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Abstract

In recent years fractionally differenced processes have received a great deal of attention due to
their flexibility in financial applications with long memory. In this paper, we develop a new re-
alized stochastic volatility (RSV) model with general Gegenbauer long memory (GGLM), which
encompasses a new RSV model with seasonal long memory (SLM). The RSV model uses the infor-
mation from returns and realized volatility measures simultaneously. The long memory structure
of both models can describe unbounded peaks apart from the origin in the power spectrum. For
estimating the RSV-GGLM model, we suggest estimating the location parameters for the peaks
of the power spectrum in the first step, and the remaining parameters based on the Whittle
likelihood in the second step. We conduct Monte Carlo experiments for investigating the finite
sample properties of the estimators, with a quasi-likelihood ratio test of RSV-SLM model against
theRSV-GGLM model. We apply the RSV-GGLM and RSV-SLM model to three stock market
indices. The estimation and forecasting results indicate the adequacy of considering general long
memory.

Keywords: Stochastic Volatility; Realized Volatility Measure; Long Memory; Gegenbauer Poly-
nomial; Seasonality; Whittle Likelihood.

JEL Classification: C18, C21, C58.



1 Introduction

For purposes of modeling financial time series, a stylized fact is that volatility has long memory.

One of the popular approaches is to apply an autoregressive fractionally-integrated moving-average

(ARFIMA) process to (log-)volatility. In the class of generalized autoregressive conditional het-

eroskedasticity (GARCH) models, Baillie, Bollerslev and Mikkelsen (1996) and Bollerslev and

Mikkelsen (1996) developed the fractionally integrated GARCH (FIGARCH) and fractionally

integrated Exponential GARCH (FIEGARCH) models, respectively. For stochastic volatility

(SV) models, Breidt, Crato, and de Lima (1998) developed the long memory stochastic volatil-

ity (LMSV) model for unobserved log-volatility using asset return series, while Andersen et al.

(2001, 2003), Pong et al. (2004), Koopman, Jungbacker, and Hol (2005), and Asai, McAleer, and

Medeiros (2012) estimated LMSV models using daily realized volatility (RV). As an alternative

to the ARFIMA model, Corsi (2009) suggested a heterogeneous autoregressive (HAR) model to

approximate long memory using RV.

As extensions of the long memory structure in an ARFIMA process, seasonal (periodical)

long memory, Gegenbauer processes, and their general class are considered. The Gegenbauer

process is based on Gegenbauer polynomials, developed by Gray, Zhang, and Woodward (1989).

While the spectral density of the ARFIMA process is unbounded at the origin, the Gegenbauer

process has a peak at a different frequency, which is referred to as the Gegenbauer frequency. As

suggested in Woofward, Cheng, and Gray (1998), general (or multifactor) Gegenbauer process

has multiple (unbounded) peaks. The general Gegenbauer process encompasses seasonal long

memory as a special case. While Bordignon, Caporin, and Lisi (2009) extended the FIGARCH

and FIEGARCH models by accommodating seasonal long memory, Bordignon, Caporin, and Lisi

(2007) developed the general Gegenbauer GARCH model. Although their focus is on investigating

the long memory structure within a day, it may also be worth examining the general Gegenbauer

process using daily realized volatility measure.

Fo modeling asset returns and realized volatility measure simultaneously, Hansen, Huang, and

Shek (2012) suggested a realized GARCH framework (see also Hansen and Huang (2016)). The

corresponding structure for SV is often referred to as the ‘realized SV’ (RSV) model, which is

considered by Takahashi, Omori, and Watanabe (2009), Koopman and Scharth (2013), Shirota,
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Hizu, and Omori (2014), and Asai, Chang, and McAleer (2017), among others. Shirota, Hizu,

and Omori (2014) and Asai, Chang, and McAleer (2017) accommodated the ARFIMA process in

the volatility process. While Shirota, Hizu, and Omori (2014) use the Markov chain Monte Carlo

technique, Asai, Chang, and McAleer (2017) estimated their model using the Whittle likelihood.

In this paper, we develop an RSV model with general Gegenbauer long memory. If the Gegen-

bauer frequencies of log-volatility are predetermined, we can use the Whittle likelihood estimator

of Hosoya (1997) and Zaffaroni (2009) to estimate the RSV model, as in Asai, Chang, and McAleer

(2017). However, the Gegenbauer frequencies are unknown, and so we use the non-parametric es-

timator of Hidalgo and Soulier (2004), as in Artiach and Arteche (2012), who investigated the

long memory property of the level and variance of the number of sunspots.

The organization of the paper is as follows. Section 2 develops the RSV model with general

Gegenbauer long memory, and discusses the differences from the model with seasonal long memory.

