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Specification Testing of Production in a
Stochastic Frontier Model

Abstract: Parametric production frontier functions are frequently used in stochas-

tic frontier models, but there do not seem to be any empirical test statistics for

its plausibility. To bridge the gap in the literature, we develop two test statistics

based on local smoothing and an empirical process, respectively. Residual-based

wild bootstrap versions of these two test statistics are also suggested. The distri-

butions of technical inefficiency and the noise term are not specified, which allows

specification testing of the production frontier function even under heteroscedas-

ticity. Simulation studies and a real data example are presented to examine the

finite sample sizes and powers of the test statistics. The theory developed in this

paper is useful for production mangers in their decisions on production.

Keywords: Production frontier function; Stochastic frontier model; Specification

testing; Wild bootstrap; Smoothing process; Empirical process; Simulations.

JEL Classification : C0, C13, C14, D81
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1 Introduction

Since the seminal work of Aigner et al. (1977) and Meeusen and van den

Broeck (1977), stochastic frontier analysis (SFA) has been a very appeal-

ing and popular approach for studying productivity and efficiency analysis.

Greene (1990) extends the stochastic frontier model by allowing the one-sided

component of the disturbance to have a two-parameter Gamma distribution

rather than the less flexible half-normal distribution. Greene (2005) extends

the model further by using a nonlinear specification. For an up-to-date intro-

duction and literature review, see Kumbhakar and Lovell (2000) and Fried

et al. (2008).

Consider the following SFA model:

Y = m(X)− U + V, (1)

where Y is the log of output, X is the log of inputs of dimension p, m(·) is

an unknown smooth production frontier function, U is the inefficiency term,

and V represents random noise. Assume that the positive random variable,

U , and the symmetric noise term, V , are conditionally independent, given

the inputs X, and E(V |X) = 0.

Parametric SFA models specify the functional form of the production

frontier function, m(·), as well as the distributions of the inefficiency term, U ,

and the independent noise, V . A fully parametric SFA framework sacrifices
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flexibility, and has been criticized as a major deficiency of SFA models (see

Simar and Wilson (2015)).

On the one hand, some authors have discussed how to test the distri-

butional assumptions on U and/or V . For instance, Wang et al. (2011)

develop the Pearson χ2 and Kolmogorov-Smirnov tests for the distribution

of U . Chen and Wang (2012) propose a centered residuals-based method of

moments to test the distributional assumptions on both U and V (see also

Schmidt and Lin (1984), Coelli (1995), Lee (1983), and Kopp and Mullahy

(1990)). However, it should be noted that all these procedures are based

on the assumed parametric form of the production frontier function. If the

parametric assumption onm(·) is not valid, the conclusions can be inaccurate

and misleading.

On the other hand, there have been attempts to reduce the parametric

restrictions on the production frontier function. Fan et al. (1996) introduce

the quasi-likelihood method, where the production frontier is not specified,

but distributional assumptions are imposed on the stochastic components.

Kumbhakar et al. (2007) propose a local maximum likelihood method but

without parametric assumptions on the production frontier function, while

using semi-parametric assumptions about U and V .

Recently, Simar et al. (2016) develop a nonparametric least squares

method to avoid the high computational complexity involved in the local
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maximum likelihood method in Kumbhakar et al. (2007). Another merit of

Simar et al. (2016) is that only local distributional assumptions on U are

needed, although symmetry is still necessary for V . Nonetheless, it should

be realized that, if the hypothetical parametric model is satisfied, the meth-

ods discussed above would not be necessary. Studying the ‘wrong skewness

phenomenon’ in stochastic frontiers (SF), Bonanno et al. (2017) propose a

more general and flexible specification of the SF model by introducing de-

pendences between the two error components and asymmetry of the random

error.

These studies above call for the specification testing of the production

frontier function. Parametric specifications for the frontier are appealing be-

cause they offer easy economic interpretation of the production process. Fur-

thermore, due to well established theories, easy computation and interpreta-

tion, parametric SFA models have been dominant in the area of productivity

and efficiency analysis. Specification testing can also be used to validate the

accuracy of some production theory, such as Cobb-Douglas, CES, Translog,

and related functious. There is a literature on specification testing for con-

ventional regression models (see González-Manteiga and Crujeiras (2013) for

a useful review). However, it would seem that there is as yet no analysis that

discusses this problem for SFA models.

In this paper, we bridge the gap and test whether the production frontier
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function can be described by some known parametric function. To be precise,

the null hypothesis is given as:

H0 : m(X) = g(X, β0), (2)

for some β0 against the alternative hypothesis:

H1 : m(X) ̸= g(X, β), (3)

for any β, where g(X, β) is a known smooth function with unknown d-

dimensional parameter β.

