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Uncertain Acts in Games

Frank Riedel∗

March 15, 2017

Abstract

This text reviews a recent approach to modeling “radically uncertain”
behavior in strategic interactions. By rigorously rooting the approach
in decision theory, we provide a foundation for applications of Knigh-
tian uncertainty in mechanism design, principal agent and moral haz-
ard models. We discuss critical assessments and provide alternative
interpretations of the new equilibria in terms of equilibrium in beliefs,
and as a boundedly rational equilibrium in the sense of a population
equilibrium. We also discuss the purification of equilibria in the spirit
of Harsanyi.

Key words and phrases: Knightian Uncertainty in Games, Strategic Ambiguity, Ellsberg

Games, Purification

JEL subject classification: C72, D81

1 Introduction

In games of conflict, players have an incentive to conceal their behavior. A
player has to be unpredictable, in some sense, since otherwise their oppo-
nent(s) can exploit the player. To find a minmax–value for zero–sum games,
v. Neumann (1928) introduces mixed strategies, i.e. objective random de-
vices with a known probability distribution. While a probabilistic device is
perfectly natural for a mathematically trained person, one might feel that
other, more “radically uncertain” approaches to playing a game might appear
interesting as well. In this paper, I review and extend a recent attempt (in
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Riedel and Sass (2014)) to study the outcomes in games when such radical
uncertainty is allowed.

This paper extends the basic approach in Riedel and Sass (2014) and
provides the conceptual and decision–theoretic foundations. It shows that
players might profit from playing in an uncertain way, rather than a proba-
bilistic one. We work with one main example to illustrate the new findings
because we want to focus on the conceptual foundations of the new approach
rather than on the generality of results that are the subject of ongoing work.

When extending the set of possible strategies, it is necessary to extend
the utility functions. We provide a sound decision–theoretic foundation for
our approach by rooting the extended utility function in the setup of Gajdos,
Hayashi, Tallon, and Vergnaud (2008) who provide an axiomatic analysis of
preferences over acts with imprecise probabilistic information. We also detail
how to use the smooth model of Klibanoff, Marinacci, and Mukerji (2005) by
using the appropriate extension of this class of utility functionals to uncertain
acts with imprecise probabilistic information provided by Giraud (2014).

Of course, the “objective” interpretation by von Neumann has been crit-
icized. Schelling (1960) has pointed out that there is no incentive to conceal
one’s own behavior in common interest games. Hence, mixed equilibria in
such games require a different justification. Harsanyi (1973) has shown that
it is possible to interpret mixed Nash equilibria as pure strategy equilibria
in incomplete information games with private information in which the play-
ers’ payoffs are randomly disturbed. If the perturbation is sufficiently small,
agents’ equilibrium behavior approximates the mixed strategy equilibrium
for an outside observer.

In contrast to what some people might have expected, such a purification
is also possible in our leading example. The new equilibria can be interpreted
as pure strategy equilibria in an incomplete information game with private
information where players’ payoffs are disturbed in a Knightian way, i.e. the
probability distribution of the perturbation is not known.

We discuss some objections to the new approach , in particular how one
should interpret these “new” strategies in real life situations and, from a
rather dogmatic side, whether players “have to” be Bayesian, or maybe not.
We also describe different interpretations of the new equilibria in terms of
equilibrium in beliefs (Lo (1996)) or Nash’s boundedly rational population
interpretation.

The last section reviews recent interesting applications of the new ap-
proach to mechanism design, signaling games, and other economically rele-
vant models, and contains a selective literature review1.

1The literature on Knightian uncertainty in games has grown at a rapid speed in
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2 Profiting from Uncertainty

I assume that you, dear reader, are an economist, or a game theorist (the
latter not necessarily being a subset of the former); as such, you are probably
so familiar with the idea of randomizing that it is necessary for you to free
yourself from this familiarity at the beginning of our reflections. It would
thus be helpful to remember a time when you did not know about the formal
version of a mixed strategy in a game as introduced by John von Neumann
in his first text on “Gesellschaftsspiele” in 1928. It is clear to anyone who
has played parlor games that being unpredictable is important in some sit-
uations. If the opponents are able to anticipate your next move, you lose in
poker and, in fact, in all competitive games. I had certain doubts, however,
when I first studied the minmax theorem; while it is perfectly natural for a
mathematically trained person to introduce a probabilistic device, a critical
mind immediately doubts if real players, humans, mix probabilistically. We
know, of course, that humans do have problems with these tasks; even a
well trained person is barely able to produce a sequence of zeroes and ones
in which the probability of a one is 71.2 %. However, if we examine the
zero–sum game in Table 1, then this is exactly what is required in Nash
equilibrium.

L R
U −18, 18 18,−18
D 71,−71 −18, 18

Table 1: Payoff matrix for a game in which player 1 needs to play U with
probability 71.2 % in equilibrium.

