees of the non-farm business
sector plus imputed self-employment income over gross value added of the non-
farm business sector. Self-employment imputed income is calculated as follows:
an implicit wage is calculated as compensation over hours worked and then the
imputed labor income is the implicit wage times the number of hours worked by
the self-employed.

2. Labor share 2 : Labor share in the domestic corporate non-financial business
sector. This follows Gomme and Rupert’s (2004) first alternative measure of the
labor share. The use of data for the non-financial corporate sector only has the
advantage of not having to apportion proprietors income and rental income, two
ambiguous components of factor income. It also considers the wedge introduced
between the labor share and one minus the capital share by indirect taxes (net
of subsidies), and only makes use of unambiguous components of capital income.
The labor share is thus calculated as:

LSH2 = 1− CORPORATE PROFITS + NET INTEREST - NET IND. TAXES

NET VALUE ADDED
.

3. Labor share 3 : imputing ambiguous income for the macroeconomy. This corre-
sponds to the second alternative measure of the labor share proposed in Gomme
and Rupert (2004). The measure excludes the household and government sec-
tors. They define unambiguous labor income (Y UL) as compensation of employ-
ees, and unambiguous capital income (Y UK) as corporate profits, rental income,
net interest income, and depreciation. The remaining (ambiguous) components
are then proprietors’ income plus indirect taxes net of subsidies. These are

34FRED series PRS85006173 provided as an index number.
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apportioned to capital and labor in the same proportion as the unambiguous
components. The resulting labor share measure is:

LSH3 =
Y UL

Y UK + Y UL
.

C.1.2 Other countries

We constructed measures of the labor share on a quarterly basis for some countries
for which data were available for a sufficiently long period of time. In the descriptive
analysis, we used data for Australia, Canada, The Netherlands, Spain, and the UK.
For most of these countries, the level of detail of the income accounts did not allow us
to construct measures consistent with those of the US. In what follows, we describe
the different measures used for these countries:

1. Australia. Quarterly data for the 1959:Q1-2013:Q3 from the Australian Bureau
of Statistics. One minus gross operating surplus of private non-financial corpo-
rations plus all financial corporations as a percentage of total factor income.35

2. Canada. Quarterly data for the 1981:Q1-2013:Q3 period from Statistics Canada.
Compensation of employees over total factor income. 36

3. The Netherlands. Quarterly data for the 1988:Q1-2013:Q3 from the Central
Bureau of Statistics. The longest time series available allowed us to construct
the series for the labor share as one minus gross operating surplus over GDP
net of indirect taxes less subsidies.37

4. Spain. Quarterly data for the 1995:Q1-2011:Q2 period from the National Insti-
tute for Statistics. We used compensation of employees over GDP.38

5. UK. Quarterly data for the 1955:Q1-2013:Q3 period from the Office for National
Statistics. We used compensation of employees over gross value added at factor
costs.39

35Web link: http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/5206.0Sep%202013?

OpenDocument, Table 7.
36Web link: http://www.statcan.gc.ca/nea-cen/hr2012-rh2012/data-donnees/cansim/

tables-tableaux/iea-crd/c380-0063-eng.htm.
37Web link: http://statline.cbs.nl/StatWeb/selection/?DM=SLEN&PA=81117ENG&LA=EN&VW=

T.
38Web link: http://www.ine.es/jaxiBD/tabla.do?per=03&type=db&divi=CNTR&idtab=10.
39Web link: http://www.ons.gov.uk/ons/datasets-and-tables/data-selector.html?

table-id=D&dataset=qna.
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C.2 Other US macroeconomic aggregates

Other macroeconomic aggregates were constructed following standard convention in
the calibrated business cycle literature. All data were obtained from either the FRED
database or directly at the Bureau of Economic Analysis (indicated in parentheses).
A brief description follows:

• Output: output in the non-farm business sector over civilian non-institutionalized
population (FRED).

