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Abstract 

As a natural extension of the classical MPM, algorithms for the resource-constrained project 

scheduling problem have attracted much attention over t he last two decades. Enumerating delay 

alternatives, extension alternatives, feasible completion times, feasible posets, or feasible subsets, 

all the methods aim at finding a makespan minimal schedule among the precedence and resource 

feasible ones. Applicability is mainly limited to problems with constant resource availability and/or 

Problems allowing only a single processing alternative per activity. 

The purpose of t his paper is to direct the focus to a procedure that can, by simple adaptations, 

operate on more general problem settings. The general approach can, e.g., deal with multi-mode 

problems, resource availability varying with time, and a wide ränge of objectives. Although the 

algorithm is the most general and simple one currently available for resource-constrained project 

scheduling, the computational Performance can compete with the best approaches available for the 

single-mode problem. The algorithm uses far less memory than the state-of-the-art procedure, 

i.e., 400 KB versus 24 MB, for solving the Standard benchmark set with projects consisting of 32 

activities. It definitely outperforms the state-of-the-art procedure if both approaches are allowed to 

make limited use of m emory. Since, in general, the memory requirements exponentially grow with 

the number of activities the project consists of, memory will become a critical resource. Conservative 

estimates of memory requirements for the state-of-the-art approach have to be settled at least at 

500 MB and for our approach at most at 5 MB for 62-activity projects. Additionally, heuristic 

capabilities of the truncated version of our algorithm are extremely encouraging. 

The procedure has been coded in C and implemented on a personal Computer. The computational 

results, show that, beside of the theoretical benefits (1) ea se of description, (2) ease of Implementa

tion, and (3) ease of general ization, practica! advantages as (1) reasonable Performance and (2) low 

memory requirements will make its use favorable when a ttacking larger problems or variants of the 

resource-constrained project scheduling problem. 

Keywords: Project Scheduling, Resource Constraints, Single-Mode, Branch-and-Bound, Heuristic, 

Computational Results. 

1 Introduction 

In the early beginnings of project scheduling CPM and MPM have been developed to support the project 

manager in doing his work. Assuming deterministic durations of the activities that build up the project, 

both methods mainly determine time-windows, i.e., intervals, where the activities can be performed in 

without violating given precedence relations and a given project completion time, i.e., makespan. The 

limitation of the resources required to execute the activities are not taken into account. 

Since the limitation of the resource availability cannot be relaxed in the major part of business applica-
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tions the research Community has answered the more realistic assumptions of the resources Iimita,tion by 

intensive research. As a generalization of the flow-shop, job-shop, and open shop problem the resource-

constrained project scheduling problem (RCPSP) is known as an NP-hard problem (cf. [10]). Therefore 

the main focus is on the development of branch-and-bound algorithms where different ideas have been 

presented to build the tree guiding the enumeration of the schedules. The schemes enumerate minimal 

delaying alternatives (cf. [5], [6]), feasible completion times (cf. [31]), feasible extensions (cf. [29]), feas-

ible posets (cf. [21]), and feasible subsets (cf. [16]), in order to find an optimal, i.e. makespan minimal, 

Solution. The currently most advanced procedure has been developed by Demeulemeester and Herroelen 

(cf. [6]) which enhances their earlier work (cf. [5]) by a bound introduced by Mingozzi et al. (cf. [16]) 

and fully exploits nowadays available 32-bit architectures of personal Computers. The procedure solved 

the entire set of benchmark problems generated by ProGen (cf. [15]) for the first time. The projects 

consist of 32 activities (including two dummy activities) and 4 renewable resources. The CPU-time on 

a personal Computer (80486, 25 MHz, 32 MB) under Windows NT averages at some 34 seconds at the 

cost of 24 MB memory used. 

Recent advances again follow the requirements of practice. Alternative process plans allow to fulfill 

the task related to an activity in different ways, called modes. The activities can be executed in one 

out of several modes. The modes reflect alternative combinations of resources and belonging quantit-

ies employed to fulfill the tasks related to the activities. The activity duration is a discrete function 

of the employed quantities, that is, using this concept e.g. working-off an activity can be acceler-

ated by raising the quantities Coming into Operation (time-resource-tradeoff). Moreover, by raising the 

quantities of some resources and reducing the quantities of others the resource substitution (resource-

resource-tradeoff) can be realized. The problem derived is the multi-mode resource-constrained project 

scheduling problem (MRCPSP), which is commonly considered with makespan minimization as object-

ive (cf. [30]). 

In this paper we will return to a procedure originally developed for the single-mode problem (cf. [31]), 

then generalized to the multi-mode case (cf. [30]), and substantially simplified to the precedence tree 

guided scheme (cf. [19], [20]). Later on, Sprecher and Drexl (cf. [24], [25], [26]) employed the precedence 

tree to form the currently most simple, general, and powerful algorithm for the multi-mode resource-

constrained project scheduling problem. The size of the problems that can be solved to optimality has 

been nearly doubled. Projects with up to 22 activities (including of two dummy activities) with 3 modes 

per activity can be solved. The CPU-time for the 22-activity projects on a personal Computer (80486, 

66 MHz, 16 MB) under OS/2 averages at some 240 seconds if 2 renewable and 2 nonrenewable resources 

are taken into account, and 12 seconds if only 2 renewable resources are limited. In the former case at 
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most 8 MB memory have been used. 

We will adapt the algorithm developed for the MRCPSP to the RCPSP and enhance it by some RCPSP 

specific rules. The computational experience reveals that the algorithm can compete with the state-of-

the-art-approach from Demeulemeester and Herroelen (cf. [6]) at far less memory requirements. The 

approach we present uses only 400 KB instead of the 24 MB required by Demeulemeester and Herroelen 

to solve the 32-activity projects. 

We proceed as follows: In Section 2 we describe the problem more precisely. In Section 3 we give a 

brief summary of Solution procedures proposed for the RCPSP. In Section 4 we present the single-mode 

version of the algorithm and the bounding rules used to accelerate its convergence. In Section 5 we 

reveal our computational results. In Section 6 we draw the conclusions for future research. 

2 The Model 

We consider a project which consists of J activities (jobs, tasks). Due to technological requirements, 

precedence relations between some of the activities enforce that an activity j, j = 2,..., J, may not be 

started before all its predecessors h, h 6 Vj, are finished. The structure of the project is depicted by 

a so-called activity-on-node (AON) network where the nodes and the arcs represent the activities and 

precedence relations, respectively. The network is acyclic and numerically labeled, that is an activity j 

has always a higher number than all its predecessors. W.o.l.o.g. activity 1 is the only start activity 

(source) and activity J is the only finish activity (sink). 

The activities may not be preempted, i.e., an activity once started has to be completed without Interrup

tion. Performing activity j takes dj periods and is supported by a set R of renewable resources (cf. [32], 

[33]). Given a horizon, that is, an upper bound T on the project's makespan, Krt units of renewable 

resource r, r £ R, are available in a period t, t = 1,..., T. Performing an activity j, j = 1,..., «7, 

requires kjr units of renewable resource r, r 6 R, each period activity j is in process. The parameters 

are summarized in Table 1 and assumed as integer-valued. The objective is to find a makespan minimal 

schedule that meets the constraints imposed by the precedence relations and the limited availability of 

the renewable resources. 

