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Abstract

We develop a new dynamic multivariate model for the analysis and the forecasting of

football match results in national league competitions. The proposed dynamic model is

based on the score of the predictive observation mass function for a high-dimensional

panel of weekly match results. Our main interest is to forecast whether the match

result is a win, a loss or a draw for each team. To deliver such forecasts, the dynamic

model can be based on three different dependent variables: the pairwise count of the

number of goals, the difference between the number of goals, or the category of the

match result (win, loss, draw). The different dependent variables require different

distributional assumptions. Furthermore, different dynamic model specifications can

be considered for generating the forecasts. We empirically investigate which dependent

variable and which dynamic model specification yield the best forecasting results. In an

extensive forecasting study, we consider match results from six large European football

competitions and we validate the precision of the forecasts for a period of seven years for

each competition. We conclude that our preferred dynamic model for pairwise counts

delivers the most precise forecasts and outperforms benchmark and other competing

models.

Key words: Football, Forecasting, Score-driven models, Bivariate Poisson, Skellam,

Ordered probit, Probabilistic loss function.

1



1 Introduction

Forecasting football match results is a highly popular activity. Amongst football supporters,

it is widespread to make a forecast of the next match result and oftentimes the individual

forecast is positively biased towards the team that one is supporting. But even the pundit

knows that forecasting a match result is a challenging task. The common way to bet on a

football match is simply to indicate whether one expects the team to win, lose, or draw its

next game. Whether the match result is a win, loss or draw depends on the difference in

the number of goals scored by the two opposing teams in a football match. There are many

determining factors of scoring a goal including the attack strength of the team, the defence

strength of the opposing team, the home ground advantage (when applicable), and specific

events taking place during the match. We consider the use of three possible observational

variables to base our forecast of the next match result in terms of win, loss, or draw. The first

variable is two-dimensional and consists of the number of goals scored by the two opposing

teams during a match. The second variable is the difference between the number of goals

scored. The third variable is simply the indicator of win, loss, or draw. The informational

content of these three consecutive variables is clearly decreasing. For each of the variable

categories, a variety of dynamic models can be considered for the forecasting of the match

result. Many contributions in the statistical literature on the modelling and forecasting of

the three variables have been made. We refer to Table B.1 in the Appendix for a schematic

overview of the main contributions. A discussion of this earlier literature is next and is

followed by a discussion of our contributions to this literature.

Most contributions in the statistical literature on the modelling and forecasting of match

results focus on the first variable where the pairwise observations of numbers of goals scored

by the opposing teams are assumed to come from a bivariate distribution. The probability

for a possible match outcome is implied by the bivariate distribution and is formally given

by P (X = x, Y = y), for x, y ∈ N0, where X and Y denote the number of goals scored

by the home and away team, respectively. Hence we have a probability for any match

outcome. The main interest usually focuses on forecasting the probabilities of home win,

draw, or away win; these are the toto probabilities and are given by P (X > Y ), P (X =

Y ), and P (X < Y ), respectively. The parameters of the distribution can be expressed as

function of strengths of attack and defence of the competing teams. This procedure was

first proposed by Maher (1982) who expresses the means of the double-Poisson distribution

(product of two independent Poissons) as team-specific strengths of attack and defence.

Dixon and Coles (1997) consider the double-Poisson distribution as well and introduce a

dependence parameter for the match results 0−0, 1−0, 0−1 and 1−1. They also propose a
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weighting function to down-weight likelihood contributions of observations from the more

distant past. In Crowder, Dixon, Ledford, and Robinson (2002), the model of Dixon and

Coles (1997) is formulated as a non-Gaussian state space model with time-varying strengths

of attack and defence. Then they develop approximating methods for parameter estimation

and signal extraction as they stated that an exact analysis is computationally too expensive.

A bivariate Poisson distribution is also used by Karlis and Ntzoufras (2003) who show that

the introduction of a parameter for dependence between goals scored by both teams during a

match, leads to a more accurate prediction of the outcome of a draw. Rue and Salvesen (2000)

incorporate the framework of Dixon and Coles (1997) and develop a dynamic generalized

linear model which is analysed by Markov chain Monte Carlo methods in continuous time.

Goddard (2005) explores the inclusion of covariates in a bivariate Poisson model. Koopman

and Lit (2014) show that a high-dimensional panel of weekly match results can be analysed

effectively within a non-Gaussian state space framework based on the bivariate Poisson

model with stochastically time-varying attack and defence strengths, and with some of the

above extensions. Their analysis includes the exact maximum likelihood estimation of the

parameter vector and the exact signal extraction of the time-varying attack and defence

strengths of the two teams. Detailed evidence of its forecast precision in forecasting match

results is presented. Finally, another interesting and original contribution in this category is

given by Dixon and Robinson (1998) who treat the number of scored goals by the competing

teams during a match as interacting birth processes.

The second category is the difference between goals in a match and can be regarded as

the margin of victory of a team. In this category we let Z = X−Y be the difference between

the number of scored goals X and Y , with Z ∈ Z. By modelling Z, we consider the toto

probabilities as given by P (Z > 0), P (Z = 0), and P (Z < 0) for a home win, draw, and away

win, respectively. By modelling the difference of goals, information is lost since, for example,

the pairs (X = 0, Y = 1) and (X = 2, Y = 3) produce the same values for Z. On the other

hand, a smaller number of summations is needed to obtain toto probabilities from Z when

compared to the pair (X, Y ). It is not immediately clear what the overall effect of modelling

Z instead of (X, Y ) would be on the forecasting of the toto probabilities. The reasoning

behind this is the accumulation of modelling error which could potentially be smaller since

a smaller number of probability components are summed compared to the first category.

A model for the difference between goals in football matches is provided by Karlis and

Ntzoufras (2009) who introduce the Skellam distribution for analysing match results. This

distribution was originally derived by Skellam (1946) as the difference of two independent

Poisson distributions. However, Karlis and Ntzoufras (2009) show that independence is not
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strictly necessary and even the Poisson assumption for the pair of variables (X, Y ) is not

needed. In their analysis the parameters of the Skellam distribution are kept static. Lit

(2016, Ch. 4) extends the Skellam model to allow for strengths of attack and defence that

evolve stochastically over time in a non-Gaussian state space framework.

Instead of modelling toto probabilities via the double or bivariate Poisson models or via

the Skellam models, we can also consider the modelling of the toto probabilities directly.

For this third variable category, we introduce ordered logit or ordered probit models in our

study. The modelling of match results in terms of win, loss, and draw, rather than scores or

differences in scores, leads to a more parsimonious model but also to a simpler estimation

procedure. Koning (2000) investigates the balance in competition in Dutch professional

soccer by means of an ordered probit model with static team strengths. A selection of

covariates can be introduced in the static ordered probit regression model of Goddard and

Asimakopoulos (2004) and in the static ordered logit model of Forrest and Simmons (2000).

Cattelan, Varin, and Firth (2013) propose a (semi)-dynamic Bradley-Terry model in which

team strengths are modelled by exponentially weighted moving average processes. An early

contribution is made by Fahrmeir and Tutz (1994) who introduce an ordered logit non-

Gaussian state space model that incorporates random walks for the team strengths. The

estimation of parameters for this model is carried out by the Kalman filter and recursive

posterior mode estimation methods. The dynamic cumulative link model of Knorr-Held

(2000) has been applied to German Bundesliga data for an analysis based on the extended

Kalman filter and smoother. Finally, Hvattum and Arntzen (2010) propose an ordered logit

model in which team strengths are updated over time using a so-called Elo rating system.

