
Schirmer, Andreas; Riesenberg, Sven

Working Paper  —  Digitized Version

Parameterized heuristics for project scheduling: Biased
random sampling methods

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 456

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Schirmer, Andreas; Riesenberg, Sven (1997) : Parameterized heuristics
for project scheduling: Biased random sampling methods, Manuskripte aus den Instituten
für Betriebswirtschaftslehre der Universität Kiel, No. 456, Universität Kiel, Institut für
Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/177316

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/177316
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Manuskripte 

aus den 

Instituten für Betriebswirtschaftslehre 

der Universität Kiel 

No. 456 

Parameterized Heuristics for Project Scheduling 

- Biased Random Sampling Methods 

Schirmer, Riesenberg 

September 1997 

Andreas Schirmer, Sven Riesenberg 
Institut für Betriebswirtschaftslehre, Lehrstuhl für Produktion und Logistik 

Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, D-24118 Kiel, Germany 

Phone, Fax +49-431-880-15 31 
E-Mail schirmer@bwl.uni-kiel.de 

http://www.wiso.uni-kiel.de/bwlinstitute/prod  
ftp://www.wiso.uni-kieI.de/pub/operations-research 



Contents 

1. Introduction 1 

2. Resource-Constrained Project Scheduling 2 

2.1. Problem Setting 2 

2.2. Model Formulation 3 

3. Priority-Rule Based Scheduling 4 

3.1. Scheduling Schemes 4 

3.2. Priority Rules 9 

4. Parameterized Random Sampling Methods 13 

4.1. Classical Random Sampling Schemes 13 

4.2. New Random Sampling Schemes 16 

4.3. A Note on the Rules MIN LST and MIN SLK 20 

5. Experimental Analysis 21 

5.1. Experimental Design 21 

5.2. Computational Results 22 

5.3. Conclusions 37 

6. Summary 38 



ii 

Figures 

Figure 1: BRS-AVT - Effect of M on Selection Probabilities 16 

Figure 2: RBRS - Effect of 8 on Selection Probabilities (Varying Priorities, Constant e) 17 

Figure 3: RBRS - Effect of e on Selection Probabilities (Constant Priorities, Varying e) 18 

Figure 4: NBRS - Effect of extr on Selection Probabilities 19 

Figure 5: MRBRS - Effect of a - Deviations 30 

Figure 6: Effect of Iterations and Random Sampling Schemes - Deviations 36 

Figure 7: Effect of Iterations and Priority Rules - Deviations 37 



iii 

Tables 

Table 1: Problem Parameters of the RCPSP 3 

Table 2: Senal Scheduling Scheme 6 

Table 3: Parallel Scheduling Scheme 8 

Table 4: Network- and Time-Based Rules - Definition and Classification 11 

Table 5: Resource-Based Rules - Definition and Classification 12 

Table 6: A Counterexample on the Equivalence of MIN LST and MIN SLK 20 

Table 7: KSD-Instance Set J30 - Varied Design Parameters 22 

Table 8: Effect of a - Deviations (SSS) 23 

Table 9a: Effect of a - Deviations (PSS, Network- and Time-Based Rules) 24 

Table 9b: Effect of a - Deviations (PSS, Resource-Based Rules) 24 

Table 10: Effect of a - CPU Times 25 

Table 11: Effect of Priority Rules - Deviations (SSS) 26 

Table 12a: Effect of Priority Rules - Deviations (PSS, Network- and Time-Based-Based Rules) 26 

Table 12b: Effect of Priority Rules - Deviations (PSS, Resource-Based Rules) 27 

Table 13: Promising Priority Rules 28 

Table 14: Effect of Priority Rules - CPU Time 28 

Table 15: Best oc-Values 29 

Table 16: Effect of Priority Rules and a - Deviations (SSS, RBRS) 30 

Table 17: Effect of Priority Rules and a - Deviations (PSS, RBRS) 31 

Table 18: Effect of Scheduling Schemes and Iterations - Deviations 32 

Table 19: Effect of Scheduling Schemes - CPU Times 32 

Table 20: Effect of Random Sampling Schemes - Deviations (Promising Algorithms) 33 

Table 21: Best Rules and a-Values 34 

Table 22: Effect of Random Sampling Schemes - Summary (Best Algorithms) 35 

Table 23: Effect of Iterations and Random Sampling Schemes - Deviations 35 



1 

Abstract: The resource-constrained project scheduling problem is notoriously intractable. Due to its 
complexity, the majority of algorithms are heuristics, of which priority rule-base d methods constitute 
the most important class. Of these, parameterized biased random sampling methods outperform all 
other priority rule-based methods known. D ifferent random sampling schemes have been proposed; of 
these the regret-based scheme (RBRS) of Drexl (1991) is currently the best-performing one. Yet, care-
ful analysis reveals each of these schemes to possess some immanent flaw whose effects may lead to 
significant distortions of the scheduling process. Thus, we propose some new sampli ng schemes, 
completely avoiding some of the effects while grossly reducing others. We discuss a comprehensive 
experimental evaluation of both classical and new schemes; in addition, we substantially extend the 
analysis on serial and parallel scheduling heuristics of Kolisch (1996b). Our results indicate that some 
of the new schemes offer significant improvements over existing sampling algorithms, the best-per­
forming one improving upon the RBRS by more than ten percent. Also, we expose detailed insight into 
which parameter settings are the most beneficial for different algorithmic schemes. 

Keywords: HEURISTICS; PRIORITY RULES; PROJECT SCHEDULING 

1. Introduction 

The resource-constrained project scheduling problem (RCPSP) is notoriously intractable. Its 

optimization variant is known to be strongly NP-hard, even strongly NP-equivalent (Schirmer 

1996); indeed, assuming a deadline to be given for the project completion even its feasibility 

variant is strongly NP-complete (Garey, Johnson 1975). Consequentially, if one insists on al­

gorithms guaranteed to find an optimal Solution, the current State of the art still has only expo-

nential answers to offer. These include implicit enumeration methods (Talbot, Patterson 1978; 

Christofides et al. 1987; Alvarez-Valdes, Tamarit 1989; Tavares 1990; Demeulemeester, Her-

roelen 1992, 1995; Mingozzi et al. 1994; Sprecher 1996), zero-one programming (Bowman 

1959; Pritsker et al. 1969; Patterson, Huber 1974; Patterson, Roth 1976), and dynamic pro­

gramming (Carruthers, Battersby 1966). Yet, considering the complexity of the RCPSP, it 

comes as no surprise that the majority of algorithms devised are heuristic in nature. From their 

wealth, construction methods (priority rule-based algorithms, disjunctive arc methods), itera­

tive improvement methods (local search, genetic algorithms), and incomplete exact methods 

(truncated branch-and-bound) have been developed. No approximation algorithms are re-

ported in the literature that we are aware of. Detailed reviews of algorithms for the RCPSP are 

given e.g. in Herroelen (1972); Davis (1973); Patterson (1984); Kolisch, Padman (1997). 

Of the heuristics proposed, priority rule-based methods despite their age still constitute the 

most important class of scheduling methods. Kolisch (1996b) names several reasons for their 

popularity. First, they are straightforward and easy to use which makes them easy to imple-

ment. Actually, most commercial scheduling Software relies on simple priority rules (De Wit, 

Herroelen 1990; Kolisch 1997). Second, they are inexpensive in terms of Computer time and 

memory required which makes them amenable even for large instances of computationally in­

tractable problems. Third, their inexpensiveness allows to integrate them as fast "subroutines" 

into more complex metaheuristic algorithms (Storer et al. 1992; Bean 1994; Leon, Balakrish-

nan 1995; Naphade et al. 1995; Lee, Kim 1996; Özdamar 1996; Hartmann 1997). 
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Of these in tum, parameterized biased random sampling methods have recently attracted par-

ticular interest, due to the fact that they currently outperform all other priority rule-based 

methods known, in particular deterministic ones (Kolisch 1996b). Different random sampling 

schemes have been proposed of which the regret-based scheme (RBRS) of Drexl (1991) is the 

best-performing one currently known. Careful analysis, however, reveals each of these 

schemes to possess some immanent flaw whose effects may lead to significant distortions of 

the scheduling process. We therefore propose some new sampling schemes, each of which 

completely avoids some of the adverse effects while grossly reducing others. The results from 

a comprehensive experimental evaluation of both classical and new schemes are discussed; in 

addition, we substantially extend the analysis on serial and parallel scheduling heuristics pre-

sented in Kolisch (1996b). Our results indicate that some of the new schemes offer significant 

improvements over existing sampling algorithms, the best-performing one improving upon the 

RBRS by more than ten percent. Also, we expose detailed insight into which parameter set-

tings are the most beneficial for different algorithmic schemes. 

This paper is organized along the following lines. The RCPSP is briefly introduced in Section 

2. The fundamentals of priority rule-based scheduling, i.e. scheduling schemes and priority 

rules are covered in Section 3. Random sampling schemes are discussed in Section 4. Section 

5 is devoted to the experimentation carried out. Some summarizing remarks in Section 6 con-

clude the paper. 

2. Resource-Constrained Project Scheduling 

2.1. Problem Setting 

The classical single-mode variant of the resource-constrained project scheduling problem can 

be characterized as follows: The Single project consists of a number of activities of known du-

ration; all activities have to be executed in order to complete the project. Düring their nonpre-

emptable execution the activities request renewable resources whose available amount is lim­

ited in each period by a constant capacity. Precedence relations between activities stipulate 

that some activities must be finished before others may be started. Table 1 summarizes the 

problem parameters of the RCPSP, where w.l.o.g. J, R, dj, Kr (kjr) are assumed to be positive 

(nonnegative) integers. 