Two test statistics, which are based on local smoothing and global smooth-

ing, respectively, are proposed. To apply these two test statistics in practice,

we suggest the residual-based wild bootstrap. A merit of our procedure is

that, even under heteroscedasticity, the test statistics can still detect the al-

ternative hypothesis efficiently. To the best of our knowledge, this is a novel

contribution to the literature. The theory developed in this paper is useful

for production mangers in their decisions on production (Tsekouras et al.,

2017).

The remainder of the paper is organized as follows. In Section 2, we

construct the test statistics and describe the residual-based wild bootstrap.

In Section 3, simulation results are reported to examine the finite sample

performance of the test statistics. An empirical application is given in Section

4, and Section 5 concludes the paper.
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2 Test Statistics

To focus on specification testing of the production frontier function, we

first discuss the estimation procedures for the parametric SFA model without

specific distributional assumptions on U and V .

2.1 Estimation

Let µU(X) = E(U |X), ϵ = V − U + µU(X) and r1(X) = Y − ϵ. Note

that E(ϵ|X) = 0 always holds. We can then rewrite model (1) under the null

hypothesis as follows:

Y 1 = Y + µU(X) = g(X, β) + ϵ.

For the data set (Y 1, X), the model is the traditional parametric regression

model. If we can obtain the value of µU(X), then we can estimate the

parameter β by using nonlinear least squares based on (Y 1, X). Thus, the

most important and difficult part is how to estimate µU(X). To achieve this

goal, we adopt the approach that is recently proposed by Simar et al. (2016).

Under the null hypothesis, model (1) can also be rewritten as:

Y = r1(X) + ϵ,

where E(ϵ|X) = 0 still holds, which is the standard nonparametric regression

model. We can obtain the estimator of r1(X), r̂1(X), by using nonparametric
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methods, such as kernels, local polynomials, and/or splines. Although there

exist several nonparametric methods for regression models, in the following

we focus on kernel-type estimators given by r̂1(x) =
∑n

i=1 Wni(x)Yi, with:

Wni(x) =
Kh(x−Xi)∑n
j=1 Kh(x−Xj)

,

and Kh(·) = K(·/h)/hp, with K(·) the kernel function, and h being the

bandwidth.

Under the symmetry assumption on V , and the conditional independence

of U and V given X, we have the following:

E(ϵ2|X) = varU(X) + varV (X),

E(ϵ3|X) = −E[(U − µU(X))3|X],

where varU(X) and varV (X) denote the conditional variances of U and V

given X, respectively.

Denote rj(X) = E(ϵj|X) for j = 2 and 3. After estimation of r1(X),

we can obtain the residuals, ϵ̂ = Y − r̂1(X). By adopting appropriate non-

parametric techniques, we can estimate the functions rj(X) for j = 2 and 3

consistently. Define:

r̂j(x) =
n∑

i=1

Wni(x)(Y − r̂1(Xi))
j,

for j = 2 and 3. Note that if µU(X) is a function of E[(U − µU(X))3|X],

then we can easily estimate r̂3(X). To achieve this goal, local parametric

assumptions on the types of distributions of U |x are necessary.
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Assume that U |x ∼ |N(0, σ2
U(x))| and that, conditionally on X, U and V

are independent, which is the same paradigm as in Kumbhakar et al. (2007).

As a result, we have:

µU(X) = E(U |X) =

√
2

π
σU(X),

E(ϵ2|X) =
π − 2

π
σ2
U(X) + varV (X),

E(ϵ3|X) =

√
2

π

(
1− 4

π

)
σ3
U(X) ≤ 0.

From the above equations, we can obtain the following :

σ̂U(X) = max

{
0,

[√
π

2
(

π

π − 4
)Ê(ϵ3|X)

]1/3}
,

µ̂U(X) =

√
2

π
σ̂U(X).

(for further details, see Simar et al. (2016)).

After estimating µ̂U(X), we can estimate β by using nonlinear least

squares based on the data points, {(Ŷ 1
i , Xi)|i = 1, · · · , n}. Defining Ŷ 1

i =

Yi + µ̂U(Xi), let ϵ0 = Y 1 − g(X, β) to obtain the residuals under the null

hypothesis, ϵ̂0i = Ŷ 1
i − g(Xi, β̂).

2.2 Construction

Under the null hypothesis, we can easily obtain:

E(ϵ0|X) = E(Y+µU(X)−g(X, β)|X) = E(g(X, β)+V−U+µU(X)−g(X, β)|X) = 0.
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while under the alternative hypothesis, we obtain :

E(ϵ0|X) = E(Y + µU(X)− g(X, β)|X) = E(m(X) + V − U + µU(X)− g(X, β)|X)

= m(X)− g(X, β) ̸= 0.