Our research contributes to the literature in a number of ways. First, we develop a new

dynamic multivariate model for the analysis and forecasting of football match results for

each of the three variable categories. The dynamic extensions of the static models are based

on the class of score-driven models where the time-varying coefficients are updated as an

autoregressive process. The autoregressive updating of the time-varying parameter is driven

by the score of the conditional observation probability density function, see Creal, Koopman,

and Lucas (2013) for a discussion of this approach. Three features of this class of models

are particularly attractive in our context: (i) The score-driven models are observation driven

which means that the likelihood is available in closed form. This allows for a fast estimation

process despite the high-dimensional model challenges due to the large number of teams that

participate in an European football competition over a number of years. The computationally

more demanding Kalman filter is not required for estimation and forecasting; (ii) The filtered

estimates of the time-varying parameters in a score-driven model are locally optimal in
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a Kullback-Leibler sense, see Blasques, Koopman, and Lucas (2015); (iii) The forecasting

performance of the score-driven models is comparable to their parameter-driven counterparts,

see Koopman, Lucas, and Scharth (2016). Second, we determine which of the three variable

categories leads to the most accurate forecasts in an extensive empirical study. Third,

we also investigate, as part of our empirical study, whether dynamic models with time-

varying parameters show better forecasting performance when compared to models with

static parameters. We further verify whether the dynamic extension of the static model is

best achieved by formulating a time-varying parameter model or by weighting the likelihood

contributions over time as proposed in Dixon and Coles (1997).

We have constructed time series panels of match results from six European competitions:

the English Premier League, the German Bundesliga, the Spanish Primera División, the

French Ligue 1, the Italian Serie A, and the Dutch Eredivisie. We have collected 17 seasons

of match results ranging from 1999−2000 to 2015−2016, for which the first 10 seasons are

used for parameter estimations and the last 7 seasons for the forecasting study. The size of

our forecasting study allows us to draw strong conclusions with respect to the forecasting

performances of the considered models. We use the rank probability score as a loss function

and explain why this is the most suitable loss function for this exercise. The losses are

evaluated by the Diebold and Mariano (1995) statistic to test for equal predictive accuracy.

The remainder of this research report is organized as follows. We introduce the statistical

modelling framework in Section 2 where the specific details of the score-driven football

models are discussed in Section 3. We discuss the design of our extended forecasting study,

including a data description, present our empirical findings and discuss various aspects of

our analyses in Section 4. Section 5 concludes. An Appendix provides additional figures,

tables, and technical details including the score functions of the various distributions that

are considered.

2 The distributions for the three variable categories

For the three variable categories, we develop three different modelling frameworks. First we

consider the different observational characteristics and propose their corresponding discrete

mass functions. Their dynamic extensions are developed and discussed in Section 3.

2.1 Bivariate Poisson distribution

The outcome of a football match is simply determined by the number of goals scored and

conceded by a team. The outcome can be considered as a pair of counts (X, Y ) where X is
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the number of goals scored by the home team and Y by the away team. We may assume that

the pair of counts (X, Y ) is generated by a bivariate Poisson distribution with intensities

λ1, λ2 > 0 for (X, Y ) and with the covariance between (X, Y ) denoted by λ3 ≥ 0. The

probability mass function of the bivariate Poisson distribution is given by

pBP(X = x, Y = y;λ1, λ2, λ3) = e−(λ1+λ2+λ3)λ
x
1

x!

λy2
y!

min(x,y)∑
k=0

(
x

k

)(
y

k

)
k!

(
λ3

λ1 λ2

)k
, (1)

see Kocherlakota and Kocherlakota (1992) and Johnson, Kotz, and Balakrishnan (1997) for

more information. It can be shown that

EBP(X) = VarBP(X) = λ1+λ3, EBP(Y ) = VarBP(Y ) = λ2+λ3, CovBP(X, Y ) = λ3, (2)

where Ep, Varp and Covp denotes expectation, variance and covariance, respectively, with

respect to density p. For λ3 = 0 the bivariate Poisson distribution reduces to the double

Poisson distribution. The covariance is a “shared component” in the intensities: a higher λ3

leads typically to a higher number of equal observations (X = Y ) which for a football match

is a draw.

In the context of modelling match results in football, we follow the framework developed

by Maher (1982); it has become the standard in the statistics literature on sports modelling.

We therefore specify the intensities λ1 and λ2 as functions of the latent strengths of attack α

and defence β of the two opposing teams, and the home ground advantage effect δ. Suppose

home team i welcomes away team j for a football match. Then intensity λ1,ij, associated

with the number of home goals X in this match of team i versus team j, and intensity λ2,ij,

associated with the corresponding number of away goals Y , can be specified as

λ1,ij = exp(δ + αi − βj), λ2,ij = exp(αj − βi), (3)

with αm and βm being the attack and defence strengths, respectively, of team m = i, j and

i 6= j. The home ground advantage δ can also be made team-specific but we restrict this

effect to be equal for all teams.

Assume we have a data set of football match results in a competition of N teams, for a

number of yearly football seasons, and which have taken place in a total of T weekends (and

mid-weeks) or football rounds. The data vectors with match results for round t are ordered

consecutively over time, t = 1, . . . , T . Hence we have a time series panel. The outcome of

a match between home team i and away team j is recorded by the number of home goals

xijt and the number of away goals yijt, for i, j = 1, . . . , N , with i 6= j, and t = 1, . . . , T .
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We notice that for each round t in the competition, we have N/2 matches with N/2 home

teams and N/2 away teams. For this data set and with the assumption that the match result

(X, Y ) is independently generated by the bivariate Poisson model described above, we can

specify the log-likelihood function as

LBP(ψBP) =
T∑
t=1

N/2∑
i=1

log pBP(xijt, yijt;λ1,ij, λ2,ij, λ3), i = i(t), j = j(i, t),

where i is a function of t, since it represents the home team in round t, and where j is a

function of i and t, since it represents the opponent of the home team i in round t, that is

i = i(t) and j = j(i, t). Given the specifications of the intensities in (3), the parameter vector

ψBP consists of attack and defence strengths αm and βm, respectively, for m = 1, . . . , N ,

together with the home ground advantage δ and the static covariance λ3. Hence the number

of unknown coefficients is 2(N + 1). The maximum likelihood estimate of ψBP is obtained

via the numerical maximisation of the log-likelihood function LBP(ψBP) with respect to ψBP.

The maximisation typically relies on gradient-based methods such as the Newton-Raphson

method. Although the parameter vector is typically of a high-dimension, the gradients (score

function and information matrix) have closed-form expressions. For further details of exact

maximum likelihood estimation and alternative estimation methods for the bivariate Poisson

distribution, we refer to Holgate (1964), Gourieroux, Monfort, and Trognon (1984), Karlis

and Ntzoufras (2003), and Kocherlakota and Kocherlakota (2001).

Once the parameter vector ψBP is estimated for the bivariate Poisson distribution, the

probabilities of a win, draw, and loss for the home team i against the away team j in a

football match are given by

P (Xij > Yij) =
∞∑
x=1

∑
0≤y<x

pBP(x, y; λ̂1,ij, λ̂2,ij, λ̂3),

P (Xij = Yij) =
∞∑

x=y=0

pBP(x, y; λ̂1,ij, λ̂2,ij, λ̂3),

P (Xij < Yij) =
∞∑
x=0

∑
y>x

pBP(x, y; λ̂1,ij, λ̂2,ij, λ̂3),

(4)

respectively, where λ̂k,ij and λ̂3 are the maximum likelihood estimates of coefficients λk,ij

and λ3, respectively, for k = 1, 2. The estimate λ̂3 is directly obtained from the maximum

likelihood estimate of ψBP while the estimates λ̂k,ij, for k = 1, 2, are constructed from it using

(3). In practice, the infinite upper bound is replaced by 25 which gives sufficient accuracy.
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2.2 Skellam distribution

The win, loss or draw of a football match is determined by the difference between the numbers

of goals scored and conceded by a team. The difference between the numbers of home goals

X and away goals Y can be regarded as the margin of the victory of a team. We can assume

this difference of the counts Z = X − Y to be distributed by the Skellam distribution with

intensities λ4, λ5. The probability mass function of the Skellam distribution is given by

pSk(Z = z;λ4, λ5) = e−(λ4+λ5) (λ4/λ5)z/2 I|z|(2
√
λ4λ5), (5)

where I|z|(·) is the modified Bessel function of order |z|. The mean and variance of Z are

given by

ESk(Z) = λ4 − λ5, VarSk(Z) = λ4 + λ5. (6)

We refer to the original work of Skellam (1946) and Irwin (1937) for the derivation of the

Skellam distribution based on the difference of two independent Poisson distributions. Alzaid

and Omair (2010) presented higher moments and several other interesting properties of

the Skellam distribution. Karlis and Ntzoufras (2009) showed that the underlying Poisson

assumption is not strictly necessary and that the Skellam distribution can also be considered

by itself as a distribution defined on integers. The Skellam distribution can alternatively be

formulated directly in terms of location and scale parameters which enables the modelling

of the mean and variance explicitly; see Koopman, Lit, and Lucas (2017) who adopted this

formulation to extract stochastic volatility from discrete price changes in financial markets.

