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Abstract

Homm and Pigorsch (2012a) use the Aumann and Serrano index to develop a new

economic performance measure (EPM), which is well known to have advantages over other

measures. In this paper, we extend the theory by constructing a one-sample confidence

interval of EPM, and construct confidence intervals for the difference of EPMs for two

independent samples. We also derive the asymptotic distribution for EPM and for the

difference of two EPMs when the samples are independent. We conduct simulations to show

the proposed theory performs well for one and two independent samples. The simulations

show that the proposed approach is robust in the dependent case. The theory developed

is used to construct both one-sample and two-sample confidence intervals of EPMs for

Singapore and USA stock indices.

Keywords: Economic performance measure; Asymptotic confidence interval; Bootstrap-

based confidence interval; Method of variance estimates recovery.

JEL: C12, C15
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1 Introduction

Believing that less risk averse economic agents tend to accept riskier gambles, Aumann

and Serrano (2008) used the reciprocal of the absolute risk aversion (ARA) of an

investor with constant ARA to develop a new economic index of riskness, namely

the Aumann and Serrano (AS) index. Thereafter, Homm and Pigorsch (2012a) used

the AS index to develop a new economic performance measure (EPM), which can be

obtained through dividing the mean of an investment portfolio by the AS index.

The EPM has many advantages over other commonly-used risk measures, such as

the Sharpe ratio. For example, EPM is strictly monotonic with respect to stochastic

dominance (SD), and consistently accounts for the mean, variance and higher mo-

ments of the returns distribution. If investment returns follow a normal distribution,

the EPM and Sharpe ratio have the same ranking in measuring asset performance.

Thus, the EPM generalizes the Sharpe ratio with respect to non-normal distributions.

Confidence intervals are usually regarded as more informative than hypothesis

tests since they can provide a range of parameter values that reflect the degree of

uncertainty in estimation. The confidence interval construction of the Sharpe ratio,

a common performance measure of an investment, has been investigated by many

researchers. Jobson and Korkie (1981) proposed a popular tool to test the difference

of Sharpe ratios of two investment strategies, where the asymptotic distributions of

the estimators of the Sharpe and Treynor performance measures are derived. Memmel

(2003) corrected a typographical error in the Jobson-Korkie test, without loss of any

statistical properties.
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The above tests are not valid when returns have tails that are heavier than the

normal distribution, or are time series data. Ledoit and Wolf (2008) applied robust

inference methods, suggested constructing studentized time series bootstrap confi-

dence intervals for the difference of Sharpe ratios, and declared the two ratios as

different if zero is not contained in the interval. Constructing a confidence interval

for an estimator is important for studying the statistical properties. Bartlett (1953)

introduced the method to construct asymptotic confidence intervals for an unknown

parameter, θ, with higher moments of ∂L/∂θ, especially when the sample variance is

heavily skewed for moderate degrees of freedom.

Ghosh (1979) compared two confidence intervals for the binomial parameter by

confidence coefficients, the lengths and Neyman shortness, which were constructed

based on the extensions of Clopper-Pearson confidence intervals. Brookmeyer and

Crowley (1982) constructed confidence intervals for median survival time. Efron

(1987) proposed superior bootstrap confidence intervals for a single parameter in a

multi-parameter family. However, to the best of our knowledge, few references focus

on the construction of confidence intervals for the economic performance measure

with the AS index. The present paper focuses on this issue.

We develop the statistical theory to construct one-sample confidence intervals

of EPM. For one-sample confidence intervals, we recommend using three approach-

es, namely the asymptotic method, percentile bootstrap, and studentized bootstrap

methods. The percentile bootstrap approach is the easiest approach, while the stu-

dentized bootstrap approach improves performance of the percentile bootstrap ap-
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proach, and obtains more accurate results. The two bootstrap-based methods are

Monte Carlo based inference approaches. van der Vaart (1998) gave a detailed intro-

duction of the asymptotic theory, while Hall (1992), Efron (1979), Chernick (2007),

Efron and Tibshirani (1993) provided information on both the percentile bootstrap

and studentized bootstrap methods.

We extend the theory further by constructing confidence intervals for the difference

of EPMs for two independent samples. For two-sample confidence intervals, we recom-

mend using two methods, namely the asymptotic procedure and method of variance

estimates recovery (MOVER). MOVER is a strategy that “recovers” variance esti-

mates from the limits of individual sample parameters, and then forms approximate

confidence intervals for functions of the parameters, as proposed by Zou and Donner

(2008). Zou et al (2009) generalized MOVER, and established confidence limits for a

linear function of binomial proportions (for further details on MOVER, see Donner

and Zou (2012), Dagan et al (2010) and Newcombe (2016)). The MOVER method

is an excellent and simple tool to construct confidence intervals for two independent

samples.

In addition, we derive the asymptotic distribution of EPM, and the difference of

two EPMs when the samples are independent. We conduct simulations to show the

proposed theory performs well for one and two independent samples. The simulations

also show that the proposed approach is robust in the dependent case. We apply the

theory to construct both one-sample and two-sample confidence intervals of EPMs

for stock indices in Singapore and USA.
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The remainder of the paper is organized as follows. In Section 2, we present

methods of constructing confidence intervals for EPM with one-sample, including the

asymptotic method and bootstrap-based approaches. The asymptotic normality of

EPM is also derived. Thereafter, we develop the theory for the construction of two-

sample confidence intervals for the difference of two independent EPMs by applying

both the asymptotic method and MOVER procedure. In Section 3, we conduct simu-

lations of both the one-sample and two-sample confidence intervals for the difference

in two independent EPMs. We also conduct simulations for two-sample confidence

intervals for the difference in two dependent EPMs. We illustrate the theory by ap-

plying the proposed methods to real data analysis by comparing the performance of

the Singapore Stock Market Index and Standard & Poor’s Composite 500 Index in

Section 4. Section 5 concludes the paper. Proofs of the asymptotic results are given

in the Appendix.

2 Theory

Let r̃ be the stochastic return of an investment portfolio, rf be the deterministic

risk-free rate, and r = r̃ − rf be the excess return. The economic performance

measurement (EPM) is defined as (Homm and Pigorsch, 2012a):

θ(r) := EPM(r) =
E(r)

AS(r)
=

E(r̃)− rf

AS(r̃ − rf )
, (2.1)

where E(r) is the expectation of the excess return and AS(r), the AS index of riskness

(Aumann and Serrano, 2008) of the excess return, is the positive solution, s > 0, to
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the following equation:

E
[
exp

(
−r
s

)]
= 1 . (2.2)

The EPM in equation (2.1) can be rewritten as θ(r) = µr/s, where µr = E(r) and

the estimate of EPM is θ̂1, which can be obtained from:

θ̂ = r̄/ŝ, (2.3)

with r̄ =
∑n

i=1 ri/n, in which ri (i = 1, · · · , n) is the realization of the excess return,

r. We note that EPM in equation (2.1) may not exist as Schulze (2014) shows that

the AS index of riskness may not exist. In order to ensure the existence of the EPM,

we use the following assumption:

Assumption 2.1 A gamble/investment with returns satisfies the following con-

ditions: (a) negative outcomes; (b) positive mean; and (c) essentially has no heavy

negative tails.