Section 3 explains the estimation method based on the Whittle likelihood under predetermined

Gegenbauer frequencies, and shows the approach of Hidalgo and Soulier (2004) for estimating

and selecting the Gegenbauer frequencies. Section 3 provides the finite sample properties of these

estimators, and the likelihood ratio statistic for testing the seasonal long memory against the

general long memory. Section 4 presents empirical results using the daily returns and realized

volatility measures of three stock indices, namely Standard & Poors 500, FTSE 100, and Nikkei

225. Section 5 provides some concluding remarks.

2 Realized SV with Generalized Gegenbauer Long Memory

Let yt and xt denote the return and the log of realized volatility measure of a financial asset,

repectively. We present the new realized SV model with generalized Gegenbauer long memory

(RSV-GGLM), as follows:

yt = εt exp (ht/2) , εt ∼ N(0, 1), t = 1, . . . , T, (1)

xt = ht + vt, vt ∼ N(0, σ2v), (2)

ϕ(L)P (L)(ht+1 − µ) = θ(L)ηt, ηt ∼ N(0, σ2η), (3)
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where

P (L) =
k∏

l=1

(1− 2 cos(ωl)L+ L2)dl(1− L)d,

εt, vt, and ηt are independent processes, L is the lag operator, ϕ(L) = 1− ϕ1L− . . .− ϕpL
p, and

θ(L) = 1+θ1L+ . . .+θqL
q. The log-volatility process ht is latent, while yt is observed. We assume

the roots of ϕ(z) and θ(z) lie outside the unit circle to ensure stationarity and invertibility of {ht},

respectively. Equation (3) is known as the k-factor Gegenbauer process or generalized exponential

model. For the stationarity of long memory, we assume |d| < 1/2, |dl| < 1/2, and 0 < ωl < π (see

Woodward, Cheng, and Gray (1998), and McElroy and Holan (2012)). We exclude (1 + L)dk+1 ,

as it is rare to find such a case in the analysis of financial time series.

By excluding the data of xt, the model reduces to the class of generalized long memory SV

models, encompassing the long memory SV model of Breidt, Crato, and de Lima (1998) with

k = 0, and the Gegenbauer ARMA SV (GARMASV) model of Artiach and Arteche (2012) with

k = 1 and d = 0. Furthermore, the RSV-GGLM model extends the long memory part of the

realized SV models of Shirota, Hizu, and Omori (2014) and Asai, Chang, and McAleer (2017).

Note that we do not consider asymmetric effects and heavy-tails, unlike Shirota, Hizu, and Omori

(2014) and Asai, Chang, and McAleer (2017), in order to concentrate on the specification and

estimation of various long memory structures.

To consider the structure of the RSV-GGLM model, we start from a simple Gegenbauer

process. When k = 1 and d = 0, we can write equation (3) as:

ht+1 = µ+ (1− 2 cos(ω1)L+ L2)−d1 [ϕ(L)]−1θ(L)ηt, (4)

which is known as the Gegenbaour process, named after the Gegenbauer polynomials defined by

(1− 2 cos(ω1)z+ z
2)−d1 =

∑∞
j=0 bjz

j . The power spectrum of the Gegenbauer process is given by:

fh(λ) =
σ2η
2π

[2(cosλ− cosω1)]
−2d1gh(λ), −π < λ < π, (5)

where gh(λ) =
|θ(e−iλ)|2
|ϕ(e−iλ)|2 corresponds to the autoregressive and moving-average (ARMA) part. The

power spectrum shows the long memory feature characterized by an unbounded spectrum at the

Gegenbauer frequency ω1. By the structure, the RSV-GGLM model accommodates conventional

long memory and multi-factor Gegenbauer long memory.
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At this stage, we should consider the difference between P (L) and the seasonal long memory

filter, (1− Ls)d (see Porter-Hudak (1990)). As discussed in Bordignon, Caporin, and Lisi (2008),

we can decompose the seasonal filter, as in P (L). For instance, if we consider a weekly pattern

for daily data (s = 5), we obtain:

(1− L5)d = (1− L)d
(
1− 2 cos

(
2π

5

)
L+ L2

)d(
1− 2 cos

(
2π

2.5

)
L+ L2

)d

.

Hence, generalized Gegenbauer processes encompass seasonal ARFIMA models. Figure 1 shows

the power spectrum of a seasonal long memory process, (1 − L5)0.4ht = ηt−1, and a general

Gegenbauer process, (1− L)0.4(1− 2 cos(2π/5)L+ L2)0.3(1− 2 cos(2π/3)L+ L2)0.2ht = ηt−1.

3 Estimation and Forecasting

3.1 Whittle Likelihood Estimation of Short and Long Memory Parameters

Following Zaffaroni (2009) and Asai, Chang, and McAleer (2017), we consider the log of the square

of yt as yt = ln(y2t ). By the transformation, we obtain the linearized model:

yt = c+ αt + ut, xt = µ+ αt + vt, αt = [P (L)]−1[ϕ(L)]−1θ(L)ηt−1,

where c = µ + E(ln ε2t ), αt = ht − µ, and ut = ln ε2t − E(ln ε2t ). By Harvey, Ruiz, and Shephard

(1994), it is known that E(ln ε2t ) = −1.2703 and V (ln ε2t ) = π2/2. Since ut is independent with

mean zero and variance, σ2u = π2/4, yt follows the long memory process with additive noise.

Furthermore, we consider the mean subtracted series, zt = (y†t , x
†
t)

′, where y†t = yt − c and

x†t = xt − µ, in order to obtain:

zt =

(
ut +

∑∞
j=0 ψjηt−j−1

vt +
∑∞

j=0 ψjηt−j−1

)
=

∞∑
j=0

Gjet−j , (6)

where
∑∞

j=0 ψjz
j = [P (z)]−1[ϕ(z)]−1θ(z), et = (ut, vt, ηt)

′, and

G0 =

(
1 0 0
0 1 0

)
, Gj =

(
0 0 ψj

0 0 ψj

)
(j ≥ 1),

with E(et) = 0 and V (et) = Σe = diag(σ2u, σ
2
v , σ

2
η). Although the process {ut} is non-Gaussian, a

reasonable estimation procedure is to maximize the quasi-likelihood, or the likelihood computed
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as if {ut} was Gaussian. Note that we estimate µ by the sample mean of xt, to reduce the number

of parameters.