When modelling football match results in terms of their victory margins, we can also

incorporate the framework of Maher (1982) for the Skellam distribution. The intensity λ4

is associated with the number of home goals and intensity λ5 with the number of away

goals. Hence the specifications for λ1,ij and λ2,ij in (3) can apply similarly to λ4,ij and

λ5,ij, respectively, for home team i and away team j. Assume we have a similar data set as

described above but now we only record the goal difference for a match of home team i versus

away team j in round t, this is zijt = xijt − yijt. For this data set and with the assumption

that the margin of victory Z of a match is independently generated by the Skellam model

as described above, we can specify the log-likelihood function as

LSk(ψSk) =
T∑
t=1

N/2∑
i=1

log pSk(zijt;λ4,ij, λ5,ij), i = i(t), j = j(i, t),

where the functions i(t) and j(i, t) are described above. The parameter vector ψSk is of
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dimension 2N+1 which is one less than ψBP since λ3 is not present in the Skellam distribution.

When estimating ψSk the same issues arise for its maximum likelihood estimation as with

estimating ψBP.

Once the maximum likelihood estimate of ψSk for the Skellam model is obtained, the

probabilities of a win, draw, and loss for the football match of home team i against away

team j are given by

P (Zij > 0) =
∞∑
z=1

pSk(z; λ̂4,ij, λ̂5,ij),

P (Zij = 0) = pSk(0; λ̂4,ij, λ̂5,ij),

P (Zij < 0) =
−1∑

z=−∞

pSk(z; λ̂4,ij, λ̂5,ij),

(7)

respectively, where λ̂k,ij is the maximum likelihood estimate of λk,ij, for k = 4, 5, and can

be constructed from equation (3) and the maximum likelihood estimate of ψSk. In practice,

the infinite upper bound is replaced by 25 which gives sufficient accuracy.

2.3 Ordered probit models

The win, loss or draw of a football match can also be considered as an observed variable that

we then model directly. In this case the observed categorical variable C is simply determined

by C = 2 for a home win X > Y (or Z > 0), C = 1 for a draw X = Y (or Z = 0), and

C = 0 for a home loss X < Y (or Z < 0). The margin of victory is not measured. The

variable C can also be interpreted as the credit points for a win, draw or loss of a match,

although in all our considered football competitions, the credit for a win is 3 points rather

than 2. In an ordered probit model, we assume that an unobserved stochastic variable C∗

determines the category C probabilistically, with C∗ given by the equation

C∗ = λ6 + η, η ∼ N (0, σ2
η), (8)

where λ6 is an unknown constant that indicates the strength of the home team relative to the

away team, and where η is a random variable generated by a normal variable with mean zero

and variance σ2
η. For the ordered probit model, we assume that the variable C is generated

conditional on C∗ via the equations

C =


2 if C∗ ≤ κ1,

1 if κ1 < C∗ ≤ κ2,

0 if C∗ > κ2,

(9)
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where the cutoff points κ1 and κ2, and the variance σ2
η are treated as unknown parameters;

see, for example, Greene (2012) for a textbook treatment of ordered probit models and

also for a more general treatment with more categories . Given the construction with the

unobserved variable C∗ and the random variable η, we cannot jointly identify the three

parameters uniquely. Therefore, we constrain the scale of η and set σ2
η = 1. An alternative

is to set κ1 to zero and choose σ2
η freely, together with κ2. For an ordered probit model with

categorical observations C ∈ {2, 1, 0} and σ2
η = 1, the probability density function is given

by

pOP(C ∈ {2, 1, 0};λ6, κ1, κ2) =


Φ(κ1 − λ6) if C = 2,

Φ(κ2 − λ6)− Φ(κ1 − λ6) if C = 1,

1− Φ(κ2 − λ6) if C = 0,

(10)

where Φ(·) is the standard normal cumulative density function (cdf). To ensure that the

probabilities are all positive, we further restrict the parameters by κ1 < κ2.

Given the limited amount of information in the category variable of a win, loss or draw

of a football match, the framework of Maher (1982) cannot be incorporated in an ordered

probit model. It is also the design of the ordered probit model that does not allow the

separation of the strength of a team in attack and defence strengths. Since the relative

strength of the home team is represented by λ6 and since it determines the probability of

category C ∈ {2, 1, 0}, we have

λ6,ij = γi − γj, (11)

where γm is the total strength or capability of team m.

Assume we have a similar data panel of match results as described above but now with

only a record of the match result as a win, loss or draw, for home team i versus away team

j in round t, that is cijt ∈ {2, 1, 0}. For this data set and with the assumption that the

category variable C ∈ {0, 1, 2} is independently generated by the ordered probit model as

described above, we can specify the log-likelihood function as

LOP(ψOP) =
T∑
t=1

N/2∑
i=1

log pOP(cijt;λ6,ij, κ1, κ2), i = i(t), j = j(i, t),

where the functions i(t) and j(i, t) are described above. Given the specification (11), the

parameter vector ψOP consists of strengths γm, for m = 1, . . . , N , together with the cutoff

constants κ1 and κ2. Hence the number of unknown coefficients is N + 2. The maximum

likelihood estimation can be carried out by a gradient-based optimisation method applied

to LOP(ψOP) with respect to ψOP; analytical expressions are available for the gradients and
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facilitate fast computation. To let κ1 < κ2, the coefficient κ2 from parameter vector ψOP

can be replaced by κ∗2 with κ2 = κ1 + exp(κ∗2). We notice that the home ground advantage

δ is implicitly accounted for by the cutoff parameters κ1 and κ2 because they are uniquely

associated with the probabilities of home and away wins, respectively. In effect, the difference

between their absolute values is the home ground advantage.

Given the maximum likelihood estimate of ψOP for the ordered probit model, we can

evaluate the probabilities of a win, draw, and loss of home team i against away team j which

are given by

P (Cij = 2) = Φ(κ̂1 − λ̂6,ij),

P (Cij = 1) = Φ(κ̂2 − λ̂6,ij)− Φ(κ̂1 − λ̂6,ij),

P (Cij = 0) = 1− Φ(κ̂2 − λ̂6,ij),

(12)

respectively, where Φ(·) is the standard normal cdf, λ̂6,ij and κ̂k are the maximum likelihood

estimates of λ6,ij and κk, respectively, for k = 1, 2; the estimates λ̂6,ij can be constructed

from (11) and the maximum likelihood estimate of ψOP.

3 Score-driven time-varying parameters

The treatment of football match results using the three observational variables discussed in

Section 2 is relatively straightforward. This is partly due to the assumptions that matches

and the efforts by the teams in each round of the competition are treated as independent

events. However, it is not realistic to assume that the numbers of goals scored by a team

in a series of matches are treated as an independent events. The strength of a football

team is likely to be partly related to the performance of the team in recent matches. The

attack and defence strengths of teams change also over time when the compositions of teams

evolve through the years. Several dynamic extensions of the static models described above

are considered in the statistics and econometrics literature. We consider a selection of such

existing methods in Section 3.4 for comparisons.

We contribute however by developing an effective and computationally fast approach to

the dynamic modelling of attack and defence strengths of football teams. These developments

are presented in Section 3.1 where a short review is given of score-driven time series models

and in Section 3.2 where the details of its implementation are presented for the models of

Section 2. The initialization of the dynamic processes are discussed in Section 3.3. In Section

4 we present the empirical results from European football league competitions; they include

excellent forecasting results for our proposed dynamic extensions.
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3.1 Score-driven time series models: a short review

We consider the class of score-driven models of Creal et al. (2013) to capture the dynamic

behavior of a parameter or a selection of parameters. We treat the case of a panel of time

series variables for which yt represents the corresponding vector of observations at time t.