On the other hand, for most real world situations, it is not necessary to

recent years. We mention here the approaches that use uncertain actions or strategies.
Bade (2011) studies two player games using uncertain strategies in an Anscombe–Aumann
setting where players have subjective uncertainty aversion and do not use the imprecise
probabilistic information contained in strategies. She focuses on the fact that in two player
games, the support of equilibrium actions is the same as in Nash equilibrium. Grant,
Meneghel, and Tourky (2016) introduce uncertain actions without allowing randomization
in the classic sense. Then the issue of existence of an equilibrium arises as strategy sets
are no longer convex. In a rich Savage–like setting, they are able to prove existence of an
equilibrium. Stauber (2017) develops an interesting different interpretation of ambiguity
about actions as coming from irrational behavior of players.

Lo (1996), Marinacci (2000), and Eichberger and Kelsey (2011) are examples of ap-
proaches to games in which players use pure strategies, but players hold ambiguous beliefs
about the other players’ actions. We would like to refer to Riedel and Sass (2014) for a
review on belief–based approaches to ambiguity.
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randomize perfectly; some degree of uncertainty is sufficient. It is thus im-
portant to distinguish between the mathematical model and the real world
application. In the mathematical model, agents are fully rational and com-
pute perfectly; for the real world application, the model abstracts away from
many details anyway, and we are pleased if the actual behavior matches the
theoretical prediction to a sufficient degree. It has been documented that
humans – or let us say more accurately, students in the laboratory – tend to
have problems playing the mixed Nash equilibrium exactly in games like the
one above (see Goeree and Holt (2001), for example).

While some skepticism towards perfect randomization for real players is
well deserved, we should not go too far by considering only pure strategies in
games. We do not want to call the necessity to be unpredictable in games of
conflict into question. Every sportsman knows that you lose if the opponent
is able to foresee your next action, be it in tennis, soccer, or baseball. In
the words of the German soccer player Lukas Podolski (who might well be
the modern counterpart to America’s Yogi Berra): “It is best when I do not
know what I do.” Although Podolski was speaking about penalties in this
quotation, the same idea holds true whenever there is an incentive to disguise
a planned move in any strategic interaction.

Let us now return to the very beginnings of game theory, and in fact, to
John von Neumann himself, and re-think why and how he introduced mixed
strategies. Have a look again at the zero–sum game in Table 1. Whenever you
play a pure strategy like U for the first player, your opponent has the strict
incentive to play the best reply, and you will get a payoff of −18 causing the
opponent to ”win” the game. The game does not have a unique value in von
Neumann’s sense; the lower value (maxmin) of −18 is strictly smaller than
the upper value (minmax) of 71. Things change, of course, if we introduce
random strategies and expected utility. When both players randomize (with
the probability 0.712 for U resp. 0.288 for L) and evaluate the payoffs by
computing the expected payoff, the lower and the upper value coincide at
−7.632.

In their later book (1953), von Neumann and Morgenstern gave the fol-
lowing justification for the introduction of mixed strategies: suppose you
have to write down and commit to your planned action before the game is
carried out. There is now a risk that your opponent, in modern words, will
hack your computer and finds out what you plan to do. If such a risk ex-
ists, it is best to commit to a random action because the spy will not learn
anything useful in that case.

We now aim to radicalize this approach of being unpredictable2. In some

2without being too radical, though, as you are going to see.
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situations, it is advantageous to be even more unpredictable than a random
device with well specified probabilities. Note that the random devices that
von Neumann introduced provide very specific information about the prob-
ability distribution of the actions. This information is used by agents to
determine their expected payoffs. In the following example (see Table 2), we
reveal that being imprecise about probabilities when players are averse to
such radical uncertainty can pay off.

L R
T 0, 8, 0 3, 3, 3
B 1, 1, 1 0, 0, 0

l

L R
T 0, 0, 0 3, 3, 3
B 1, 1, 1 8, 0, 0

r

Table 2: Player 1 chooses the row, player 2 the column, and player 3 the
matrix.

In this game, Player 3 is indifferent regarding the choice between his
actions l and r since the payoff is always the same for him for the given
strategy choices of Players 1 and 2. The best payoff for Player would be 3.
Player 3 might want to induce this outcome by creating some uncertainty
for the other players concerning which matrix game, left or right, is played.
However, this does not work with a classic mixed strategy: in every Nash
equilibrium, Players 1 and 2 play B and L, and each player obtains the payoff
1. To see this, note that Player 2 has the dominant action L in the left matrix
game; in the right matrix game, Player 1 has the dominant action B. If Player
3 plays l, Player 2 thus plays L, and Player 1 best replies with B. If Player 3
plays r, Player 1 plays B, and Player 2 best replies with L. Randomization
does not get us away from this outcome: if the probability of l is greater than
3/8, Player 2 has the unique best reply L, to which Player 1 again replies
B; if p is smaller than 5/8, Player 1 has the unique best reply B, to which
Player 2 replies L. The payoffs are always 1 for each player.