The goal is to find an assignment of periods to activities (a schedule) that Covers all activities, 

ensures for each renewable resource r that in each period the total usage of r by all activities 

performed in that period does not exceed the per-period availability of r, respects the partial 

order Z, and minimizes the total project length. 
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Problem Definition 
Parameter 

dj Duration of activity j 

J Number of activities, indexed by j 

kjr Per-period usage of renewable resource r required to perform activity j 

Kr Per-period availability of renewable resource r 

R Number of renewable resources, indexed by r 

Z Partial order on the activities, representing precedence relations 

Table 1: Problem Parameters ofthe RCPSP 

2.2. Model Formulation 

To simplify the formulation of the model, w.l.o.g. it is assumed that the activities 1 and J are 

dummy activities, having durations and resource requirements of zero, and that activity 1 (J) is 

the unique first (last) activity w.r.t. Z. Also, several parameters are derived from the above 

problem parameters. First, in order to restrict the number of periods to be considered, let de-

note T an upper bound for the makespan of the project. Second, let denote Pj (2 < j < J) the set 

of all immediate predecessors of activity j w.r.t. Z. Third, for each activity j (1 < j < J) earliest 

finish times EFTj and latest finish times LFTj are calculated (Kelley 1961, 1963). Finally, let 

denote At (1 < t < T) the set of all (non-dummy) activities being active in period t and T the set 

of all periods in which at least one activity begins. Then, using integer variables yj (1 < j < J) 

to denote the period in which activity j is finished, the RCPSP can be couched as: 

Minimize 

Z(y) = yj (1) 

subject to 

yj < yj - dj (2 < j < J; i e Pj) (2) 

Xkjr<Kr (1 <r <R; te T) (3) 

jeAt 

EFTj <yj< LFTj (1 <j<J) (4) 

Minimization ofthe objective function (1) enforces the earliest possible completion of the last 

activity J and thus leads to the minimal schedule length. The precedence constraints (2) guar-

antee that the precedence order is respected while the capacity constraints (3) limit the total re­

source consumption of each renewable resource in each period to the available amount. 
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3. Priority-Rule Based Scheduling 

Priority rule-based methods consist of at least two components, viz. one (or more) scheduling 

schemes and one (or more) priority rules. A scheduling scheme determines how a schedule is 

constructed, building feasible/w// schedules (which cover all activities) by augmenting partial 

schedules (which cover only a proper subset of the activities) in a stage-wise manner. On each 

stage, the scheme determines the set of all activities which are currently eligible for schedul­

ing. In this, priority rules serve to resolve conflicts where more than one activity could be 

feasibly scheduled. 

3.1. Scheduling Schemes 

Two variants of scheduling schemes are usually distinguished, viz. serial and parallel ones. 

Serial scheduling methods (Kelley 1963) Start by numbering the candidates in such a way that 

no one gets a lower number than any of its predecessors. A schedule is then built by consider-

ing the candidates in order and scheduling them one at a time for earliest possible execution 

w.r.t. the constraints. In contrast, parallel scheduling methods1 proceed by considering the pe-

riods of the planning horizon in chronological order. In each period t, of those activities that 

may feasibly commence in t as many as possible are scheduled one at a time for starting in t. 

3.1.1. Serial Scheduling 

The serial scheduling scheme (SSS) divides the set of activities into three disjoint subsets or 

states: scheduled, eligible, and ineligible (cp. Kurtulus, Narula 1985). An activity that is al-

ready in the partial schedule is scheduled. Otherwise, an activity is called eligible if all its 

predecessors are scheduled, and ineligible otherwise. The scheme proceeds in N = J stages, in-

dexed by n. For notational purposes, we refer on stage n to the set of scheduled activities as Sn 

and to the set of eligible activities as decision setDn. Dn is determined dynamically from 

£n<-{jl je SnAPj£Sn} (1 < n < N) (5) 

On each stage n, one activity j from Dn is selected - using a priority rule if more than one ac­

tivity is eligible - and scheduled to begin at its earliest feasible Start time. Then j is moved 

from Dn to Sn which may render some ineligible activities eligible if now all their predeces­

sors are scheduled. The scheme terminates on stage N when all activities are scheduled. 

For a formal description of the SSS let denote RKrtn (1 < r < R; 1 < t < T; 1 < n < N) the re-

maining capacity of resource r in period t on stage n and LSTj the latest start time of activity j 

' Usually ascribed to Kelley (1963), they were actually introduced in their common form in an unpublished 
paper by Brooks in (1963), cf. the remarks in Bedworth, Bailey (1982); Kolisch (1995, p. 68). 
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(1 < j < J). Then the SSS can be formulated as in Table 2 (the details of selecting a job accord-

ing to (7) are discussed below), where EPSTj (EFSTj) denotes the earliest precedence-feasible 

(feasible, i.e. precedence- and resource-feasible) Start time of activity j. 

Initialization 

n < — 1 
FTj <— 0 
for each (1 < r < R; 1 < t < t) 

RKrti <- Kr 

•^n*- U) 

Exemtion 

for^ n <- 2 to J 
calculate Dn according to (5) 
if Z>n= ÜJ 

j*«-j 
eise 

select j* according to (7) 
EPSTj* <- max {FTj | jZj*} 
EFSTj# 4- min {x | EPSTj*<x<LSTj* A kj*r ^ RKrtn (l^r<R; x+l<t<T+dj*)} 
FTj* <— EFSTj* + dj* 
Sn<-Snu{j*} 
for each (1 < r < R; EFSTj* + 1 < t < FTj#) 

RKrtn R^rtn-1" ^j*r 
endfor 

Result 

For each activity j e Sn, FTj denotes the period in which j is finished. • 

Table 2: Serial Scheduling Scheme 

The SSS has been studied, among others, by Pascoe (1966), Müller-Merbach (1967), Cooper 

(1976)3, Boctor (1990), Valls et al. (1992), and Kolisch (1996b). Note that the SSS searches 

among the set of active schedules which always contains all optimal schedules for the RCPSP-

instance considered (Sprecher et al. 1995; Kolisch 1996b). 

2 We use the construct "for each ..." whenever the order in which the respective variable is instantiated is ir­
relevant for the algorithmic outcome, and the construct "for ... to ..." otherwise. 

3 Although Cooper claims his scheduling scheme to be parallel, it is actually a serial one. This seems to have 
been noted first by Valls et al. (1992). 
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3.1.2. Parallel Scheduling 

The parallel scheduling scheme (PSS) proceeds in N < J stages, indexed by n. Each stage n is 

associated with a schedule time tn. The scheme divides the set of activities into four disjoint 

subsets or states: active, finished, eligible, and ineligible (cp. Kurtulus, Narula 1985). A 

scheduled activity is active during its execution, afterwards it becomes finished. In contrast to 

the serial scheme, an activity that is neither active nor finished is called eligible if it could be 

scheduled w.r.t precedence and resource constraints, ineligible otherwise. Consequentially, 

the partial schedule consists of all active and finished activities. We refer to the set of active 

(finished, eligible) activities on stage n, i.e. in period tn + 1, as An (Fn, Dn). Another differ-

ence to the serial scheme is that each stage consists of two steps. First, the schedule time tn is 

iteratively set to the minimum of the finish times of all activities in An.\ (Johnson 1967); then 

activities with a finish time equal to tn are moved from An to Fn which in tum may make 

some formerly ineligible activities eligible, transferring them to Dn. This process is repeated 

until the decision set is indeed nonempty. Second, one eligible activity is selected, using a 

priority rule if more than one activity is eligible, scheduled to begin at the current schedule 

time, and moved from Dn to An; this second step is repeated as long as Dn is nonempty. The 

scheme terminales when each activity is scheduled, i.e. is either active or finished. 

For a formal description of the PSS, let denote RKm (1 < r < R; 1 < n < N) the remaining ca-

pacity of resource r at the schedule time tn. Dn is derived dynamically from 

Dn (j I j « APj cFn A kjr <RK^ (l<r<R)} (l<n<N) (6) 

Now, the PSS can be formulated as in Table 3 (selecting a Job according to (7) is discussed 
below). 
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Initialization 

n<- 1 
FTj <-0 

tn<-0 

Dn<-{j| 2<j<J-lA/»j = {l}} 

Exemtion 

call ScheduleActivities 
while |/lnuFn| <J 

repeat 
n <— n+1 
tn<-min {FTjl 

^n ^n-1 ^ { Je^n-11 = 

^n ^n-l u Üe^n-11 - lnl 
for each (1 < r < R) 

- ^jeAn kjr 
calculate Dn according to (6) 

until Dn & 0 
call ScheduleActivities 

endwhile 

Subroutine ScheduleActivities 

repeat 
ifZ>n = {j} 

eise 
select j* according to (7) 

FTj* <— tn + dj* 
Sn<-S„u{j*} 

u U*} 
for each (1 <r<R) 

<— RKm - kj*r 
calculate Dn according to (6) 

until Dn = 0 

Result 

For each activity j e Sn, FTj denotes the period in which j is finished. • 

Table 3: Parallel Scheduling Scheme 

The PSS has been examined by numerous authors, among these Pascoe (1966), Davis, Patter-

son (1975), Patterson (1973, 1976), Whitehouse, Brown (1979), Alvarez-Valdes, Tamarit 

(1989), Boctor (1990), Ulusoy, Özdamar (1989), Valls et al. (1992), and Kolisch (1996b). 

Note that the PSS searches among the non-delay schedules which do not necessarily contain 

any optimal Solution of the Rcpsp-instance considered (Kolisch 1996b). 
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3.2. Priority Rules 

Priority rules allow to resolve conflicts between activities competing for the allocation of 

scarce resources. In situations where the decision set contains more than one candidate, prior­

ity values are calculated from numerical measures which are related to properties of the ac­

tivities, the complete project, or the incumbent partial schedule (Cooper 1976). Formally, any 
priority rule can be specified in terms of two components. One is a mapping v: Dn -» R>0 

which accords a numerical measure v(j) to each candidate in the decision set. The other is a 

dichotomical parameter extr e {max, min} which specifies which extremum of the priority 

values determines the candidate to be selected. Ties can be broken arbitrarily, e.g. by smallest 

activity index (as done in the sequel) or randomly. Then, any such (deterministic) selection of 

an activity j* (as used above in Tables 2 and 3) can be expressed as 

j* <- min {j e Dn | v(j) = extr {v(j') | j' e Dn}} (7) 

3.2.1. Network- and Time-Based Rules 

We employ a number of priority rules. For a Start, let us briefly introduce several well-known 

network- or time-based ones, related to the shortest processing time (SPT), most total succes-

sors (MTS), latest Start or finish time (LST, LFT), (static) slack (SLK), greatest rank posi-

tional weight (GRPW), and weighted resource utilization ratio and precedence (WRUP)4. 

Also, we complement the resource scheduling method (RSM) by two recent modifications, 

namely the improved resource scheduling method (IRSM) and worst-case slack (WCS). All 

these rules were selected since they have been found to be among the best-performing ones for 

the problem at hand in several studies (Davis, Patterson 1975; Alvarez-Valdes, Tamarit 1989; 

Ulusoy, Özdamar 1989; Boctor 1990; Kolisch 1996a). 