Before applying the method of Zaffaroni (2009) and Asai, Chang, and McAleer (2017), we

return to the estimation of a simple Gegenbauer ARMA process when ht is observed and k = 1

and d = 0. The asymptotic results of the ML estimator of Chung (1994, 1996) and Peiris and Asai

(2016) indicate that the ML estimator of the location parameter, ω1, is T -consistent rather than
√
T -consistent, and that the estimator of ω1 and the remaining parameters are asymptotically

independent. Since the WL estimator has the same limiting distribution as the QML estimator

in the time domain (Taniguchi and Kakizawa, 2000, Chapter 5), it is reasonable to consider

estimation of (ω1, . . . , ωk) and the remaining parameters separately in the RSV-GGLM model.

We will explain in this section the semiparametric estimation technique of ωl (l = 1, . . . , k) for

k-factor Gegenbauer processes.

Define δ = (d, d1, . . . , dk, ϕ1, . . . , ϕp, θ1, . . . , θq, σ
2
η, σ

2
v)

′ and ω = (ω1, . . . , ωk)
′ as two vectors

of parameters, where it is assumed (ω1, . . . , ωk) is known. By the specification, the process {zt}

in (6) is a second-order stationary process and has a spectral density matrix defined by f(λ) =

1
2πk(λ; δ)Σek(λ; δ)

∗, where k(λ; δ) =
∑∞

j=0Gje
iλj , which yields:

f(λ) =
1

2π

(
K11(λ) K12(λ)
K12(λ)

∗ K22(λ)

)
, (7)

with

K11(λ) = σ2v + σ2η|ψ(eiλ)|2, K12(λ) = σ2η|ψ(eiλ)|2, K22(λ) = σ2u + σ2η|ψ(eiλ)|2.

Note that we can write |ψ(eiλ)|2 = |P (eiλ)|−2gh(λ),

|P (eiλ)|2 = [2 sin(λ/2)]2d
k∏

l=1

[2(cos(λ)− cos(ωl))]
2dl ,

and gh(λ) is defined by equation (5). The (1,1)-element of f(λ) is the spectral density of xt, which

can be interpreted as the conventional signal plus noise process. The (2,2)-element of f(λ) is the

spectral density of log y2t , and corresponds to the result of Breidt, Crato, and de Lima (1998).

Let IT (z, λ) be the periodogram matrix defined by:

IT (z, λ) = wT (λ)wT (λ)
∗, −π < λ ≤ π,
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where wT (λ) is the finite Fourier transform, defined by:

wT (λ) =
1√
2π

T∑
t=1

zte
itλ.

For purposes of deriving the quasi-likelihood function, we treat the process zt as Gaussian. Choose

the frequencies λj , j = 1, . . . , n, equi-spaced in the region (−π, π] so that f(λ) is continuous at

λ = λj Then the finite Fourier transform wT (λj), j = 1, . . . , n, will have a complex-valued

multivariate normal distribution which, for large T , is approximately independent, each with

probability density function given by:

π−1 {detf(λj ; δ)}−1/2 exp

[
−1

2
tr
{
f−1(λj ; δ)wT (λj)wT (λj)

∗}] , j = 1, . . . , T.

As wT (λj), j = 1, . . . , n, constitutes a sufficient statistic for δ, an approximate log-likelihood

function of δ based on {z1, . . . , zT } is, excluding the constant term, given by:

L̄T (δ) = −1

2

T∑
j=1

[
log detf(λj ; δ) + tr

{
f−1(λj ; δ)IT (z, λj)

}]
. (8)

In integral form, equation (8) has the expression:

− T

4π

[∫ π

−π
log detf(λ; δ)dλ+

∫ π

−π
tr
{
f−1(λ; δ)IT (z, λ)

}
dλ

]
. (9)

The function L̄T (δ) is called the quasi-log-likelihood function. The approximation was originally

proposed by Whittle (1952) for scalar-valued stationary processes (see also Dunsmuir and Hannan

(1976), and Taniguchi and Kakizawa (2000)). Define the Whittle likelihood (WL) estimator, δ̂T ,

which is obtained by minimizing −L̄T (δ). In practice, we use the discrete quasi-log-likelihood (8)

with frequency λj = 2πj/T (j = 1, . . . , ⌊(T − 1)/2⌋), for the symmetry of the Fourier transform,

as in standard empirical analysis.

Following Hosoya (1997), define the quantity:

Rj(δ) = Hj(δ) +

∫ π

−π
tr{hj(λ, δ)f(λ)}dλ,

where

Hj(δ) =
∂

∂δj

∫ π

−π
log detf(λ; δ)dλ,

hj(λ; δ) =
∂

∂δj
f−1(λ; δ).
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Noting that

detf(λ; δ) =
1

2π

{
σ2vσ

2
u + (σ2vσ

2
η + σ2uσ

2
η)

∣∣∣ψ(eiλ)∣∣∣2} ,
Rj(δ) is measurable with respect to δ almost everywhere in λ. Denote W as the matrix of

derivatives, Wjl = ∂Rj/∂δl, evaluated at δ = δ0.