Presuming feasibility and a constant per-period availability of the renewable resources, an upper bound 

on the minimum makespan is given by the sum of the activity durations. Given an upper bound T on the 

project's makespan we can use the precedence relations to derive time windows, i.e. intervals [EFj, LFj], 

with earliest finish time EFj and latest finish time LFj, containing the precedence feasible completion 

times of activity j, j = 1,..., J, by traditional forward and backward recursion as performed in MPM. 
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p, (4) 

(FF,) 
^ (Zf)) 

T 

Kr. >0 
kjr > 0 

J 

R 

number of activities 

duration of activity j 

set of renewable resources 

upper bound on the project's makespan 

number of units of renewable resour ce r, r € R, available in period t, t = 1,..., T 
number of units of renewable resource r, r € R, used by activity j each period the 

activity is in process 

set of immediate predecessors (successors) of activity j 

earliest start time (finish t ime) of activity j, calculated by neglecting resource usage 
latest start time (finish time) of activity j, calculated by neglecting resource usage 

and taking into account the upper bound T on the project's duration 

Table 1: Symbols and Definitions 

Analogously, the interval [ESj, LSj] bounded from below and above by the earliest start time ESj 

and the latest start time LSj, respectively, can be calculated to reflect the precedence feasible start 

times. The benefit is twofold: First, the number of variables used in the integer (binary) programming 

formulation is reduced substantially. Second, within a branch-and-bound algorithm the bounds can be 

efficiently used to speed up the convergence. 

Using the time windows derived we can now state the problem as a linear program as presented by 

Talbot (cf. [30]). We use binary decision variables Xjt, j = 1,..., J, t = EFj,..., LFj, 

The model is presented in Table 2 and referred to as the (single-mode) resource-constrained project 

scheduling problem (RCPSP). 

Since there is exactly one finish activity, the objective function (1) represents the minimization of the 

project's makespan. Constraints (2) ensure that exactly one completion time is assigned to each activity. 

The precedence relations are taken into account by (3). (4) guarantees, that the per-period availabilities 

of the renewable resources are not exceeded. 

Obviously, the well-known flow-shop, job-shop-, open-shop and assembly line balancing problem are 

included in the model outlined above (cf., e.g., [24], pp. 10). Thus, the problem is a member of the 

class of NP-hard problems (cf. [10]). 

Moreover, the model presented above can be easily extended to include different modes to perform 

the activities , time-varying request (cf. [8]) a nd generalized temporal constraints (cf. [1], [24], pp. 19). 

Xjt — " 
1 , if activity j is completed at the end of period t 

0 , otherwise. 
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LFj 
Minimize 0(z) = V" t • z j, 

t=EFj 
s.t. 

LF, 
Y xit — 

t=EFj 
LFh LF, 

f ^ dj)xjt 
t=EFh t=EFi 

J min{ t+dj — 1 ,LFj } 

Xv Ys Xil — ^r< 

.7=1 q=max{t,EFj} 

j — 

j = 2,.. .,J,h €Vj 

r £ R,t = 1,.. .,T 

(1) 

(2) 

(3) 

(4) 

Xjt € {0,1} j = 1,..., J, t = EFj,LFj 

Table 2: The Model of the RCPSP 

However, note, if negative minimal time-lags are incorporated then the objective function has to be 

adapted to reflect the minimization of the makespan. Additionally, beside the makespan other objectives 

as the minimization of the weighted delays, the minimization of the total number of tardy activities, 

the minimization of the mean weighted flow time, the maximization of the net present value as well the 

smoothness of the resource profile can be easily modeled (cf. [22], [23]). 

3 Literature Review 

In this section we will briefly summarize enumeration procedures proposed for solving the RCPSP. 

Stinson et al. (1978) (cf. [29]) provided a branch-and-bound algorithm that enumerates the extension 

alternatives (cf. [11]) of partial schedules. The partial schedules reflect scheduling decisions already 

made for a subset of the set of activities. The partial schedules are always feasible with respect to 

precedence and resource constraints. Given a partial schedule, the next decision point is determined by 

the time incrementing scheme introduced by Johnson (cf. [12]). That is, assuming constant resource 

availability, it is sufficient to study the completion times of the activities already scheduled as candidates 

for start times of new activities. Consequently, the decision point can be determined as the minimal 

completion time of the activities contained in the partial schedule. At the decision point it is considered 

to extend the partial schedule by activities that are eligible, i.e., by activities all the predecessors of 
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which are in the partial schedule and finish at or before the decision point. From the set of eligible 

activities, the subset of schedulable activities is built. The schedulable activities are the ones that can 

be selected on their own to be started at the decision point without violating the resource constraints. 

The extension alternatives are built by all the subsets of the schedulable activities that can extend the 

partial schedule without violating the resource constraints. They form the descendants of the current 

node of the branch-and-bound tree. The scheme starts with the empty partial schedule and successively 

extends the current partial schedule by determining the next decision point and selecting an extension 

alternative. Backtracking is performed if all the alternatives are evaluated at the current node of the 

branch and bound tree. The basic scheme is enhanced by dominance pruning as initially developed by 

Johnson (cf. [12], quoted in accordance with [29], and Subsection 4.2). Moreover, (i) a precedence-based 

bound relying on MPM calculations of latest finish times of the activities for a given project duration, 

and (ii) a resource-based bound is used. Combining the effects of precedence and resource constraints 

Stinson et al. propose the critical sequence lower bound. Finally, left-shifts are studied to detect further 

dominance (cf. Section 4). 

Demeulemeester and Herroelen (1992) (cf. [5]) presented an enumeration scheme relying on the idea of 

resolving resource conflicts by delaying some of the activities causing the conflict (cf. [4]). The procedure 

continues a given partial schedule by temporarily scheduling all the eligible activities at the decision point 

as determined by Johnson (cf. [12]). If the cumulated resource requests at the decision point exceed the 

availability then it is branched to the next level. At this level the delaying alternatives are considered to 

resolve the conflict. Thereby, a delaying alternative is a subset of the set of activities in process at the 

decision point, the delay of which makes the partial schedule resource feasible. If no resource conflict 

occurs then the next decision point is determined. The algorithm tracks back if at the current level 

all the delaying alternatives are evaluated. Demeulemeester and Herroelen prove that it is sufficient to 

study only the minimal delaying alternatives. Moreover, they make use of the precedence-based bound 

and the critical sequence bound as well as additional dominance concepts. The concepts make use of 

left-shift dominance (cf. Subsection 4.2) and, moreover, a cut-set rule similar to the dominance pruning 

used by Stinson et al. and the network-cuts as employed by Talbot and Patterson (cf. [31]). Finally, 

Demeulemeester and Herroelen introduce two immediate selection strategies (cf. [2]). The procedure 

has been tested on the Patterson-Set (cf. [18]) a nd compared with the approach developed by Stinson 

et al. (cf. [29]). The 110 problems have up to 51 activities. On the problem set the Solution time of the 

enumeration scheme by Demulemeester and Herroelen averages at 0.21 seconds (IBM PS/2 Model 70 

A21, 25 MHz) and outperforms the one by Stinson et al. by a factor of nearly 12. The procedure has 

been generalized to the multi-mode case by Sprecher et al. (cf. [27]). 
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Kolisch et al. (1995) (cf. [15]) developed the parameter-driven project generator ProGen as a tool for 

the evaluation of algorithms proposed for resource-constrained project scheduling. Allowing to specify, 

e.g., the number of activities, the number of resources, activity durations, number of modes, resource 

requests and availabilities by defining lower and upper bounds, ProGen randomly generates instances 

with a given network-complexity, resource factor and resource strength. A set of 480 projects with 32 

activities (two dummy activities are included) has been generated and used to test the approach by 

Demeulemeester and Herroelen (1992) on a personal Computer (IBM PS/2 Model 55sx, 80386sx, 15 

MHz). Whereas the Patterson-set has been solved within 1.06 seconds on average only 415 of the 480 

problem instances have been solved within a time limit of 1000 seconds per problem. 