Let for each activity j (1 < j < J) denote Sj the set of all immediate successors w.r.t. Z and EF-

STj (1 < j < J) the - dynamically updated - earliest feasible Start time w.r.t. all constraints5. 

For the measures IRSMj and WCSj, let denote APn the set of all pairs of nonidentical activi­

ties i and j in the decision set and Ejj the earliest time to schedule activity j if activity i is 

started at tn (for details cf. Kolisch 1996a). Using this notation, the rules can be defined as 

done in Table 4 where also a Classification in terms of several straightforward criteria is given; 

the last criterion refers to whether the rule is applicable in both scheduling schemes or only in 

the parallel one (Cooper 1976; Kolisch 1995, pp. 85-86). 

4 GRPW is described in Alvarez-V aldes, Tamarit (1989). WRUP is introduced by Ulusoy, Özdamar (1989 ); in 
our Implementation, we used the setting wj = 0.7 and W2 = 0.3 which the authors report as producing the bes t 
results. RSM is due to Brand et al. (1964), IRSM as well as WCS to Kolisch (1996a). 

5 In the PSS, using EFSTj as a measure would be equivalent to SPTj (Valls et al. 1992). 
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Extremum Measure Definition Static vs. 
Dynamic 

Local vs. 
Global 

Simple vs. 
Composite 

Serial vs. 
Parallel 

MIN SPTj ^dj S L S • S.P 

MAX MTSj <- lü'ljznl S L S S,P 

MIN LSTj <-LFTj-dj S G S S,P 

MIN LFTj f- LFTj S L S S.P 

MIN SLKj <- LSTj - EFSTj D L S S,P 

MAX GRPWj <- dj + ZieSjdi S L S S.P 

MAX WRUPj <r- wj | Sj | + W2 £r kj/Kf S L C S,P 

MIN RSMj <r- max{0, tn + dj - LSTj | 
Od) E AP n\\ 

D G C P 

MIN IRSMj e- max{0, Ejj-LSTj| D G c P 

MIN WCSj <— LSTj - max{Ejj | 
(ij) e AP„} 

D G c P 

Table 4: Network- and Time-Based Rules - Definition and Classification 

3.2.2. Resource-Based Rules 

Also, we employ several resource-based rules which measure the importance of an activity in 

terms of either its resource demand, the scarcity of the resources used, or a combination of 

both. High priorities are usually assigned to potential resource-bottleneck activities which re-

quire large resource amounts or request scarce resources, the Intention being to process the 

important activities as soon as possible to prevent less important activities from blocking 

them. We use five simple rules which assign priority values according to the total resource or 

the dynamic relative demand (TRD, DRD), the total or dynamic resource scarcity (TRS, 

DRS), or the dynamic remaining capacity (DRC) over all resources6. The resource-based 

measures are defined in columns 2 and 3 of Table 5. Note that measures are taken to equal 

zero whenever their divisor is zero or undefined. 

6 TRD is adapted from GRES in Kurtulus, Davis (1982) for the case of renewable resources, originated as 
GRD in Davis, Patterson (1975) for the case of nonrenewable resources. DRD, DRS, and DRC are adapted 
from RRU, RRS, and TRC in Schirmer (1993). 
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Extremum Measure Definition Static vs. 
Dynamic 

Local vs. 
Global 

Simple vs. 
Composite 

Serial vs. 
Parallel 

MIN TRDj «- 4kjr S L S S,P 

MIN DRDj <r- Zf kjr/max {kj>r|j' e£>n} D G S S,P 

MIN TRSj <- 4kjr/Kr S L S S,P 

MIN DRSj <— Sj. kjr / RKm D L S P 

MAX DRCj <r- Zf (RK m - kjr) D L S P 

Table 5: Resource-Based Rules - Definition and Classification 

4. Parameterized Random Sampling Methods 

Deterministic heuristics return one sole Solution for an instance, even if applied several times. 

Considering that this Solution may be arbitrarily bad, determinism seems to be a major defi-

ciency for heuristic methods. Therefore, random sampling methods proceed randomly, thus 

producing several solutions rather than only one per algorithm. Still, looking for a good Solu­

tion by building a sample of purely random ones is rather inefficient: the majority of solutions 

found will be closer to the mean than to the maximum (or minimum) of the sample and thus 

fail to improve the best incumbent Solution. Yet, even at the advent of such algorithms, then 

called random walk or Monte Carlo methods, King (1953) noted that biasing the probabilities 

may significantly improve sampling efficiency. 

Hence, biased random sampling methods for scheduling, while still performing the selection 

process randomly, resolve conflicts according to probabilities which are proportional to prior­

ity values; in other words, the selection probabilities are biased by the priorities. Thus, in each 

scheduling Step any eligible job may be chosen but those sharing higher priorities will have a 

higher probability of being selected. Note that tie-breaking rules are obsolete since ties cannot 

occur. Evidence gathered in several computational studies confirms the above expectation that 

such methods outperform traditional, deterministic approaches (Cooper 1976; Hart, Shogan 

1987; Lagunaet al. 1994; Drexl, Grünewald 1993). So, in addition to scheduling schemes and 

priority rules (cf. Section 3), we will use randomization (Rust 1997) to determine activity se­

lection probabilities by means of random sampling schemes. 

4.1. Classical Random Sampling Schemes 

The idea of randomization in selecting between several alternative candidates is based on 

measures of attractiveness which are mapped monotonically into selection probabilities. Thus, 

a randomized method chooses among the available candidates according to probability values 
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which are biased to favour apparently attractive selections7. In the framework considered here, 

these measures are determined by priority rules. A random sampling scheme consists of a 

mapping p: Dn —> [0,1] assigning a probability value p(j) to each candidate in the decision set. 

In essence, this mapping simply transforms the priority value of each candidate into a prob­

ability value. Of course, all probabilities sum to unity. Li order to formalize the (randomized) 

selection once the probabilities are calculated, let denote P (Dn) = (p(7t(l)),...,p(7t( | Dn |))) the 

sequence of probability values of all candidates in a decision set £>n; w.l.o.g. we assume 

P (Dn) to be ordered by ascending activity index. Also, let denote C, e [0,1] a random number. 

Then, the activity j* to be selected is determined as 

In the sequel, we describe several random sampling schemes that have already been discussed 

in the literature. 

4.1.1. Pure Random Sampling (RAS) 

The most simple random sampling scheme consists of selecting among the available candi­

dates in a purely random fashion. This, of course, renders the calculation of priority values ob­

solete. As it is usually (and hopefully) possible to find schemes doing better than this, RAS 

will only be used to provide a case against which the other schemes can be judged. 

4.1.2. Biased Random Sampling (BRS) 

The first such sampling scheme (BRS-C) was introduced by Cooper (1976) who calculates the 

probability of a candidate being selected by dividing its priority value by the sum of the prior­

ity values of all candidates in the decision set. However, in the case of extr = min, where those 

candidates having the smallest priorities should be accorded the highest selection probabili­

ties, the priorities are modified beforehand into their reciprocals. To summarize, 

k 
(8) 

(jeßn) (9) 

Afterwards, the selection probabilities are derived from these according to 

7 Cp. Rochat, Taillard (1995, p. 150). A simpler approach to randomization is used e.g. in the GRASP method, 
first proposed in Feo, Resende (1989), where the selection among attractive choices is done in a purely 
random fashion. For applications cf. Laguna et al. (1994) and the references mentioned therein. 
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p(j) <— *'(j) (j e Dn; v(j) > 0) (10) 
™ Sv'(j') 

ieD„ 

Alvarez-Valdes et al. (1989) proposed a modification of this scheme (BRS-AVT) where - in 

the case of extr = min - the priority values are modified differently by 

jM-v(j) iffex.r = min (j.Dtfdl) 
|v(j) iff extr = max 

M has to be large enough to guarantee that all modified priorities are nonnegative. Clearly, 

this scheme is applicable also if some priority values equal zero. In their study, for the critical-

path-based priority rules with extr = min for example they used M «- T (Kolisch 1995, p. 99). 

Afterwards, the selection probabilities are derived from these according to (10). 

4.1.3. Regret-Based Biased Random Sampling (RBRS) 

Drexl introduced the concept of regrets, well-known from the field of decision theory8, to the 

realm of random sampling (Drexl 1991; Drexl, Grünewald 1993). Here, the regret value of a 

candidate j measures the worst-case consequence that might possibly result from selecting an-

other candidate. Let denote V(Dn) the set of priority values of all candidates in a decision set 

Dn. Then, the regrets are computed as 

«"4TZZ:::::: 

and modified by 

v"(j) <- (v'(j) + e)a (jeDn) (13) 

where ee R>o and ae R>Q. Having determined these values, the selection probabilities are de­

rived from 

vM(i) 
P(i)*~ Vv"(i) (ießn) (14) 

j'ef„ 

e guarantees v"(j) to be nonzero; otherwise those candidates with priorities of zero could never 

be selected, an undesirable consequence in the presence of scarce resources. a allows to di-

minish or enforce the differences between the modified priorities for occl or ool, respec-

8 Regrets underlie e.g. the Savage-Niehans and the Hurwicz rules for decision under uncertainty. 
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tively. Note that for a —» 0 the selection process becomes pure random sampling, since all 

candidates will share the same probability of being selected. On the other extreme, for a = °o 

the process behaves deterministic: since with increasing a the difference between the highest 

and the second-highest modified priority increases, the probability of the highest-prioritized 

candidate being selected converges to one. 

4.2. New Random Sampling Schemes 

In this section, we propose two new random sampling schemes. Motivation for doing so stems 

from certain critique on the classical schemes which is discussed before the schemes are intro-

duced. 

4.2.1. Motivation 

Unfortunately, there are deficiencies associated with each of the above schemes. For both 

BRS schemes, these appear only if extr = min where the highest selection probabilities shall 

be assigned to the candidates with the smallest priorities. To achieve this, any transformation 

from the priorities to the probabilities has to rely either on division or subtraction. The former 

approach (cf. (9)) has been followed by Cooper (1976). The drawback to his BRS-C is that it 

is applicable only to priority rules which either have extr = max or which produce strictly 

nonzero priorities. 