Now let us suppose that Player 3 can behave in a more radically uncertain
way; his action is uncertain in the sense that Players 1 and 2 do not even have
an idea of the probability for l or r. We explain how such radical uncertainty
can be modeled in the next section; for the moment, though, it is sufficient
to think of a completely uncertain action for which we do not know the
probabilities (a horse race, in the language of decision theory, rather than a
lottery, or, if you allow, Lukas Podolski).

Now suppose for the sake of the example that the players do not like
such uncertainty; they assume that Player 3 is acting against them and thus
consider the worst possible outcome.
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We claim that the strategy profile (T,R,H) (here, ’H’ stands for “horse
race”) is an equilibrium. Indeed, by deviating to B, Player 1 can receive 8
or 0; as he considers the worst case, he assumes that Player 3 might play l,
resulting in a payoff of 0. The same reasoning applies to Player 2 who might
receive 0 or 8 by deviating to L; as she is completely uncertain, she considers
the worst case, namely Player 3 playing r, to be relevant, and thus does not
deviate. As 3 is the optimal payoff for Player 3, no one has an incentive to
deviate, and we have a new equilibrium.

Radical uncertainty in strategies in a game where players are uncertainty–
averse can lead to new equilibria. I think that this example is sufficiently
interesting to start a program to discover the consequences of extending game
theory to more general notions of mixed strategies. A first step was made in
Riedel and Sass (2014). We will generalize the approach and root it firmly
in decision theory in this paper.

3 Modeling Ambiguous Acts

We aim to formally model the idea of behaving in an uncertain, unpredictable
way without relying on precise probabilistic devices. In decision theory, it
is common to distinguish between horse races and lotteries. In the latter,
probabilities are exactly known (as in a good roulette wheel), in the former,
few or even no information about the probability distribution is available.

Let us consider a game in normal form G = 〈N, (Si, ui)i∈N〉 where N =
{1, ..., n} is the set of players, Si, i = 1, . . . , n are the finite strategy sets,
S =

∏n
i=1 Si is the set of pure strategy profiles, and players’ payoffs are given

by functions
ui : S → R (i ∈ N) .

3.1 Ambiguous Acts

We model an uncertain strategy over the pure strategy set Si of some player i.
In principle, the device we are looking for is well known in decision theory: we
use the urns of unknown composition discussed by Daniel Ellsberg (1961).
In his famous experiments, Ellsberg had subjects choose between bets on
different urns; in some urns, the composition of, e.g., red and blue balls was
exactly known, whereas in other urns, only bounds for the number of red
and blue balls were given.

We use this ingenious device to model our uncertain strategies. It is
important to note an important feature of Ellsberg experiments that is often
overlooked. An Ellsberg bet consists of an act f(ω) (in which ω is the outcome
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of the draw and f(ω) is the associated payoff) and of some information about
the composition of the urn. For example, the urn is known to contain one
hundred blue and red balls at least thirty of which are red. An Ellsberg urn
is thus described by a pair (f,P) where f is the act and P the information
about the possible probability distributions.

Definition 1. Let G = 〈N, (Si, ui)i∈N〉 be a normal form game. Denote by
∆Si the set of all probability vectors over Si (mixed strategies in the sense of
von Neumann).

A strategy for player i in game G consists of a finite state space Ω, an
act fi : Ω→ ∆Si, and a set of probability distributions P over Ω.

Let us illustrate this definition by the behavior of Player 3 in the above
example. If Player 3 aims to be completely ambiguous, he can take an
Ellsberg urn fore which the composition is completely unknown. Let Ω =
{0, 1}, and set P = ∆Ω, the set of all probabilities over Ω. The act is then
modeled as f3(0) = l, f3(1) = r.

As stated above, we do not discard the usual mixed strategies. Note that
the act fi maps into the set ∆Si of mixed strategies in the classic sense. If a
player does not want to behave in an ambiguous way, he can simply choose
to use a random device.

In the next step, we reduce the complexity that we have allowed for so far
by assuming that players only care about the ambiguity that is induced over
strategies Si = {ai,1, . . . , ai,ni

}. They do not care about the specific properties
of the Ellsberg experiment or how the act f depends on the outcome of the
Ellsberg experiment; rather, they care about the game, and the Knightian
uncertainty regarding the strategies played.

If Player i uses a state space Ω, an act fi, and a set of probability dis-
tributions P over Ω, we obtain an induced distribution q over Si for every
probability p ∈ P in the following way. Denote by fi(ω)(aik) the objective
probability that aik is chosen in state ω. Then

qΩ,p,fi
k =

∑
ω∈Ω

fi(ω)(aik)

is the induced probability of action aik. The uncertain strategy given by the
triple (Ω,P , fi) thus leads to a set of probability distributions

Q = {qΩ,p,fi : p ∈ P}

over Si.