As discussed in Asai, Chang, and McAleer (2017), we can obtain the asymptotic results of the

WL estimator by checking the conditions of Hosoya (1997). If the vector of frequency parameters,

ω, is known, we can apply the approach which was used to prove Theorem 2 in Chan and Tsai

(2008) and Theorem 1 in Tsai, Rachinger, and Lin (2015), in order to verify Assumptions A, C,

and D of Hosoya (1997) to show the consistency and asymptotic normality of the WL estimator.

Then we obtain:
√
T (δ̂T − δ0)

d−→N(0,W−1U(W ∗)−1), (10)

where U is the matrix with (j, l)th element represented as:

Ujl = 4π

∫ π

−π
tr [hj(λ; δ0)f(λ)hl(λ; δ0)f(λ)] dλ

∣∣∣∣
δ=δ0

+ C1

{[
1

2π

∫ π

−π
k∗(λ1)hj(λ1; δ0)k(λ1)|δ=δ0

dλ1

]
11

}2

,

(11)

and ∫ π

−π
k∗(λ)hj(λ; δ0)k(λ)|δ=δ0

dλ = 0 for δj ∈ (d, d1, . . . , dk, ϕ1, . . . , ϕp, θ1, . . . , θq), (12)

with C1 as the fourth cumulant of ut, given by

C1 = E(u4t )− 3{E(u2t )}2 = ψ(3)

(
1

2

)
− 3π2

16
,

where ψ(3)(z) is the penta gamma function (see equation (26.4.36) of Abramovits and Stegun

(1970) for the result of the fourth moment of ut). Although Ujl defined by Theorem 2.2 in

Hosoya (1997) is based on the fourth-order spectral density, it can be simplified as in (11) under

Assumption F of Hosoya (1997) (see also equation (5.3.22) of Taniguchi and Kakizawa (2000) and

Theorem 2 of Zaffaroni (2009)), which can be verified straightforwardly by the structure of the

RSV-GGLM models.

We can allow a non-Gaussian distribution for εt by setting σ2u as a free parameter (see Harvey,

Ruiz, and Shephard (1994), for instance), and by adding it in δ. As explained above, we use a
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two step procedure rather than estimating (δ,ω) simultaneously. In the first step, we obtain a

consistent estimate of ω, ω̂, by using a semiparametric method suggested by Hidalgo and Soulier

(2004). In the second step, we obtain the WL estimate, δ̂, by minimizing −L̄T (δ, ω̂). Since we

use ω̂ instead of the true ω, no asymptotic results are yet available for this case.

3.2 Semiparametric Estimation of Location Frequency Parameters and Iden-
tification of k

We explain the semiparametric technique of Hidalgo and Soulier (2004) for estimating the parame-

ters of ω. We assume k is known until we discuss the identification of parameters. For purposes of

introducing the approach of Hidalgo and Soulier (2004), we consider a simple case of a univariate

process which produces IT (λ), with the assumptions d = 0, ω1 ̸= 0, ω2 ̸= 0, d1 ≥ d2, and k = 2.

Then we can estimate ω1 and ω2 consistently as:

ω̂1 =
2π

T
arg max

1≤j≤m
IT (λj), ω̂2 =

2π

T
arg max

1≤j≤m

|λj−ω̂1|≥zT /T

IT (λj),

where zT = T exp(−
√

ln(T )), and m is an integer between 1 and ⌊(T − 1)/2⌋, satisfying at least:

1

m
+
m

T
→ 0 as T → ∞,

After we estimate ω1, it is possible to estimate the second location parameter, ω2, which has a

sufficient distance from the first location. For general k, we can estimate (ω1, . . . , ωk) sequentially.

Hidalgo and Soulier (2004) modified the GPH estimator of Geweke and Porter-Hudak (1983),

which was originally suggested to estimate long memory parameter, d, using a log-periodogram

regression, in order to estimate dl at the Gegenbauer frequency ωl. To identify the number of

location frequencies, k, we follow the approach of Hidalgo and Soulier (2004), based on their

modified GPH estimator for d1, . . . , dk, which is defined by:

d̂l =
∑

1≤|j|≤m

0<ω̂l+λj≤π

ξk ln {IT (ω̂l + λj)} , (13)

where ξk = s−2
m (ζ(λj)− ζ̄m), ζ(λ) = − ln(|1−eiλ|), ζ̄m = m−1

∑m
j=1 ζ(λj), and s

2
m =

∑m
j=1(ζ(λj)−

ζ̄m)2. Hidalgo and Soulier (2004) show that m1/2(d̂l − dl) converges weakly to N(0, π2/12), under

8



the assumption of a Gaussian process. The procedure of Hidalgo and Soulier (2004) consists of

the following steps: (i) Find the largest periodogram ordinate; (ii) if the corresponding estimate

of dl is significant, add the respective Gegenbauer filter to the model, otherwise terminate the

procedure; (iii) Exclude the neighborhood of the last pole from the periodogram, and repeat the

procedure from (i) onward. For the assumption of Gaussianity of the procedure, we use the data

of xt, which produces IT (xt, λ), excluding yt.