With the aid of Assumption 2.1, the following lemma is obtained.

Lemma 2.1 If the return, ri (i = 1, 2, · · · , n), satisfies Assumption 2.1, then the

estimate θ̂ of the EPM defined in equation (2.3) exists and is unique.

See Homm and Pigorsch (2012b) for further information about Lemma 2.1. In this

paper, we recommend using a nonparametric approach to estimate s because the

distribution of the data is typically unknown. In addition, we recommend applying

the method of moments (MM) (Hansen, 1982) to obtain the nonparametric estimator,

1We note that most of the statistics in the paper are a function of the sample size n. For simplicity,

we omit n as a subscript.
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ŝ, from the following equation:

1

n

n∑
i=1

e−ri/ŝ − 1 = 0. (2.4)

We introduce the asymptotic approach and both percentile and studentized boot-

strap methods to construct a confidence interval of the EPM for one sample, and a

confidence interval for the difference in two EPMs for two samples, in the following

subsections.

2.1 One-sample confidence interval for EPM

In this section, we apply the Delta method to obtain a symmetric two-sided asymp-

totic confidence interval for the EPM, and thereafter discuss the bootstrap method

to obtain the asymmetric two-sided asymptotic confidence interval for the EPM.

2.1.1 Asymptotic confidence interval

Consider the asymptotic distribution (Homm and Pigorsch, 2012a) for the estimator,

ŝ, defined in equation (2.4), as follows:

√
n(ŝ− s0)

d−→ N(0, VAS), (2.5)

where s0 is the true value of s, and VAS = J/G2 is the asymptotic variance of the

estimator, ŝ. Here, J = E
[
(e−r/s0−1)2

]
= E(e−2r/s0)−1 and G = E(e−r/s0r)/s2

0. We

replace s0 by ŝ in the expressions of J and G to obtain the corresponding estimators

Ĵ and Ĝ, and obtain V̂AS = Ĵ/Ĝ2.

Before we derive the symmetric two-sided asymptotic confidence interval for EPM,

we derive the asymptotic distribution of θ̂, as given in the following theorem.
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Theorem 2.1 Let {r1, · · · , rn} be a sample realization of returns from an invest-

ment satisfying Assumption 2.1, with the AS index of riskness defined in (2.2) for

returns. Under suitable regularity conditions,2 the estimate of the EPM, θ̂, defined in

equation (2.3), satisfies:

√
n
(
θ̂ − θ

) d−→ N
(
0, VEPM

)
, (2.6)

where

VEPM =
Vr
s2

0

− 2
µr
s3

0

VAS,r +
µ2
r

s4
0

VAS,

in which Vr and VAS are the asymptotic variances of ri and the AS index of riskness,

respectively, and Vr,AS = VAS,r = cov(r,−G−1e−r/s0) is the asymptotic covariance.

The proof of Theorem 2.1 is given in the Appendix.

Remark 2.1 Theorem 2.1 holds under regularity conditions in different situations.

For example:

a. for i.i.d. data, E(r4) is assumed to be finite, and

b. for autocorrelated time series data, under appropriate conditions, we impose a

stronger assumption that E(r4+δ) is finite, for a small positive constant δ (see

Andrews (1991) for further information).

Based on the asymptotic result in Theorem 2.1, the two-sided symmetric 100(1−

α)% asymptotic confidence interval for EPM can be constructed as:

An =
(
θ̂ − z1−α/2

√
V̂EPM/n, θ̂ + z1−α/2

√
V̂EPM/n

)
, (2.7)

where V̂r =
∑n

i=1(ri− r̄)2/n, V̂AS,r = ˆcov(r,−Ĝ−1e−r/ŝ), V̂EPM = V̂r/ŝ
2−2r̄V̂AS,r/ŝ

3 +

r̄2Ĵ/ŝ4Ĝ2, and z1−α/2 is the (1− α/2) quantile of the standard normal distribution.

2See, for example, Remark 2.1 for the regularity conditions.
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2.1.2 Bootstrap-based confidence interval

The bootstrap method developed by Efron (1987) is a Monte Carlo based inference

approach that is popular for finite samples because it is a promising tool to obtain

an asymptotic variance or confidence interval of a statistic. In this paper, we propose

the following two bootstrap-based methods for constructing the confidence interval

for EPM, namely percentile bootstrap technique and studentized bootstrap approach.

The percentile bootstrap is a simple way of obtaining a confidence interval because

it uses percentiles of the bootstrap distribution, such that the confidence interval

becomes
(
θ?α/2, θ

?
1−α/2

)
, where θ?α/2 is the α/2 percentile of the EPM computed by using

the bootstrap samples. The studentized bootstrap approach (Davison and Hinkley,

1997), which is also called the bootstrap-t approach, replaces the quantiles from the

normal or student approximation by the quantiles from the bootstrap distribution of

the Student t-test. We state the steps to construct the bootstrap-based confidence

interval, as follows:

Step 1. For any given returns sample {r1, r2, · · · , rn}, we estimate r with r̄ =
∑n

i=1 ri/n,

and compute the corresponding AS index, ŝ, and asymptotic variance V̂EPM ,

defined in equations (2.4) and (2.7), respectively.

Step 2. Generate a new random sample {r?1, r?2, · · · , r?n} with replacement from the given

observations {r1, r2, · · · , rn}, and compute θ̂? and the corresponding asymptotic

variance, V̂ ?
EPM , for the new bootstrap sample by using the approach described

in Step 1.
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Step 3. Repeat the process in Step 2 M times (M ≥ 5000) to obtain M values of

θ̂? and V̂ ?
EPM , and denote the M values of θ̂? and V̂ ?

EPM as θ̂?m and V̂ ?
EPM,m

(m = 1, · · · ,M), respectively. Thereafter, calculate:

Qm =

∣∣θ̂?m − θ̂∣∣√
V̂ ?
EPM,m

(m = 1, · · · ,M) ,

where |x| is the absolute value of x.

Step 4. (I). Percentile Bootstrap:

Sort M values of θ̂?m (m = 1, · · · ,M) from the smallest to the largest, and

obtain the corresponding order statistics θ̂?(1), · · · , θ̂?(M). Thereafter, obtain the

percentile bootstrap-based confidence interval:

B1,n =
(
θ̂?([αM/2]), θ̂

?
([M(1−α)/2])

)
(2.8)

at the α significance level, where [·] denotes the top integral function and θ̂?(·) is

the order statistic.