Mingozzi et al. (1996) (cf. [16]) developed an enumeration procedure relying on the concept of feasible 

subsets. They define a feasible subset as a subset of the set of activities, where (i) the sum of the 

resource requirements does not exceed the availability for any resource, and (ii) there is no precedence 

relation between any pair of activities out of the subset. The algorithm starts with two empty (ordered) 

lists, the subset list and the duration list. The former one to störe the feasible subsets and the latter 

one to störe the processing times of the feasible subsets. The algorithm seeks to complete the lists 

to represent solutions for the RCPSP by adding feasible subsets and processing times of the subsets 

to the lists. The lists finally obtained represent a feasible schedule, if (a) every activity is executed 

without Interruption, (b) the processing times of t he feasible subsets coincide with the durations of the 

activities, and (c) the starting times respect the precedence constraints imposed. At each node of the 

branch-and-bound tree the current lists are continued by adding a feasible subset and a processing time 

to the lists, such that, (a) no non-completed activity is interrupted, and (b) the predecessors of the 

activities within the feasible subset considered to be added, are completed. The processing time of 

the chosen feasible subset is defined by the minimum processing time required to complete an activity 

out of the feasible subset. The basic enumeration scheine has been enhanced by a rule reducing the 

set of feasible subsets N(a) (cf. [16]) to be tested at a certain node a, a variant of the left-shift rule 

(cf. [29], and Subsection 4.2), and the cut-set rule (cf. [5], and Subsection 4.2). Moreover, five bounds 

are derived from the new mathematical programming formulation. The authors report that the bounds 

perform better than the critical sequence bound introduced by Stinson et al. (cf. [29]), and that their 

algorithm is competitive to the procedure presented by Demeulemeester and Herroelen (cf. [5]), the best 

one known up to then. 

Demeulemeester and Herroelen (1996) (cf. [6]) enhanced their approach from [5] by a variant of the 

bound LB3 from Mingozzi et al. (cf. [16]). Moreover, they optimized their code by changing for(i = 

1;i < n;i + +)-loops to for(z = n\i > 1;i )-loops, and representing four resources of 8 bit size 
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through one 32 bit unsigned integer. Allowing as much as 24 MB Demeulemeester and Herroelen could 

solve the entire Standard benchmark-set (cf. [15]) f or the first time. The CPU-time of their Microsoft 

Visual C++ 2.00 Implementation averages at some 34 seconds on a personal Computer (80486, 25 MHz) 

operating under Windows NT. 

In contrast to the approaches sketched above the one developed by Talbot and Patterson (1978) (cf. [31]) 

allows to consider resource availabilities varying with time. Moreover, since only one activity is scheduled 

per node of the branch-and-bound tree, only simple data structures are necessary to implement the 

algorithm. Using an upper bound on the project's makespan the time-windows from MPM-calculations 

are employed to limit the start times of the activities. As already mentioned the procedure schedules 

one activity per node of the branch-and-bound tree. Assuming a numerically labeled network always the 

lowest indexed activity not in the partial schedule can be selected for assigning a start time to it. The 

first start time assigned to the activity is the lowest resource and precedence feasible one. If an activity 

cannot be scheduled within the time limits without violating the resource or precedence constraints, 

then backtracking to the previous level is performed. There the next precedence and resource feasible 

start time which is greater than the one previously assigned is selected. To accelerate the enumeration 

the concept of network-cuts is introduced. 

Talbot (1982) (cf. [30]) extends the approach to the multi-mode case, where the next untested mode is 

selected and evaluated before tracking back. Later on Patterson et al. (1989) (cf. [19]) developed the 

precedence tree to guide the search for an optimal Solution of the multi-mode problem. 

Sprecher and Drexl (1994,1996) (cf. [24], [25], [26]) made use of the precedence tree to guide the search 

for an optimal Solution of the multi-mode resource-constrained project scheduling problem. The size of 

the problems that can be solved to optimality has been nearly doubled. Projects with up to 22 activities 

(inclusively of two dummy activities) with 3 modes per activity can be solved. The CPU-time for the 

22-activity projects on a personal Computer (80486, 66 MHz, 16 MB) under OS/2 averages at some 240 

seconds if 2 renewable and 2 nonrenewable resources are taken into account, and 12 seconds if only 2 

renewable resources are limited. In the former case at most 8 MB memory have been used. 

As we will see in the following sections the concepts used for the multi-mode algorithms can be suc-

cessfully employed for the single-mode problem as well. Although the approach is more general, the 

algorithm produces results competitive to the one of the best special purpose codes with respect to 

Solution times, and uses far less memory. 

Brucker et al. (1996) (cf. [3]) present a branch-and-bound algorithm basing on a generalization of the 

disjunctive graph model. The nodes of the branch-and-bound tree correspond to so-called schedule 

schemes (sets of disjunctions, conjunctions, parallelity, and flexibility relations). The algorithm has 
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been tested on a Workstation (SUN/Sparc 10/512) operating under Solaris 2.4 with 64 MB general 

storage (2x50 MHz + 1 MB SC) and compared with the algorithm by Demeulemeester and Herroelen 

(cf. [5]). Within an imposed time limit of 3600 seconds the algorithm could not find and verify an 

optimal Solution for 20 so-called easy instances and 31 so-called hard instances of the ProGen set. 

4 The Branch-and-Bound Algorithm 

In this section we describe the single-mode variant of our algorithm. In Subsection 4.1 we briefly 

summarize the basic scheme for the RCPSP. In Subsection 4.2 we describe the bounding-rules by illus-

trations. Since their validity mainly can be deduced from the illustrations, we will give proofs only, if 

the statements generalize the concepts introduced in [25], [26], or if they are entirely new. The remaining 

proofs can be found in [25], [26]. 

4.1 The Basic Scheme 

As for the MRCPSP the search for an optimal Solution is guided by the precedence tree introduced by 

Patterson et. al. (cf. [19]). The nodes of the precedence tree correspond to the nodes of the branch-

and-bound tree. The root node 1 of the tree is given by the single start activity and the leaves are 

copies of the only finish activity J. The descendents of a node j within the precedence tree are built by 

the activities that are eligible after scheduling the activities on the path leading from the root node 1 

to node j. Thereby, in contrast to [5] and [29], an activity is called eligible, if all its predecessors are 

scheduled. Analogously to the algorithm for the MRCPSP we use the set ACSi to denote the set of 

activities currently scheduled up to level i. Assuming that passing the nodes of the precedence tree 

means scheduling the activities associated with the nodes we obtain the set of eligible activities on 

level i, namely Yt, as follows: 

Using the prelirninaries presented we can concisely state the algorithm: The algorithm schedules one 

activity per node of the branch-and-bound tree. An activity is firstly considered for scheduling when all 

of its predecessors are scheduled. The start time of the activity under consideration is the lowest feasible 

start time, which (a) is not less than the start time of the activity most recently scheduled, and (b) does 

9 

Yi := {51} = {1} 

ACSi {gi} = {1} 

Yj+i := %\{#} U {k € Sgi-,Vk C ACSi} 

ACSi+i := ACSi U {gi+1} 

i = 1,..., J — 1 

i = 1,..J — 1 



not violate the precedence or resource constraints. In the sequel we will refer to the determination of the 

lowest feasible start time following (a) and (b) as the strategy (*). Note, employing scheduling strategy 

(*) reduces the number of schedules to be examined substantially. The correctness of this reduction — 

compared to the enumeration of all the feasible start times — is proven in [25]. 

