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ABSTRACT

We examine the plausibility of four established and innovative identification strategies for ag-
ricultural production functions using farm-level panel datasets from five EU countries. Newly 
suggested proxy and dynamic panel approaches provide attractive conceptual improvements 
over received Within and duality models. Even so, empirical implementation of such advance-
ments does not always live up to expectations. This is particularly true for the dynamic panel 
estimator, which mostly failed to identify reasonable elasticities for the (quasi-) fixed factors. 
Less demanding proxy approaches represent an interesting alternative for agricultural applica-
tions. In our EU sample, high production elasticities for materials prevail. Hence, improving the 
availability of working capital is the most promising way to increase agricultural productivity.

JEL codes: C13, C23, D24, Q12

Keywords: �Agricultural factor productivity, production function estimation, EU, Farm Accoun-
tancy Data Network

ZUSAMMENFASSUNG

Die Identifizierung von Faktorproduktivitäten auf der Basis von Mikrodaten: das Beispiel des EU 
Agrarsektors

Auf der Grundlage von einzelbetrieblichen Paneldatensätzen aus fünf EU Ländern untersuchen 
wir die Plausibilität von vier etablierten und innovativen Identifikationsstrategien für landwirt-
schaftliche Produktionsfunktionen. Die in jüngerer Zeit vorgeschlagenen Proxy- und dynamischen 
Panel-Ansätze bieten aussichtsreiche konzeptionelle Verbesserungen gegenüber herkömmlichen 

„Within“ und Dualitätsmodellen. Die empirische Umsetzung dieser Weiterentwicklungen erfüllt 
jedoch nicht immer die Erwartungen. Dies trifft besonders auf den dynamischen Panel-Schätzer 
zu, dem es überwiegend nicht gelang, glaubwürdige Elastizitäten für die (quasi-) fixen Faktoren 
zu identifizieren. Weniger anspruchsvolle Proxy-Ansätze stellen eine interessante Alternative 
für landwirtschaftliche Anwendungen dar. In unserer EU Stichprobe fanden wir überwiegend 
hohe Produktionselastizitäten für Betriebsmittel. Die Verbesserung der Verfügbarkeit von Be-
triebsmittelkrediten erscheint daher als vielversprechender Weg, um die landwirtschaftliche 
Produktivität zu erhöhen.

JEL Codes: C13, C23, D24, Q12

Schlüsselwörter: �Landwirtschaftliche Faktorproduktivität, Schätzung von Produktionsfunktio-
nen, EU, Testbetriebsnetz
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1	 Introduction1

In recent years, a new debate among econometricians about very basic methodological issues in 
measuring productivity at the firm level has gained new momentum. The debate departs from a 
fundamental idea that has been prominent since the days of Cobb and Douglas (1928), namely 
that there is a continuous relationship between inputs and output – the production function. 
Taken this idea for granted, the old question has been raised whether statistical methods exist 
that can identify how much the various factors actually contribute to the joint product. As was 
recognized early by Marschak and Andrews (1944), real world production does not occur in 
an experimental setting, and unobserved factors such as managerial abilities or unexpected 
weather shocks do affect its outcomes. How their influence could be separated from the more 
tangible inputs such as land, labor or capital is at the heart of the current debate. It is of key 
importance for understanding how agricultural productivity could be increased.

Basically two issues were raised in the recent debate. The first takes input use as a control 
variable that is potentially decided upon simultaneously with other unobserved events or may 
depend on unobserved, omitted variables. This endogeneity problem, albeit a classical one, has 
again moved centre stage after Olley and Pakes (1996) (OP) suggested a non-parametric control 
function to proxy these unobserved factors. Bond and Söderbom (2005) as well as Ackerberg et 
al. (2007) raised the question whether the typical identifying assumptions underlying production 
function estimation are rich enough to isolate the productivities of different variable inputs at 
all. By addressing this collinearity problem, the authors claim that some sort of adjustment cost 
is necessary to induce independent variation of factors in the first place. Wooldridge (2009) 
tried to solve both problems simultaneously by adopting and refining the Olley and Pakes (1996) 
identification strategy.