3.3 Estimating and Forecasting Volatility

Using the WL estimates above, we can obtain the minimum mean square linear estimator (MM-

SLE) of ht from the work of Harvey (1998) and Asai, Chang, and McAleer (2017). Define

x† = (x†1, . . . , x
†
T )

′, y† = (y†1, . . . , y
†
T )

′, h = (h1, . . . , hT )
′, , v = (v1, . . . , vT )

′, and u = (u1, . . . , uT )
′

in order to obtain:

x† = h− µ1T + v, y† = h− µ1T + u,

where 1T is an T × 1 vector of ones. Then, the minimum mean square linear estimator of h is

given by:

h̃ = µ1T + τ−1(IT − Σ−1
τ )(σ−2

v x† + σ−2
u y†),

where τ = σ−2
v + σ−2

u , Στ = IT + τΣh, and V (h) = Σh. We obtain Σh via the algorithm of

McElroy and Holan (2012) (see the Appendix for details). Harvey (1998) recommends using the

volatility estimate:

σ̃2t = σ̃2ỹ exp
(
h̃t

)
,

where σ̃2ỹ = T−1
∑n

t=1 ỹ
2
t , and ỹt = yt exp(−0.5h̃t) are the heteroskedasticity-corrected observa-

tions.

For predicting the observations for x†t and y
†
t for t = T +1, . . . , T + l, denote x†

l and y†
l as the

l × 1 vectors of predicted values, respectively. Then the corresponding MMSLEs are given by:

x̃†
l = RxΣ

−1
x x†, ỹ†

l = RyΣ
−1
y y†,

where Σx = Σh + σ2vIT , Σy = Σh + σ2uIT , Rx (Ry) is the l × T matrix of covariances between x†
l

and x† (y†
l and y†). Using h̃l = µ1l + τ−1(σ−2

v x̃†
l + σ−2

u ỹ†
l ), the predictions of σ2T+j (j = 1, . . . , l)

are given by exponentiating the elements of h̃l, and multiplying by σ̃2ỹ .
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3.4 Finite Sample Properties

We conducted Monte Carlo experiments for investigating the finite sample properties of the WL

estimator of δ and the semiparametric estimator of ω. We consider two kinds of long memory

components:

(d0, d1, d2, ω1, ω2) =

{
(0.4, 0.4, 0.4, 2π/5, 2π/2.5) for Seasonal Long Memory
(0.4, 0.3, 0.2, 2π/5, 2π/3) for General Gegenbauer Long Memory,

for which the power spectra are shown in Figure 1. Note that the original specification of the

RSV-SLM (Seasonal Long Memory) model is given by equations (1)-(3), with P (L) = (1− Ls)d,

and s = 5 corresponds to the above DGP. For the remaining parameters, we specify (σv, ση, ϕ, µ) =

(0.2, 0.4, 0.6,−0.1). We consider sample sizes T = {1024, 2048}, with R = 5000 replications.

The first experiment considers selection of the number of location parameters, k. Table 1(a)

shows the relative frequencies for selecting the number of long memory parameters via the proce-

dure of Hidalgo and Soulier (2004), withm = 0.5T 0.7. The mean selected value indicates that there

is an upward bias in the procedure for the sample sizes, which may be caused by over-rejection

of the modified GPH estimator. Table 1(b) presents the relative frequencies of containing the

true location parameters, such that |ω̂j − ωj | < zT /T = exp(−
√
ln(T )) for each selected value of

k. The frequencies of selecting true values increase as the sample size and/or the true value of

long memory parameter increases. As a result, the approach of Hidalgo and Soulier (2004) tends

to select larger values of k for T = 2048, but the location parameter estimates chosen by the

approach tend to include the true parameters.

The second experiment examines the finite sample properties of the WL estimator under the

true values of ω. Table 2 reports the sample mean, standard deviation, and root mean squared

error (RMSE) of the WL estimator of δ. For σu, ϕ, d, d1, and d2, the bias of the estimator

is negligible for both T = 1024 and T = 2048. While the bias for σv is upward, that of ση is

downward. Compared with the case T = 1024, there is no improvement in the biases of σv and

ση. However, the results for T = 2048 have smaller standard deviations and RMSEs. Table 2 also

shows the sample mean, standard deviation, and root mean squared error of the estimator of µ

by the sample mean of xt, with the same implications.

By the structure of the RSV-GGLM model, we consider the quasi-likelihood ratio (QLR)
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statistic for testing the RSV-SLM model against the RSV-GGLM model. As shown in Theorem

3.1.3 of Taniguchi and Kakizawa (2000) in the general framework, the QLR test under known ω

has the asymptotic χ2(2) distribution. The last entries of Table 2 report the rejection frequencies

of the QLR statistic at the five percent significance level, indicating that the rejection frequency

under the null model approaches the nominal size of 5% as T increases. Under the alternative

model, the sample size of T = 1024 is sufficient to reject the null hypothesis for the parameter

set.

4 Empirical Analysis

The empirical analysis focuses on estimating and forecasting the RSV-GGLM model for three

sets of stock indices, namely Standard & Poors 500 (S&P), FTSE 100 (FTSE), and Nikkei 225

(Nikkei). For each return computed for 1-min intervals of the trading day at t between 9:30

a.m. and 4:00 p.m., we calculated the daily volatility using the realized kernel (RK) estimator of

Barndorff-Nielsen et al. (2008), which is consistent and robust to microstructure noise and jumps.