However, if scheduling of the current activity is not feasible then backtracking is performed. On this 

level the next untested eligible activity is selected. If there is no untested eligible activity left then 

backtracking to the previous level is performed. At this level the next eligible activity is chosen. 

Using the notation displayed in Table 3 the algorithm is formally described in Table 4. Note, in contrast 

to [25], the basic description includes a simple bounding-rule, the so-called Non-Delayability Rule. It 

states that an activity that cannot be scheduled on the current level with respect to a given partial 

schedule cannot be scheduled on higher levels either, if the same schedule is continued, that is, after 

identifying that an activity cannot be scheduled, backtracking can be performed. 

Clearly, the ordering of the eligible set, i.e. the decision which activity to select when, has an influence 

on the Solution time. However, for the present, we assume the eligible sets to be arranged with respect 

to increasing labels, i.e., activity numbers. Surely, all the priority rules allowing to relabel the activities 

before the enumeration is started can be implemented in any ease. 

i : level index 

i* : lowest index which produces a time window violation after the recalculation 

Yi : set of eligible activities on level i 

Ni : cardinality of the set % 

N* • index of the element from the eligible set Yi which is currently under consideration 

YiN, : the Ni 'th element of the set of eligible activities on level i 

ACSi : set of ac tivities currently scheduled up to level i 

9i '• activity currently scheduled or under consideration on level i 

STg, (CTgi) : start (completion) time of ac tivity g, scheduled on level i 

tp '• lowest feasible start time of activity g, with respect to the precedence relations 
Seqi = [gi , ...,#,]: sequence of activ ities scheduled on level j = 1,..., i 

•PSi : partia l schedule induced by sequence Seqi and employing strategy (*) 

Table 3: Notation Used in the B&B-Algorithm 

For sake of simplicity we have focused on the minimization of the makespan, although, as described 

in [25], any regulär measure of Performance as well as multi-mode problems and other variants can be 

solved with a slight modification of the scheme. 
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Step 1: (Initialization) 

ACS0 := 0; g0 := 0; STgo := 0; CTgo := 0; Vx := {0}; i := 1; % := {!}; ^ := 1; Nt := 0; 

Step 2: (Select next untested descendant) 

If Ni < Ni then Ni := Ni + 1, g{ := ; goto Step 4; 

Step 3: (One-level backtracking) 

i i — 1; if i — 0 then STOP, eise remove job gi from partial schedule; readjust resource arrays 

and goto Step 2; 

Step 4: (Find feasible start time) 

tp := max{CTfc; k S T?gx }', t* := max{<p, STg^^}; determine the earliest resource feasible start 

time t,t* <t < LFgi - dgi, of job if scheduling is impossible goto Step 2, eise set ST9t := t; 

CTgi := t + dgi-, ACSi := *4C<S;_i U {g,} and adjust resource arrays; 

Step 5: (Check completeness) 

If i = J then goto Step 7; 

Step 6: (Update the eligible set) 

i := i + 1; calculate the new des cendant set Yi : = U {k (E S gi_, \ Vk C _4CS;_i}; 

Ni := |Fi|; Ni := 0; goto Step 2; 

Step 7: (Store Solution and adjust time bounds) 

Store Solution g3, STgj, j = 1,..., J\ 

Set LSj := LSj - {LFj - CTj + 1), j = l,...,J; 

and LFj := LFj — (LFj — CTj + 1), j = 1,..., J; 

Step 8: (Calculate lowest indexed level violating the time window) 

i* min{& £ {1,..., J}; CTgk > LFgil}; 

Step 9: (Variable-level backtracking) 

Readjust resources used by jobs gi,, k = J, — 1; 

i := i* — 1; goto Step 2. 

Table 4: Minimizing the Project's Makespan 

Note, after finding an improved feasible Solution the backtrack level in the single-mode case differs from 

the one of the multi-mode case. In the multi-mode case the level that has to be visited is the lowest 

indexed level where the completion time of the activity scheduled on this level violates the new bound 

imposed by the adapted latest finishing time. On this level there might be another mode allowing the 

activity to be scheduled within the bounds. In the single-mode case the bound violation means, since 

scheduling strategy (*) is used, that the activity cannot be scheduled on this level, and we can track 
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another step back. 

4.2 The Bounding Rules 

In this subsection we will briefly summarize the bounding rules employed to accelerate the basic al

gorithm. Due to scheduling strategy (*) the (partial) schedule VS% related to a sequence of activities 

Seqi = [<71,.. .,<7,], i < J, is uniquely determined. However, in the representation of the rules, we 

sometimes need the starting times as well as the completion times of activities <71,..., gi, we will denote 

them by STgi,..., STgi and CTgi ,...,CTg>, respectively. 

For illustrational purposes, we will use the AON representation of a project as given in Figure 1 (cf. [9], 

p. 179). We assume that two renewable resources with constant availability of K\t = 2 and Kit = 3, 

t = 1 , ...,T, units per period have to be taken into account. The notation \j\kji, kj2] is chosen to 

represent the per-period usages of the resources of an activity j. Note, activity 1 and 8 are dummy 

activities, i.e., they have a zero duration and do not request any resource. Moreover, in order to simplify 

the description of the rules, the requests and durations of the remaining activities may vary from instance 

to instance. Moreover, we assume the eligible set to be examined with respect to increasing labeis. 

In the multi-mode ease we distinguished static and dynamic search tree reduetion schemes. The static 

schemes are preprocessing rules especially designed for the multi-mode problem with nonrenewable 

resources. For obvious reasons they do not play a role for the RCPSP. Moreover, the Non-Delayability 

Rule is already incorporated into the basic scheme. It states that an activity that cannot be scheduled 

within the bounds on the current level cannot be scheduled on later levels, either. 

The first rule is the so-called Single-Enumeration Rule. It excludes multiple enumeration of one and the 

same (partial) schedule. As to be seen from Figure 2, the sequences Seq3 — [1 ,2, 3] and Seq3 = [1,3,2] 

Figure 1: Example Network 
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produce the same starting time for activities 2 and 3, i.e., ST2 = ST3 = 0. Therefore Seq3 which is, due 

to ordering of the eligible set, analyzed after Seq3 needs not be continued. 

[3|1,0] 

[2|0,3] 
T 1 r i 1 i ' i ii i i i i i —i i 1 1 i 1 

0 5 10 15 20 25 

Figure 2: Single Enumeration Rule 

The Single Enumeration Rule presented in [24] is already efficient and avoids duplicate enumeration, 

but it can be further extended and simplified. First, the modification does not require an additional 

array for storing the start times. Second, further dominance due to feasible left-shifts (cf. [28]) is taken 

into account. We stress the assumption that the eligible sets are arranged with respect to increasing 

labels. 