The latter approach (cf. (11)), which has been used more widely and recently (Alvarez-Valdes 

et al. 1989; Salewski et al. 1997; Böttcher et al. 1996), transforms the priorities by v'(j) <— M -

v(j) where M is large enough to keep all modified priorities nonnegative. However, this 

definition allows M to take arbitrarily large values which may distort the resulting probabili­

ties. Consider a decision set of three selection candidates A, B, and C where the sequence 

V (Dn) of priority values (defined in the same way as P (Z)n)) is V (£>n) = (1,2, 7). Figure 1 

displays the probabilities resulting from different choices of M, assuming that no further 

modifications take place. 

c 
r 

A A 

B 
B B 

M = 100 M = 20 M= 10 

Figure 1: BRS-AVT- Effect ofMon Selection Probabilities 
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In effect, values of M which are relatively large compared to the priorities reduce the influ-

ence the priority rules exert by biasing the sampling process and gear it in the direction of a 

purely random one. 

A different effect may appear for the RBRS scheme. Recall that here e serves to keep the 

modified priorities nonzero; to achieve this, any small positive value would suffice. Yet, by 

definition £ may take arbitrary positive values, and for the sake of simplicity, most studies use 

e = 1 (Drexl, Grünewald 1993; Kolisch, Drexl 1996, 1997; Kolisch 1996b; Salewski et al. 

1997). But a fixed choice of e may severely distort the resulting selection probabilities. Con-

sider a Situation where extr = max and the priority values of two candidates A and B are either 

V (Z)n) = (1, 9) or (10, 90); for simplicity we let a = 1. Since only the relation between the 

priority values should affect the selection probabilities, one would expect to see a probability 

for A of 10% as opposed to 90% for B, in both cases. Yet, when using £ = 1, the probability 

for A is 10% in the former only but 1% in the latter case, as shown in Figure 2. 

e j v v' v" P 
1 A 

B 
1 0 1 
9 8 9 

10% 
90% 

e j V v1 v" P 
1 A 

B 
10 0 1 
90 80 81 

1% 
99% 

Figure 2: RBRS - Effect of e on Selection Probabilities (Varying Priorities, Constant e) 

Another way to look at this effect is to keep the priorities constant and regard the effect of dif­

ferent £-values on the resulting probabilities. Consider the example depicted in Figure 3 where 

for three candidates A, B, and C with priorities V (Dn) = (0, 1, 1) and extr = min the prob­
abilities derived are as shown for £ = 0.1 and 8=1. 
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e j V v' v" p 
0.1 A 0 1 1.1 85% 

B 1 0 0.1 8% 
C 1 0 0.1 8% 

e j v v1 v" P 
1 A 0 1 2 50% 

B 1 0 1 25% 
C 1 0 1 25% 

£= 0.1 6=1 

Figure 3: RBRS - Effect ofe ort Selection Probabilities (Constant Priorities, Varying e) 

To summarize, whenever the values of e are large relative to the priorities, they diminish the 

bias applied by the priority values and thus steer the sampling process towards pure random 

sampling. This contradicts the Statement of Drexl, Grünewald (1993) that the choice of e "is 

uncrucial for the behaviour of the algorithm". 

4.2.2. Normalized Biased Random Sampling (NBRS) 

We propose another approach which we term normalized biased random sampling (NBRS). In 

the case of extr = min the priorities v(j) are transformed, i.e. 

v'(j )<-
\maxV(£>n) - v(j) + minV(Dn) iffextr = min 

lv(j) iff extr = max 
(jeDn) (15) 

Now, let denote V(Dn)+ the set of all positive transformed priorities of the candidates in Dn, 

i.e. 

V(ön)+<-{v'(j)l j€DnAV'0>O} (16) 

To ensure that each candidate is accorded a selection probability greater than zero, the priori­

ties are then modified by 

v"(j) <-
(v'(j) + e)a iff(3jeDn) v'(j) = 0 

(v'(j))a otherwise 
(jeDn) (17) 
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Here, £ is determined from 

2 fminy'(Dn)+/10 iff (3jeDn) v'(j) > 0 (lg) 

[l otherwise 

From the so-transformed priorities, the selection probabilities are derived as in (14). £ is ap­

plied only where necessary; still, the scheme ensures that no candidate is excluded from the 

selection process. Its first branch in (18) tends to keep its influence small whenever some 

transformed priorities are zero and some are not. The second branch applies only if all candi­

dates in the decision set have zero priorities such that £ would be undefined; since then all pri­

orities are identical, adding an arbitrary constant will give all candidates the same probability 

of being selected. 

The naming of the scheme refers to the fact that (15) works to normalize the modified priori­

ties v"(j) to the same interval as the original priorities v(j), such that the same probabilities are 

accorded to the most- and the least-preferred candidates, regardless of whether extr is max or 

min (cp. Figure 5). 

extr i v v' v" P 
max A 

B 
1 1 1 
9 9 9 

10% 
90% 

extr i v v' v" P 
min A 

B 
1 9 9 
9 1 1 

90% 
10% 

A B 

B A 

extr = max extr = min 

Figure 4: NBRS - Effect of extr on Selection Probabilities 

4.2.3. Modified Regret-Based Biased Random Sampling (MRBRS) 

This scheme is a variant of the RBRS, in that it computes regrets from the original priorities 

according to (12) and modifies them according to (13). However, rather than using a constant 
value of £, £ is determined dynamically from 
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min V'(Dn)+ /8 iff (3jeDn) v'(j) > 0 

1 otherwise 

where 8 is a positive integer. Selection probabilities are again derived from (14). Thus, the 

above actually defines a family MRBRS/8 of sampling schemes. We should add that while 

(19) could in principle also be used for the NBRS, our experimentation indicated that the re-

sults would not be altered significantly. 

4.3. A Note on the Rules MIN LST and MIN SLK 

It is well-known that under the PSS the rules MIN LST and MIN SLK are equivalent, in the 

sense of selecting the same candidates, because EFSTj equals tn for each j e Dn such that 

LSTj and SLKj always differ by a constant amount tn. This result was first proven by Davis, 

Patterson (1975); yet the proof is valid for deterministic scheduling only and does not carry 

over to all random sampling schemes alike9. 

Indeed, the equivalence of both rules holds true for the RBRS and all variants of the MRBRS 

but fails to hold for the BRS-C, the BRS-AVT, and the NBRS. 

Theorem 1 Under the PSS, the priority rules MIN LST and MIN SLK are not equivalent for 

the BRS-C, the BRS-AVT, and the NBRS. 

Proof: We give a simple counterexample with two activities 1 and 2 where tn = 4 (cf. Table 

6). We assume w.l.o.g. B = 10 for the BRS-AVT and a = 1 for the NBRS. 

RSS j VLST V'LST PLST VSLK VSLK PSLK 
BRS-C 1 7 1/7 41.7% 3 1/3 25.0% 

2 5 1/5 58.3% 1 1 75.0% 
BRS-AVT 1 7 3 37.5% 3 7 43.8% 

2 5 5 62.5% 1 9 56.3% 
NBRS 1 7 5 41.7% 3 1 25.0% 

2 5 7 58.3% 1 3 75.0% 

Table 6: A Counterexample on the Equivalence of MIN LST and MIN SLK 

Clearly the probabilities differ between both rules for all three sampling schemes. • 

Theorem 2 Under the PSS, the priority rules MIN LST and MIN SLK are equivalent for the 

RBRS as well as all variants of the MRBRS/8. 

9 The note in Kolisch (1995, p. 85) that both rules are generally equivalent is based upon the assumption that 
they always derive identical priorities; from the above, however, this assumption has to be refuted. 
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Proof: Since for all j e Dn alike the priorities VLSTO) and VSLKÜ) differ by a constant, this 

constant affects their maximum max V(Dn) in the same way: As vSLK(j) = VcsTÜ)" clearly 

max VSLK(Dn) = max VLsr(Dr\)" ln and therefore v'SLK(j) = max VSLK(Z)n) - vSLK(j) = (max 

W^n)" V" (VSLKO) " tn) = max V^n)" VSLKO)- Thus, the transformation (12) used in 

the RBRS as well as the MRBRS/8 renders transformed priorities which are identical for both 

rules. B 

5. Experimental Analysis 

We start off by outlining the design used in our experimentation; in the remainder of this pa­

per we present a comprehensive analysis of the algorithms described in the previous sections. 

To generate a valid set of comparisons between the algorithms considered, we validated the 

results obtained by comparing them to several other studies. We will juxtapose our findings 

with those reported in the literature where appropriate. 

5.1. Experimental Design 

The factors examined in our experiments are scheduling scheme (SS), random sampling 

scheme (RSS), priority rule, control parameter a, and number of iterations. Specifying a set of 

values for each factor describes over which levels it is varied during an experiment, while one 

value for each factor determines a run of an experiment. One such run may consist of one or 

several iterations per combination of algorithm and instance; for each such combination, the 

outcome of a run is reported in terms of both effectiveness and efficiency. Effectiveness is de­

termined by considering the best schedule found for the instance in that run and measuring its 

deviation from the optimum as a percentage; efficiency captures the CPU-time required for 

the run, measured in terms of seconds. Measurements were taken using an Implementation in 

Pascal, running on a PI33 PC with 24 MB RAM under MS DOS 6.0. 

As a test bed, we used the KSD-instance set J30 generated with ProGen (Kolisch, Sprecher 

1997). Each instance is made up of 30 non-dummy activities. Each activity has a nonpreempt-

able duration of between one and ten periods and may require one or several of four renewable 

resources present. The number of successors and predecessors w.r.t. the precedence order 

varies between one and three for each activity. Systematically varied design parameters for 

these instances are the network complexity (NC), the resource factor (RF), and the resource 

strength (RS). NC is defined as the average number of non-redundant arcs per activity, RF de­

termines the number of resources that are requested by each activity, and RS expresses re­

source scarcity measured between minimum and maximum demand. A more comprehensive 

characterization is given in Kolisch et al. (1995). The respective parameter levels used are 

shown in Table 7. 
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Parameter Levels 

NC 1.5 1.8 2.1 
RS 0.2 0.5 0.7 1.0 
RF 0.25 0.5 0.75 1.0 

Table 7: KSD-Instance Set J30 - Varied Design Parameters 

For each combination of these parameters, J30 contains ten instances, for a total of 480 in-

stances. Of these, the 120 instances where RS = 1.0 are trivially solvable by the MPM-sched-

ule. Of the remaining nontrivial sample, the exact algorithm of Demeulemeester, Herroelen 

(1992) found and verified the optimal solutions for 308 instances within a time limit of 3600 

seconds per instance, taking on average 615.1 seconds per instance on a 386SX/15 PC; ten 

more instances were optimally solved but not verified within the time limit. These 308 in­

stances have also been considered in several other studies (Mingozzi et al. 1994; Demeule­

meester, Herroelen 1995; Naphade et al. 1995; Kolisch 1996a, b; Kolisch, Drexl 1996). The 

remaining 42 instances were only recently solved to optimality by a modified reimplementa-

tion of the above exact algorithm (Demeulemeester, Herroelen 1995), which on average im-

proved the original solutions by 3.65 periods, requiring on average 29 seconds and at most 

7200 seconds over all instances on an 486/25 PC. Embracing also these solutions, our work is 

the first analysis of priority rule-based heuristics covering the füll ränge of instances com-

prised in J30. 