Definition 2. A reduced uncertain act (or reduced strategy) for player i in
the game G = 〈N, (Si, ui)i∈N〉 consists of a nonempty subset Q ⊂ ∆Si.
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3.2 Independence

We consider noncooperative games and thus maintain the standing assump-
tion that players act independently. Now, Knightian uncertainty sets new
challenges for some concepts from probability theory that we are used to tak-
ing for granted. Especially in dynamic games, when players need to update
their beliefs after observing previous actions, independence and the related
issue of dynamic consistency become difficult issues (see, e.g., the discussion
of Kuhn’s theorem in Muraviev, Riedel, and Sass (2017)).

For normal form games, we model independent Ellsberg experiments by
requiring independence uniformly over all priors. Let us illustrate this ap-
proach for a two-player game. Given the reduced uncertain acts Q1 and Q2,
and possible (mixed) actions q1 ∈ Q1 and q2 ∈ Q2, both players consider
the profile of induced actions to be independent. Therefore, the only pos-
sible joint probability distribution for evaluating the payoffs is the product
measure q1 ⊗ q2 on S1 × S2.

In general, given the reduced strategy profile (Q1, . . . ,Qn) in a game,
the corresponding induced independent profile over the set of pure strategy
profiles S is

⊗ni=1Qi = {q1 ⊗ . . .⊗ qn : qi ∈ Qi, i = 1, . . . , n} .

3.3 Extending the Payoff Functions

Having extended the set of possible strategies, our next task is to extend
the payoff functions to this new domain. We want to do so parsimoniously
and are particularly interested in keeping the received theory of normal form
games as long as players use pure strategies or random devices. We thus keep
the independence axiom for objective probabilities. Moreover, there should
be no incentive to introduce ambiguity unilaterally. We thus assume that
players are averse to such Knightian uncertainty.

3.3.1 Imprecision Aversion

In decision theory, uncertainty–averse preferences have been discussed in
great detail; however, the authors usually consider preferences over acts f
only whereas we are interested here in pairs (f,P) of acts and (imprecise)
probabilistic information, or, in the reduced form, subsets Q of ∆Si.

Gajdos, Hayashi, Tallon, and Vergnaud (2008) represent a notable ex-
ception as these authors consider preferences over acts and imprecise prob-
abilistic information. Their paper is certainly the best axiomatic treatment
of the Ellsberg “paradox” in decision theory because it is the only one that
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models the imprecise probabilistic information that is given objectively in
the Ellsberg experiments.

Denote for a mixed strategy profile q = (q1, . . . , qn) ∈
∏n

j=1 ∆Sj the
expected payoff of player i by

Equi = Eq1⊗...⊗qnui ,

where, with a slight abuse of notation, we identify q and the product of the
single probabilities q1 ⊗ . . .⊗ qn.

Confronted with the set of independent profiles Q =
∏n

i=1Qi, players
need to evaluate their payoffs. As we want to extend the model such that
classic game theory is included, we use the usual expected payoff Equi for
a single strategy profile. If the set Q =

∏n
i=1Qi is not a singleton, the

players are confronted with Knightian uncertainty in which some probabilistic
information is given. Gajdos, Hayashi, Tallon, and Vergnaud (2008) model
uncertainty aversion by a function φi(Q) that selects a set of priors from the
given set of priors; this selection is used to evaluate the payoffs, in conjunction
with the uncertainty–averse axioms of Gilboa and Schmeidler (1989).

The natural extension of the utility function along the lines of Gajdos,
Hayashi, Tallon, and Vergnaud (2008) thus reads as follows:

Ui(Q1, . . . ,Qn) = min
q∈φi(Q)

Eq ui ,

where φi is a correspondence that selects a set of subjective priors φi(Q) from
the given imprecise probabilistic information Q.

Given that the players are known to play independently, the selection φi
should respect this independence, in general. One might thus want to assume
that we can write

φi(Q) =
n∏
i=1

φij(Qj)

where now φij selects a suitable subjective set of priors for Player i for a
set of priors Qj among the strategies ∆Sj of Player j . The functions φij
reflect Player i’s ambiguity (or imprecision) aversion, see Gajdos, Hayashi,
Tallon, and Vergnaud (2008). Moreover, the selected set of priors should not
contradict the information contained in the set Qj, i.e. for the supports of
the respective sets we have

suppφij(Qj) ⊂ suppQj .

When the information Qj is given, a player should not select priors placing
mass outside the states which are supported by Qj. In case a singleton
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is played, Qj = {qj} for some qj ∈ ∆Sj, it makes sense to require that φij
selects exactly this singleton: φij({qj}) = {qj} . We call such correspondences
precise; they are characterized by Axiom 7 in Gajdos, Hayashi, Tallon, and
Vergnaud (2008), Reduction under Precise Information.