(II.) Studentized Bootstrap:

Sort M values of Qm (m = 1, · · · ,M), and find the corresponding (1 − α)

quantile as q?1−α = Q([M(1−α)]). Thereafter, the studentized bootstrap based

confidence interval at nominal level α can be constructed as:

B2,n =
(
θ̂ − q?1−α

√
V̂EPM , θ̂ + q?1−α

√
V̂EPM

)
. (2.9)

One could choose M ≥ 5000. The larger is the value of M , the more precise will

be the constructed confidence interval. However, we need more time to compute the

confidence interval for larger M , and suggest M = 5000.
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2.2 Two-sample EPMs

In this section, we introduce two methods, namely the asymptotic approach and the

method of variance estimates recovery (MOVER), to construct confidence intervals

for the difference in two EPMs from two independent samples.

2.2.1 Asymptotic confidence interval for two independent samples

From the previous subsection, we obtain the asymptotic normal distribution of θ̂ for

one single sample by applying Theorem 2.1. Using the property of normal distribu-

tion, we can derive the asymptotic distribution of ∆̂ = θ̂1 − θ̂2. We will discuss the

details in this section.

For k = 1, 2, consider two independent samples of returns rk1, rk2, · · · , rknk
and

use equation (2.3) to estimate θk. Thereafter, applying Theorem 2.1 as nk →∞, we

obtain the following asymptotic normal distribution for θ̂k:

√
nk(θ̂k − θk)

d−→ N(0, VEPM,k) ,

where VEPM,k can be estimated by using equation (2.7) for the kth sample (k = 1, 2).

Thus, we can obtain the following theorem for the asymptotic distribution of ∆̂ =

θ̂1 − θ̂2.

Theorem 2.2 For k = 1, 2, suppose that rk1, rk2, · · · , rknk
are the realizations of

two independent samples of investment returns satisfying Assumption 2.1. The cor-

responding EPMs, θk = µr,k/sk, are defined in equation (2.1), and the asymptotic

distribution of ∆̂ = θ̂1 − θ̂2 is:

∆̂
d−→ N

(
∆, V∆

)
, (2.10)
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where V∆ = VEPM,1/n1 + VEPM,2/n2, with VEPM,k defined in equation (2.6) and the

estimate V̂EPM defined in equation (2.7).

Therefore, we can construct the corresponding asymptotic 100(1−α)% confidence

interval for ∆ as:

Dn =
(

∆̂− z1−α/2

√
V̂∆, ∆̂ + z1−α/2

√
V̂∆

)
, (2.11)

where V̂∆ is defined in equation (2.10).

2.2.2 Confidence interval estimation by MOVER

If θ̂1 and θ̂2 are computed based on two independent samples, an approximate two-

sided 100(1− α)% confidence interval (L,U) for ∆ = θ1 − θ2 is given by

(L,U) = θ̂1 − θ̂2 ∓ z1−α/2

√
v̂ar(θ̂1) + v̂ar(θ̂2), (2.12)

where v̂ar(θ̂k) is an estimator of the variance of θ̂k (k = 1, 2). The traditional pro-

cedure performs well when the sample sizes are large and the sampling distributions

of θ̂k are close to normal. However, the procedure may not perform well when the

sample sizes are not large, or the sampling distributions of θ̂k (k = 1, 2) are not close

to normal.

In order to improve the performance, we recommend using the method of variance

estimates recovery, MOVER. This is an excellent technique to calculate confidence

intervals for any linear combination, for example, a sum or a difference, of two statis-

tics from two independent samples, especially when the sampling distributions are

not asymptotically normal, or are asymmetric.
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Suppose that, for k = 1, 2, a 100(1 − α)% two-sided confidence interval for θk

is given by (lk, uk), in which case (l1 − u2, u1 − l2) may be a good choice for the

100(1−α)% two-sided confidence interval for θ1− θ2. However, this is not so because

(l1 − u2, u1 − l2) will cover 100% of the two-sided confidence interval of θ1 − θ2. In

order to improve estimation, we follow the approach used by Zou (2008) to estimate

the variances for both limits, not exactly at, but in the neighbourhood of L and U ,

respectively.

As in Zou (2010), of all the plausible parameter values of θk provided by (lk, uk),

the distance between l1 − u2 and L is smaller than using θ̂1 − θ̂2 and L, as L is in

the neighborhood of l1 − u2. Therefore, we can obtain the variance estimator for L

at θ1 = l1 and θ2 = u2. Similarly, the corresponding variance estimator for U can be

obtained by θ1 = u1 and θ2 = l2.

For k = 1, 2, to obtain a single sample confidence interval of θk, we have:

(lk, uk) = θ̂k ∓ z1−α/2

√
v̂ar(θ̂k) .

Similarly, to obtain a variance estimate for θ̂k at θk = lk, we have:

v̂ar(θ̂k) = (θ̂k − lk)2/z2
1−α/2 , (2.13)

and to obtain θ̂k at θk = uk, we have:

v̂ar(θ̂k) = (uk − θ̂k)2/z2
1−α/2 . (2.14)

The results in equations (2.13) and (2.14) enable construction of the confidence in-

terval, Mn, by using MOVER, such that:

Mn = (L,U), (2.15)

14



where the lower limit L can be obtained by substituting the variance estimators at

θ1 = l1 from equation (2.13), and at θ2 = u2 from equation (2.14), such that:

L = θ̂1 − θ̂2 − z1−α/2

√
(θ̂1 − l1)2

z2
1−α/2

+
(u2 − θ̂2)2

z2
1−α/2

= θ̂1 − θ̂2 −
√

(θ̂1 − l1)2 + (u2 − θ̂2)2. (2.16)

The upper limit U can be obtained by substituting the variance estimators at θ1 = u1

and θ2 = l2, respectively, such that:

U = θ̂1 − θ̂2 +

√
(u1 − θ̂1)2 + (θ̂2 − l2)2. (2.17)

Remark 2.2 A two-step approach is used to construct confidence intervals for ∆ =

θ1 − θ2 by using MOVER. Construct the 100(1− α)% two-sided confidence intervals

(lk, uk) of θk for the independent single sample k, with k = 1, 2, by using the asymptot-

ic approach described in Section 2.1.1, or by using the bootstrap approach described in

Section 2.1.2. Thereafter, one could apply equation (2.15) to construct the confidence

interval of ∆ = θ1 − θ2 by using MOVER.