• Consumption: real non-durable and services consumption over civilian non-
institutionalized population (BEA).

• Investment: real private fixed investment plus durable consumption over civilian
non-institutionalized population (BEA).

• Wages: compensation per hour in the non-farm business sector (FRED).

• Hours: all hours in the non-farm business sector over civilian non-institutionalized
population (FRED).

• Productivity: output per hour in the non-farm business sector (FRED).

• Relative price of investment: price deflator for durables and investment relative
to the deflator for non-durables and services (BEA).

• Civilian non-institutionalized population over 16 from the FRED database.

D Model comparison: complete set of models

We provide here a fuller comparison of models other than those in the main body of
the paper. The procedure followed is the same as in the comparison provided there.
However, estimation here uses the posterior mode of the parameters rather than the
posterior mean of the whole MCMC. Nevertheless, for the models where we used both
methods, the results were always very close and did not change any conclusion. We
discuss here the following set of representative models:

1. RBC1: a standard RBC model with Cobb-Douglas and only labor-augmenting
shocks.

2. CES1: a model with CES technology but no technology choice (short and long
run CES) with only labor-augmenting shocks.

3. CES2: a model with short and long run CES with a permanent labor-augmenting
shock and a temporary Hicks-neutral shock.

10



4. CESCD1: a model with technology choice and only permanent Hicks-neutral
shocks.

5. CESCD2: a model with technology choice and permanent labor-augmenting and
investment-specific shocks.

6. CESCD3: a model with technology choice and permanent labor-augmenting and
Hicks-neutral shocks.

Tables A1 to A4 present the moments calculated with the simulated data for the dif-
ferent models. Italics denote statistically insignificant correlations using 95% GMM
confidence intervals. Model RBC1 reflects standard results in the literature. Con-
sumption volatility and its correlation with output are higher than in the data, whereas
the medium-run fall in the volatility of investment is higher than observed in the data.
Labor market moments reflect the standard labor market puzzle.

A natural benchmark is to compare the performance of models featuring only
one permanent shock and then models with two shocks. Comparing models RBC1,
CES1, and CESCD1, we can see that CESCD1 does better at matching investment
and consumption in the medium run. It also does a better job at matching wages
and hours, although the standard labor market puzzle remains. None of the models is
good at matching productivity at both frequencies. Regarding the labor share, CES1
matches better the short-run volatility but generates too strong a negative correlation
with output. CESCD1 also generates a strong negative short-run correlation but does
slightly better in the medium run where it generates a positive but not significant
correlation with output. Overall, CES1 and CESCD1 outperform the basic RBC with
Cobb-Douglas and only permanent labor-augmenting shocks. CESCD1 does slightly
better at matching the labor share.

We turn now to the models with two shocks. CES2 generates some counterfactual
results such as excess short-run volatility of investment. In the medium run, the pro-
duces a three-fold reduction in investment volatility. The volatility of hours increases
relative to the RBC models in the short run, but in the medium run it goes to almost
zero. As for the labor share, CES2 generates a low short-run volatility and too high
a negative correlation. In the medium run, the model does better as the negative
correlation falls and becomes insignificant, whereas the standard deviation relative to
output goes to almost zero.

Overall, thus, for models featuring either one or two shocks, the models with short-
and long-run CES do not do a good job at matching the behaviour of the labor share.
Those that do better such as CES2 do it at a substantial cost in terms of matching
the behaviour of expenditure components and the labor market. Models with short-
and long-run Cobb-Douglas, by definition, cannot generate cyclical fluctuations in the
labor share.