For the most part, our experimentation used a füll factorial design on the above factors, 

though excluding the BRS-AVT; the corresponding analysis is based upon the results of ap-

plying 502 different algorithms to the RCPSP. Several experiments of limited scope that were 

conducted in addition will be covered within the subsequent text, where appropriate. 

5.2. Computational Results 

In the sequel, we present the results of our computational experiments. We should emphasize 

that the effectiveness of algorithms will appear slightly lower than in other studies since our 

study includes the 52 rather hard instances unsolved at the time of earlier experimentation. 

Thus, our deviations from Optimum are ceteris paribus 1 arger than those reported elsewhere. 

Note that, unless stated otherwise, all results reported were obtained from performing 100 it­

erations of the respective algorithm. 
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5.2.1. Effect Of Alpha 

For parameterized sampling schemes, the question of which control parameter to use for 

which scheme is paramount. Averaging the results of the full-factorial experiment over all 

levels of SS and a creates the Impression that using a = 1 does best, which would be in line 

with a similar finding for the RBRS by Kolisch (1996b). Yet, in many cases other choices of 

a produce better schedules. To demonstrate this, we have to disaggregate the results for the 

scheduling schemes and the priority rules employed. Table 8 presents the detailed results for 

all algorithms using the SSS. Results of the MRBRS/1000 are not included since they are 

strictly dominated by each of the other MRBRS-variants. 

RSS Alpha GRPW LPT LST SLK MTS SPT WRUP DRD TRD TRS 

NBRS 1 3,25% 3.58% 3.46% 3.37% 2.62% 4.20% 3.40% 4.21% 4.40% 4.34% 
2 3.47% 3.27% 3.28% 3,15% 2.29% 5.06% 3.44% 5.03% 5.50% 5.30% 
3 3.77% 3,14% 3.01% 3.29% 2.24% 5.43% 3.71% 5.86% 6.00% 6.14% 

RBRS 1 3,76% 2.07% 2.07% 3.34% 2.34% 4.92% 3.42% 4.18% 6.41% 4.03% 
2 4.70% 2.02% 1.97% 3.71% 2.32% 7.42% 3.45% 5.23% 9.93% 4.75% 
3 5.47% 2.21% 2.08% 3.83% 2.40% 9.26% 3.60% 6.31% 12.42% 5.24% 

MRBRS/1 1 3,37% 2.21% 2.18% 3,15% 2.34% 4.47% 3.59% 4.67% 4.67% 4.91% 
2 3.90% 2.03% 2.00% 3.18% 2.31% 5.90% 4.47% 6.49% 6.39% 6.72% 
3 4.67% 2.10% 1,99% 3.38% 2.36% 7.50% 5.38% 8.00% 8.30% 8.43% 

MRB RS/10 1 4.24% 1,99% 1.95% 3,21% 2.31% 6,88% 4.45% 7.18% 7.31% 7.46% 
2 5.26% 2.19% 2.13% 3.69% 2.52% 10.66% 6.15% 11.12% 11.89% 11.72% 
3 6.34% 2.38% 2.17% 3.93% 2.84% 12.63% 7.63% 14.09% 14.76% 15.23% 

MRBRS/100 1 4,81% 2,17% 1.89% 3.57% 2.52% 9.74% 5,17% 10.01% 10.66% 10.71% 
2 5.87% 2.24% 2.13% 3.82% 2.64% 12.53% 6.73% 13.54% 14.79% 14.79% 
3 6.47% 2.46% 2.22% 4.00% 2.89% 13.48% 7.81% 14.78% 15.78% 16.15% 

Table 8: Effect ofa- Deviations (SSS) 

Alpha GRPW IRSM LFT LST SLK MTS RSM SPT WCS WRUP 
RSS 
NBRS 1 3.17% 2,65% 3.16% 3.18% 3.22% 2.71% 2,62% 3.29% 3.17% 3.15% 

2 3.21% 2.68% 3.18% 3.16% 3.09% 2,47% 2.73% 3.96% 3.05% 2.92% 
3 3.55% 2.68% 3.06% 3,12% 2.94% 2.49% 2.66% 4.31% 3.05% 3.03% 

RBRS 1 3,48% 2.45% 2.40% 2,50% 2.50% 2.58% 2,50% 3.88% 2.36% 3.17% 
2 4.24% 2.57% 2.61% 2.72% 2.72% 2.63% 2.65% 4.95% 2.56% 3.02% 
3 5.18% 2.73% 2.87% 3.11% 3.11% 2.81% 2.90% 6.18% 2.81% 3.05% 

MRBRS/1 1 3,19% 2.70% 2.64% 2.70% 2.70% 2.68% 2.75% 3,54% 2.57% 3.06% 
2 3.49% 2,49% 2.46% 2.48% 2.48% 2.50% 2,49% 3.97% 2.43% 3.24% 
3 3.94% 2.52% 2.46% 2.49% 2.49% 2.53% 2.55% 4.82% 2.37% 3.54% 

MRBRS/10 1 3,69% 2,49% 2.55% 2,51% 2.51% 2,61% 2J)3% 4.81% 2.42% 3.45% 
2 5.01% 2.88% 2.83% 3.00% 3.00% 3.10% 2.95% 6.88% 2.78% 4.47% 
3 6.02% 3.07% 3.16% 3.37% 3.37% 3.45% 3.22% 8.72% 2.99% 5.63% 

Table 9a: Effect of a - Deviations (PSS, Network- and Time-Based Rules) 
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Underlined entries denote, for each combination of priority rule and random sampling scheme, 

the lowest deviation over all a-values tested, thus allowing to look up the best a-value for 

each such combination. The double-underlined entry is the minimum of all underlined entries. 

Except of the MRBRS/10 (as well as MRBRS/100 and MRBRS/1000), where a = 1 consis-

tently performs best, the general picture is inconclusive. Hence, no general recommendation 

on the choice of a can be given. 

RSS Alpha DRC DRD DRS TRD TRS 
NBRS 1 3.58% 3.70% 3.70% 3.64% 3,67% 

2 3.83% 4.24% 4.10% 4.05% 4.02% 
3 4.12% 4.51% 4.49% 4.70% 4.69% 

RBRS 1 5.04% 3.74% 3.50% 5.04% 3.61% 
2 7.54% 4.41% 4.14% 7.54% 3.94% 
3 9.15% 5.09% 4.69% 9.15% 4.36% 

MRBRS/1 1 4.06% 3.94% 3.91% 4.06% 4.00% 
2 4.75% 4.67% 4.94% 4.75% 4.92% 
3 5.70% 5.61% 5.92% 5.70% 5.93% 

MRBRS/10 1 5.77% 5.63% 5,91% 5.77% 6,05% 
2 8.69% 8.52% 8.85% 8.69% 9.08% 
3 11.10% 11.02% 11.26% 11.10% 11.41% 

Table 9b: Effect of a- Deviations (PSS, Resource-Based Rules) 

Table 9 details the Situation for the PSS; again results for the (dominated) schemes 

MRBRS/100 and MRBRS/1000 were omitted. Here, the effect of a is more consistent; For 

the RBRS, a = 1 gives the best results; this finding coincides with that of Kolisch (1996b). 

For the MRBRS/10 (as well as for MRBRS/100 and MRBRS/1000) a = 1 outperform other 

choices. Only for the NBRS and the MRBRS/1, no general recommendation on the choice of 

a can be given. 

RSS Averages Percentages 
1 2 3 1 2 3 

NBRS 0.51 0.84 0.85 100.0' 7o 164.9% 166.1% 

RBRS 0.46 0.76 0.77 100.0 % 166.9% 168.3% 

MRBRS/1 0.50 0.85 0.86 100.0 Jo 169.1% 171.3% 

MRBRS/10 0.52 0.90 0.90 100.0 7o 173.4% 173.7% 

MRBRS/100 0.52 0.90 0.92 100.0' Jo 172.9% 177.0% 

MRBRS/1000 0.52 0.90 0.90 100.0' Jo 172.9% 173.4% 

Table 10: Effect ofa- CPU Times 

The effect of oc on the efficiency can be taken from Table 10 where average CPU times are re­

ported both as absolute numbers and percentages of the CPU times using (X = 1. We chose to 
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report the resulting numbers aggregated over the priority rules since a disaggregation, as done 

for effectivity in Tables 8 and 9, fails to reveal significant differences. Obviously, choosing an 

a * 1 increases the computation times by two thirds, which is due to the additional effort re-

quired to determine the power of the transformed priorities. The reader should note that the 

exact amount of this increase may vary with different Computer environments; yet additional 

experimentation on different implementations of the power function, which is not further de-

tailed here, exposed no substantial variations. 

5.2.2. Effect Of Priority Rules 

We now consider the influence exerted by the priority rules. Again, we cover the results for 

the two scheduling schemes separately since the Performance of some rules differs markedly 

between them10. In Table 11, the results pertaining to the SSS are summarized. To facilitate 

comparisons, we also give the results of the deterministic versions of the priority rules. 