Theorem 1 (Extended Single Enumeration Rule) 

Let Seqx+i = [<%,..., g,, #,+i] be the currently considered sequence. If (a) g,+i < and (b) STgi = 

STgi+1, then the current sequence Seqi+i is dominated by the (previously evaluated) sequence 

— [i?lj • • • j ffi—11 5i+l 

Proof: Due to numerically labeling of the network, (a) gi+i < implies that the sequence Seqi+1 = 

[#i, • • • > 9i-i,9i+i, gi] can be scheduled precedence feasibly by scheduling strategy (*). The equation (b) 

STgi+1 = STgi implies that start times STgt+l and STgi of activity gi+1 and & in the partial schedule 

associated with the sequence Seqi+1 =[#],..., gi-i, gi+i,gi] fulfill STgi+1 < STgi = STgi. That is, the 

previously evaluated continuations of the sequence Seqi+1 = [gi,..., gi-i, gi+\, gi\ dominate the ones of 

Seqi+1 = [5-1,..., gi+1], • 

Let use assume that the start times of the three activities 2, 3 and 4 of the network given in Figure 1 

are ST2 = 5T3 = ST4 independently of the sequence they are scheduled in. Applying Theorem 1 shows, 

that, although only pairwise comparisons are used, the more general concept with k activities having 

sequence independent starting times STgi+l = • • • = STgi+k is realized. That is, from originally kl 

continuations to be examined only one has to be selected, that is, (kl — 1) continuations can be saved 

(cf. [25]). 

As already mentioned, the Extended Single Enumeration Rule Covers dominance due to feasible left-

shifts, producing partial schedules that have been previously evaluated. The Local and the Global 
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Left-Shift Rule, which we will summarize in the sequel, additionally identify partial schedules that 

are dominated by schedules to be found later in the enumeration process. The Local and the Global 

Left-Shift Rule make use of the fact that the set of semi-active and active schedules, respectively, is a 

dominant set with respect to any regulär measure of Performance (cf., e.g., [28]). 

[5|M] [4|2,1] 

[2|0,3] ... ... .. _ 
[3|0,2] 

1 1 1 ? 1 ' 
i ' [6|0,2] 

1 1 | 1 1 1 \ ! 1 1 T 1 1 
0 5 10 15 20 25 

Figure 3: Local Left-Shift Rule 

In Figure 3 we see that in the partial schedule associated with the current sequence Seq6 = [1,2,3, 5, 4,6] 

activity 6 can be locally left-shifted, i.e., started one period before STe = 11, which results from (*), 

i.e., STgi < STgi+1, without violating the precedence or resource constraints. Döing so frees resources 

in period STe + de = 15, for scheduling the remaining activities. The rule has been successfully used 

in, e.g., [5], [29] and is stated in the following theorem: 

Theorem 2 (Local Left-Shift Rule) 

Let 5eg,+i = [gi,..., <%, gi+i] be th e currently considered sequence. If activity g;+1 has the same start 

time as activity gi, i.e., STgi — S Tgi+1, and can, by neglecting (a) of scheduling strategy (*), be started at 

ST = STgi+1 — 1 then the sequence Seqt+i is dominated by the sequence Seqi+1 = [gi,.. •, g;-i, <?;+1, gi]• 

Note, since we have considered only a one-period left-shift, the Local Left-Shift Rule does not imply 

that all the continuations of Seqi — [gi , • • -, gi] a re dominated. The stronger implication is only valid 

if activity can be started at a time ST, ST < STgi — dgi+l. We use Figure 4 for Illustration, 

and analyze the sequence Seq6 = [1,2,3,5,6,4]. Note, activity 4 can not be locally left-shifted. Since 

n [6)0,2] 
[2|0,2] 

1 1 1 1 
[3|0,2] 

> 1 1 
[5|2,1] [4|1,1] 

—r r 
0 5 10 15 20 25 

Figure 4: Global Left-Shift Rule 

activity 4 can be started at ST4 = 0 without violating the constraints, we can free resources in periods t, 

t = ST4-j-1,..., ST4+0^4 = 15,..., 17, as a result of which the availability of the resources for scheduling 

the remaining activities is increased. Note, whereas in [25] we suggested backtracking to the previous 

level, we will now strengthen the effect by some additional considerations. Rescheduling an activity on 
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the previous level, i.e., level 5, does not eliminate the feasibility of the global left-shift of activity 4. 

For achieving this we have to track further steps back. The level which has to be revisited to eliminate 

the feasibility of the left-shift of activity 4 is the minimum level where the activity currently scheduled 

on, has a start time which is at least equal to the completion time obtained from the left-shift, i.e., 

CT4 — ST 4 + <£4 = 4. That is, for the instance, we have to track back to level 3 to eliminate feasibility 

of the left-shift. We include this aspect and summarize as a theorem: 

Theorem 3 (Global Left-Shift Rule) 

Let Seqi = [gi, • • •, gi] be t he sequence currently considered. If, by ignoring condition (a) of scheduling 

strategy (*), the sequence Seqi can be f easibly continued by scheduling activity g%+i with a minimal start 

time STgi+1 and related completion time CTgi+l. such that for a k 6 {1,..., i} 

^ 

then all the continuations of Seq^ — [ <?i, • • •, gk] are dominated. 

We can learn more from the Global Left-Shift Rule. That is, by recording the minimum completion 

time CT™™ of the activities g, g = Yi+i:jv, N = 1,... N1+i — 1, already tested to continue the sequence 

Seqi = [<71,..., gi], we obtain a bound on the start time STgi+1 of an activity gj+i from Y;+i. If the 

start time of the currently considered activity fulfills STgi+1 > CT™£ then a continuation of 

Seqi+1 = [gi,...,gi,gi+1] is dominated by a continuation Seqi+2 = [fifi, • • 9i+i] with g™f 

producing the minimum completion time on level (i + 1). We capture the following remark: 

Remark 1 (Extended Global-Left Shift Rule) 

Let Seqi+i = [51,..., gi, 5;+i] be t he sequence currently considered with <7,+i = K+I,JV,+1 • Let CT™* 

be the minimum completion time of the activities g, g = N = 1,..., iV,+i — 1 in Seqi+i = 

[gl,.. .,9i,g]. If STgi+1 > CTffi, then Seqi+i cannot be con tinued to an active schedule. 

Note, by commonly applying the Local and the (Extended) Global Left-Shift Rule only active schedules 

are generated. The Local as well as the (Extended) Global-Left Shift Rule can be employed when 

optimizing any regulär measure of Performance (cf. [25]). 

The next rule we present is derived from the Multi-Mode Cut-Set Rule I p resented in [25]. In the single-

mode version, on the one hand, it Covers portions of the cut-set rule presented by Demeulemeester 

and Herroelen (cf. [5]), but, on the other hand, it requires only a fraction of the memory used by 

Demeulemeester and Herroelen. 