We also calculate the corresponding returns for the three assets.

We denote the return and log of the RK estimate at day t as rt and xt, respectively. The

sample period is from March 23, 2007 to September 19, 2017, to obtain the last 2548 observations,

excluding holidays and weekends. We use the first T = 2048 returns for estimating the RSV-

GGLM models, and the remaining 500 series for forecasting. The estimation period includes the

Global Financial Crisis from 2007-2009.

Table 3 presents the descriptive statistics of the returns and log-volatility for the whole sample.

The empirical distribution of the returns is highly leptokurtic, and is skewed to the left. Compared

with the returns series, the distribution of log-volatility is closer to the normal distribution, but

is skewed to the right, and the kurtosis exceeds three. As our interest is on volatility, we use the

mean subtracted returns, yt = rt− r̄. Figure 2 shows the sample spectral density for log-volatility.

There is a clear evidence that the spectral density is unbounded at the origin, λ = 0. Since

there are several peaks apart from the origin, it is worth investigating the general pattern for the

structure of long memory.

Table 4 gives the semiparametric estimates of the location parameter ω, accompanied by
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the results of the procedure of Hidalgo and Soulier (2004) for selecting the number k. While

k = 2 was selected for S&P and FTSE, the procedure chose k = 3 for Nikkei. In the following

analysis, we set ω̂0 = 0 from Figure 2. Table 4 shows that the periods of frequencies are close

to (20,10,5) for FTSE, implying that P (L) = (1 − L20)d is another candidate for specifying the

long memory structure. As an alternative specification, we also consider P (L) = (1 − L30)d and

P (L) = (1− L20)d for S&P and Nikkei, respectively.

Table 5 gives the WL estimates for the RSV-GGLM and RSV-SLM models. While the QLR

test rejected the null hypothesis of the RSV-SLM model for S&P and Nikkei, it failed to reject

the null hypothesis for FTSE. For S&P, the estimate of d is close to 0.5, which is dominant

compared with other estimates of long memory parameters, dl (l = 1, 2, 3). All the estimates of

the long memory parameters are significant at five percent level, rejecting the RSV model with

the ARFIMA(1, d, 0) specification. The estimate of σu is close to π/
√
2, which is obtained by the

standard normal distribution for εt. The estimates of the RSV-SLM model for FTSE indicate

that the estimate of d is 0.056, and is significant. Since the estimate of d in the unrestricted RSV-

GGLM model is 0.382, the value of long memory parameter becomes smaller, and the estimate of

ϕ becomes close to one in the RSV-SLM model, in order to capture the effect of the mass close

to the origin in Figure 2(b). The estimation results for Nikkei 225 are similar to those of S&P.

We examine the performance of the out-of-sample forecasts using the root mean squared error

(RMSE) and the Diebold and Mariano (1995) test for equal forecast accuracy. The benchmark

model is the HAR model of Corsi (2009), which is given by:

xt = c+ ϕdxt−1 + ϕw(xt−1)5 + ϕw(xt−1)20 + error,

where (xt−1)h denotes the h-horizon average of past xt. Note that (xt−1)5 and (xt−1)22 are the

weekly and monthly averages, respectively. The model is interpreted as the AR(22) process with

the parameter restrictions. Although the model is not technically a long memory process, it

approximates the effects of longer horizons in a simple and parsimonious way. We use xT+j

(j = 1, ..., F ) as the proxy of the true log-volatility. Fixing the sample size at 2048 for the rolling

window, we re-estimated the model and computed the one step ahead forecasts of log-volatility
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for the last F = 500 days. RMSE is defined as:√√√√ 1

F

F∑
j=1

(
h̃T+j − xT+j

)2
,

where h̃T+l is the forecast of hT+j for the RSV models, and that of xT+j for the HAR model. As

above, we select the optimal k each time for estimating the RSV-GGLM model. As an ad hoc

approach, we also consider a combined forecast obtained by the weighted average of the forecasts

of RSV-GGLM and RSV-SLM models, with weights (−1, 2).

Table 6 also indicates the HAR model has the largest RMSEs. The RSV-SLM model provides

smaller RMSEs than the RSV-GGLMmodel, while the combined forecast gives the smallest values.

The Diebold-Mariano test against the forecast of the HAR model are rejected at the five percent

significance level in all cases.

The empirical results show that the data for S&P, FTSE, and Nikkei prefer the more flexible

structure for long memory in log-volatility than the simple ARFIMA process. For sample data,

S&P and Nikkei favor the RSV-GGLM model, while FTSE selected the RSV-SLM model. The

results of the out-of-sample forecasts indicate that the RSV-SLM model gives better forecasts than

the RSV-GGLM model. However, the forecasts can be improved by combining the RSV-GGLM

and RSV-SLM models.