We assume that the data are generated from a distribution with density function p (yt;ψ) for

which the density functions discussed in Section 2 are examples. The observation vector yt

can include the pairs of counts for the number of goals of both teams, the differences between

the number of goals in a match, or the indicator of a win, loss or draw. A part of the static

model parameters in ψ is assumed to be time-varying and is collected in the time-varying

parameter vector ft. The remaining static parameters are collected in the parameter vector

ψ∗.

In this framework, the score-driven model is based on the predictive density function

that is treated as the observation density and is given by

yt ∼ p (yt|ft,Ft;ψ∗) , t = 1, . . . , T, (13)

where Ft represents the information set available at time t, consisting of lagged observations

{yt−1, yt−2, . . .} and past time-varying parameter vectors {ft−1, ft−2, . . .}. The score-driven

updating mechanism for the time-varying parameter ft is given by

ft+1 = ω +Bft + Ast, (14)

where ω is a vector of unknown constants, matricesA andB are unknown coefficient matrices,

and st is the scaled score vector as defined by

st = St · ∇t, ∇t =
∂ log p(yt|ft,Ft;ψ∗)

∂ft
, St = S(ft,Ft;ψ∗), (15)

with S(·) being a matrix function to scale the score vector. A score-driven model updates

the factor ft+1 in the direction of the steepest increase of the log-density at time t given the

current parameter ft and the data history Ft. Under correct model specification, the score

vectors are a martingale sequence since Et−1(st) = 0 where Et−1 denotes the expectation

with respect to p(yt|ft,Ft;ψ∗).
The scaling matrix is regularly chosen to be a function of the variance of the score to

take into account the curvature of the log-density at time t as summarized by the Fisher

information matrix It|t−1 = Et−1 [∇t∇′t]. When it is intricate or impossible to obtain the

Fisher matrix analytically, we can take St as the unity matrix. The score-driven updating of
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parameters has a theoretical foundation since the estimates of the time-varying parameter

are optimal in a Kullback-Leibler sense, see Blasques et al. (2015), and it is therefore not a

heuristic method.

A nice feature of the score-driven time series model is the availability of the likelihood

function in closed form. In particular, the log-likelihood function is given by

L(ψ) =
T∑
t=τ

log p (yt|ft,Ft;ψ∗) ,

for some given parameter value for ψ∗, where integer τ > 0 is set for initialisation purposes,

see the discussion below. The time series observations yt are all given, for t = 1, . . . , T ,

and the time-varying parameter values ft are evaluated recursively as in (14), for some

initial value f1 and for a given value ψ∗. These simple and fast computations also lead to a

much faster optimization of the likelihood compared to the parameter driven counterparts.

In particular, when compared to the simulation-based methods that are required for the

log-likelihood evaluation for non-Gaussian state space models; see Section 3.4 for further

discussions. The aspect of simple and fast computations becomes especially important when

we consider the high-dimensional time series panels that we have in mind for the modelling

of match results in football competitions. Finally, Koopman et al. (2016) have shown that

the forecasting performance of score-driven models is similar or highly competitive to their

parameter-driven counterparts, including the state space formulations. Their study however

has only considered univariate models whereas in our study we investigate the forecasting

performance of multivariate score-driven models.

The predictive density p (yt|ft,Ft;ψ∗) is conditional on the time-varying parameter at

time t and the data history Ft ∈ {yt−1, yt−2, . . . , ft−1, ft−2, . . .}. We notice the reliance of

the recursion (14) on past data since the scaled score st is clearly a function of yt. Hence

ft is a function of {yt−1, yt−2, . . .}. The dynamic extensions of the models in Section 2 are

achieved simply by substituting a static parameter by a time-varying parameter. There is

no direct involvement of lagged yt’s in the density functions of Section 2 and hence we can

drop Ft from the conditional set to obtain p (yt|ft;ψ∗). This is still a predictive density and

it represents one of the densities in Section 2, that is p (·|ft;ψ∗) has the same functional form

as pM(·;ψM) with M∈ {BP, Sk,OP}.

3.2 Score-driven models for football match results

Next we adopt the score-driven time-varying parameter framework for the three densities

discussed in Section 2. We consider the time-variation for a selection of parameters in ψ
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and provide details for its implementation for modelling football match results. We obtain a

flexible and effective framework for the time series analysis and forecasting of football match

results in large competitions and over many seasons of a competition.

Bivariate Poisson distribution

The modelling of football match results via the observation pair (xijt, yijt), where xijt and

yijt are the numbers of goals by the home team i and the away team j, respectively, in round

t, can be based on the bivariate Poisson distribution pBP(X = xijt, Y = yijt;λ1,ij, λ2,ij, λ3)

and using the approach of Maher (1982) as reflected in the specifications (3). The dynamic

model allows us to let the strengths of the teams in attack and defence be time-varying.

In particular, we replace αi and βi in (3) by αit and βit, respectively. We then obtain the

2N × 1 time-varying parameter ft which contains αit and βit for all N teams active in a

competition, that is

ft = (α1t, . . . , αNt, β1t, . . . , βNt)
′ , t = 1, . . . , T. (16)

The home ground advantage δ and the covariance λ3 in ψBP can remain constant over time:

they can be treated as static parameters and are placed in ψ∗ of the score-driven model.

The implication of this dynamic extension is that the intensities λk,ij can now be treated as

time-varying intensities that we denote by λk,ijt = λk,ij(ft), for k = 1, 2, where λk,ij() refers

to the functions in (3).

The time-varying updating equation for ft is provided by (14). However, it is more

efficient to carry out the updating at round t for each match result. We assume that the

observation pair (xit, yjt) is generated by the bivariate Poisson and we select a subset of ft

that is relevant for this match, that is

fijt = (αit, αjt, βit, βjt)
′ = Mijft, (17)

where Mij is the 4× 2N selection matrix of 0s and 1s, and is implicitly defined. We update

the selected time-varying parameters as in (14). It reduces to the updating

fij,t+1 = ωij +Bijfijt + Aijsijt, (18)

with 4 × 1 vector of constants ωij = Mijω, 4 × 4 coefficient matrices Aij = MijAM
′
ij and

Bij = MijBM ′
ij, and with the 4 × 1 scaled score vector sijt which is defined as (15) but

with the gradient with respect to 4 × 1 vector fijt. This updating is then repeated for all
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N/2 matches in each round t and hence the full vector ft is effectively updated. Given the

update ft+1, we can make predictions for the match results for the next round t + 1 in the

competition. In particular, we can forecast the probabilities of a win, draw, and loss as

described at the end of Section 2.1.

The dimension of vector ft is as high as 2N . We may therefore want to specify the

2N × 2N coefficient matrices A and B in a parsimonious manner. In our empirical study,

we specify them as

A =

[
a1 · IN 0

0 a2 · IN

]
, B =

[
b1 · IN 0

0 b2 · IN

]
,

such that the attack strengths (α) rely on updating coefficients a1 and b1 and the defence

strengths (β) rely on updating coefficients a2 and b2. The coefficient matrices Aij and Bij

are then defined similarly but for N = 2. In this specification, the coefficient matrices

A and B do not have team specific characteristics and there are no spillover effects in

the dynamic specifications between the teams. Such specifications can be considered in a

straightforward manner because all unknown elements of A and B are placed in ψ∗. Finally,

the specification of the scaled score sijt = Sijt · ∇ijt in (18) for the bivariate Poisson is

provided in Appendix A.2, at least for the derivation of ∇ijt. Since the derivation of the

Fisher matrix is intricate, we set the scaling to the unity matrix, that is Sijt = I4. The

parameter vector ψ∗ is given by

ψ∗ = (a1, a2, b1, b2, λ3, δ)
′ , (19)

and is estimated by maximum likelihood. The estimation of ωij is discussed in section 3.3.