Remark 2.3 Using the same argument as in the above derivation, we can obtain the

asymptotic confidence interval Dn in equation (2.11) by using the MOVER method

in equation (2.15), but by applying the method described in equation (2.7) to cal-

culate individual confidence intervals for An. Based on the simulation results for a

single sample in Section 3.1, the performance of the asymptotic confidence intervals,

An, and studentized bootstrap-based confidence interval, B2,n, are similar. Therefore,

in Sections 3.2 and 3.3, we conduct simulations of two independent sample cases

and two dependent sample cases, respectively. Here, we apply the percentile boot-

strap confidence intervals, B1,n, to compute confidence intervals (lk, uk), k = 1, 2, for

θk, k = 1, 2, in each single sample.
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3 Simulations

In this section, we conduct simulations to compare the performance of the proposed

methods in constructing confidence intervals for finite samples, for both the one-

sample and two-sample cases. In the simulations, we assume the variables follow a

normal inverse Gaussian (NIG) distribution, as NIG is one of the most commonly

used and well established distributions in finance and econometrics. For example,

Homm and Pigorsch (2012a) assume the NIG distribution for parametric estimation of

EPM, while Zakamouline and Koekebakker (2009) use the NIG distribution when they

conduct simulations for evaluating the portfolio performance of generalized Sharpe

ratios.

A NIG distributed random variable, R, is characterized by the following density:

f(r;α, β, µ, δ) =
αδ

π

K(α
√
δ2 + (r − µ)2)√

δ2 + (r − µ)2
eδγ+β(r−µ) ,

where γ =
√
α2 − β2, K(x) = (1/2)

∫∞
0
e−x(t+t−1)/2dt is the modified Bessel function

of the third kind with index 1, and δ, µ, and β are the scale, location and asymmetry

parameters, respectively, in which α± β determines the heaviness of the tails. Given

the existence conditions of the AS index, if R is a NIG-distributed random variable,

with parameters α, β, δ and µ, in which 0 ≤ |β| < α, δ > 0, µ ∈ R and µ ∈

(−δβ/γ, δ(α− β)/γ], then the AS index of R exists.

NIG distribution data can be generated easily. Assume that the random variable

X comes from a standard normal distribution, and Y comes from the inverse Gaussian

distribution, Y ∼ IG(η, λ), in which η = δ/γ = δ/
√
α2 − β2 is the mean of the inverse
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Gaussian distribution and λ = δ2 is the shape parameter. Then R = µ+ βY +
√
Y X

follows the NIG distribution, R ∼ NIG(α, β, µ, δ).

3.1 One-sample case

Simulations are based on NIG-distributed simulation data with different parameter

configurations to evaluate the finite sample performance of the proposed method-

s, namely An, B1,n and B2,n. The coverage probabilities (CP) and average widths

(AW) of two-sided 90% and 95% confidence intervals are reported in Tables 1 and 2,

respectively, where 5000 samples are generated to calculate the confidence intervals.

From Table 1, we have the following observations. First, all the coverage proba-

bilities of the three proposed confidence intervals, An, B1,n, and B2,n, are very close

to 0.90 at the 10% significance level, and all the coverage probabilities (CP) of the

three methods give similar performance in the simulations. Basically, of An, B1,n, and

B2,n, none is superior based on the coverage probability. However, since the coverage

probability of An is further from 90% when n is 70, and is closest to 90% when n

is 150, based on the coverage probability, An is the worst when n is small and best

when n is large.

Second, as expected, (a) the coverage probabilities of the three proposed con-

fidence intervals are closer to 0.90, and (b) the average widths (AW) of the three

confidence intervals decrease gradually, as n increases.

Third, comparing the three methods, for average widths with the same param-

eter configurations, both the asymptotic confidence interval, An, and studentized

17



bootstrap-based confidence interval, B2,n, perform better than the percentile bootstrap-

based confidence interval B1,n, because the average AWs of both An and B2,n are

smaller than for B1,n. For example, the average AW are 0.708, 0.618, 0.522 and 0.366

for n = 70, 80 100 and 150, respectively, for B1,n, which are much wider than for both

An and B2,n.

The simulated coverage probabilities (CP) and average widths (AW) of the two-

sided 95% confidence intervals with the proposed three methods are given in Table 2,

which suggests similar qualitative conclusions can be drawn as from Table 1.

In summary, all three proposed methods are acceptable, but the asymptotic con-

fidence interval, An, and studentized bootstrap-based confidence interval, B2,n, are

more highly recommended.

3.2 Two independent samples

In this section, we conduct simulations on the finite sample performance of the pro-

posed methods, Dn and Mn, in equations (2.11) and (2.15), respectively, for two

independent samples. Thereafter, we conduct simulations for dependent samples to

check the robustness of the proposed theory.

We first discuss the simulations for the case of two independent samples. In order

to compute confidence intervals with MOVER, according to Remark 2.3, we apply the

percentile bootstrap approach, B1,n, to obtain confidence intervals (lk, uk), k = 1, 2,

for θk, k = 1, 2 for a single sample. In the simulations, the first sample is from the

NIG distribution, and the second sample is from the normal distribution N(µ, σ2).
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The coverage probabilities (CP) and average widths (AW) of two-sided 90% and 95%

confidence intervals for ∆ = θ1 − θ2, with various parameter combinations, are given

in Tables 3 and 4, respectively. The simulations are based on an average of 5000

replications.

From the tables, we obtain the following observations. First, for all parameter

combinations, the coverage probabilities for both Dn and Mn are very close to 0.90

at the pre-specified nominal level, α = 0.10. For example, the average coverage

probabilities are 0.903, 0.903, 0.908, and 0.899 for Dn, and 0.911, 0.899, 0.891, 0.902

for Mn, when (n1, n2) = (120,100), (150,150), (150,180), and (200,200), respectively.

Second, both the coverage probabilities for Dn and Mn are close to the nominal levels.

Third, as expected, when the sample sizes increase, the average widths for both

confidence intervals fall quickly for any specified parameter configurations. Fourth,

interestingly, the average widths of the MOVER method, Mn, are shorter than those of

the asymptotic method, Dn, and yet the coverage probabilities of the MOVER method

are higher than those of the asymptotic method, Dn, when (n1, n2) = (120,100),

(150,150), (150,180), and (200,200), respectively. Thus, Mn is preferred to Dn when

(n1, n2) = (120,100) and (200,200). Fifth, when (n1, n2) = (150,150) and (150,180),

we cannot conclude which of Dn and Mn is better as Dn is closer to the overestimated

coverage probabilities for nominal level α = 0.10, whileMn has shorter average widths,

but underestimates the coverage probabilities.

The corresponding coverage probabilities and average widths for the two-sided

95% confidence intervals with the same parameter configurations are reported in
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Table 4. The conclusions drawn for the pre-specified nominal level, α = 0.05, are

similar to those drawn for the pre-specified nominal level, α = 0.10. For example, the

average widths of the MOVER method, Mn, are remarkably shorter than those of the

asymptotic method, Dn. The average coverage probabilities of the MOVER method

are closer to the pre-specified nominal level, α = 0.05, than those of the asymptotic

method in the two-sample cases. In particular, when (n1, n2) = (120,100), Mn and

Dn have the same the average coverage probability, that is, 0.953, while the average

width of Mn is 0.483, and is much shorter than that of Dn, at 0.635.