RSS Alpha GRPW LPT LST SLK MTS SPT WRUP DRD TRD TRS 
DETERM N/A 13.75% 7.44% 6.56% 5-5?% 8.74% 22.80% 15.64% 23.13% 23.38% 24.01% 
BRS-C N/A 3.25% 3.60% 3.51% 3.43% 2,62% 4.15% 3.40% 4.40% 4.32% 4.31% 
NBRS 1 3.25% 3.58% 3.46% 3.37% 2.02% 4.20% 3.40% 4.21% 4.40% 4.34% 

2 3.47% 3.27% 3.28% 3.15% 2.29% 5.06% 3.44% 5.03% 5.50% 5.30% 
3 3.77% 3.14% 3.01% 3.29% 2.24% 5.43% 3.71% 5.86% 6.00% 6.14% 

RBRS 1 3.76% 2,07% 2.07% 3.34% 2.34% 4.92% 3.42% 4.18% 6.41% 4.03% 
2 4.70% 2.02% 1.97% 3.71% 2.32% 7.42% 3.45% 5.23% 9.93% 4.75% 
3 5.47% 2.21% 2.08% 3.83% 2.40% 9.26% 3.60% 6.31% 12.42% 5.24% 

MRBRS/1 1 3.37% 2.21% 2.18% 3.15% 2.34% 4.47% 3.59% 4.67% 4.67% 4.91% 
2 3.90% 2.03% 2.00% 3.18% 2.31% 5.90% 4.47% 6.49% 6.39% 6.72% 
3 4.67% 2.10% 1.99% 3.38% 2.36% 7.50% 5.38% 8.00% 8.30% 8.43% 

MRBRS/10 1 4.24% 1.99% 1,95% 3.21% 2.31% 6.88% 4.45% 7.18% 7.31% 7.46% 
2 5.26% 2.19% 2.13% 3.69% 2.52% 10.66% 6.15% 11.12% 11.89% 11.72% 
3 6.34% 2.38% 2.17% 3.93% 2.84% 12.63% 7.63% 14.09% 14.76% 15.23% 

MRB RS/100 1 4,81% 2,17% 1.89% 3,57% 2,52% 9,74% 5,17% 10.01% 10.66% 10.71% 
2 5,87% 2,24% 2,13% 3,82% 2,64% 12,53% 6,73% 13.54% 14.79% 14.79% 
3 6,47% 2,46% 2.22% 4,00% 2,89% 13,48% 7,81% 14.78% 15.78% 16.15% 

Table 11: Effect of Priority Rules - Deviations (SSS) 

Entries underlined are the respective row minima, reflecting the best priority rule for each 

combination of random sampling scheme and ot-value. It is evident from the data that the par-

ticular choice of oc bears no influence on the suitability of different priority rules, thus the un­

derlined entries essentially indicate the best rules for each sampling scheme. For the BRS-C 

10 Although this has been observed for the rule SLK in Kolisch (1995, p. 111), there the effect of the rules is 
reported as an average over both scheduling schemes. 



23 

and NBRS, MTS is the bestperforming rule, for the other schemes it is LST. This is in line 

with the report of Kolisch (1996b) who found LST to be the best rule for the SSS. 

RSS Alpha GRPW IRSM LFT LST SLK MTS RSM SPT WCS WRUP 
DETERM N/A 10.47% 5.92% 5.86% 6.04% 6.04% 6.66% 6.36% 13.09% 5,17% 9.78% 
BRS-C N/A 3.17% 2-63% 3.15% 3.15% 3.20% 2.71% 2.64% 3.38% 3.15% 3.15% 
NBRS 1 3.17% 2.65% 3.16% 3.18% 3.22% 2.71% 2,62% 3.29% 3.17% 3.15% 

2 3.21% 2.68% 3.18% 3.16% 3.09% 2,47% 2.73% 3.96% 3.05% 2.92% 
3 3.55% 2.68% 3.06% 3.12% 2.94% 2.49% 2.66% 4.31% 3.05% 3.03% 

RBRS 1 3.48% 2.45% 2.40% 2.50% 2.50% 2.58% 2.50% 3.88% 2.36% 3.17% 
2 4.24% 2.57% 2.61% 2.72% 2.72% 2.63% 2.65% 4.95% 2.56% 3.02% 
3 5.18% 2.73% 2.87% 3.11% 3.11% 2.81% 2.90% 6.18% 2.81% 3.05% 

MRBRS/1 1 3.19% 2.70% 2.64% 2.70% 2.70% 2.68% 2.75% 3.54% 2,57% 3.06% 
2 3.49% 2.49% 2.46% 2.48% 2.48% 2.50% 2.49% 3.97% 2.43% 3.24% 
3 3.94% 2.52% 2.46% 2.49% 2.49% 2.53% 2.55% 4.82% 2.37% 3.54% 

MRBRS/10 1 3.69% 2.49% 2.55% 2.51% 2.51% 2.61% 2.53% 4.81% 2.42% 3.45% 
2 5.01% 2.88% 2.83% 3.00% 3.00% 3.10% 2.95% 6.88% 2,78% 4.47% 
3 6.02% 3.07% 3.16% 3.37% 3.37% 3.45% 3.22% 8.72% 2.99% 5.63% 

Table 12a: Effect of Priority Rules - Deviations 

(PSS, Network- and Time-Based-Based Rules) 

RSS Alpha DRC DRD DRS TRD TRS 
DETERM N/A 15.83% 15.93% 15.80% 15.83% 15.93% 
BRS-C N/A 3.58% 3.58% 3.64% 3.75% 3.62% 
NBRS 1 3.58% 3.70% 3.70% 3.64% 3.67% 

2 3.83% 4.24% 4.10% 4.05% 4.02% 
3 4.12% 4.51% 4.49% 4.70% 4.69% 

RBRS 1 5.04% 3.74% 3.50% 5.04% 3.61% 
2 7.54% 4.41% 4.14% 7.54% 3.94% 
3 9.15% 5.09% 4.69% 9.15% 4.36% 

MRBRS/1 1 4.06% 3.94% 3.91% 4.06% 4.00% 
2 4.75% 4.67% 4.94% 4.75% 4.92% 
3 5.70% 5.61% 5.92% 5.70% 5.93% 

MRBRS/10 1 5.77% 5.63% 5.91% 5.77% 6.05% 
2 8.69% 8.52% 8.85% 8.69% 9.08% 
3 11.10% 11.02% 11.26% 11.10% 11.41% 

Table 12b: Effect of Priority Rules - Deviations (PSS, Resource-Based Rules) 

The corresponding results for the PSS are comprised in Table 12. For all variants of the 

MRBRS as well as the RBRS, WCS is the best choice. Regarding the effectiveness of the re-

source-based rules, we may summarize that these rules perform substantially better under the 
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PSS than the SSS. Still, even the best combination of such rule and SS, viz. DRS under the 

PSS, is markedly outperformed by each of the promising rules. 

Taking up this finding, we now propose to circle out the most promising rules for each 

scheduling scheme and accordingly restrict subsequent analyses. Motivation for excluding 

certain rules stems from the fact that aggregate results will be distorted by bad rules whenever 

some algorithmic components are more sensitive than others to the Performance of individual 

rules. To identify such rules, which are to be excluded, we use two criteria, one being rule-in-

dependent, the other depending on the Performance of the individual rules. The first criterion 

establishes that no rule strictly dominated by the RAS is promising: as RAS, due to its obviat-

ing the need to compute probabilities, is more efficient than any other randomized algorithm 

considered here, any algorithm exhibiting the same or worse effectiveness than RAS should 

be discontinued11. To keep the comparison on fair grounds, RAS should of course be run for 

the same number of iterations as the algorithms judged against it. The second criterion ex-

cludes all rules which are dominated by at least one other rule: they do not seem to offer any 

potential over their companions. Applying these criteria to our experimental setting, promis­

ing rules are those which perform best for at least one combination of SS, RSS, and oc-value 

and outperform the RAS (whose results are provided in Table 22 below). Accordingly, we can 

identify from Table 11 the rules UFT, LST, and MTS as promising for the SSS. Following 

these criteria, one may also characterize IRSM, LFT, MTS, and RSM as promising for the 

PSS. Still, we will also accept SLK and LST since their effectiveness is in most cases close, 

for some instance Clusters even better than that of the above rules. Following such an argu-

ment may prove valuable especially when attempting to identify suitable candidates for a 

multi-priority rule approach (Boctor 1990; Khattab, Choobineh 1991) or composite priority 

rules (Haase et al. 1997). We assemble the promising rules in Table 13. 

SS Priority Rules 
SSS LFT LST MTS 
PSS IRSM LFT LST MTS SLK RSM WCS 

Table 13: Promising Priority Rules 

Table 14 demonstrates the effect of these rules on the CPU times. To exclude the effects in-

curred by the scheduling schemes, the presentation is divided among both schemes; to exclude 

In an analysis of deterministic schedulin g algorithms, Lawrence (1985) has employed pure random selection 
as a means of resolving scheduling conflic ts and used the results as a yardstick to separate those algorithms 
(priority rules in his case) minimizing the project makespan from those actually maximizing it. 
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effects from different a-values (cp. Table 10), a is fixed to one for all sampling schemes ex-

cept for the BRS-C. 

RSS 
LPT 

SSS 
LST MTS IRSM LPT LST 

PSS 
SLK MTS RSM WCS 

BRS-C 0.42 0.42 0.39 0.48 0.36 0.36 0.36 0.35 0.44 0.46 
NBRS 0.59 0.59 0.59 0.59 0.42 0.46 0.42 0.42 0.53 0.53 
RBRS 0.52 0.52 0.51 0.52 0.40 0.40 0.41 0.40 0.48 0.52 
MRBRS/1 0.58 0.57 0.57 0.55 0.44 0.44 0.43 0.44 0.51 0.54 
MRBRS/10 0.60 0.60 0.60 0.57 0.45 0.45 0.45 0.45 0.53 0.56 
MRBRS/100 0.61 0.60 0.60 0.57 0.45 0.45 0.45 0.45 0.53 0.56 
MRBRS/1000 0.61 0.60 0.61 0.57 0.45 0.45 0.45 0.45 0.53 0.56 

Table 14: Effect of Priority Rules - CPU Time 

5.2.3. Effect Of Alpha - Revisited 

Tables 8 and 9 did not proffer any general guidance on which a-values are most effective for 

all priority rules alike. Yet restricting the focus to the promising rules allows to deliver con-

clusive recommendations. Table 15 shows the best-performing a-value for each combination 

of RSS and SS. Note that these values produce the best results averaged over all promising 

rules; for certain combinations of RSS, SS, and priority rules the individually best a-value 

may be different, though (cp. Table 21). 