For a given sequence Seql = [gi, • • •, gi\ we refer to the set of currently scheduled activities ACSi = 

U;=i {(/j} as the cut-set associated with sequence Seqi and denote the maximum completion time as 



CTmax(Seqi), i.e., CTmax(Seqi) = max*=1{5Ta3 + dgi}. Using the definition we can now illustrate a 

multi-mode suitable Version of the cut-set rule. We study the partial schedules induced by the sequences 

Seq7 = [1,2,3,5,4,6,7] and Seq7 = [1,2,4,6,3,5,7] (cf. Figure 5), respectively. We note, (a) on level 6 

both sequences have the same cut-sets, i.e., ACS6 = ACSe, and (b) the start time of activity 7 currently 

considered to continue the sequence fulßUs JT? = 13 > CT—(^) = 13, that is, the left-over 

capacities associated with Seqi = [1,2,4,6,3,5,7], in periods t = 13, ...,T, at most match with the 

ones of S^7 = [1,2,3,5,4,6,7]. Therefore, since scheduling strategy (*) is used, the continuations of 

Seq-i are dominated by previously evaluated continuations of Seq7. The rule is captured in Theorem 4. 

[512,0] [6|1,1] [7(0,2] 

[2|2,3] [3|0,3] [4|U] 
I 
I 
I 

[6|1,1] [5 j 2,0] Seq7 = [1,2,4,6,3,5,7] 

1 1 1 1 1 1 1 1 i i 1 
[2|2,3] 

1 " - r 1 -
[4|1,1] [310,3] 

—1 1 1 
[710,2] 

1 1 1 

Seq7 = [1,2,4,6,3,5,7] 

1 1 1 1 1 1 1 1 i i 1 
0 5 10 CTmax{Seq6) 15 20 25 

Figure 5: Cut-Set Rule 

Theorem 4 (Cut-Set Rule, Dominated Heads) 

Let Seqi = [<71,..., gi\ be the sequence currently under consideration to be c ontinued by feasibly schedul

ing activity gi+\. If the start time STgi+l is at least equal to the maximum completion time CTmax (Seq^) 

obtained from a previously evaluated sequence Seq{ = [<?!,...,&] with same cut-set, i.e. = 

U}=i {Sj}, ^en Seqi+i = [41,. ..,gi,gi+1] is dominated by Seqi+l = [ffl5.. .,̂ ,flf»+i]. 

The rule can be efficiently realized by coding the cut-sets through integers and storing them in binary 

level dependent trees. For dealing with other (regulär) measures of Performance only minor modifica-

tions are necessary. 

Clearly, our variant of the cut-set rule can be reformulated to the variant implemented by Demeulemeester 

and Herroelen (cf. [5]): We compare the current sequence Seqi, which is to be extended by starting 

activity gl+i at STgi+l, with the sequence Seqi previously evaluated. If (a) ACSi = ÄCSi, and (b) 

CTgk < CTgk for all gk € ACS{ with CT9k > 5TSi+1, then the sequence Seqi+1 = [gi,.. .,gi+\] is 

dominated by a continuation of ~Seql. An instance is given in Figure 6. It is = ~Seq5 = [1,2,3,4,5], 
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Seqi = Seq5 = [1, 2,4,3,5], and ge = 6. That is, Seq6 = [l,2,3,4,5,6]dominatesSe?6 = [1,2,4,3,5,6]. 

[3)1,1] [5|1,2] 
Seq6 — [1,2, 3,4,5,6] 

[2(0,2] [4(0,1] | [6|1,1] 2] 

[4|0,1] [5|1,2] 
£^ = [1,2,4,3,5,6] 

[2|0,2] [3|1,1] [6|1,1] 
—i 1— 1 1 1 1—i— 

o 5 10 15 20 25 

Figure 6: Simple Permutation Rule 

Since, for a given sequence, beside the cut-set, additionally those activities that finish after the start time 

of the finally scheduled activity have to be stored together with their completion times, this formulation 

requires far more memory (cf. Section 5 and [6]). Consequently, the strengthened efFect can only be 

realized on very well equipped and expensive Computers. Even for solving problems with the modest size 

of 32 activities 24 MB are necessary for füll exploitation. Consequently, we stay with our Implementation, 

and enhance our algorithm, instead, by the Simple Permutation Rule that Covers other portions of the 

Demeulemeester/Herroelen variant of the cut-set rule without requiring a substantial increase of memory 

utilization. 

In the lower part of the Gantt chart displayed in Figure 6 we see that activity g^ — 3 finishes before 

activity ge is started, and, moreover, that activity <74 = 3 can be interchanged with the higher labeled 

activity g3 = 4, which is scheduled on a lower level. Interchanging both activities does not violate the 

precedence or resource constraints. Taking into account that the eligible sets are ordered with respect 

to increasing labels, we note that the sequence Seq6 = [1,2,3,4,5,6] has been analyzed in an earlier 

phase of the enumeration, i.e., before Seq& = [1,2,4,3,5,6]. Since the left-over capacities in periods 

t = ST6 + 1,..., T of the current sequence Seq6 at most match with the one of the previously studied 

sequence Seq6, the current sequence is dominated. 

Theorem 5 (Simple Permutation Rule) 

Let Seqi — \g\, •.., gi\ be the sequence currently considered to be continued by scheduling activity 5,-1-1 

at STgi+l. If there is an activity gk, with k < i and CTgk < STgi.+I that can be interchanged with 

an activity gi with l < k and g\ > gk, such that, gk Starts at STgi and gi finishes at CTgk then the 

continuations of the current sequence Seqi+i = [gi,. - -, 9«, ffi+i] are dominated by a previously evaluated 

sequence. 
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The next rule we present is, to the best of our knowledge, the first one that offers a necessary condition 

for optimality of a continuation of a partial schedule. We assume the resource availabilities to be 

constant. We study the sequence Seqe = [1,2,3,4,5,6] with the partial schedule given in the lower part 

of Figure 7. We currently consider activity 7 for scheduling. We will denote the largest completion 

time of the activities already scheduled by CTmax(Seqe) and the second largest completion time by 

CT™**(Seqe), i.e., it is CTmax{Seq&) = CT6 = 14 and CT^(Seq6) = CT$ = 12. The start time of 

activity 7 is equal CTm(LX (Seqs) = 14. 

[2|1,1] [6|0,1] [5|2,1] 

[3|1, 2] [4(0,2] [7 J7|2,3[] 
Seq7 = [1,2,3,6,4,5,7] 

[2|1,1] [5|2,1] Seq7 = [1,2,3,4,5,6,7] 
[3|1,2] 

1 II 1 
[4|0,2] 

1 1 1 1 
[6|0,1] 

1 1 1 
[7|2,3] 

1 1 

Seq7 = [1,2,3,4,5,6,7] 

10 15 20 

Figure 7: Non-Optimality Rule 
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Activity 6 as a whole cannot be left-shifted, but 3 periods of it could be left-shifted to start at period 

ST = 3, and, which would leave A = 1 period unscheduled. That is, inserting activity 6 at the 

named position would require a delay of at most A = 1 period (s) of activity 4 and 5. On the other 

hand, if activity 6 is removed from the partial schedule, then activity 7 could be started Amax = 

CTmax(Seqe) - CTmax(Seqe) = 14 - 12 = 2 periods earlier than in the current partial schedule. That 

is, as to be seen in the upper part of the graphic, inserting activity 6 at ST = 3 would reduce the 

makespan of the continuations of Seq7 = [1,2,3,4,5, 6,7] by at least Amax - A = 2 - 1 = 1 period (s). 