When (n1, n2) = (150,150), the average coverage probability of Mn is 0.951, and is

much closer to the pre-specified nominal level of α = 0.05 than for Dn, at 0.958, and

the average width of Mn is 0.400, which is much shorter than that of Dn, at 0.524.

When (n1, n2) = (200, 200), the average coverage probability of Mn is 0.952, which

is closer to the pre-specified nominal level, α = 0.05, than for Dn, at 0.953, and the

average width of Mn is 0.342, which is much shorter than for Dn, at 0.441.

In the last case, when (n1, n2) = (150, 180), the average coverage probability of

Dn is 0.952, which is closer to the pre-specified nominal level than for Mn at 0.941,

while the average width of Mn is 0.371, which is much shorter than that for Dn, at

0.524. For the first 3 cases, we conclude that Mn performs better than Dn, while

in the last case, we cannot conclude which of Mn and Dn is better. In general, Mn

performs better than does Dn.
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3.3 Two dependent samples

We now conduct simulations to examine the robustness of the proposed approaches for

simulated data of two dependent samples. The same method to compute (lk, uk), k =

1, 2, is applied. The two samples are both drawn from normal distributions, where

the parameters settings and correlation coefficient, ρ, are specified in the tables. The

simulations for coverage probabilities (CP) and average widths (AW) for two-sided

90% and 95% confidence intervals of ∆, for two dependent samples, are given in

Tables 5 and 6, respectively.

Tables 5 and 6 lead to the following observations: 1) even though the two samples

are dependent, the simulations for the asymptotic method, Dn, in equation (2.11)

and the MOVER technique, Mn, in equation (2.15), are both acceptable. 2) The

coverage probabilities (CP) for the two methods are very close to the pre-specified

significance levels, and the average widths (AW) are shorter for increasing sample

sizes. 3) AW is shorter for Dn (with AW = 0.603, 0.571, 0.885, and 0.890) than for

Mn. For example, the average AW = 0.603, 0.571, 0.885, and 0.890 for Dn and =

0.657, 0.618, 0.523, and 0.496 for Mn when (n1, n2) = (100,100), (120,100), (150,150),

and (150,180), respectively. However, 4) CP for Dn is further from the true values,

and nearly all underestimate the true CP (so that AW is shorter) with average CP

= 0.891, 0.881, 0.885, and 0.890 when (n1, n2) = (100,100), (120,100), (150,150), and

(150,180), respectively. 5) CP for Mn is closer to the true values. 6) In general,

they overestimate the true CP with average CP=0.909, 0.902, 0.900, and 0.897, when

(n1, n2) = (100,100), (120,100), (150,150), and (150,180), respectively, for the two-
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sided 90% confidence intervals of ∆ with ρ.

In order to demonstrate the effects of different values of ρ, we also conduct simu-

lations for the two-sided 90% confidence intervals of ∆, with ρ varying from 0.0 to 0.9

for both Dn and Mn, which are shown in Tables 7 and 8 for Dn and Mn, respectively.

The simulations show that estimation of the two-sided 90% confidence intervals for

both Dn and Mn are robust to any values of ρ from 0.1 to 0.9. Therefore, the theory

works well for both independent and dependent samples.

The simulations for the two-sided 95% confidence intervals of ∆, with ρ varying

from 0.0 to 0.9 are similar. We also conducted simulations to check the robustness

of the non-normal distribution. The simulations show that the proposed theory is

robust to non-normal distributions.

4 Empirical application

In order to illustrate the theory, in this section we construct confidence intervals for

the EPMs for Singapore and USA stock markets, and their differences, by using week-

ly returns data of the Singapore Stock Market Index (STI) and Standard & Poor’s

Composite 500 Index (S&P500), from January 1, 2000 to December 31, 2015. The

STI is a capitalisation-weighted stock market index that is regarded as the benchmark

index of the Singapore stock market to track the performance of the top 30 companies

listed on the Singapore Exchange. The S&P500 Index is a stock market index based

on the market capitalizations of 500 large companies having common stock listed on

the NYSE or NASDAQ. It is one of the most commonly followed equity indices, and
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many consider it one of the best representations of the USA stock market and a

bellwether for the USA economy. The time series plots from January 1, 2000 to

December 31, 2015 for STI and S&P500 are given in Figure 1.

We first apply the three proposed methods, namely the asymptotic method, An,

percentile bootstrap-based approach, B1,n and studentized bootstrap-based procedure

B2,n, to construct one-sample confidence intervals for EPMs at a confidence level 95%

for both STI and S&P500. The results are given in Table 9, which show that the

average widths of the percentile bootstrap-based confidence intervals are the longest

for all sub-periods, while the other two methods have similar performance, which is

consistent with the simulation results. Table 9 also shows that the EPM of STI and

S&P500 for each sub-period have both positive and negative values, implying that

we do not reject the EPM as zero which, in turn, implies that the average returns of

both STI and S&P500 could be zero for each sub-period.

Before we construct the two-sample confidence intervals for the differences in

EPMs for the returns of STI (rSTI) and S&P500 (rSP ) by using the proposed meth-

ods, we first test whether rSTI and rSP are independent. We use the Kendall τ test to

examine whether rSTI and rSP are correlated, with the test results given in Table 10.

It can be concluded that the correlation between rSTI and rSP is rejected as zero, so

the samples are dependent. The simulations show that the theory developed in the

paper is robust to dependent samples. Thus, we can apply the proposed methods to

dependent samples in the empirical illustration.

We apply both the asymptotic method, Dn, in equation (2.11), and the MOVER
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procedure, Mn, in equation (2.15), to construct confidence intervals for the difference,

∆ = θSTI − θSP , in EPMs between rSTI and rSP , with the results given in Table 11.

We can see that zero is included in both the confidence intervals of Dn and Mn for

each sub-period. Thus, we do not reject the null hypothesis that the two EPMs, θSTI

and θSP , for Singapore and USA stock markets, respectively, are the same.

5 Conclusion

In this paper, the confidence intervals for EPM using the AS index with one-sample,

and the difference of EPMs with two samples, were constructed. For the single sample

case, three approaches were considered, namely the asymptotic method, An, percentile

bootstrap method, B1,n and studentized bootstrap method, B2,n. The simulations

indicated that all three methods were acceptable, but An and B2,n were more highly

recommended, with both presenting higher coverage probabilities and shorter average

widths than B1,n.

For the two-sample case, in the case of both independent and dependent samples,

the asymptotic procedure, Dn, and method of variance estimates recovery (MOVER),

Mn, were used. Simulations for the two-sample situations were conducted, where the

results showed that, for two independent samples, Mn performed better than Dn,

which had similar coverage probabilities, but the average widths for Mn were shorter.

For two dependent samples, both methods were reasonable, which indicated that the

proposed methods were robust.