Definition 3. Let G = 〈N, (Si, ui)i∈N〉 be a game in normal form. Let Di

be the set of nonempty subsets of ∆Si for i = 1, . . . , n. The extended game
with ambiguity–averse players consists of G and precise correspondences

φij : Dj →→ Dj

with
suppφij(Qj) ⊂ suppQj

for all Qj ∈ Dj and i, j ∈ N . The payoff of player i for a reduced strategy
profile Q = (Q1, . . . ,Qn) is

Ui(Q) = min
q1∈φi1(Q1)

...
qn∈φin(Qn)

Eq1⊗...qn ui . (1)

We call (G, (φij)i,j∈N) the extension of G.

Note that this is a parsimonious extension of classic game theory: first, we
still include the possibility of ambiguity–neutral agents by always allowing a
player to select a single prior when confronted objectively with a set of priors.
In particular, Bayesian players i who use a second-order prior µij over ∆Sj
and who use the single prior φij(Qj) =

∫
Qj
q µ(dq|Qj) when confronted with

the probabilistic information P ⊂ ∆Si are included. Second, we do not make
it easy for players to use ambiguous acts; in fact, due to ambiguity aversion,
a player has no incentive to play ambiguously unilaterally as this can only
decrease his or her payoff. If ambiguous acts do play a role, it thus has to be
an interaction effect3.

3.3.2 Smooth Ambiguity Model

The smooth model proposed by Klibanoff, Marinacci, and Mukerji (2005) is
another popular approach to modeling ambiguity–averse behavior. It com-
bines a second–order prior µ over the unknown probability distributions with
a concave real function ψ which allows for modeling ambiguity–aversion in

3With the exception of cases where the players are just indifferent about any action
they use.
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the same way as the Bernoulli utility function allows for modeling risk aver-
sion.

I propose a natural extension of the smooth model to our setting in which
we do not have preferences over acts but rather over pairs (f,P), or, as we
discussed above, over sets of probabilities Q. Giraud (2014) provides an
axiomatic foundation for smooth ambiguity–averse utility functions under
imprecise probabilistic information; in contrast to his approach, I would like
to add an updating procedure on the second–order beliefs which seems nat-
ural given that the players obtain new, yet imprecise information about the
possible actions being played.

Fix a player i. Let µij be a second order prior for player i over the mixed
strategies ∆Sj of player j. Given the imprecise probabilistic information Qj
for strategies chosen by player j, player i uses the updated second order prior
µij(·|Qj). If ψi denotes the ambiguity index of player i, the natural version
of the smooth ambiguity utility function reads as

Ui(Q1, . . . ,Qn) =

∫
∆S1

· · ·
∫

∆Sn

ψi(E
q1⊗...⊗qnui)µi1(dq1|Q1) . . . µin(dqn|Qn) ,

3.3.3 Examples

We are now able to formally describe the new type of equilibrium that we
found in the three-player game in Table 2. In this game, having a sufficient
degree of ambiguity aversion is enough to sustain the new equilibrium in
which all players obtain the efficient payoff 3. As long as the subjective
ambiguity of players 1 and 2 derived from the actual strategy of player 3
contains at least the probabilities 3/8 and 5/8, we can support the efficient
outcome as an equilibrium.

We identify the reduced ambiguous act for player 3 with an interval
[a, b] ⊂ [0, 1] for the probability of playing l.

Theorem 1. Let G be the three player game described in Table 2 and let
(G, (φij)i,j∈{1,2,3}) be its extension.

The outcome (3, 3, 3) is an equilibrium outcome whenever players 1 and
2 play T and R resp. (i.e. Q1 and Q2 consist of the singleton pure strategy
(1, 0)), player 3 plays Q3 = [a, b] ⊂ [0, 1] and we have

φi3([a, b]) ⊃
[

3

8
,
5

8

]
.

The above result reveals that the efficient equilibrium is very robust:
as long as a critical degree of ambiguity aversion is known to exist, the
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efficient equilibrium outcome is possible. This has an important consequence
for applications: one would not necessarily trust an outcome that relies on
players’ being able to exactly produce a certain Ellsberg urn with given
probability bounds. For the game above, however, it is sufficient that an
adequate amount of ambiguity is created. In this sense, such equilibria are
easier to play in practice than the classic mixed strategy equilibria for which
we rely on players’ ability to randomize exactly.

We also want to point out that our extension does not lead to arbitrary
equilibria. As a first example, we reveal that strictly dominated strategies
remain strictly dominated, and we thus do not obtain new equilibria in the
extended game.

Theorem 2. Let G be a normal form game that can be solved by iterated
deletion of strictly dominated strategies. Let q = (q1, . . . , qn) be the unique
Nash equilibrium of G. The he extended game (G, (φij)i,j∈N) has also the
unique equilibrium q.