A team plays only once in each round t. Hence the maximum number of matches at time

t is N/2. When every team plays according to schedule, a season consists of T = 2(N − 1)

rounds in a competition. In practice, however, some football matches are postponed due to

bad weather conditions and other external events. These matches are then played later at

a convenient time. For this purpose, additional rounds are inserted in the calendar of the

competition. A small set of matches are scheduled for such additional rounds. If a team

does not play in round t, its score is set to zero and the updating for the strengths of attack

and defence reduces to

αm,t+1 = ωm + b1αmt, βm,t+1 = ωm + b2βmt,

respectively, for any team m that does not play in round t.
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Skellam distribution

When the football match result is modelled in terms of the observed margin of victory,

zijt = xijt − yijt, we can opt for the Skellam distribution in Section 2.2 with a similar

dynamic extension as for the bivariate Poisson distribution. The probability mass function

of the Skellam distribution is given by (5); also see Koopman et al. (2017) for a discussion

of its implementation in a dynamic setting. The time-varying parameter ft has the same

composition as in (16) and hence we consider the Skellam pmf pSk(Z = zijt;λ4,ijt, λ5,ijt) where

λk,ijt = λk,ij(ft), for k = 4, 5, where λk,ij() refers to the corresponding functions in (3). The

updating of ft can take place for each match separately using (18) where fijt is defined in

(17). The derivation of the score sijt for the Skellam density is presented in Appendix A.3.

We set the scaling equal to the unity matrix, that is Sijt = I4. The parameter vector ψ∗ is

given by ψ∗ = (a1, a2, b1, b2, δ)
′ and is estimated by maximum likelihood.

Ordered probit

When we record the data simply by win, loss or draw of a football match, that is we observe

cijt ∈ {2, 1, 0}, we can model the data by the ordered logit model of Section 2.3 with a

dynamic extension for the overall strength (or capability) of the team. Given that we cannot

separate the strength in defence and attack, we have a more parsimonious model. The

strengths are made time-varying by replacing γi by γit and place them in the N × 1 vector

ft. We have

ft = (γ1t, . . . , γNt)
′ , t = 1, . . . , T.

As a result, the coefficient λ6,ij has also become time-varying, we define λ6,ijt = γit − γjt

and it indicates the difference in strength between the home team i and away team j for

their football match in round t. This is our dynamic version of the ordered logit model for

football match results of Koning (2000). The cutoff points κ1 and κ2 (which also represent

the home ground advantage) remain static coefficients.

The updating of the time-varying team capabilities ft can also be done for each match

result separately as implied by (18) but now fijt is simply the 2×1 vector (γit, γjt)
′, with 2×1

constant vector ωij = (ωi, ωj)
′ and 2×2 coefficient matrices Aij = a1 ·I2 and Bij = b1 ·I2. The

derivation of the 2× 1 score vector sijt for the ordered probit pmf is provided in Appendix

A.4. We set the scaling equal to the unity matrix, that is Sijt = I2. The parameter vector

is given by ψ∗ = {a1, b1, κ1, κ2} and is estimated by maximum likelihood.
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3.3 Initialization of the panel

The updating equation for the time-varying parameter vector ft requires an initial value f1.

Given the high-dimensional ft for our high-dimensional panel of time series, this is not a

straightforward task. Next we describe several ways of initializing the updating equation

for ft and we discuss their pros and cons. In our empirical study we consider the match

results for a series of consecutive competitions. Since almost all football competitions have

a promotion and relegation system, there is a considerable set of teams that do not play at

the start of the data set and only become active at a later stage. The teams that are not

present in the first competition, are excluded from the initialization at time t = 1 but will

receive a separate treatment; see below.

To illustrate the challenge of initialization, consider Figures B.1 and B.2 which display the

numbers of goals scored and conceded, respectively, in the German Bundesliga competitions

from 2000-01 to 2015-16. In this Bundesliga panel, there is a considerable number of teams

that do not play for all years of our sample and a several number of teams only play one

season. We discuss our initialization method for the dynamic bivariate Poisson model. The

initialization for the Skellam and ordered probit models can be done in a similar fashion.

For the teams that play in the first year of the data set (and possibly for many more

years), we consider two strategies. First, the elements of the 2N × 1 vector f1 are estimated

as part of ψ∗ and the constant vector ω can be set to the unconditional mean of the score

driven update function; we have ω = f1 � (1 − diagonal(B)) where � denotes point-wise

multiplication and where 1 is a vector of ones. A clear disadvantage of including f1 in ψ∗

is the large increase of its dimension. For the bivariate Poisson model, we need to add

2N additional parameters which need to be estimated, in addition to the parameters in

equation (19). For the relatively small length of the time series dimension, the estimation of

f1 increases the uncertainty in the parameter space while forecast precision may suffer from

this. Our second initialization strategy takes out the data from the first year of competition

and is used to obtain static estimates of the strengths of attack and defence; see, for example,

Maher (1982) in which a regression method is used. Then, f1 can be set equal to the static

estimates of the strengths of attack and defence. The parameters in the static regression

are not identified, but this can be elevated by restricting the strengths of attack to sum to

zero, that is
∑N

i=1 αi = 0. Once we have an estimate for f1, vector ω can be determined as

suggested above. This solution comes at the cost of a shorter data sample of one year.

We also consider two different treatments for football teams that enter the panel at a

later point in time due to promotion. First, in case of the second initialization method (that

is regression with the zero sum restriction for the attack strengths), we can expect that the
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strength of a top team is typically larger than zero while the strength of a poor team is

smaller than zero. We introduce index τ that indicates the first round of a new competition

in which a new team enters the panel. The elements of fτ that correspond to the new team

are simply set to zero, the middle point between a top and a poor team, because we do not

know much about this new team. This strategy appears reasonable. In our second treatment

of newly promoted teams, the elements of fτ are given values such that the average attack

strength of all teams at time τ − 1, denoted by ᾱτ−1, equals ᾱτ . Same procedure can be

applied to defence strengths: at round τ , we choose the defence strengths of newly promoted

teams such that β̄τ−1 = β̄τ . Since relegated teams have typically a low strength, the newly

promoted teams are initialized with low strengths as well. This can be an undesirable feature

of this method.

Finally, when football teams relegate during one competition but get promoted in a future

competition, we emphasize that the updating continues also for ”missing” observations.

When such teams re-enter the competition, their strengths have probably reverted to their

long-term mean which is reasonable.

3.4 Other dynamic extensions

Parameter-driven state space model

An alternative dynamic extension of the three discrete models in Section 2 is obtained by

formulating a non-Gaussian state space model where the observation density function is

specified conditional on a stochastically time-varying vector f̃t, consisting of attack and

defence strengths which are treated as latent dynamic variables, that is

yt ∼ p(yt | f̃t;ψ∗), f̃t+1 = ω +Bf̃t + Aηt, ηt ∼ N (0, I), (20)

for t = 1, . . . , T , where ψ∗, ω, A and B play similar roles as those for the score-driven

model discussed in Section 3.1, but they can have different values and will lead to different

forecast functions. The key difference is that ft in (14) is a function of past observations

yt−1, yt−2, . . ., while f̃t in (20) is a stochastic unobserved dynamic process. We notice that

p(yt | f̃t;ψ∗) represents one of the densities pM(·;ψM) from Section 2, forM∈ {BP, Sk,OP}.
The partially non-Gaussian state space model (20) has been treated by Koopman and

Lit (2014) in the context of modelling football match results with an application to the

English Premier League. In particular, they consider the pair of counts (X, Y ) and assume

it is generated by the bivariate Poisson distribution with probability density function (1).

The intensities of the distribution are specified as in (3) with the strengths of attack (α) and
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defence (β) in f̃t. For the evaluation of the log-likelihood function, we need to integrate out all

latent dynamic variables numerically using efficient simulation methods. This treatment of

non-Gaussian observations in the context of the state space model (20) can also be considered

for the dynamic Skellam model with stochastically time-varying strengths; see the treatment

in Lit (2016, Ch. 4). Fahrmeir and Tutz (1994) and Knorr-Held (2000) have adopted a similar

state space model for analyzing categorical football match outcomes of win, draw and loss.