The above observations form the basis of the construction of the new

test statistics. We introduce the local smoothing-based test statistic. Note

that, under the null hypothesis, we have:

E(ϵ0E(ϵ0|X)f(X)) = E[E2(ϵ0|X)f(X)] = 0,

where f(X) is the density function of X. Under the alternative hypothesis,

the first term in the above equation must be positive. Thus, the empirical

counterpart of this term can be used as the test statistic. By using the leave-

one-out kernel estimator of f(X) and E(ϵ0|X), the following test statistic is

constructed:

Tn1 =
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

Kh(Xi −Xj)ϵ̂0iϵ̂0j.

The type of test statistic given above is introduced in Zheng (1996),

and proposed independently by Fan and Li (1996). In classical regression

models, it can be shown that the distribution of Tn1 converges to a centered

normal as n → ∞. However, we should note that, in the context of the SFA

model, the asymptotic properties of Tn1 can be complex due to the existence

of the term µU(X). To formally study the asymptotic properties of Tn1, we
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need to investigate the impact of the nonparametric estimation of µ̂U(X) on

the estimation of β explicitly. In this paper, we focus on investigating the

numerical performance of Tn1, and leave the theoretical project for future

research.

We can construct an empirically-based test statistic. Note that, under

the null hypothesis, the following equation holds:

E(ϵ0I(X ≤ x)) = 0, ∀x ∈ Rp.

This motivates construction of the residual-based empirical process, as fol-

lows:

Rn(x) =
1√
n

n∑
i=1

ϵ̂0iI(Xi ≤ x).

Then the Cramér-von Mises-type test statistic can be defined by:

Tn2 =

∫
(Rn(x))

2dFn(x), (4)

where Fn(x) is the empirical distribution based on {X1, X2, · · · , Xn}.

Similarly, in classical regression models, it can be shown that the de-

fined empirical process, Rn(x) converges to a centered continuous Gaussian

process, and the test statistic converges to the functional of this Gaussian

process (see Stute (1997)), but the covariance function of the Gaussian pro-

cess would be changed. We leave the formal theoretical analysis for future

research.
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We follow the residual-based wild bootstrap method (see Stute et al.,

1998) to determine whether to reject the null hypothesis using the following

steps:

Step 1. Obtain µ̂U(X), β̂ and ϵ̂0 by using the approach proposed in subsection

2.1, and then construct Tni, i = 1, 2, as in subsection 2.2.

Step 2. Generate bootstrap observations, Y ∗
i = g(Xi, β̂) − µ̂U(Xi) + ϵ̂0i × ei.

Here {ei}ni=1 is a sequence of i.i.d. random variables with zero mean,

unit variance, and independent of the sequence {Yi, Xi}ni=1. Usually,

{ei}ni=1 can be chosen to be i.i.d. Bernoulli variates with:

P (ei =
1−

√
5

2
) =

1 +
√
5

2
√
5

, P (ei =
1 +

√
5

2
) = 1− 1 +

√
5

2
√
5

.

Step 3. Let T ∗
ni, i = 1, 2 be defined similarly as Tni, i = 1, 2, based on the

bootstrap sample, {Y ∗
i , Xi}ni=1.

Step 4. Repeat Steps 2 and 3, B times, and calculate the p-value as pBi =

#{T ∗
ni > Tni}/B.

3 Simulations

We now perform simulations to examine the finite sample performance

of the proposed test statistics.
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Study 1

H11 : Y = 5 + 5X + a exp{X2} − U + V,

H12 : Y = 5 + 5X + a sin{4πX} − U + V.

The value a = 0 corresponds to the null hypothesis, and a ̸= 0 to the

alternative. In the above models, we take X ∼ U(0, 1), U ∼ |N(0, 1)|, and

V ∼ N(0, σ2
V ), where σV = 0.75 ×

√
(π − 2)/π. For the models, under the

null hypothesis, a = 0, this is Example 1 in Kumbhakar et al. (2007). For

H11, the sample size is taken to be 100, and a = {0.0, 0.3, · · · , 1.5} to examine

the size and power performance of the proposed test statistics, Tn1 and Tn2.

For H12, we consider n = 50 and 100, and the sequence of a is taken to be

a = {0.0, 0.2, · · · , 1.0}.

In the simulation study, the number of replications is 2, 000. For each

replication, B = 500 bootstrapped samples are generated. In the nonpara-

metric regression estimation, the kernel function is taken to be K(u) =

15/16(1 − u2)2, if |u| ≤ 1; and 0, otherwise. The bandwidth is taken to

be h = σ̂(X)×n−1/5 for simplicity, where σ̂(X) is the empirical estimator of

the standard deviation of X. The nominal level of α is set at 0.05.