RSS SSS PSS 
NBRS 3 3 
RBRS 2 1 
MRBRS/1 2 2 
MRBRS/10 1 1 
MRBRS/100 1 1 
MRBRS/1000 1 1 

Table 15: Best a-Values 

Following the lines of Drexl (1991), we have also experimented with non-integer values of a 

in order to further improve the Performance of the algorithms considered, selecting values in 

the vicinity of the best-performing integer ones. Without providing the corresponding results 

let us just mention that in no case the effectiveness improved by more than 0.005%. Consider-

ing the fact that non-integer a-values increase the computation times required by more than 

40%, it seems to be more worthwhile to restrict oneself to integer values and simply increase 

the number of iterations in order to obtain better solutions. 
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Recall that, by modifying the selection probabilities, a affects the bias that the priority values 

apply to the selection process: large values render the process more deterministic while small 

values make it more random. In much the same way, the divisor 8 determining the particular 

variant of the MRBRS/8 affects the selection process: large values increase the bias, thus 

steering the selection process towards more determinism, whereas small values gear it towards 

more random. One is thus - correctly, we might add - led to expect different values of a to 

perform best for different values of 8. In order to demonstrate this interaction, we chart in 

Figure 5 the effectiveness of different variants of the MRBRS/8 where 8 € {1, 10, 100, 1000} 

and different values of a. Results reflect the promising rules only. As additional experimenta-

tion not reported here indicated that interpolating between the data points generated is viable, 

we chart them by way of surface diagrams. 

MRBRS/1 ooo 
MRBRS/100 

MRBRS/10 

MRBRS/1 

MRBRS/1000 
MRBRS/100 

MRBRS/10 

MRBRS/1 

(SSS) (PSS) 

Figure 5: MRBRS - Effect ofa- Deviations 

Indeed, under the SSS for 8 = 1 a = 2 performs best (deviation 2.11%) while for the other 8-

values (X = 1 does best (deviation 2.08% or higher). Under the PSS, the picture is virtually the 

same: for 8 = 1 the best choice is a = 2 (deviation 2.48%), for the other 8-values a = 1 is 

dominant (deviation 2.52% or higher). 

5.2.4. Effect of Instance Sets 

As far as they pertain to the RBRS, some of the results discussed so far deviate somewhat 

from those reported in Kolisch (1996b). As it seems reasonable to expect this discrepancy to 

arise from the different instance sets used, we divide the analysis between the 308 instances 

used in his study and the 52 instances additionally included in our work. The corresponding 
results are summarized in Tables 16 and 17. 
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Priority Rule 308 Instances 52 Instances All Instances 
1 2 3 1 2 3 1 2 3 

LFT 1.26% 1.23% 1.36% 6,92% 6.71% 7,29% 2,07% 2.02% 2,21% 
LST 1.24% 1.16% 1.33% 7.00% 6.72% 6.56% 2.07% 1.97% 2.08% 
MTS 1.54% 1.61% 1,67% 7.07% 6.53% 6.67% 2,34% 2.32% 2,40% 

Table 16: Effect of Priority Rules and a - Deviations (SSS, RBRS) 

For the serial variant of the RBRS, our above advice to use a = 2 (cf. Table 15) differs with 

what Kolisch (1996b) recommends; he found a = 1 to be most effective. The underlined row 

minima in Table 16 reflect the best value of a for each rule. Still, in each instance set a = 2 

remains the best choice, regardless of whether the average Over all promising rules or only the 

best rule LST are considered. 

In Table 17, underlined entries denote the best combination of priority rule and a-value for 

each instance set. For the parallel variant of the RBRS, Kolisch (1996b) found WCS with a 

setting of a = 1 to outperform all other rules on the 308 instances attempted. This result could 

not be reproduced, even if only by a small margin. However, our results concur with his when 

either the complete instance set J30 is tackled or a-values greater than one are used. 

Priority Rule 308 Instances 52 Instances All Instances 
1 2 3 1 2 3 1 2 3 

IRSM 2,03% 2,15% 2,22% 4,94% 5,03% 5,71% 2,45% 2,57% 2,73% 
LFT 2.00% 2,22% 2,48% 4,75% 4,87% 5,21% 2,40% 2,61% 2,87% 
LST 2,12% 2,29% 2,71% 4,73% 5,26% 5,48% 2,50% 2,72% 3,11% 
MSLK 2,12% 2,29% 2,71% 4,73% 5,26% 5,48% 2,50% 2,72% 3,11% 
MTS 2,13% 2,29% 2,40% 5,24% 4,67% 5,25% 2,58% 2,63% 2,81% 
RSM 2,01% 2,19% 2,33% 5,37% 5,40% 6,22% 2,50% 2,65% 2,90% 
WCS 2,01% 2,20% 2,43% 4.41% 4,67% 5,02% 2.36% 2,56% 2,81% 

Table 17: Effect of Priority Rules and a - Deviations (PSS, RBRS) 

5.2.5. Effect Of Scheduling Schemes 

Kolisch (1996b) was the first to note that the mutual dominance of serial and parallel schedul­

ing depends, among other factors, on the number of iterations performed. To clarify this point, 

let us restrict ourselves to the promising rules LFT, LST, and MTS, which are the only ones 

applicable in both scheduling schemes. Table 18 shows the effectiveness of both schemes, us­

ing the MRBRS/10 with the best a-value from Table 15 as a vehicle. 
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Rule SS 10 40 70 100 
LFT Parallel 3.98% 2,95% 2,67% 2,55% 

Serial 4,21% 2.62% 2.20% 1.99% 
LST Parallel 3,77% 2,91% 2,63% 2,51% 

Serial 4,02% 2,47% 2.16% 1,95% 
MTS Parallel 4,10% 3,03% 2,81% 2,61% 

Serial 4,56% 2,98%. 2.56% 2.31% 

Table 18: Effect of Scheduling Schemes and Iterations - Deviations 

Clearly, the PSS is more effective on the short run whereas on the long run the SSS capitalizes 

better on the 1 arger iteration numbers. We will also see below that for 100 iterations the SSS 

succeeds in solving to optimality a larger portion of the instances attempted (cf. Table 22). 

These observations are consistent with theoretical insight since the set of non-delay schedules 

searched by the PSS will not always contain an optimal Solution whereas each Optimum be-

longs to the larger set of active schedules which are searched by the SSS (Kolisch 1996b). Al-

though our test instances do not allow such conclusions to be drawn, the iteration number at 

which the PSS is overtaken by the SSS might well be expected to vary with the size of the in­

stances attempted. 

We should add that the picture exposed is virtually the same over all RSS, which frees us 

from reproducing the complete numbers for the other schemes. In a few cases, the PSS is still 

dominant after 40 iterations; from 70 iterations on the SSS is always superior, though. Let us 

also add without providing numerical evidence the interesting Observation that promising and 

bad rules react differently to increasing iteration numbers. Indeed, for the bad rules the PSS 

remains dominant even after 100 iterations, regardless ofthe RSS used. 

The bearing of the SS on efficiency is shown in Table 19 where the CPU times for the SS-

RSS combinations are averaged over all priority rules. In order to control for the influence of 

different a-values, again a was fixed to one where appropriate. 

RSS Averages Percentages 
Serial Parallel Serial Parallel 

BRS-C 0.40 0.35 113.6% 100.0% 
NBRS 0.58 0.48 121.2% 100.0% 
RBRS 0.49 0.45 110.8% 100.0% 
MRBRS/1 0.56 0.48 117.0% 100.0% 
MRB RS/10 0.57 0.49 115.8% 100.0% 
MRB RS/100 0.58 0.49 116.8% 100.0% 
MRB RS/1000 0.58 0.49 116.8% 100.0% 

Table 19: Effect of Scheduling Schemes - CPU Times 
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The SSS takes between 11% and 21% longer than its counteipart, which is due to the fact that 

it has to constantly manage the RxT matrix of remaining capacities while the PSS has to con-

sider only an R-vector of these values in each scheduling step (Kolisch 1995, p. 106). 

5.2.6. Effect Of Random Sampling Schemes 

We are now in a position to undertake a conclusive examination of the random sampling 

schemes tested. Limiting the presentation for each sampling scheme to the results of applying 

the promising rules with the best a-value of Table 15 allows to identify the most promising 

rules for each sampling scheme and thus the most promising algorithms. The respective Infor­

mation is given in Table 20. Recall from above that these a-values are not necessarily the in-

dividually best ones for each combination of RSS, SS, and rule. Indeed the deviation entry 

tagged by * (**) can be further reduced to 1.99% (2.37%) by using a setting of a = 3. Again, 

the dominated MRBRS/1000 has been omitted. 

RSS SSS PSS 
LFT LST MTS IRSM LFT LST SLK MTS RSM WCS 

BRS-C 3.60% 3.51% 2.62% 2.63% 3.15% 3.15% 3.20% 2.71% 2.64% 3.15% 
NBRS 3.14% 3.01% 2.24% 2.68% 3.06% 3.12% 2.94% 2.49% 2.66% 3.05% 
RBRS 2.02% 1.97% 2.32% 2,45% 2.40% 2.50% 2.50% 2.58% 2.50% 2.36% 
MRBRS/1 2.03% 2.00%* 2.31% 2.49% 2.46% 2,48% 2.48% 2.50% 2.49% 2.43%** 
MRBRS/10 1.99% 1.95% 2.31% 2.49% 2.55% 2.51% 2.51% 2.61% 2.53% 2.42% 
MRBRS/100 2.17% 1.89% 2.52% 2,78% 2,80% 2,94% 2,94% 3,07% 2,83% 2,71% 

Table 20: Effect of Random Sampling Schemes - Deviations (Promising Algorithms) 

Underlined are the column minima, indicating the best sampling scheme for each priority rule. 

Let us first discuss the case of serial scheduling. W.r.t. the sampling schemes, BRS-C is 

clearly inferior to all other schemes. For the rule MTS, the NBRS excels the other schemes 

but this deviation is clearly undercut by other algorithms. Discounting the rather poorly per-

forming schemes BRS-C and NBRS, the rule LST strictly dominates the other rules. A par-

ticularly noteworthy finding is that the RBRS, so far the best known sampling scheme 

(Kolisch 1996b), is strictly dominated by the MRBRS/10. An even higher effectiveness for the 

SSS is demonstrated by the MRBRS/100 using LST; it improves the best Performance of the 

RBRS Jby 4.1%. Yet, taking also its efficiency into account reveals it to do even better. Since 

the RBRS achieves its best Performance with a setting of a = 3, its computation time is about 

50% higher than the one required by the MRBRS/100 which uses a = 1 in its best configura-

tion. Therefore, in an additional experiment, we invested this time to perform additional itera­

tions, thus using the same total computation time allotted to RBRS. The resulting deviation of 

the MRBRS/100 reduces to 1.77%, or an improvement of 10.20% over the RBRS. 
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Under the parallel scheduling scheme, the priority rules LFT, WCS, and IRSM as a group out-

perform the remaining rules. Considering the sampling schemes, except of the combination 

(NBRS, MTS) whose deviation is practically identical to that of (MRBRS/1, MTS), again 

BRS-C and NBRS consistently perform worse than the other three schemes. At first glance a 

surprising result is that for the PSS, the BRS-C is not much worse than the other RSS consid-

ered. This conforms, however, with theoretical insight: As parallel algorithms search the 

smaller Solution space, it is straightforward that the deviations between different parallel algo­

rithms should be smaller than those between different serial ones, especially so with larger it­

eration numbers. Of the other three sampling schemes, none succeeds to strictly dominate the 

other two. All in all, the MRBRS/1 and RBRS can be considered the best schemes for parallel 

scheduling. Deciding between them is a close call, however, with the MRBRS/1 clearly domi-

nating the RBRS for four of the seven promising rules and the RBRS - using either WCS or 

LFT - producing the best schedules of all parallel algorithms examined. In other words, the 

MRBRS/1 should be selected if all promising rules, the RBRS if only the best algorithm shall 

be employed. 