As we pointed out in Riedel and Sass (2014), in zero-sum games, essen-
tially no new equilibria emerge.

Theorem 3. Let G be the two-player zero–sum game described in Table 1
and let (G, (φij)i,j∈{1,2,3}) be its extension.

At least one of the players plays the singleton maxmin strategy in every
equilibrium of the extended game.

Given that one of the players plays the maxmin strategy (which is equal
to the Nash equilibrium strategy in this zero sum game), the other player
is indifferent and can thus play ambiguous acts. However, the ambiguous
acts have no role to play in equilibrium as they do not affect the best reply
structure of the opponent.

4 Purification

One of the first objections to this extension of game theory I encountered
came from Faruk Gul during my sabbatical at Princeton university, which
is where von Neumann lived when he and Oskar Morgenstern wrote Theory
of Games and Economic Behavior. Faruk said: “I do not like this approach
because you cannot do ’Harsanyi’.” In this section, I am going to show that
it is indeed possible to purify the new equilibrium in our leading example in
the spirit of Harsanyi (1973).

In his famous paper, John Harsanyi begins by discussing a peculiar prop-
erty of mixed Nash equilibria. Players are indifferent to all actions they take
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in equilibrium; in a two player game, for example, the probabilities by one
player are chosen in such a way that the other player is indifferent. Harsanyi
thus asks why a player should act like this given that he or she has no incen-
tive to do so. Players have to take the payoffs of the other player into account
when computing their Nash equilibrium strategy. As a consequence, Nash
equilibrium is (at times) difficult to play. In fact, one reason why we observe
deviations from Nash equilibrium in laboratory experiments might be due to
this difficulty (compare the Constant Sum Experiment and its modifications
in Goeree and Holt (2001) and our discussion in Riedel and Sass (2014)).

Harsanyi comes up with the following alternative interpretation of mixed
Nash equilibria. Suppose that players’ payoffs are randomly disturbed by an
exogenous device, independently for each player, and that players’ payoffs are
private information. In this case, almost every player uses a pure strategy
upon observing his payoffs. Players are thus no longer indifferent amongst
actions. To an outside observer, the actions look random as he does not know
the private perturbation of the payoffs. When the perturbation is sufficiently
small, the probabilities in the associated Bayes–Nash equilibria are close to
the probabilities in the mixed Nash equilibrium. The mixed equilibrium is
thus purified.

In the same spirit, I am now going to show that one can purify the new
equilibrium in our three-player game above. We introduce exogenous Knigh-
tian uncertainty over payoffs. For simplicity, we just perturb the payoffs of
Player 3 who chooses the matrix game being played.

We change the payoffs as follows. When Player 3 plays l, a private per-

L R
T 0, 8, s 3, 3, 3 + s
B 1, 1, 1 + s 0, 0, s

l

L R
T 0, 0, 0 3, 3, 3
B 1, 1, 1 8, 0, 0

r

Table 3: Player 1 chooses the row, player 2 the column, and player 3 the
matrix.

turbation s ∈ [−1, 1] is added to his former payoff. Let us assume, again for
simplicity, that all distributions for s over [−1, 1] are possible; players have
thus complete Knightian uncertainty over the exogenous perturbation.

An equilibrium (in the classic sense of a private information game) con-
sists then of strategies p ∈ [0, 1] and q ∈ [0, 1] for Player 1 to play T and for
Player 2 to play L, and probabilities r(s) ∈ [0, 1] for each type of Player 3 to
play l. As usual, r(s) has to be measurable in the private information s in
order to have well–defined ex ante payoffs.
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We claim that p = 1 (T is played), q = 0 (R is played), and r(s) = 1 if
s ≥ 0 and r(s) = 0 if s < 0 (the types with a positive perturbation play l, the
others play r), is a classic equilibrium in the perturbed game that purifies
the equilibrium in the extended game.

This is easy to see for Player 3 of type s. Given that Player 1 and 2 play
the combination (T,R), l is better if the signal is positive, and r is better
otherwise. As usual, the marginal player is the one with no perturbation,
s = 0. So the proposed ”Bayesian” pure strategy for player 3 is thus a best
reply.

Given that Player 3 plays in this manner, and Player 2 plays R, Player
1 faces exogenous Knightian uncertainty given by Q3 = [0, 1] over possible
probabilities for action l of Player 3. Indeed, since we have allowed for
complete Knightian uncertainty regarding perturbation, we can easily write
down a probability distribution over [−1, 1] that assigns probability p to the
interval [−1, 0] for any arbitrary p. All probability distributions over the
actions of Player 3 are possible from the point of view of Player 1. If Player
1’s ambiguity aversion is sufficiently high in the sense that

φ13([0, 1]) ⊃
[

3

8
,
5

8

]
,

then his best reply is to play T since the minimal expected payoff by deviating
to B is less or equal than 3/8 · 8 ≤ 3. The analogous reasoning holds true for
Player 2. We have thus purified the equilibrium.