Weighting likelihood method

The dynamic extensions of our models aim to increase the role of past observations in the

modelling and forecasting of match results. To achieve this without considering a dynamic

extension of the static models in Section 2, we can allow recent observations to be more

influential than observations in the more remote past by a direct weighting method, see

Dixon and Coles (1997) in the context of football match results. This direct method defines

the log-likelihood function as

LWM(ψM) =
T∑
t=1

φ(t)

N/2∑
i=1

log pM(·;ψM), (21)

for M ∈ {BP, Sk,OP} and where φ(t) is a non-increasing weighting function of index t

and where the density pM() represents one of the densities in Section 2. A typical example

of a weighting function is φ(t) = exp(−ξt) which allows data contributions from the more

distant past to be down weighted in entering the log-likelihood function. Although this

method is relatively simple by construction, the unknown parameter ξ cannot be estimated

by maximum likelihood because LWM(ψM)→ 0 as ξ →∞, for any data set. Instead, we can

choose ξ such that, for example, the sum of squared prediction errors is minimized. The

empirical evidence in Dixon and Coles (1997) suggests that more precise forecasts can be

obtained using this approach, when compared to standard maximum likelihood estimation

of the parameters in the static model.

4 Forecasting football match results in Europe

Our empirical study is a basic and straightforward exercise: we forecast all match results

in the next round of a football competition, for all rounds in seven yearly competitions and

for six European football competitions. In this design of our study we almost make 15,000

probabilistic forecasts for the football toto results which are the match results in terms of

win, loss and draw for the home team. These probability forecasts are based on a particular
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model. We consider all three static models from Section 2 (using the three different variable

categories) and their various dynamic extensions as discussed in Section 3. This forecasting

study is of an exceptional magnitude and hence it allows us to draw strong conclusions

concerning which model performs best in forecasting. The forecast precision measurements

are based on the average rank probability score statistics.

4.1 Data description

We forecast the football toto results for six European football competitions: The English

Premier League, German Bundesliga, Spanish Primera División, Italian Serie A, France

Ligue 1, and the Dutch Eredivisie. For each competition, the total data set consist of

17 seasons of football match results. We have partitioned the data set into the in-sample

seasons 1999-2009 which is used for initial parameter estimation, and the out-of-sample

seasons 2009-2016 which is used for our forecasting study. After each football season, the

poorest performing team(s) will be relegated and new teams will be promoted into the

competition. Hence the total number of teams in the data set increases with every season

since the relegated teams remain in the panel as they can re-appear in future seasons. The

number of relegated teams differs per competition and per season. We refer to Table 1 for

some descriptive statistics of the six football competitions. The data used in our empirical

study can be found at http://www.football-data.co.uk.

4.2 Estimated strengths from score-driven model

To empirically illustrate our proposed score-driven model as a dynamic extension of our

models for football match results, we present in Figure 1 the time-varying estimates of the

attack, defence and total strengths of the two major rival teams in the Spanish Primera

división: Barcelona and Real Madrid. We present the estimated strengths for the dynamic

bivariate Poisson model; the implementation details for filtering and parameter estimation

are discussed in Section (3.2). The graphs in Figure 1 are all based on the values of ft as

defined in (16) and recursively evaluated by (14) where ω, A and B are replaced by their

maximum likelihood estimates. The estimated toto probabilities are computed as in (4) but

with the underlying parameters replaced by their estimates. Since the strengths are time-

varying (α and β are in ft), these probability computations are done repeatedly, each time

before a new football round starts.

The estimated strengths of attack and defence for Barcelona and Real Madrid, as obtained

from the dynamic Bivariate Poisson model, reveal that in the 16 seasons from 2000 onwards,
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Table 1

Descriptive statistics of six football competitions

The table reports in-sample and out-of-sample characteristics of the six football competitions that are con-
sidered in the forecasting study. The column ‘# Teams’ denote the number of teams that are active in one
season of the respective competition. For the Italian Serie A, the in-sample data set has 5×18 and 5×20
teams in a season. For the French Ligue 1, the in-sample data set has 3×18 and 7×20 teams in a season.
Column titles Mean(·) and Var(·) denote the sample mean and sample variance of the home (H) and away
(A) goals.

Competition # Teams # Matches Mean(H) Mean(A) Var(H) Var(A)

In-sample 1999-2009
English Premier League 20 3800 1.503 1.092 1.649 1.181
German Bundesliga 18 3060 1.673 1.185 1.781 1.274
Spanish Primera división 20 3800 1.533 1.116 1.566 1.169
Italian Serie A 18/20 3430 1.505 1.089 1.434 1.109
French Ligue 1 18/20 3578 1.382 0.913 1.381 0.960
Dutch Eredivisie 18 3060 1.766 1.242 2.195 1.478

Out-of-sample 2009-2016
English Premier League 20 2660 1.573 1.171 1.752 1.312
German Bundesliga 18 2142 1.617 1.281 1.804 1.462
Spanish Primera división 20 2660 1.627 1.121 1.947 1.343
Italian Serie A 20 2660 1.496 1.120 1.497 1.174
French Ligue 1 20 2660 1.420 1.050 1.409 1.151
Dutch Eredivisie 18 2142 1.789 1.325 1.956 1.558

the attack strengths have been competitive and steadily increasing for both teams while the

defence strength of Barcelona has been overall stronger since 2004 and has become even

more stronger in the more recent years. The overall superior strength of Barcelona over

Real Madrid since 2004 has been small but nevertheless clearly visible. This conclusion is

also supported by the probabilities of a Barcelona win compared to a Real Madrid win.

However, here we find that, since 2008 rather than 2004, the probability for a Barcelona win

is persistently close to 0.5 while the Real Madrid win probability is closer to 0.35 during the

last 7 seasons of the sample. We notice that the strengths and the probabilities are displayed

for each match in the sample, hence the strengths of both teams are not exclusively presented

for the Barcelona against Real Madrid (and vice versa) matches. To focus more on those

two matches in each season, we have indicated in each plot when such a key match took

place and whether it was a win, a draw or a loss for Barcelona. During the 16 seasons in our

sample, the rivals have played 32 times against each other: 14 wins for Barcelona, 8 draws

and 10 wins for Real Madrid. The home ground advantage effect is not accounted for in

these plots in order to have more precise comparisons.

Similar graphs as in Figure 1 can be presented for the dynamic extension of the Skellam

model while only the total strengths can be presented for the dynamic ordered probit model
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since the separation into attack and defence strengths cannot be identified in the latter

framework. The total strengths and the toto probability estimates for the dynamic extensions

of the Skellam and ordered probit models are presented in Figure B.3 of Appendix B. When

we compare these results amongst the three score-driven models, the paths of the estimated

total strengths are clearly different although the main patterns appear to be similar. Hence

the question of which model is best in forecasting the toto outcome is relevant and of interest.

We have presented the results for the two rival teams from the Spanish Primera división,

but, for completeness, we present similar figures to Figure 1 with panels of attack, defence

and overall strengths and a panel of toto probabilities, for the two main rival teams in

the other national football league competitions; see Figures B.4-B.8 in Appendix B. These

results merely illustrate that the estimated attack, defence and overall strengths are truly

time-varying. It is interesting to view the strength increases in the last years of our sample

by teams such as Dortmund, Juventus, and Paris SG but also the more recent strength

decreases of Manchester United.

4.3 Forecasting: design of study and precision measurement

We produce probability forecasts for the toto outcomes of the next round of matches in

six national league competitions and based on nine model categories as described in the

introduction and summarised in Table B.1 of Appendix B. For a description of the static

models we refer to, for example, Maher (1982), Karlis and Ntzoufras (2003), and Koning

(2000) and for a description of the semi-dynamic models we refer to Dixon and Coles (1997).

The details of our dynamic extension based on score-driven models are discussed in Section

3. The probability forecasts for the toto results are computed as implied by (4), (7), and

(12), where the strengths of attack and defence (or overall) are either treated as static or as

time-varying.

Before we compute the forecasts for round t + 1, all static parameters (whether in ψ

or in ψ∗) are re-estimated using all data up to time t. The first forecasts are for the toto

probabilities of all matches in the first round of the football season 2009-2010 and are based

on the parameter estimates from the data panel of the previous ten seasons 1999-2009.