From these results, the best individual priority rule and a-value for each combination of 

scheduling and sampling scheme can be extracted as listed in Table 21. 

RSS SSS PSS 
Rule Alpha Rule Alpha 

DETERM SLK N/A IRSM N/A 
BRS-C MTS N/A IRSM N/A 
NBRS MTS 3 MTS 3 
RBRS LST 2 WCS 1 
MRBRS/1 LST 3 WCS 3 
MRBRS/10 LST 1 WCS 1 
MRBRS/100 LST 1 WCS 1 
MRBRS/1000 LST 1 WCS 1 

Table 21: Best Rules and a-Values 

Another glance on the effectiveness of the best algorithms for each SS and RSS is provided in 

Table 22, listing for each combination the results obtained from employing the individually 

best rule and a-value, respectively. Avg (SD, Max) denotes the average (Standard deviation, 

maximum) of the deviations from optimum, % Opt the percentage of instances optimally 
solved. 
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RSS SSS PSS 
Avg SD Max % Opt Avg SD Max %Opt 

DETERM 5.58% 6.26% 27.38% 38.61% 5.17% 5.07% 26.39% 26.67% 
RAS 3.70% 4.40% 17.65% 44.72% 3.31% 3.41% 15.46% 33.89% 
BRS-C 2.62% 3.38% 14.29% 50.83% 2.71% 2.89% 13.64% 37.22% 
NBRS 2.24% 3.03% 12.90% 53.61% 2.49% 2.78% 13.64% 38.61% 
RBRS 1.97% 3.09% 16.13% 59.44% 2.36% 2.67% 13.64% 40.28% 
MRBRS/1 1.99% 3.12% 14.44% 58.61% 2.37% 2.69% 13.64% 40.83% 
MRBRS/10 1.95% 3.07% 13.89% 59.44% 2.42% 2.73% 13.64% 40.56% 
MRBRS/100 1.89% 2.92% 11.90% 58.61% 2.71% 2.97% 17.78% 37.50% 
MRBRS/1000 1.97% 2.99% 12.90% 58.89% 2.91% 3.16% 17.78% 36.39% 

Table 22: Effect of Random Sampling Schemes - Summary (Best Algorithms) 

5.2.7. Effect Of Iterations 

Let us now tum our attention to the influenae of iterations. Apart from affecting the suitability 

of scheduling schemes, they also bear on the effectiveness of the different RSS. Consider Ta­

ble 23 which is based upon employing the best combination of priority rule and a-value for 

each combination of RSS and SS (recall that these a-values may differ from those of Table 15 

which Covers all promising rules rather than only the best one). A graphical summary, includ-

ing only the respective best-performing MRBRS-variant, is given in Figure 6. 

RSS Serial Parallel 
Rule Alpha 10 40 70 100 Rule Alpha 10 40 70 100 

BRS-C MTS N/A 5,64% 3,49% 2,96% 2,62% IRSM N/A 4,18% 3,08% 2,79% 2,63% 
NBRS MTS 3 4,23% 2,93% 2,51% 2,24% MTS 2 3,95% 2,82% 2,62% 2,47% 
RBRS LST 2 3,76% 2.42% 2,15% 1,97% WCS 1 3,85% 3,00% 2,79% 2,36% 
MRBRS/1 LST 3 3.60% 2,43% 2.08% 1,99% WCS 3 3.51% 2.69% 2.49% 2,37% 
MRBRS/10 LST 1 4,02% 2,47% 2,16% 1,95% WCS 1 3,82% 2,79% 2,53% 2,42% 
MRBRS/100 LST 1 3,75% 2,42% 2,11% 1.89% WCS 1 3,79% 3,08% 2,80% 2,71% 
MRBRS/1000 LST 1 3,73% 2,50% 2,21% 1,97% WCS 1 3,83% 3,15% 3,00% 2,91% 

Table 23: Effect of Iterations and Random Sampling Schemes - Deviations 

The underlined column minima indicate the best-performing sampling scheme, respectively. It 

is evident that the relative effectiveness of the sampling scheme may depend on changes in the 

number of iterations performed. Except for the PSS using 100 iterations, the MRBRS/8 with 8 

= 1 or 8 = 100 dominates all other RSS, including the RBRS, although the specific choice of 

the best S-value is affected by the number of iterations performed. Under the SSS, even the 

NBRS performs better than the RBRS. 
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Figure 6: Effect of Iterations and Random Sampling Schemes - Deviations 

Finally, we devote ourselves to the question of how much the deviations can be decreased by 

increasing iterations. We therefore conducted another experiment in which several RSS were 

employed under both SS, using the promising rules only with a = 1, and running these for 500 

iterations. In Figure 7, we summarize the results for the MRBRS/10. The results are represen-

tative of those for the RBRS and other MRBRS-variants. For comparative purposes, we also 

include the results of RAS. 

7,0% 

8 8 8 8 8 — n <*•> rj- »n 
Iterations 

— CN m 
Iterations 

(SSS) (PSS) 

Figure 7: Effect of Iterations and Priority Rules - Deviations 
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Increasing the number of iterations improves the effectiveness of any of the algorithms used. 

The deviation for the SSS, using LST, reduces to 1.31%, for the PSS, using IRSM, to 2.06%. 

Also the Observation that linear increases in iterations, and thus computation time, are re-

warded by only sublinear decreases of deviation is hardly a surprise, given the complexity of 

the RCPSP. It is thus especially noteworthy that within certain ranges this relationship is essen-

tially linear. For the PSS, this ränge lies between 40 and 200 iterations; for the SSS, the devia­

tion reduction remains essentially linear even up to 500 iterations, again due to the fact that 

the SSS searches the 1 arger Solution space than the PSS. 

Also, one may note that for the SSS the relative effectiveness of the promising rules is practi-

cally immune against changes in the iteration numbers. For the PSS, the picture is somewhat 

less clear since some rules are more effective than others only within a certain ränge of itera­

tions; still, from 100 iterations on the differences between the individual rules remain always 

below 7% relative or 0.14% absolute. We may conclude that good rules remain good, regard-

less of how many iterations are performed. In particular, the algorithm proclaimed above as 

best of the ones considered here (SSS, MRBRS/100, LST, a = 1) consistently outperforms all 

other ones, regardless of the number of iterations performed. 

5.3. Conclusions 

The above findings, limited to the promising rules only, can be summarized as follows. 

• Priority rules: For the SSS, promising rules are LFT, LST, and MTS, for the PSS IRSM, 

LFT, LST, MTS, SLK, RSM, and WCS. The bestperforming rules are LST for the SSS 

and WCS for the PSS. Priority rules performing well when applied deterministically 

mostly do well also when applied in a sampling manner. 

• Alpha: For the RBRS a = 2 performs best under the SSS, a = 1 under the PSS. For the 

MRBRS/1 a = 2, for all other MRBRS-variants CL = 1 perform best, regardless of the 

scheduling scheme used. 

• Scheduling schemes: Using promising rules, the PSS is more effective for small iteration 

numbers (up to between 40 and 70) while the SSS becomes dominant from there on. Us­

ing bad rules, the PSS remains dominant even after 100 iterations. 

• Random sampling schemes: Under the SSS the MRBRS/10 consistently outperforms all 

other sampling schemes, except of the MRBRS/100 using LST and a = 1 which is the 

overall best of the tested algorithms. Under the PSS the MRBRS/1 and RBRS are the best 

schemes; the former should be used if all promising rules, the latter if only the best algo­

rithm is to be utilized. 
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. Iterations: Increasing the number of iterations improves the effectiveness of any of the al­

gorithms used. The deviation ofthe best serial algorithm reduces to 1.31%, that of the best 

parallel one to 2.06%. For the PSS, linear increases of the number of iterations between 40 

and 200 yield linear improvements of effectiveness; for the SSS, the improvements remain 

linear even up to 500 iterations. Good algorithms remain good, even if not always best, re-

gardless of how many iterations are performed. 

6. Summary 

In this contribution, we have studied a number of parameterized biased random sampling 

schemes, compiling the most influential ones and complementing them by two newly devised 

schemes. An extensive experimental evaluation, the first to encompass the complete J30 in­

stance set, has been conducted. Restricting the analytical focus to promising priority rules and 

control parameter values only allowed to explore the effects of the algorithmic components 

more conclusively than previous studies. 

Of the two newly devised sampling schemes, the MRB RS holds significant potential, offering 

two advantages over existing random sampling schemes. First, in its best configuration the 

MRBRS/100 improves on the effectiveness of the formerly best sampling method RBRS by 

10.20%. Further, practically all serial algorithms using the MRBRS/10 strictly outperform 

their RBRS-based counterparts - and those based upon any other sampling scheme. Even if 

our results were derived from using test instances of a project scheduling problem, they have a 

bearing beyond the realm of project scheduling, since RBRS schemes have been applied to 

other scheduling problems as well, such as lotsizing and scheduling (Drexl, Haase 1996; 

Kimms 1996) or staff scheduling (Salewski et al. 1997). 

Second, distortions immanent in other sampling schemes, which impinge upon the selection 

probabilities, are avoided or at least largely reduced. We have shown that e.g. the influence 

exerted by too large an £ reduces the bias applied by the priorities and thus gears the selection 

process more towards pure random sampling. Our results demonstrate that, by reducing the 

adverse effect of e, the MRBRS schemes allow for better insight into the effects of different 

priority rules and other factors influencing the Performance of sampling heuristics. 

Also, our findings bear significance beyond mere priority rule-based methods: since they may 

form building blocks of more effective - albeit less efficient, due to the problem's complexity -

heuristics, we augur that improving them opens new roads for improving more complex heu­

ristics. 
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