The new equilibrium can alternatively be interpreted as a usual equilib-
rium in a Bayesian game when the players have insufficient information about
the exogenous distribution of types.

A completely general theory of the purification of equilibria in the ex-
tended game is not yet available. In Decerf and Riedel (2016), we discuss
two player games with two strategies. In these games, as we discussed in
Riedel and Sass (2014), the maxmin strategy plays a crucial role as it allows
for hedging Knightian uncertainty. When the maxmin strategy is a pure
strategy, the new equilibria of the extended game can be purified. In gen-
eral, some types use the maxmin strategy in the equilibria of the perturbed
game. In this sense, we are able to disambiguate the (Ellsberg) equilibria of
the extended game.

5 Objections and Interpretations

I have presented these ideas at many universities over the past five years.
As the new theory deviates from the received one, a certain reservation or
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skepticism is natural and well deserved. Next, I would like to discuss some
of the objections.

How can one play such strategies? The first question is typically: “But
how can such a new strategy be played?” This is a natural question, of course.
Note, however, that the same question can be asked of a mixed strategy as
well. How do you play a mixed strategy for which you are supposed to play
U with a probability of 71.2 percent as in our first example above? We know
that most humans are not able to randomize perfectly. So how can it be
done? In some sense, you would try to come close to 70 percent, and if you
have some experience with randomization, I trust you could come close to it.
Nevertheless, the fact that it is difficult to play in this uncertain way applies
both to mixed strategies and to the new uncertain strategies.

Note that when one plays a zero–sum game like Rock-Scissors-Paper, you
do jot really tell your opponent that you are going to throw a die. You just
have to act, and you try to do so “in your mind”. In the same way, you can
perform an uncertain action by behaving in an unpredictable way. What is
important for the application of the theory, is not the exact device, but rather
if the equilibrium prediction is robust enough such that it can be trusted to
be applied to the real world.

In a sense, the new equilibria are more robust than classic mixed Nash
equilibria. In our three-player example, a sufficient degree of uncertainty
aversion is enough to generate the new equilibrum outcome. We do not
have to rely on the exact possibility of humans to generate an Ellsberg urn
with given probability bounds. It is sufficient that they behave ambiguously
enough. This kind of uncertain behavior is much easier to achieve, in my
opinion, than a randomized strategy. Podolski’s words “It is best when I do
not know what I do” are thus much closer to an ambiguous behavior than to
an exact random behavior. Some people attribute to Podolski the statement:
“Today’s soccer is a lot like chess; just without dice.” Funny as it is, the
statement contains a truth that we use in our approach: we use uncertainty
without dice.

Bayesian Dogma From the more dogmatic side, the objection that in a
“small” world, players “have to be Bayesian” is sometimes heard. Since no
human “has to be” anything in a free world, this criticism can only apply
to the “agent”, i.e. to the rational homo oeconomicus whom we model in
game theory. The dogma goes back to Savage (1954) who derives subjective
expected utility theory axiomatically. Savage claims that his axioms should
hold true in small worlds in which the state space is not too complicated.
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The simple games we looked at certainly qualify as small worlds. While I
admire Savage’s work, it is nevertheless clear that his axioms (as well as
Anscombe and Aumann’s axioms in their (1963) paper) impose very strong
conditions on rational behavior. The Ellsberg experiments show convincingly,
in my opinion, that rationality in small worlds does not imply Bayesian
(subjective expected) utility. It is perfectly rational to apply some sort of
sophisticated worst–case approach when the conditions of the environment
are not perfectly known. Nothing more than this small requirement is needed
for the extended games analyzed here. In fact, the vast decision–theoretic
literature that has followed Schmeidler (1989) and Gilboa and Schmeidler
(1993) has developed a sound conceptual foundation for rational behavior
under Knightian uncertainty in a non-subjective expected utility fashion.
The rational agent can thus exhibit uncertainty aversion, and it makes sense
to study the consequences of such uncertainty aversion in games.

Belief-based interpretation Nash equilibria can be interpreted in differ-
ent ways. In applied work, most people actually tend to take mixed strategies
literally, as this paper did at the beginning. When we say “Player 1 mixes
in equilibrium” we usually tend to mean it as a deliberately random behav-
ior. On the other hand, such an interpretation is not always meaningful, as
Schelling (1960) noted. We have already discussed Harsanyi’s purification
approach above, but another approach interprets the mixed strategies as be-
liefs of the other players (Aumann and Brandenburger (1995)). In fact, to
support a Nash equilibrium, it is sufficient that Player 1 believes that Player
2 is behaving in such and such a random way. Such a belief interpretation
is feasible for the extended games described here as well. In this interpreta-
tion, the belief of Player i about other players’ behavior is the product of the
reduced uncertain strategy profiles of ⊗j 6=iQj. If the beliefs are correct and
if all players agree on the respective beliefs about the other players, we get
another interpretation of the new equilibria (compare also Lo (1996)).