We capture the following theorem: 

Theorem 6 (Non-Optimality-Rule) 

Let Seqi = [gi,be the sequence currently considered, to be continued by scheduling gi+1- If 

(a) 5Tgi+1 CT {Seq{), (b) A periods of the activity gmax which induces the maximum comple

tion time CTmax(Seqi) can be le ft-shifted, and (c) the difference Amax between the largest and second 

largest completion time of the activities already scheduled is larger than the non-left-shiftable portion 

o/ ocüwfy i.e., A""= = > d,— _ A, Wen a confmwoöon 

Seqi+i = [gi, • • - ,gi,gi+1] cannot be m akespan minimal. 

Finally, we have implemented the following variant of the bound LB3 from Mingozzi et. al. (cf. [16]). 
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The bound is valid when resource availability is constant. In a preprocessing routine we generate a 

priority list of the set of activities. Each activity g in the list is assigned another list of activities 

containing all the activities that can be performed simultaneously with activity g without violating the 

precedence and resource constraints, and which are not placed before activity g in the priority list. 

Düring the enumeration at each node of the branch-and-bound tree an activity which is scheduled is 

eliminated from the priority list, and again added to the list through backtracking. The remaining 

activities in the priority list are considered from the beginning to the end of the priority list. Starting 

with LB = 0, and no activity marked, the first non-eliminated and non-marked activity is selected and 

its duration is added to LB. Afterwards the elements from its list are marked. The procedure continues 

as far as unmarked elements can be found in the priority list. The finally valid LB is then a bound on 

the minimal time necessary to complete the partial schedule. 

Clearly, in general, the quality of the bound obtained depends on the priority rule used to built the 

list. In our Implementation we have built three priority lists and determined the bound LB3 as the 

maximum of the bounds obtained from all the priority lists. The lists have been determined by (a) 

using maximum duration as first criterion and size of individual list as tie-breaker (cf. [6]), (b) vice 

versa and (c) minimum slack with arbitrarily broken ties. Since the quality of the bound obtained 

from a priority list obviously depends on the cut-set only, we have calculated them only once, when the 

cut-set is generated for the first time and stored them in the related structure. 

5 Computational Results 

In this section we present the results of our computational analysis. The algorithm has been coded 

in GNU C and implemented on a personal Computer (80486, 66 MHz, 16 MB) operating under OS/2. 

The multi-mode version studied in [25] and [26] served as the basis of our Implementation. Only minor 

changes have been performed: E.g., (a) mode-indices have been eliminated, (b) the data structures 

have been adapted due to the absence of nonrenewable resources, (c) the renewable resources have been 

merged into global resources (cf. [6]). That is, assuming per-period availability and requests of less than 

256 units, the availability of and the requests for four resources can be represented by a 32 bit unsigned 

integer. Döing so resource profiles can be checked and adapted for four resources simultaneously. (d) 

The bounding-rules have been enhanced as described in Subsection 4.2. Note, all the rules but the 

variant of the rule proposed by Mingozzi et al. (cf. [16]) can be fitted to serve in the multi-mode ease as 

well, (e) Assuming constant resource availability, like Demeulemeester and Herroelen, the determination 

of the earliest precedence and resource feasible start time can be simplified. Due to scheduling strategy 
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(*) it suffices to determine a single period where the resource availabilities allow scheduling of the current 

activity to establish resource feasibility within the remaining periods. This change reduces the average 

computation time of the more general Version taking into account time varying resource availability by 

some ten percent. 

The procedure has been tested on the Standard benchmarkset produced by the project generator ProGen 

(cf. [15]). The projects consist of 32 activities (including two dummy activities), and 4 renewable 

resources. The network complexity NC, which is defined as the number of non-redundant arcs per 

activity is 1.5, 1.8, and 2.1. The resource strength RS as a normalized measure of scarceness of the 

resources is 0.2, 0.5, 0.7, and 1.0. The resource factor RF reflecting the average number of resources 

requested by an activity has been set to 0.25, 0.50, 0.75, and 1.00. Ten instances per combination of 

NC, RS, and RF have been generated. Giving a total of 3 • 4 • 4 • 10 = 480 instances. 

The results are compared with the state-of-the-art algorithm developed by Demeulemeester and Her

roelen (cf. [6]), hereafter named DH96. They are displayed in Table 5. The first column of the table 

DH96 Priority Rule 

Mem. CPU Mem. JobNr SLK LFT LST EFT EST DUR RU RK RUS \s\ RU5 

[sec.] min min min min min min min min min min min max max 

466 256 KB 56.46 400 KB 1.08 1.25 1.11 1.15 1.05 0.98 1.21 1.25 1.06 1.17 1.08 1.07 1.17 

470 1 MB 17.13 400 KB 1.41 1.65 1.46 1.55 1.36 1.30 1.55 1.60 "1.37 1.52 1.37 1.42 1.62 

475 4 MB 6.23 400 KB 2.69 3.18 2.88 3.01 2.25 2.29 2.49 2.47 2.50 2.93 2.28 2.83 3.04 

478 16 MB 10.44 400 KB 9.78 11.50 8.99 12.71 7.73 11.31 9.49 10.30 9.33 11.76 10.33 10.93 11.90 
479 24 MB 12.33 400 KB 16.17 17.29 16.41 18.62 12.85 17.33 14.74 14.64 15.26 18.03 17.84 17.21 18.36 

Table 5: Average CPU-Times [sec.] on 480 ProGen Instances 

shows the number of problems that could be solved by DH96 within 3600 seconds on a IBM personal 

Computer (PS/2 Model P75, 25 MHz) allowing the memory used to be as much as given in the second 

column. The average CPU-time to solve these problems is listed in the third column. The fourth 

column shows the memory requirements of our algorithm. The remaining columns exhibit the average 

CPU-times for the different priority rules employed to order the sets of eligible activities. We have 

implemented (1) minimum job number minJobNr, (2) minimum slack minSLK, (3) minimum latest 

finish time minLFT, (4) minimum latest start time minLST, (5) minimum earliest finish time minEFT, 

(6) minimum earliest start time minEST,(7) minimum duration minDUR, (8) minimum cumulated re

source usage minRU, (9) minimum rank minRK, (10) minimum number of (direct) successors min|<S|, 

(11) minimum cumulated resource usage of (direct) successors minRUS, (12) maximum number of (re-
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flexive transitive) successors max|<S| , (13) maximum cumulated resource maxRU|S| usage of (reflexive 

transitive) successors. From the table one can observe, the difference between the priority rules are 

only marginal. The rule that performed best is minimum earliest finish time minEFT. Our algorithm 

clearly outperforms DH96 when making only modest use of memory, i.e., up to 1 MB. Taking a com-

parison factor of 2.7 to balance the difference clockpulses (DH96/25 MHz, 66 MHz) of the different 

machines, our algorithm is as fast as DH96, if we allow DH96 to use 4 MB of memory. If memory use 

can be excessive, i.e., 16 MB and more, than DH96 is slightly faster. Since, in general, the memory 

requirements exponentially grow with number of activities the project consists of, memory will become 

a critical resource. Conservative estimations of memory requirements for DH96 have to be settled at 

least at 500 MB and for our approach at most at 5 MB for 62-activity projects. 

Priority-

Rule [0;0.5] (0.5-1] (1-5] 

Range of CPU-Times [sec.] 