In the present paper, we take the various methodological approaches to an extensive panel 
dataset on European agriculture and scrutinize their arguments in this classical field of applica-
tion. We review the central identifying assumptions maintained by six traditional and recent 
approaches to the estimation of production functions, apply them to our data and ask how 
plausible they are in an agricultural context. These approaches are (1) the calculation of factor 
shares in farm revenue (2) Ordinary Least Squares (OLS) as the “naïve” estimation standard, (3) 
fixed effects (Within) regression, (4) the dynamic panel data estimator by Blundell and Bond 
(2000) (BB) as well as the control function approach by (5) Levinsohn and Petrin (2003) (LP) and 
(6) its Wooldridge (2009) extension (WLP). All models were estimated under the assumption of 
a Cobb Douglas technology. For models (2), (3) and (6), we also explore a Translog technology, so 
that in total nine models are estimated. Our study thus attempts to make methodological and 
empirical contributions to the literature. Our methodological contribution is that we provide 
the first comparative evaluation of a number of recently proposed production function estima-
tors for agricultural data. Our empirical contribution is a unique and current set of estimated 
production elasticities for five firm-level datasets at the EU country level.

1	 This Discussion Paper serves as an extended background paper to Petrick and Kloss (forthcoming). 
Financial support under the EU’s 7th Research Framework Programme within the project "Factor Markets" 
Grant agreement N°: 245123-FP7-KBBE-2009-3 (www.factormarkets.eu) is gratefully acknowledged. We 
also thank two anonymous referees for their helpful comments during the review process. An earlier ver-
sion was published as a Factor Markets working paper in January 2013.
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Recently, there has been considerable research activity on new approaches in production func-
tion estimation and there have been comparative evaluations on such approaches using simu-
lated data (cf. Van Biesebroeck, 2007). If estimator developers provide empirical applications 
at all, they do so from highly specific contexts. For example, Blundell and Bond (2000) work 
with a dataset on US manufacturing firms covering the 1980s which had been the basis of other 
methodological investigations before. Levinsohn and Petrin (2003) use data from Chilean firms 
that was later also utilized by Ackerberg et al. (2006). Kasahara and Rodrigue (2008) take this 
Chilean data as a basis for various panel data estimators including dynamic panel and proxy 
approaches.2 There are certainly good reasons to control variation that is due to the dataset 
when evaluating innovative estimators. Even so, the ultimate test of their value added can be 
assessed only after application to datasets that are not only of methodological but also topical 
or policy interest. The present study is among the first to apply a whole set of recently discussed 
estimators to a politically highly relevant dataset.

Our European database covers firm-level data from all EU member states that was collected 
following a harmonized procedure in all countries. This is one of the first micro studies of agricul-
tural productivity that simultaneously uses firm-level data from several countries for compara-
tive purposes. This extensive data allows us to come up with new, country-specific estimates of 
production elasticities in agriculture that are potentially robust to endogeneity and collinearity 
issues. While agriculture is a classical field of productivity estimation, there has been surpris-
ingly little systematic analysis using the production function approach recently. Mundlak (2001) 
attributes this to the emergence and widespread acceptance of duality theory in agricultural 
economics from the 1970s onwards. This approach typically recovers the price elasticity of factor 
demand but not the production elasticities. As Mundlak (2001) notes and as we discuss below, 
the dual approach is based on restrictive theoretical assumptions and far from being without 
methodological problems. One key expectation from duality was that it would allow a more 
flexible representation of technology, such as based on the Translog functional form (Shumway, 
1995). Interestingly, our results show that making the Cobb Douglas production function more 
flexible by adding quadratic and interaction terms does not add much insight. In the OLS and 
Wooldridge (2009) case, the results were highly implausible, whereas they differed little from 
the Cobb Douglas for the Within panel estimator.

Our empirical estimates suggest that output elasticities of labor, land and fixed capital are low 
throughout our European subsamples. This finding is in contrast to recent estimates by Mundlak 
et al. (2012), according to whom there are significant returns to land and fixed capital in a 
cross-country sample of developing and developed countries. On the other hand, our materials 
elasticity is quite high, around 0.7. This outcome is particularly prominent in the LP, WLP and 
BB estimators. In the conceptual part, we argue that these estimators provide more plausible 
identification strategies than established Within or duality approaches. While the one-period 
control function models of LP and WLP are easier to implement empirically, the multiperiod ad-
justment process implied by the BB model is more compelling in an agricultural context. But BB 
failed to produce reasonable results for the fixed variables in most of our country subsamples. 

2	 Other authors explore subsets of models that interest us here. Hempell (2005) investigates German service 
firms and focuses on dynamic panel data models. Van Biesebroeck (2008) compares the OP approach with 
envelope and frontier models, using data on manufacturing firms from Colombia and Zimbabwe. The dis-
tinct literature studying frontier models has just recently begun to address endogeneity concerns (Amsler 
et al., 2016), including an application to dairy farms in the EU (Latruffe et al. 2017).