The returns data of the Singapore Stock Market Index (STI) and USA Stock
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Market Standard & Poor’s Composite 500 Index (S&P500) from January 1, 2000 to

December 31, 2015 confirmed the veracity of the proposed methods. The empirical

results showed that the two indices were not statistically different.
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Appendix

Proof of Theorem 2.1

Before proving Theorem 2.1, we derive the asymptotic joint distribution of (r̄, ŝ), as

shown in the following lemma.

Lemma 5.1 Assume {r1, · · · , rn} is a sample realization of returns from a portfolio

investment satisfying Assumption 2.1, and the AS index of riskness can be calculated

based on (2.2). Then we have:

√
n

 r̄ − µr
ŝ− s0

 d→ N

 0

0

 ,

 Vr Vr,AS

VAS,r VAS

 ,
where Vr and VAS are the asymptotic variances of ri and the AS index of riskness,

respectively, and Vr,AS = VAS,r = cov(r,−G−1e−r/s0) is the asymptotic covariance.

Proof of Lemma 5.1

Let f(r, s) = e−r/s − 1. Based on equation (2.4), and taking a Taylor expansion, it

can be shown that:

0 =
1

n

n∑
i=1

(e−
ri
ŝ − 1)

=
1

n

n∑
i=1

(e
− ri

s0 − 1) +
1

n

n∑
i=1

∂f(ri, s)

∂s

∣∣∣
s=s̃

(ŝ− s0), (5.1)

where s̃ is between s and s0. From equation (5.1), we have:

√
n(ŝ− s0) =

{
− 1

n

n∑
i=1

∂f(ri, s0)

∂s

}−1 1√
n

n∑
i=1

(e
− ri

s0 − 1) + op(1),

= G−1 1√
n

n∑
i=1

(1− e−
ri
s0 ) + op(1).
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According to the Central Limit Theorem (CLT), when n→∞:

√
n

(
r̄ − µr
ŝ− s0

)
=

1√
n

( ∑n
i=1(ri − µr)∑n

i=1{G−1(1− e−
ri
s0 )− s0}

)
d→ N

((
0
0

)
,

(
Vr Vr,AS
VAS,r VAS

))
.

Thus, Lemma 5.1 holds. �

Now we will prove Theorem 2.1. Note that θ(r) := EPM(r) = µr/s, so that combining

the asymptotic joint distribution in Lemma 5.1 and the Delta method, the proof of

Theorem 2.1 is obtained. �
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Table 1: Coverage probabilities (CP) and average widths (AW) of two-sided 90% confidence

intervals for one-sample EPM with NIG distribution

(α, β, µ, δ) n
An B1,n B2,n

CP AW CP AW CP AW

(2.5,-2,1.8,1) 70 0.861 0.612 0.860 0.885 0.901 0.592

80 0.872 0.530 0.875 0.734 0.881 0.511

100 0.911 0.461 0.878 0.622 0.899 0.452

150 0.914 0.321 0.898 0.405 0.915 0.313

(3,-0.8,0.5,1) 70 0.885 0.604 0.883 0.691 0.877 0.576

80 0.886 0.545 0.903 0.634 0.882 0.540

100 0.890 0.477 0.893 0.559 0.883 0.493

150 0.903 0.392 0.894 0.419 0.905 0.386

(2,-0.5,0.3,0.5) 70 0.870 0.561 0.875 0.693 0.882 0.555

80 0.881 0.503 0.877 0.606 0.879 0.508

100 0.878 0.439 0.889 0.531 0.876 0.438

150 0.896 0.340 0.882 0.389 0.898 0.349

(1.5,-0.4,0.4,0.8) 70 0.884 0.381 0.914 0.489 0.877 0.386

80 0.869 0.371 0.894 0.435 0.871 0.352

100 0.874 0.313 0.886 0.355 0.870 0.296

150 0.888 0.248 0.891 0.264 0.855 0.236

(3,-0.8,1,2) 70 0.882 0.652 0.888 0.783 0.888 0.661

80 0.913 0.592 0.907 0.680 0.917 0.598

100 0.898 0.408 0.872 0.543 0.877 0.415

150 0.903 0.330 0.913 0.355 0.905 0.321

average 70 0.876 0.562 0.884 0.708 0.885 0.554

80 0.884 0.508 0.891 0.618 0.886 0.502

100 0.890 0.420 0.884 0.522 0.881 0.419

150 0.901 0.3262 0.896 0.366 0.896 0.321
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Table 2: Coverage probabilities (CP) and average widths (AW) of two-sided 95% confidence

intervals for one-sample EPM with NIG distribution

(α, β, µ, δ) n
An B1,n B2,n

CP AW CP AW CP AW

(2.5,-2,1.8,1) 70 0.929 0.786 0.925 0.979 0.929 0.769

80 0.932 0.676 0.927 0.861 0.939 0.670

100 0.948 0.510 0.932 0.712 0.941 0.506

150 0.945 0.387 0.943 0.407 0.949 0.382

(3,-0.8,0.5,1) 70 0.923 0.689 0.931 0.863 0.926 0.687

80 0.938 0.634 0.933 0.794 0.937 0.635

100 0.939 0.565 0.948 0.669 0.936 0.561

150 0.942 0.438 0.945 0.464 0.945 0.443

(2,-0.5,0.3,0.5) 70 0.927 0.653 0.929 0.879 0.930 0.649

80 0.938 0.595 0.939 0.691 0.936 0.581

100 0.944 0.512 0.939 0.626 0.939 0.508

150 0.944 0.406 0.942 0.468 0.947 0.407

(1.5,-0.4,0.4,0.8) 70 0.921 0.472 0.939 0.613 0.922 0.453

80 0.930 0.421 0.937 0.539 0.937 0.411

100 0.938 0.366 0.937 0.437 0.939 0.346

150 0.938 0.293 0.949 0.326 0.942 0.279

(3,-0.8,1,2) 70 0.935 0.795 0.940 0.873 0.938 0.786

80 0.934 0.681 0.941 0.755 0.934 0.697

100 0.942 0.548 0.953 0.651 0.937 0.561

150 0.949 0.392 0.943 0.440 0.942 0.406

average 70 0.927 0.679 0.932 0.841 0.929 0.669

80 0.934 0.601 0.935 0.728 0.937 0.599

100 0.942 0.500 0.942 0.619 0.938 0.496

150 0.944 0.383 0.944 0.421 0.945 0.383
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Table 3: Coverage probabilities (CP) and average widths (AW) of two-sided 90% confidence