5 Concluding Remarks

In this paper, we considered a new realized stochastic volatility model with general Gegenbauer

long memory (RSV-GGLM), which encompasses the new RSV model with seasonal long memory

(RSV-SLM). We suggested a two-step estimator, in which the first step estimator gives the esti-

mates of the location parameters of the Gegenbauer frequencies, which converges faster than the

speed of T 1/2. The second step uses the Whittle likelihood (WL) estimation method, for which

the asymptotic distribution is the same as that of the quasi-maximum likelihood estimator when

the location parameter is known. Then we conducted Monte Carlo experiments for investigating

the finite sample properties of both estimators, and found that the first step estimator works

satisfactorily, and that the finite sample bias for the WL estimator is negligible for T = 2048.
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The estimation results for S&P, FTSE, and Nikkei indicate that the simple ARFIMA process

for log-volatility is rejected, favoring either of the RSV-GGLM and RSV-SLM models. The

forecasting results indicate that combining the forecasts of both models gives improved forecasts

compared with the original ones. These results indicate that RSV models with general long

memory are useful additions to the existing models in the literature.

Appendix

We explain the calculation of the coefficients of the MA(∞) representation of the general Gegen-

bauer process in equation (3), and the calculation of the autocovariance functions.

Even for the simple Gegenbauer process with ARMA parameters, it is not easy to obtain

explicit formulas for the coefficients for the MA(∞) representation and the autocovariances that

are valid for all lags. Recently, McElroy and Holan (2012, 2016) developed a computationally

efficient method for calculating these values. The spectral density of the general Gegenbauer

process, ht, can be written as:

fh(λ) =
σ2η
2π
gh(λ)[2 sin(λ/2)]

−2d
k∏

l=1

[2(cos(λ)− cos(ωl))]
−2dl , −π < λ < π,

where gh(ω) is defined by (5). For convenience, we define κ(z) so that g(λ) = |κ(e−iλ)|2. Then,

κ(z) takes the form κ(z) =
∏

l(1− ζlz)pl for (possibly complex) reciprocal roots, ζl, of the moving

average and autoregressive polynomials, where pl is one if l corresponds to a moving average root,

and minus one if l corresponds to an autoregressive root. We assume d > max{dl}, as suggested

by the empirical results in Section 4.

Define:

gj = 2
∑
l

plζ
j
l

j
,

βj =
2

j

{
d+ 2

k∑
l=1

dl cos(ωlj)

}
+ gj ,

ψ̃j =
1

2j

l∑
m=1

mβmψ̃j−m, ψ̃0 = 1.
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McElroy and Holan (2012) showed that the MA(∞) representation of (3) is given by:

ht+1 = µ+
∞∑
j=0

ψ̃jηt−j ,

and the autocovariances of ht for l ≥ 0 are given by:

γl = σ2
J−1∑
j=0

ψ̃jψ̃j+l +RJ(l),

where

RJ(l) = σ2
{
J−1+2dF (1− d, 1− 2d; 2− 2d;−l/J)

Γ2(d)(1− 2d)

}
{1 + o(1)},

and F (a, b; c; z) is the hypergeometric function evaluated at z. Note that γ−l = γl. McElroy and

Holan (2012) recommend using the cutoff value J ≥ 2, 000. We set J = 20T with T = {1024, 2048}

in this paper.
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Table 1: Finite Sample Performance of Selection Procedures

(a) Relative Frequencies of Selecting k

RSV-SLM RSV-GGLM
k T = 1024 T = 2048 T = 1024 T = 2048

0 0.0000 0.0000 0.0000 0.0000
1 0.0114 0.0000 0.3892 0.0002
2 0.6032 0.2354 0.3058 0.2984
3 0.2418 0.0870 0.0384 0.0236
4 0.1436 0.3910 0.2480 0.2030
5 0.0000 0.2866 0.0186 0.4276
6 0.0000 0.0000 0.0000 0.0382

Mean 2.5176 3.7288 2.2010 3.8740

Note: The entries show the relative frequencies of selected val-
ues of k by the procedure of Hidalgo and Soulier (2004).

(b) Relative Frequencies of Containing True Location Parameters

RSV-SLM RSV-GGLM
Param. T = 1024 T = 2048 T = 1024 T = 2048

ω1 0.9990 1.0000 0.9858 0.9972
ω2 0.9798 0.9988 0.0730 0.3320

Note: The entries show the relative frequencies of containing
true location parameters such that |ω̂j − ωj | < exp(−

√
ln(T ))

for each selected value of k.
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Table 2: Finite Sample Performance of WL Estimator for RSV-GGLM Models

DGP: RSV-SLM DGP: RSV-GGLM
Parameters True T = 1024 T = 2048 True T = 1024 T = 2048

σu 2.2214 2.2192 2.2192 2.2214 2.2195 2.2195
(0.0846) (0.0605) (0.0846) (0.0605)
[0.0847] [0.0606] [0.0847] [0.0605]

σv 0.02 0.0352 0.0375 0.02 0.0298 0.0294
(0.0407) (0.0377) (0.0323) (0.0285)
[0.0434] [0.0416] [0.0337] [0.0300]

ση 0.4 0.3063 0.3032 0.4 0.3047 0.3025
(0.0236) (0.0164) (0.0228) (0.0159)
[0.0966] [0.0982] [0.0980] [0.0988]

ϕ 0.6 0.6318 0.6226 0.6 0.6190 0.6110
(0.0828) (0.0631) (0.0861) (0.0661)
[0.0887] [0.0670] [0.0881] [0.0670]

d 0.4 0.3808 0.3897 0.4 0.3843 0.3945
(0.0927) (0.0647) (0.0920) (0.0661)
[0.0947] [0.0655] [0.0933] [0.0663]

d1 0.4 0.4235 0.4221 0.3 0.3128 0.3120
(0.0353) (0.0277) (0.0319) (0.0240)
[0.0424] [0.0355] [0.0344] [0.0268]

d2 0.4 0.4172 0.4118 0.2 0.2031 0.2039
(0.0328) (0.0222) (0.0310) (0.0220)
[0.0370] [0.0252] [0.0312] [0.0224]