The simulation results are presented in Table 1. From the table, we have

the following observations. First, for all situations considered, the empiri-

cal sizes of the two test statistics are all close to the nominal level. This
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implies that the proposed test statistics have accurate size. Second, when

we consider empirical power, we can see clearly that the proposed tests are

very sensitive to the alternative, such that, when the value of a increases,

power increases quickly. For model H11, the second test statistic, Tn2, can

have higher power as compared with the first test statistic, Tn1. However, for

H12, Tn1 is more powerful. For model H12, when the sample size is n = 100,

the power performance of both tests improves compared with sample size

n = 50.

Study 2

Consider the same models as in Study 1, but now introduce heteroscedas-

ticity in the distribution of the technical inefficiency. Here, we have U |X =

x ∼ |N(0, (1 + x)2)|. We should note that, under the null hypothesis, a = 0,

is Example 2 in Kumbhakar et al. (2007). This study investigates the impact

of heteroscedasticity on the performance of the two proposed test statistics.

Other settings are the same as in Study 1.

The simulation results are shown in Figure 1. For comparison, we also

plot the simulation results of these two test statistics in Study 1. From

this figure, we conclude that, compared with the results in Study 1, the

powers of the two test statistics decrease significantly. This suggests that

heteroscedasticity in the distribution of the technical inefficiency can have

a negative impact on power performance. We can also see that, for H11,
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Tn2 performs better than Tn1, while for H12, Tn1 is more powerful. These

observations suggest that the two new test statistics should be viewed as

complementary to each other.

4 Empirical Application

A rice production data set is available online, as described in the Preface

of Coelli et al. (2005, p. xvi) (further details on the data can be found in

Appendix 2 of Coelli et al. (2005)). The data set is recently analyzed in Wang

et al. (2011) to calculate goodness-of-fit tests for the distribution of technical

inefficiency. Here we use this data set to check whether the Cobb-Douglas

model is plausible.

Following Coelli et al. (2005) and Wang et al. (2011), three inputs (area,

labour and fertiliser) and one output (tonnes of freshly threshed rice) are

used, and are denoted by X = (X1, X2, X3) = (AREA,LABOR,NPK),

and Y = PROD, respectively. The Cobb-Douglas model is given as follows:

lnY = β0 +
3∑

i=1

βi lnXi − U + V.

In our context, the null hypothesis is:

H0 : m(X) = β0 +
3∑

i=1

βi lnXi.

For sample size n = 344, the values of Tni, i = 1, 2, are 1.8062 and 616.5035,
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and the corresponding p-values are 0.160 and 0.774, respectively. Therefore,

for this data set, a Cobb-Douglas model is plausible.

5 Concluding Remarks

Though SFA models have been used widely in many disciplines, such

as economics, finance and statistics, a formal specification testing procedure

for the production frontier function has not yet been available. This pa-

per develop two new test statistics by adopting local smoothing and global

smoothing methods, respectively.

The asymptotic properties of the two test statistics under the null hy-

pothesis, fixed alternative hypothesis, and local alternative hypothesis, have

not been investigated. The existence of the inefficiency term, U , makes the

analysis complicated. We leave these interesting and important theoretical

studies to future research.

Without explicit asymptotic distributions under the null hypothesis, we

have to rely on resampling approaches to calibrate the critical values. To

this end, the residual-based wild bootstrap is suggested. The new proposed

test statistics allow specification testing of the production frontier function,

even under heteroscedasticity. The simulation studies showed that the sizes

of the two test statistics are quite close to the nominal level, and that the
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powers are also satisfactory, even when the sample size is relatively small, at

n = 50. The theory developed in this paper is useful for production mangers

in their decisions on production (Tsekouras et al., 2017).
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Table 1: Simulated sizes and powers of proposed test statistics Tn1 and Tn2

for Study 1.

H11 n = 100

a Tn1 Tn2

0.0 0.0490 0.0530

0.3 0.0730 0.0950

0.6 0.1370 0.2370

0.9 0.2685 0.4170

1.2 0.4255 0.6430

1.5 0.6445 0.8400

H12 n = 50 n = 100

a Tn1 Tn2 Tn1 Tn2

0.0 0.0510 0.0480 0.0540 0.0450

0.2 0.1240 0.0770 0.1920 0.1390

0.4 0.3590 0.2100 0.7010 0.4280

0.6 0.7190 0.4060 0.9640 0.8410

0.8 0.9170 0.6880 0.9990 0.9840

1.0 0.9790 0.8550 1.0000 0.9980
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Figure 1: Powers of test statistics with H11 and n = 100 (top left corner),

H11 and n = 100 (top right corner), H12 and n = 50 (lower left corner), and

H12 and n = 100 (lower right corner), respectively. The dashed, dotted, solid

and dot-dashed lines represent the results of Tn1 for Study 2 and Study 1,

and Tn2 for Study 2 and Study 1, respectively.
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