intervals for ∆ with two independent samples

(α, β, ν, δ) (µ, σ2) (n1, n2)
Dn Mn

CP AW CP AW

(2.5,-2,1.8,1) (0.3,1) (120,100) 0.913 0.574 0.918 0.466

(150,150) 0.905 0.488 0.901 0.384

(150,180) 0.896 0.458 0.896 0.354

(200,200) 0.888 0.415 0.902 0.327

(2.5,-2,1.8,1) (1,3.2) (120,100) 0.886 0.593 0.905 0.483

(150,150) 0.905 0.498 0.910 0.394

(150,180) 0.910 0.472 0.904 0.368

(200,200) 0.904 0.412 0.905 0.343

(2,-1.5,1.2,0.8) (0.17,0.8) (120,100) 0.913 0.459 0.908 0.331

(150,150) 0.883 0.368 0.910 0.276

(150,180) 0.898 0.350 0.904 0.256

(200,200) 0.906 0.307 0.908 0.236

(1.5,-1,1.5,1.2) (0.3,1.2) (120,100) 0.913 0.516 0.914 0.398

(150,150) 0.909 0.427 0.889 0.330

(150,180) 0.905 0.408 0.866 0.301

(200,200) 0.896 0.361 0.896 0.278

(1.5,-1,1.5,1.2) (0.5,2) (120,100) 0.890 0.527 0.911 0.399

(150,150) 0.915 0.430 0.887 0.333

(150,180) 0.929 0.406 0.886 0.305

(200,200) 0.902 0.359 0.899 0.283

average (120,100) 0.903 0.534 0.911 0.415

(150,150) 0.903 0.442 0.899 0.343

(150,180) 0.908 0.419 0.891 0.317

(200,200) 0.899 0.371 0.902 0.293
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Table 4: Coverage probabilities (CP) and average widths (AW) of two-sided 95% confidence

intervals for ∆ with two independent samples

(α, β, ν, δ) (µ, σ2) (n1, n2)
Dn Mn

CP AW CP AW

(2.5,-2,1.8,1) (0.3,1) (120,100) 0.943 0.688 0.945 0.514

(150,150) 0.949 0.577 0.948 0.449

(150,180) 0.956 0.553 0.940 0.415

(200,200) 0.944 0.483 0.953 0.384

(2.5,-2,1.8,1) (1,3.2) (120,100) 0.956 0.721 0.957 0.571

(150,150) 0.955 0.591 0.946 0.467

(150,180) 0.957 0.552 0.937 0.431

(200,200) 0.956 0.495 0.957 0.400

(2,-1.5,1.2,0.8) (0.17,0.8) (120,100) 0.951 0.533 0.952 0.395

(150,150) 0.960 0.439 0.952 0.324

(150,180) 0.955 0.423 0.941 0.299

(200,200) 0.957 0.362 0.954 0.275

(1.5,-1,1.5,1.2) (0.3,1.2) (120,100) 0.953 0.615 0.957 0.469

(150,150) 0.967 0.499 0.953 0.380

(150,180) 0.950 0.489 0.951 0.353

(200,200) 0.958 0.429 0.947 0.325

(1.5,-1,1.5,1.2) (0.5,2) (120,100) 0.962 0.616 0.953 0.468

(150,150) 0.961 0.512 0.954 0.382

(150,180) 0.952 0.492 0.935 0.355

(200,200) 0.948 0.436 0.948 0.327

average (120,100) 0.953 0.635 0.953 0.483

(150,150) 0.958 0.524 0.951 0.400

(150,180) 0.954 0.502 0.941 0.371

(200,200) 0.953 0.441 0.952 0.342
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Table 5: Coverage probabilities (CP) and average widths (AW) of two-sided 90% confidence

intervals for ∆ with two dependent samples

(µ1, σ
2
1) (µ2, σ

2
2) ρ (n1, n2)

Dn Mn

CP AW CP AW

(0.2,1) (0.4,0.9) 0.3 (100,100) 0.876 0.604 0.921 0.703

(120,100) 0.872 0.565 0.905 0.643

(150,150) 0.875 0.481 0.912 0.555

(150,180) 0.883 0.467 0.900 0.512

(0.2,1) (0.4,0.9) 0.4 (100,100) 0.879 0.600 0.910 0.637

(120,100) 0.875 0.558 0.905 0.604

(150,150) 0.885 0.478 0.913 0.523

(150,180) 0.887 0.466 0.904 0.502

(0.5,4) (0.7,4) 0.3 (100,100) 0.900 0.583 0.904 0.643

(120,100) 0.879 0.553 0.890 0.606

(150,150) 0.886 0.466 0.899 0.509

(150,180) 0.895 0.447 0.896 0.494

(0.3,1) (0.4,1.6) 0.24 (100,100) 0.894 0.609 0.911 0.655

(120,100) 0.886 0.595 0.904 0.619

(150,150) 0.882 0.497 0.886 0.513

(150,180) 0.891 0.468 0.896 0.486

(0.3,1) (0.4,1.6) 0.32 (100,100) 0.905 0.619 0.901 0.648

(120,100) 0.895 0.584 0.905 0.616

(150,150) 0.897 0.495 0.892 0.516

(150,180) 0.893 0.465 0.888 0.488

average (100,100) 0.891 0.603 0.909 0.657

(120,100) 0.881 0.571 0.902 0.618

(150,150) 0.885 0.483 0.900 0.523

(150,180) 0.890 0.463 0.897 0.496

36



Table 6: Coverage probabilities (CP) and average widths (AW) of two-sided 95% confidence

intervals for ∆ with two dependent samples

(µ1, σ
2
1) (µ2, σ

2
2) ρ (n1, n2)

Dn Mn

CP AW CP AW

(0.2,1) (0.4,0.9) 0.3 (100,100) 0.922 0.715 0.961 0.860

(120,100) 0.929 0.666 0.958 0.788

(150,150) 0.922 0.569 0.964 0.671

(150,180) 0.929 0.564 0.954 0.655

(0.2,1) (0.4,0.9) 0.4 (100,100) 0.926 0.715 0.962 0.842

(120,100) 0.925 0.668 0.956 0.780

(150,150) 0.933 0.578 0.952 0.667

(150,180) 0.922 0.562 0.953 0.651

(0.5,4) (0.7,4) 0.3 (100,100) 0.956 0.694 0.957 0.777

(120,100) 0.936 0.664 0.952 0.732

(150,150) 0.930 0.554 0.947 0.615

(150,180) 0.923 0.541 0.945 0.592

(0.3,1) (0.4,1.6) 0.24 (100,100) 0.952 0.739 0.961 0.796

(120,100) 0.935 0.699 0.948 0.748

(150,150) 0.929 0.591 0.942 0.622

(150,180) 0.949 0.565 0.945 0.595

(0.3,1) (0.4,1.6) 0.32 (100,100) 0.951 0.736 0.953 0.801

(120,100) 0.939 0.695 0.951 0.758

(150,150) 0.938 0.591 0.947 0.620

(150,180) 0.942 0.556 0.946 0.597

average (100,100) 0.941 0.720 0.959 0.815

(120,100) 0.933 0.678 0.953 0.761

(150,150) 0.930 0.577 0.950 0.639

(150,180) 0.933 0.558 0.947 0.618
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Table 7: Coverage probabilities (CP) and average widths (AW) of two-sided 90% confidence