µ −0.1 −0.1010 −0.1010 −0.1 −0.1081 −0.1006
(0.3673) (0.3386) (0.5085) (0.4692)
[0.3673] [0.3386] [0.5085] [0.4692]

QLR Test 0.0806 0.0510 1.0000 1.0000

Note: Except for ‘µ’ and ‘LR test’, entries show the means of the WL estimates under
true ω, and µ is estimated by the sample mean of xt. Standard errors are in parentheses,
and root mean squared errors are in brackets. ‘QLR Test’ reports the rejection frequencies
of the QLR statistic for testing the null hypothesis of the RSV-SLM model. The critical
value of the QLR test with true ω is given by 5.9915, which is the upper five percentile of
χ2(2) distribution.
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Table 3: Descriptive Statistics of Return and Log-Volatility

Data Average Std. Dev. Skewness Kurtosis

Return
S&P 0.0118 0.0315 13.281 311.00
FTSE 0.0080 0.0154 9.0698 133.79
Nikkei 0.0109 0.0229 7.9595 87.938
Log-Volatility
S&P −5.2585 1.2314 0.4536 3.2287
FTSE −5.3742 0.9748 0.5915 3.4626
Nikkei −5.1325 0.9613 0.6329 3.9309

Table 4: Semiparametric Estimates of Location Parameters

S&P FTSE Nikkei
l ω̂l Days P -value ω̂l Days P -value ω̂l Days P -value

0 0.0010 — 0.0012* 0.0010 — 0.0001* 0.0020 — 0.0002*
1 0.0674 29.681 0.0017* 0.0947 21.113 0.0001* 0.1006 19.884 0.0004*
2 0.1416 14.124 0.0031* 0.2002 9.9902 0.0006* 0.2041 9.7990 0.0015*
3 0.4502 4.4425 0.2054 0.4131 4.8416 0.0888 0.2744 7.2883 0.0050*
4 0.6973 2.8683 0.1947

Note: The estimates of ωl are reported with the unit of π. ‘Days’ indicates the period corresponding
to ω̂l. ‘P -value’ shows the P -value for the modified GPH estimates of dl, and ‘*’ indicates the
significance at the five percent level.
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Table 5: WL Estimates of RSV-GGLM and RSV-SLM Models

S&P FTSE Nikkei
Parameters RSV-GGLM RSV-SLM RSV-GGLM RSV-SLM RSV-GGLM RSV-SLM

σu 2.0415 2.2103 2.1159 2.0325 2.0274 2.0293
(0.0369) (0.0651) (0.0871) (0.0453) (0.1733) (0.1036)

σv 0.5414 1.4024×10−4 0.0195 0.3962 0.4303 0.4237
(0.0132) (0.0934×10−4) (0.0005) (0.0062) (0.0094) (0.0345)

ση 0.1110 0.6727 0.3825 0.1849 0.0614 0.2231
(0.0030) (0.0124) (0.0060) (0.0145) (0.0050) (0.0057)

ϕ 0.6923 0.7845 −0.0395 0.9719 0.6532 0.9541
(0.0208) (0.0169) (0.0011) (0.0200) (0.0181) (0.0722)

{s, k} {1, 3} {30, 0} {1, 3} {20, 0} {1, 4} {20, 0}
d 0.4988 0.0587 0.3817 0.0585 0.4879 0.0400

(0.0206) (0.0013) (0.0071) (0.0018) (0.0086) (0.0030)
d1 0.0145 0.0685 0.0262

(0.0002) (0.0022) (0.0009)
d2 0.0553 −0.0078 0.1262

(0.0014) (0.0002) (0.0034)
d3 −0.1780 0.0288 0.1262

(0.0038) (0.0006) (0.0027)
d4 −0.4656

(0.0081)
QLR Test 594.24 [0.0000] 1.9191 [0.3831] 61.438 [0.0000]

Note: Standard errors are in parentheses. ‘QLR Test’ reports the statistic for testing the null hypothesis
of the RSV-SLM model, which has the asymptotic χ2(k) distribution. P -values are given in brackets.

Table 6: Forecasting Results

S&P FTSE Nikkei
RMSE DM RMSE DM RMSE DM

HAR 6.6671 — 3.7408 — 3.4874 —
RSV-GGLM 5.7713 [0.0000] 3.4692 [0.0003] 3.3241 [0.0152]
RSV-SLM 5.5445 [0.0000] 3.3676 [0.0000] 3.1617 [0.0008]

Combined Forecasts 5.3930 [0.0000] 3.2971 [0.0000] 3.0308 [0.0007]

Note: The values in the brackets are P -values of the Diebold-Mariano test against the
forecast via the HAR model. Combined Forecasts are obtained by the weighted average of
the forecasts of RSV-GGLM and RSV-SLM models, with weights (−1, 2).
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Figure 1: Power Spectrum of Long Memory Processes
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Figure 2: Sample Spectral Density of Log-Volatility
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