(5-10] (10-100] (100-500] (500-3600] > 3600 

minJobNr 375 34 29 15 20 3 3 1 

minSLK 366 35 39 10 22 3 4 1 

minLFT 379 30 33 7 24 3 3 1 

minLST 380 27 34 9 22 3 4 1 

minEFT 379 25 36 10 23 2 4 1 

minEST 382 26 33 10 22 2 4 1 

minDUR 371 27 39 11 26 1 4 1 

minRU 365 31 40 10 28 1 4 1 

minRK 378 29 33 11 22 3 3 1 

min|«S| 372 36 28 11 25 3 4 1 

minRU<S 375 27 38 11 23 1 3 2 

max[«S| 375 31 35 9 22 4 3 1 

maxRU<S 374 28 36 12 22 4 3 1 

Table 6: Frequency Distribution of CPU-Times on 4 80 ProGen Instances (80486, 66 MHz) 

The heuristic capabilities of our algorithm have been studied too. Table 6 shows the frequency distri-

bution of Solution times of the exact algorithm. Table 7 reveals the capabilities of the truncated exact 

method in more detail. For the evaluation the quality of the Solution after an allotted CPU-time of 0.2, 

0.5, 1, 5 and 10 seconds has bee studied. We recorded the number of instances for which an optimal 
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Solution has been found within the time limit (#opt), the number of instances for which no Solution 

could be found within the time limit (#n. sol.), and the average percentage deviation of the best Solution 

found from the optimal makespan (A [%]). 

Priority Rule 

JobNr SLK LFT LST EFT EST DUR RU RK PI RU|<S| PI RU|<S| 

CPU-Time min min min min min min min min min min min max max 

0.2 sec. #opt. 335 343 351 356 333 351 321 314 339 330 340 344 333 

#n. sol. 0 1 1 1 0 0 0 0 0 0 1 2 2 

ä[%] 1.94 2.01 1.71 1.69 2.24 1.60 3.09 3.51 1.96 2.62 2.33 1.71 2.18 

0.5 sec. #opt. 400 394 399 401 392 408 393 382 403 395 398 407 401 

# n. sol. 0 1 0 0 0 0 0 0 0 0 0 1 0 

Ä[%] 0.94 0.98 0.95 0.94 1.17 0.85 1.53 1.68 0.88 1.24 1.16 0.85 1.03 

1 sec. #opt. 422 423 426 427 418 425 413 409 426 422 421 427 418 

# n. sol. 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ä[%] 0.65 0.65 0.63 0.65 0.78 0.56 0.99 1.11 0.58 0.80 0.71 0.59 0.72 

5 sec. #opt. 452 450 450 449 451 453 449 446 453 447 452 451 449 

# n. sol. 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ä[%] 0.30 0.31 0.30 0.32 0.31 0.28 0.43 0.45 0.28 0.36 0.28 0.29 0.30 

10 sec. # opt. 462 458 457 455 462 461 459 456 462 459 459 459 460 

# n. sol. 0 0 0 0 0 0 0 0 0 0 0 0 0 

ä[%] 0.21 0.22 0.23 0.24 0.19 0.20 0.31 0.30 0.19 0.22 0.21 0.20 0.22 

Table 7: Truncated Exact Method - Quality of Solution vs. CPU-Time on 480 ProGen Instances (80486, 66 
MHz) 

Within the time limit of 0.2 and 0.5 seconds the priority rules minSLK, minLFT, minLST, minRUS, 

max|»S|, and maxRU|<S| could not find a feasible Solution for some of the problems. This is mainly 

reasoned by the use of the shift-rules and the non-optimality rule which can exclude branches from 

further continuation due to dominance without having found any complete schedule. Especially the 

minSLK rule produces in the beginning of the enumeration schedules of low quality. Due to the serial 

scheduling strategy it first schedules the critical activities and later on the non-critical. This leaves 

available capacity in early periods unused and induces feasibility of left-shift when non-critical activities 

are considered, or excessive use of resources by precedence independent activities at the end. Therefore, 
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the results seem to confirm the evaluation of serial and parallel Single- and multi-pass priority rule 

based heuristics from Kolisch (cf. [13]). Kolisch found out that minSLK performs bad within in a serial 

approach and good in a parallel one. Note, since the procedure developed by Demeulemeester and 

Herroelen (cf. [5], [6]) can be considered as a scheme following parallel strategy in contrast to the one 

presented here using a serial strategy, there is a fundamental difference in the effect of the minSLK rule. 

However, the differences of the Performance of the priority rules are reduced the more time the algorithm 

is allotted. Moreover, alike for the exact approaches, a comparison of the truncated exact method 

employing, e.g., the minEST rule, with the truncated Version of DH96 reveals the quality of the results. 

Although our algorithm requires only 400 KB memory, compared to 24 MB used by DH96, the average 

deviations are nearly identical. On a personal Computer (IBM PS/2 Model P75, 80486dx, 25 MHz) the 

average deviation of DH96 has been 0.84% (0.62%, 0.33%, 0.12%) for an allotted CPU-time of 0.5 (1.0, 

5.0, 30.0) seconds. 

The quality of the results of the truncated exact method is additionally emphasized by a comparison 

with the heuristics, e.g., from Kolisch/Drexl and Naphade et al. developed for the RCPSP. 

Kolisch/Drexl (cf. [14]) tested their parameterized regret-based sampling algorithm on those resource-

constrained projects, i.e., with RS < 1, the optimal Solution of which are known from the analysis in 

[15]. Using a sample size of 500 (100, 10) requiring 3.09 (0.69, 0.11) seconds of CPU-time on a personal 

Computer (80486dx, 60 MHz) the problem instances have been solved with an average deviation of 

0.71% (1.22%, 2.53%) from optimum. 

Naphade et al. (cf. [17]) made use of the optimal makespans found during 3600 seconds by DH92 (cf. [5]) 

within the evaluation of ProGen (cf. [15]). Their local search method that builds up on their ideas for 

the job shop problem determines an optimal Solution for 371 of the 428 problem instances optimally 

solved by DH92 and achieves an average deviation of 0.56% within 3.33 seconds on a Workstation (IBM 

RISC 340-400 M). 

6 Conclusions 

We have presented an algorithm for the resource-constrained project scheduling problem. The algorithm 

has been tested on the Standard benchmark set generated by ProGen (cf. [15]). The computational 

results show that, beside of the theoretical benefits (1) ease of description, (2) ease of Implementa

tion, and (3) ease of generalization, practical advantages as (1) reasonable Performance and (2) low 

memory requirements make its use favourable especially when attacking larger problems or variants of 

the resource-constrained project scheduling problem (cf., e.g., [25], [26]). 
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The approach can compete with the best Solution procedures currently available. The algorithm uses 

far less memory than the state-of-the-art procedure DH96, i.e., 400 KB versus 24 MB, for solving the 

Standard benchmark set with projects consisting of 32 activities. It definitely outperforms DH96 if both 

approaches are allowed to make limited use of memory. Since, in general, the memory requirements 

exponentially grow with number of activities the project consists of, memory will become a critical 

resource. Conservative estimates of memory requirements for DH96 approach have to be settled at least 

at 500 MB and for our approach at most at 5 MB for 62-activity projects. Therefore, we conjecture 

that the use of our algorithm will be especially beneficial when dealing with larger problems. Moreover, 

since comparison pruning is nearly exhausted in the approach by Demeulemeester and Herroelen, we 

believe that our algorithm will gain more by the development of new dominance rules and bounds. 

Acknowledgements: I would like to thank Andreas Drexl and Sönke Hartmann for helpful comments 

and suggestions. 
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