The models that do a better job at matching the behavior of the labor share are
the CESCD models. Specifically, model CESCD2 does a very good job at matching
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the short-run volatility and cyclicality of the labor share. At medium-run frequencies,
the correlation falls and becomes insignificant in all cases, and the volatility also falls
substantially. Importantly, this is done at a lower cost than the CES models in terms
of other data moments, such as consumption, investment, and the labor market. The
exception is CESCD2, which generates a high volatility of productivity and a negative
correlation of hours and output in the short run. The reason is that, as shown by
Cantore et al. (2014), an RBC model with a sufficiently low elasticity of substitution
can generate negative responses of hours to a labor-augmenting technology shock.
These shocks have a substitution and an output effect on labor demand such that, for
a sufficiently low elasticity, the negative substitution effect can outweigh the positive
output effect. If this shock dominates, the unconditional correlation can also fall and
become negative.40 In general, CESCD models do the best job at fitting labor share
moments, and only slightly worse at fitting some of the labor market moments in the
short run.

Table A1: Theoretical moments using posterior modes: RBC1

RBC1 (Z shock)
Short-run Medium run

Std(X)/Sdt(Y) Cor(X,Y) Std(X)/Sdt(Y) Cor(X,Y)
C 0.604 0.977 0.983 0.997
Inv 2.269 0.985 1.085 0.977
W 0.699 0.990 0.987 0.998
L 0.323 0.954 0.060 0.247
Prod 0.699 0.990 0.987 0.998
LSH 0 0 0 0

40Adding demand shocks such as preference shocks to the coefficient of hours in the utility function
would eliminate this negative correlation. However, we have deliberately kept the models simple to
highlight the role of the supply side.
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Table A2: Theoretical moments using posterior modes: CES1 and CES2

CES1 (permanent Z shocks) CES2 (permanent Z temporary X shocks)
Short-run Medium run Short-run Medium run

Std(X)/Sdt(Y) Cor(X,Y) Std(X)/Sdt(Y) Cor(X,Y) Std(X)/Sdt(Y) Cor(X,Y) Std(X)/Sdt(Y) Cor(X,Y)
C 0.363 0.820 0.984 0.994 0.232 0.645 0.991 0.987
Inv 2.953 0.982 1.094 0.966 3.336 0.990 1.148 0.924
W 0.392 0.864 0.985 0.995 0.314 0.888 0.990 0.988
L 0.130 0.961 0.020 0.204 0.441 0.892 0.040 0.073
Prod 0.876 0.999 0.996 1.000 0.639 0.950 0.998 0.999
LSH 0.361 -0.955 0.052 -0.195 0.248 -0.848 0.075 -0.159

Table A3: Theoretical moments using posterior modes: CESCD1 and CESCD2 (technology choice models)

CESCD1 (permanent X shocks) CESCD2 (permanent Z and Q shocks)
Short-run Medium run Short-run Medium run

Std(X)/Sdt(Y) Cor(X,Y) Std(X)/Sdt(Y) Cor(X,Y) Std(X)/Sdt(Y) Cor(X,Y) Std(X)/Sdt(Y) Cor(X,Y)
C 0.640 0.991 0.787 0.974 0.865 0.814 0.870 0.986
Inv 2.119 0.992 1.778 0.953 2.409 0.788 1.486 0.957
W 0.687 0.992 0.836 0.982 0.764 0.812 0.895 0.989
L 0.165 0.963 0.203 0.897 0.722 -0.385 0.217 0.423
Prod 0.842 0.999 0.823 0.994 1.441 0.887 0.929 0.977
LSH 0.131 -0.805 0.070 0.066 0.684 -0.648 0.164 -0.091
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Table A4: Theoretical moments using posterior modes: CESCD3 (technology choice
models)

CESCD3 (permanent Z and X shocks)
Short-run Medium run

Std(X)/Sdt(Y) Cor(X,Y) Std(X)/Sdt(Y) Cor(X,Y)
C 0.730 0.897 0.864 0.986
Inv 2.222 0.912 1.489 0.960
W 0.730 0.938 0.893 0.992
L 0.386 0.262 0.171 0.652
Prod 0.973 0.924 0.898 0.990
LSH 0.268 -0.535 0.070 -0.009
Italics indicate not significantly different from zero (GMM 95% CIs).
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