intervals for ∆ with two dependent samples for different ρ

(n1, n2) ρ
Dn

ρ
Dn

CP AW CP AW

(100,100) 0 0.923 0.594 0.1 0.868 0.605

(120,100) 0.921 0.557 0.870 0.559

(150,150) 0.928 0.475 0.858 0.486

(150,180) 0.914 0.468 0.846 0.469

(100,100) 0.2 0.867 0.607 0.3 0.855 0.598

(120,100) 0.854 0.564 0.864 0.564

(150,150) 0.861 0.481 0.865 0.483

(150,180) 0.842 0.471 0.866 0.471

(100,100) 0.4 0.863 0.601 0.5 0.857 0.608

(120,100) 0.875 0.555 0.868 0.560

(150,150) 0.882 0.481 0.853 0.478

(150,180) 0.856 0.468 0.843 0.475

(100,100) 0.6 0.899 0.592 0.7 0.904 0.594

(120,100) 0.896 0.554 0.909 0.643

(150,150) 0.901 0.480 0.913 0.481

(150,180) 0.873 0.470 0.905 0.464

(100,100) 0.8 0.914 0.594 0.9 0.902 0.585

(120,100) 0.927 0.565 0.937 0.558

(150,150) 0.917 0.478 0.914 0.473

(150,180) 0.915 0.469 0.907 0.467

(100,100) average 0.885 0.598

(120,100) average 0.892 0.568

(150,150) average 0.889 0.480

(150,180) average 0.877 0.469

Note: We use the first pair in Table 5 for different ρ for Dn.
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Table 8: Coverage probabilities (CP) and average widths (AW) of two-sided 90% confidence

intervals for ∆ with two dependent samples for different ρ

(n1, n2) ρ
Mn

ρ
Mn

CP AW CP AW

(100,100) 0 0.881 0.703 0.1 0.890 0.702

(120,100) 0.887 0.641 0.891 0.652

(150,150) 0.887 0.555 0.893 0.553

(150,180) 0.903 0.543 0.894 0.547

(100,100) 0.2 0.888 0.701 0.3 0.921 0.703

(120,100) 0.902 0.648 0.905 0.643

(150,150) 0.909 0.554 0.912 0.555

(150,180) 0.909 0.540 0.900 0.512

(100,100) 0.4 0.910 0.637 0.5 0.930 0.700

(120,100) 0.905 0.604 0.924 0.646

(150,150) 0.913 0.523 0.920 0.556

(150,180) 0.904 0.502 0.915 0.541

(100,100) 0.6 0.942 0.689 0.7 0.945 0.687

(120,100) 0.932 0.641 0.945 0.641

(150,150) 0.943 0.558 0.939 0.552

(150,180) 0.939 0.538 0.934 0.535

(100,100) 0.8 0.953 0.691 0.9 0.948 0.692

(120,100) 0.947 0.649 0.956 0.630

(150,150) 0.962 0.551 0.958 0.543

(150,180) 0.951 0.542 0.960 0.540

(100,100) average 0.920 0.690

(120,100) average 0.919 0.639

(150,150) average 0.923 0.550

(150,180) average 0.921 0.534

Note: We use the first pair in Table 5 for different ρ for Mn.
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Figure 1: Time series plots of the standardized Stock Market Index of Singapore

(STI) and Standard & Poor’s 500 Index (S&P500).
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Table 9: Confidence intervals for returns of one-sample with confidence level 95%

Date(mm/dd/yy)
STI

An B1,n B2,n

01/07/2000-12/28/2001 (-0.072,0.162) (-0.002,0.2646) (-0.043,0.132)

01/04/2002-12/26/2003 (-0.013,0.015) (-0.001,0.111) (-0.008,0.009)

01/02/2004-12/30/2005 (-0.072,0.253) (-0.001,0.348) (-0.059,0.240)

01/06/2006-12/28/2007 (-0.072,0.222) (-0.001,0.284) (-0.052,0.202)

01/04/2008-12/25/2009 (-0.034,0.045) (-0.002,0.132) (-0.020,0.031)

01/01/2010-12/30/2011 (-0.020,0.023) (-0.001,0.117) (-0.011,0.015)

01/06/2012-12/27/2013 (-0.061,0.111) (-0.001,0.236) (-0.040,0.090)

01/03/2014-12/25/2015 (-0.043,0.062) (-0.001,0.128) (-0.022,0.040)

Date(mm/dd/yy)
S&P500

An B1,n B2,n

01/07/2000-12/28/2001 (-0.058,0.098) (-0.001,0.173) (-0.032,0.072)

01/04/2002-12/26/2003 (-0.015,0.017) (-0.003,0.268) (-0.043,0.133)

01/02/2004-12/30/2005 (-0.063,0.120) (-0.001,0.197) (-0.034,0.090)

01/06/2006-12/28/2007 (-0.065,0.132) (-0.001,0.224) (-0.039,0.106)

01/04/2008-12/25/2009 (-0.053,0.083) (-0.002,0.161) (-0.028,0.058)

01/01/2010-12/30/2011 (-0.035,0.046) (-0.002,0.120) (-0.020,0.031)

01/06/2012-12/27/2013 (-0.058,0.384) (-0.005,0.477) (-0.059,0.385)

01/03/2014-12/25/2015 (-0.045,0.066) (-0.001,0.139) (-0.025,0.046)
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Table 10: Test for independence of returns of STI and S&P500

Date(mm/dd/yy)
p-values of the

Correlation Test

01/07/2000-12/28/2001 0.001

01/04/2002-12/26/2003 0

01/02/2004-12/30/2005 0

01/06/2006-12/28/2007 0.001

01/04/2008-12/25/2009 0.002

01/01/2010-12/30/2011 0.001

01/06/2012-12/27/2013 0

01/03/2014-12/25/2015 0.001
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Table 11: Confidence intervals for difference of EPM between returns of STI and S&P 500

with confidence level 95%

Date(mm/dd/yy) Dn Mn

01/07/2000-12/28/2001 (-0.116,0.165) (-0.043,0.082)

01/04/2002-12/26/2003 (-0.021,0.021) (-0.012,0.010)

01/02/2004-12/30/2005 (-0.124,0.248) (-0.034,0.114)

01/06/2006-12/28/2007 (-0.135,0.219) (-0.041,0.137)

01/04/2008-12/25/2009 (-0.088,0.069) (-0.061,0.043)

01/01/2010-12/30/2011 (-0.049,0.042) (-0.035,0.020)

01/06/2012-12/27/2013 (-0.375,0.100) (-0.272,0.053)

01/03/2014-12/25/2015 (-0.078,0.075) (-0.053,0.028)
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