These computations are repeated for each model, dynamic extension and method. In case of

the score driven model, we recursively evaluate ft and at the end of the estimation sample

we obtain ft+1 from which, together with the static parameter estimates, the probability

forecasts can be computed. Given the realised match results and their forecasts, we can

evaluate a loss function to measure the forecast precision; see the details below. For the

next round of football matches and its forecasts, we re-estimate the parameter vector after
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Figure 1

Estimated strengths for Barcelona and Real Madrid
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The estimated attack, defence and total strengths from the score-driven dynamic extension of the bivariate
Poisson model for the two top teams in the Spanish Primera división: Barcelona (solid/red) and Real Madrid
(dotted/blue). All panels: a dot on top of the panel represents a win for Barcelona, dot at the bottom is a
win for Real Madrid, and a draw is represented by a dot in the middle of the panel. Top left panel: time
series plot of extracted strengths of attack. Top right panel: time series plot of extracted strengths of defence.
Bottom left panel: sum of extracted strengths of attack and defence. Bottom right panel: probability of toto
results from the dynamic Bivariate Poisson model: Barcelona win (solid/red), Real Madrid win (dotted/blue)
and draw (dashed/black). In these graphs, the home ground advantage is not taken into account, that is δ
is set to zero in (3), to be able to better compare the two teams between each other.

including the football match results of the most recent round in our data set. Hence we have

an expanding estimation sample, to ensure that we can utilize as much data for estimation.

The procedure for our forecasting study is therefore simple, after each round of matches:

re-estimation of the static parameters, filtering of the time-varying parameters (if any),

and forecasting of the toto probabilities in the next round. We repeat these steps for each

round in the seven consecutive football seasons and for each of the six European football

competitions.

Given the forecasted probabilities for a win, loss and draw of the match and the realised

toto result, for each match in a round, we can measure the precision of our forecasts for

this round as follows. For example, assume that we have two rival models that produce

probability forecasts for the toto outcome of a football match: Model I has P (win) = 0.50,
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P (draw) = 0.40, and P (loss) = 0.10; Model II has P (win) = 0.50, P (draw) = 0.30, and

P (loss) = 0.20. The outcome of the match is a home win. If we opt for the log-loss function,

we would have log(0.50) as the loss for this match for both models, while the assigned

probabilities to the other possible outcomes P (draw) and P (away) are ignored. The rank

probability score (RPS) is a loss function that accounts for the other probabilities as well;

see Epstein (1969) and, for an application to football match results, see Constantinou and

Fenton (2012). For the toto forecasts, the RPS statistic is given by

RPS = 0.5
3∑

k=1

(cdff,k − cdfy,k)2 . (22)

where cdff,k and cdfy,k are the cumulative density functions of the forecast and realised

outcome, respectively. In our example, we have RPSI = [(0.5−1)2 +(0.9−1)2 +(1−1)2]/2 =

0.13 and RPSII = [(0.5−1)2 +(0.8−1)2 +(1−1)2]/2 = .145 for Models I and II, respectively.

Hence the probability forecasts from Model I have been more precise. We average the RPS

statistic over all football matches in a round and we take this average as our loss function.

To facilitate model comparisons, we collect the value of this loss function, for each round,

in a loss vector and use it to compute the Diebold Mariano (DM) test statistic for equal

predictive accuracy; see Diebold and Mariano (1995). The DM statistic is asymptotically

distributed as a standard normal random variable and hence rejects the null hypothesis of

equal predictive accuracy at the 5% level of significance if the DM test statistic is smaller

than −1.96 (the benchmark model performs significantly worse) or larger than 1.96 (the

benchmark model performs significantly better). Finally, we also report the ARPS which is

defined as the average of the RPS statistic over all rounds in the football season, and over

all seven years in our out-of-sample data set (it is simply the average of the values in the

loss vector).

4.4 Results of forecasting study

In Tables 2 and 3 we present the ARPS and the DM statistics for our three static models,

their dynamic extensions and different initialization methods. We report these results for the

six European football competitions and represent a summary of our findings. Given that for

each competition we have made ±2,500 forecasts on average, we may regard our forecasting

study as impressive. From the reported results, we learn that our dynamic extension, based

on the score-driven model with f1 being estimated using the first season of the in-sample data

set, is the best performing forecasting strategy for all six European football competitions.

It is only for the Spanish Primera división that a constrained version of our model with
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b1 = b2 = 1 (leading to a random walk updating for the time-varying parameter ft) is the

best performing in forecasting.

Our score-driven dynamic extensions outperform the static model and the semi-dynamic

model extension in forecast precision significantly, in almost all cases. The Dutch Eredivisie is

the exception: the outperformance is not strongly significant. We also learn that estimating

f1 as part of ψ∗ brings too much uncertainty in the parameter space as the associated

forecasts are significantly worse almost in all cases. The best strategy for initialization, that

is setting a value for f1, appears to be obtained by estimating the static model using the

first season in the sample.

Tables 2 and 3 provide convincing evidence that the bivariate Poisson is the preferred

distribution with the Skellam distribution in second place. These two models are almost

always preferred when compared to the ordered probit model. The Dutch Eredivisie is the

only exception where the dynamic ordered probit model is preferred in terms of forecast

precision. However the superiority of the ordered probit model is never significant when

compared to the other dynamic models. We may conclude that the condensation of data has

a negative impact on forecast precision: we loose information when data is recorded in a more

condensed manner. The counts of number of goals for both teams in a football match contain

more information than the difference of these two counts, and even much more so than the

sign of the difference (and zero). However, we could also have opted for another bivariate

distribution than the Poisson. For example, we could have opted for the bivariate negative

Binomial distribution; see Famoye (2010) for all relevant details. Its dynamic extension can

be implemented in a similar way as for the Poisson but the scaled score function for updating

the time-varying parameters will be different. However, the reported data descriptives in

Table 1 do not give much evidence of over-dispersion in the number of goals scored, perhaps

there is only some evidence for the Dutch Eredivisie competition. Although we do not report

these results, we have produced the forecasting results for the bivariate negative Binomial

model but we have not found any improvements when compared to the Poisson model.

Koopman et al. (2016) have argued that the forecasting performance of univariate score-

driven models is comparable to their parameter-driven (state space model) counterparts. In

our study we have confirmed this conclusion but now for a class of multivariate score-driven

and state space models. In terms of forecast precision, the score-driven model produces a

lower forecast loss than the dynamic state space model; in some instances we even report

a significant improvement. Finally, we also report the number of seconds of computer-time

needed for maximizing the log-likelihood function for a single model. The differences in

computing-time for parameter estimation is noteworthy: estimation requires < 10 seconds
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for the score-driven model and approximately one hour for the state space model. The score-

driven models clearly outperform the state space model, both in terms of forecast precision

and computer-time.

5 Conclusion

We have developed a multivariate score-driven model to analyse a high-dimensional panel of

football match results. The score-driven methodology is applied to three classes of models.

In the first class, a match result is treated as a pairwise observation which is assumed to

come from the bivariate Poisson distribution. The second class of models assumes that the

difference between the number of goals, or the margin of victory of a team, is generated

by the Skellam distribution. In the third class of models, the possibility of a win, draw, or

loss of a match is modelled by an ordered probit model. These different model classes with

their different variables require somewhat different statistical treatments but they can be

extended with time-varying parameters using the same score-driven framework. All three

approaches are able to forecast toto probabilities for football matches in a national league

competition. In a large-scale forecasting study we have investigated which of the three

model classes performs best in forecasting the toto probabilities in the next round of the

competition. For this purpose, we have used a large panel match results from six European

football competitions over a range of seasons. The results of the forecasting study show

that our score-driven football models outperform a range of benchmark models in forecast

precision but also in computing time. The dynamic bivariate Poisson model turns out to be

the best performing model in forecasting overall while the ordered probit model does almost

never produce a more precise forecast. We may conclude that the subsequent merging of

data (from two counts, to the difference in counts, on to the sign of the difference) leads to

a decrease of forecasting performance. It reduces the informational content in data which is

key for signal extraction.
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Appendices

A First derivatives of probability mass functions

For notational simplicity, throughout this appendix the subscripts that denote time t and

teams i, j are suppressed for intensities and observations.