Population Interpretation The population interpretation of equilibrium
can be traced back to Nash’s dissertation (1950), see also Hofbauer (2000) and
Weibull (1995). Nash points out that one can view a mixed Nash equilibrium
also as the result of boundedly rational players playing in a statistical sense
against a certain population of randomly drawn opponents. The players are
opposed to gather empirical information about the play of the game. If the
average action observed converges to a stable number, players will best reply
to the population, and the total population behavior will correspond to the
mixed strategy equilibrium.
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Note that the above reasoning assumes a stationary stochastic environ-
ment such that some form of the law of large numbers applies. As many
games are played rather few than many times, it is quite natural to assume
that we do no have such a stationary environment; there is substantial Knigh-
tian uncertainty about the actions in the population. In fact, the law of large
numbers under Knightian uncertainty just states that the (cluster points of)
long–run mean of a repeated number of independent experiments will be
in some interval (see Peng (2007) and Maccheroni and Marinacci (2005)).
There thus remains Knightian uncertainty even after many observations of
past play. If players are averse to such statistical (model) uncertainty, we get
another interpretation of the new equilibria in the extended game.

6 Vague Language, Uncertain Mechanisms,

and Extensive–form Games

The idea of endogenous uncertainty in interactions is currently being explored
in a variety of interesting studies.

Our approach has interesting applications for language (or signaling)
games; in fact, ambiguous language can be quite useful in some situations,
e.g. in diplomatic negotiations or in public announcements that might oth-
erwise trigger harsh immediate reactions. In our leading example, we have
found a new equilibrium which has a higher payoff for all players. Player 3
introduces Knightian uncertainty and thus leads the other players to see no
reason to deviate from the efficient equilibrium. This example thus highlights
already two things: 1) vagueness can be used as a threat and 2) Knightian
uncertainty renders outcomes incentive–compatible that would not be under
expected utility.

In a beautiful paper, Kellner and Quement (2017) show that players can
achieve higher payoffs in cheap talk games when ambiguous communication is
allowed. This approach provides an interesting rationale for the use of vague
language in situations in which players share some interest in the outcome,
but are not completely aligned.

Bose and Renou (2014) use the same idea in mechanism design to show
that the designer can implement a larger class of social choice functions when
he is allowed to introduce ambiguity by a cheap talk signaling game before
the actual mechanism is carried out. Similarly, Di Tillio, Kos, and Messner
(2017) show that a seller can increase his profit by using an ambiguous mech-
anism. Lang and Wambach (2013) show that uncertainty about fraud detec-
tion deters ambiguity-averse agents from reporting false insurance claims.
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The above-mentioned papers have to deal with the important aspect of
updating beliefs under ambiguity. For example, Bose and Renou explicitly
assume that the agents behave in a dynamically inconsistent way by updat-
ing their beliefs prior by prior. For single optimization problems, the issue
of dynamic consistency in situations with multiple priors is well understood.
The set of priors has to be stable under pasting (or rectangular, as Epstein
and Schneider (2003) have dubbed it; see also Riedel (2004) and Sarin and
Wakker (1998)). It is not possible to directly apply this reasoning in games
as players typically face different information flows. For example, Kuhn’s
theorem does not hold true at the same level of generality as in the expected
utility case as Muraviev, Riedel, and Sass (2017) show (compare also Aryal
and Stauber (2014)). Nevertheless, in large classes of games, it is possible
to identify reasonable restrictions to the set of ex ante uncertain strategies
that allow to re-establish equivalence. In ongoing work, Hanany, Klibanoff,
and Mukerji (2016) study extensive–form games with Knightian uncertainty
regarding types and smooth utility. They develop the notion of sequential
equilibrium for such games. The purified version of our extended game cor-
responds to such incomplete information games; it would thus be possible to
develop a notion of sequential equilibrium from that point of view.

7 Conclusion

In this paper, we have taken up a new approach to uncertain actions in
games which was originally proposed in Riedel and Sass (2014). We ex-
tend their approach by rooting it firmly in decision theory (Gajdos, Hayashi,
Tallon, and Vergnaud (2008), Klibanoff, Marinacci, and Mukerji (2005)). Al-
though the new approach is a parsimonious extension of classic game theory
in the sense that no player has an incentive to introduce uncertain actions
unilaterally, interesting new equilibria arise. We discuss purification in the
spirit of Harsanyi (1973) and other possible interpretations like the origi-
nal mass–action or population interpretation of Nash (1950) and the more
modern belief–based interpretation of Aumann and Brandenburger (1995).
Our model can be used as a rigorous modeling background for the success-
ful applications of ambiguous strategies much as they have been used in the
literature on mechanism design, principal agents, and moral hazard.
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