A.1 Double Poisson distribution

A pair of counts (X, Y ) which is assumed to be distributed by the double Poisson distribution

with intensities λ1, λ2 > 0 has probability mass function

p(x, y; ft, ψ
∗) =

e−λ1λx1
x!

× e−λ2λy2
y!

. (A.1)

The mean and variance of the marginals are E(X) = Var(X) = λ1 and E(Y ) = Var(Y ) = λ2.

If the intensities are functions of latent strengths of attack and defence as in (3), the first

derivative of the double Poisson distribution with respect to fijt = (αit, αjt, βit, βjt)
′ is given

by the 4× 1 score vector

∇ijt =
∂ log p(x, y|ft,Ft, ψ∗)

∂fijt
= (x− λ1, y − λ2, λ2 − y, λ1 − x)′. (A.2)

A.2 Bivariate Poisson distribution

The first derivative of the bivariate Poisson mass function in (1) with respect to fijt is

∇ijt =
∂ log p(yijt|ft,Ft, ψ∗)

∂fijt
=

(
x−λ1−U(ft,ψ∗)
y−λ2−U(ft,ψ∗)
λ2−y+U(ft,ψ∗)
λ1−x+U(ft,ψ∗)

)
, (A.3)

where U(ft, ψ
∗) = S(1, ft, ψ

∗)/S(0, ft, ψ
∗) with

S(q, ft, ψ
∗) =

min(x,y)∑
k=0

(
x

k

)(
y

k

)
k! kq

(
λ3

λ1 λ2

)k
, q = 0, 1.

We notice that S(1, ft, ψ
∗) = 0 when λ3 = 0 and S(0, ft, ψ

∗) = 1 when min(x, y) = 0 so that

function U(ft, ψ
∗) is properly defined for all λ3 ≥ 0, see also the online appendix of Koopman

and Lit (2014). Finally we observe that for λ3 = 0 the score vector of the bivariate Poisson

distribution reduces to the score vector of the double Poisson distribution in equation (A.2).
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A.3 Skellam distribution

The first derivative of the Skellam mass function in (5) with respect to fijt = (αit, αjt, βit, βjt)
′

is given by the 4× 1 score vector

∇ijt =
∂ log p(yijt|ft,Ft, ψ∗)

∂fijt
=

(
z−λ1 +W (ft,ψ∗)
−λ2 +W (ft,ψ∗)
λ2 −W (ft,ψ∗)

−z+λ1 −W (ft,ψ∗)

)
, (A.4)

where W (ft, ψ
∗) is defined as

√
λ1λ2 ×

Iz+1(2
√
λ1,ijtλ2)

Iz(2
√
λ1λ2)

.

A.4 Ordered probit distribution

The first derivative of p(C; ft, ψ
∗) with respect to fijt = (γit, γjt)

′ is given by the 2× 1 score

vector

∇ijt =
∂ log p(yijt|ft,Ft;ψ∗)

∂fijt
=



(
φ(κ2−λ6,ijt)

1−Φ(κ2−λ6,ijt)
−φ(κ2−λ6,ijt)

1−Φ(κ2−λ6,ijt)

)
if C = 2,

(
φ(κ1−λ6,ijt)−φ(κ2−λ6,ijt)
Φ(κ2−λ6,ijt)−Φ(κ1−λ6,ijt)
φ(κ2−λ6,ijt)−φ(κ1−λ6,ijt)
Φ(κ2−λ6,ijt)−Φ(κ1−λ6,ijt)

)
if C = 1,

( −φ(κ1−λ6,ijt)
Φ(κ1−λ6,ijt)
φ(κ1−λ6,ijt)
Φ(κ1−λ6,ijt)

)
if C = 0,

(A.5)

where φ(·) is the standard normal pdf.

33



B More Tables and Figures

Table B.1

Main contributions to the football literature

The main contributions in the literature on modelling football match results are organized into nine cate-
gories. The three columns are for the dynamic extension of the model: ’Static’ means no dynamics at all,
’Dynamic’ means fully dynamic and ’Semi-dynamic’ refers to the method of weighted maximum likelihood
estimation. The three rows are for the type of observation in which the match result is measured: a pairwise
observation (’Goals’), a difference between the number of goals (’Difference’), or a category variable (’Toto’).
Although it is not the main focus or contribution of this paper, we address the empty square in the middle of
this table by considering weighted maximum likelihood estimation for the parameters in the static Skellam
model. Our main contribution is for the last column as we propose an alternative dynamic extension to the
three observation densities.

Static Semi-dynamic Dynamic

Goals

Maher (1982) Dixon and Coles (1997) Crowder et al. (2002)

Karlis and Ntzoufras (2003) Rue and Salvesen (2000)

Goddard (2005) Koopman and Lit (2014)

Dixon and Robinson (1998)

Difference

Karlis and Ntzoufras (2009) Lit (2016, Ch. 4)

Toto

Goddard et al. (2004) Cattelan et al. (2013) Fahrmeir and Tutz (1994)

Forrest and Simmons (2000) Knorr-Held (2000)

Koning (2000) Hvattum and Arntzen (2010)
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Figure B.3

Extracted strengths of Barcelona and Real Madrid :
Skellam and ordered probit models
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All panels: a dot on top of the panel represents a win for Barcelona, dot at the bottom is a win for Real
Madrid, and a draw is represented by a dot in the middle of the panel. Top left panel: sum of extracted
strengths of attack and defence from dynamic Skellam model. Top right panel: probability of toto results
from the dynamic Skellam model. Bottom left panel: sum of extracted strengths of attack and defence from
the dynamic ordered probit model. Bottom right panel: probability of toto results from the dynamic ordered
probit model.
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Figure B.4

Extracted strengths of Manchester United and Liverpool
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All panels: a dot on top of the panel represents a win for Manchester United, dot at the bottom is a win for
Liverpool, and a draw is represented by a dot in the middle of the panel. Top left panel: time series plot of
extracted strengths of attack. Top right panel: time series plot of extracted strengths of defence. Bottom
left panel: sum of extracted strengths of attack and defence. Bottom right panel: probability of toto results
from the dynamic Bivariate Poisson model.

Figure B.5

Extracted strengths of Dortmund and Schalke 04
Dortmund Schalke 04 
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All panels: a dot on top of the panel represents a win for Dortmund, dot at the bottom is a win for Schalke
04, and a draw is represented by a dot in the middle of the panel. Top left panel: time series plot of extracted
strengths of attack. Top right panel: time series plot of extracted strengths of defence. Bottom left panel:
sum of extracted strengths of attack and defence. Bottom right panel: probability of toto results from the
dynamic Bivariate Poisson model.
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Figure B.6

Extracted strengths of Juventus and Inter Milan
Juventus Inter 
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All panels: a dot on top of the panel represents a win for Juventus, dot at the bottom is a win for Inter
Milan, and a draw is represented by a dot in the middle of the panel. Top left panel: time series plot of
extracted strengths of attack. Top right panel: time series plot of extracted strengths of defence. Bottom
left panel: sum of extracted strengths of attack and defence. Bottom right panel: probability of toto results
from the dynamic Bivariate Poisson model.

Figure B.7

Extracted strengths of Paris SG and Marseille
Paris SG Marseille 
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All panels: a dot on top of the panel represents a win for Paris SG, dot at the bottom is a win for Marseille,
and a draw is represented by a dot in the middle of the panel. Top left panel: time series plot of extracted
strengths of attack. Top right panel: time series plot of extracted strengths of defence. Bottom left panel:
sum of extracted strengths of attack and defence. Bottom right panel: probability of toto results from the
dynamic Bivariate Poisson model.
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Figure B.8

Extracted strengths of Ajax and Feyenoord
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All panels: a dot on top of the panel represents a win for Ajax, dot at the bottom is a win for Feyenoord,
and a draw is represented by a dot in the middle of the panel. Top left panel: time series plot of extracted
strengths of attack. Top right panel: time series plot of extracted strengths of defence. Bottom left panel:
sum of extracted strengths of attack and defence. Bottom right panel: probability of toto results from the
dynamic Bivariate Poisson model.
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