9Martin Petrick and Mathias Kloss

There is hence a trade-off among theoretical plausibility and empirical robustness of the dif-
ferent identification strategies.

In the following section 2, we discuss the key identification problems that have motivated much 
of the methodological debate in production function estimation as well as the four main as-
sumptions invoked in the literature to address them. Section 3 describes the dataset. Section 4 
presents the empirical results. Section 5 concludes.

2	� Identification problems in production function estimation and approaches 
to their solution

2.1	 A typology of production factors

The process of agricultural production serves as a useful illustration for the different nature of 
production factors. For the ensuing discussion, two characteristics of these factors are of par-
ticular importance: 

a)	 their variability or the ease with which they can be adjusted, and 

b)	 whether they are observed by the econometrician.

Table 1 differentiates three categories of variability. Among the highly variable factors are inter-
mediate inputs such as seed, fertilizer or concentrate fodder. These factors are typically included 
in farm-level datasets and thus observed by the econometrician (type I factors). In economic 
parlance, they are also called “control variables” because the decision maker (the farmer) can 
manipulate their level to achieve his/her objectives. Other highly variable control variables may 
be hard to observe from the outside, such as work effort (type IV factors). 

Other important factors are much less variable and are subject to adjustment costs (type II 
and V factors, depending on whether they are observed). For example, land is often available 
in limited quantities only and subject to long-term rental agreements. Agriculture in Europe is 
typically organized in family farms on which labor is often highly immobile (Tocco et al., 2012) 
and may be influenced significantly by life cycle considerations of the farm family (Glauben 
et al., 2009). Agricultural credit markets suffer from informational asymmetries and may be 
characterized by rationing and high transaction costs (see e.g. Benjamin and Phimister, 2002; 
Petrick and Latruffe, 2006). Management has long been recognized as an important factor of 
production that is nevertheless difficult to measure (Mundlak, 1961).

A final group includes factors that are completely fixed in the long run, such as the geographic 
location of the farm or the quality of its soils (type III and VI factors). All the less variable fac-
tors type II, III, V and VI are called “state variables”, as their value cannot be modified within a 
short-term planning horizon.

As indicated in Table 1, there is an important distinction between the highly variable and un-
observed factors type IV and VII. Some of these also come as a surprise to the farmer. They 
represent exogenous states (shocks) of the environment (type VII factors). However, how the 
farmer reacts to these shocks will be endogenous (type IV factors).
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2.2	 Two problems of identification

To illustrate the involved problems, we start with a simple model of a farmer wishing to pro-
duce an aggregate output. Denote yit the natural logarithm of farm i ’s output Y at time t, Ait 
land use of this farm, Lit labor, Kit fixed capital and Mit materials or working capital. These four 
factors of production are observed by the econometrician. ωit is an aggregate, farm-specific, 
time-varying factor that is anticipated by the farmer at the time of decision making about 
current production, but unobserved by the econometrician. Without further specification, it 
compounds the effects of factors categorized as type IV to VI in Table 1. εit is a productivity 
shock not anticipated by the farmer (and not observed, thus type VII), or simply measurement 
error. Assuming a linear structure of the model and the availability of panel data containing 
the observed output and inputs, the econometrician’s problem is to recover farm productivity 
determined by the following equation:

𝑦𝑦"# = 𝑓𝑓 𝐴𝐴"#, 𝐿𝐿"#, 𝐾𝐾"#,𝑀𝑀"# + 𝜔𝜔"# + 𝜀𝜀"#, (1) 

	

		  (1)

where f (∙) is the production function. 

Because ωit will likely be correlated with the other input choices, estimation of (1) is subject 
to an endogeneity problem (Marschak and Andrews, 1944). The production elasticities of the 
observed factors are not identified as the compound error term ωit + εit is not identically and 
independently distributed (i.i.d.). Regressing output on observed input levels using OLS and 
choosing an appropriate functional form for f (∙) will produce biased estimates. In particular, input 
coefficients will be upward biased if there is serial correlation in ωit. This effect will be stronger 
the easier it is to adjust input use (Levinsohn and Petrin, 2003: 332). A typical OLS result may 
be that the coefficients of labor and materials are upward biased, while those of land and capital 
are downward biased, although the opposite may occur as well (Geylani and Stefanou, 2013: 
168). Much of the methodological literature on production function estimation is concerned 
with precisely this issue (see the instructive review in Griliches and Mairesse, 1998).

Highly variable Subject to adjustment 
costs

Fixed

Observed by 
econometrician & farmer

Type I

Seed, fertilizer, chemicals, 
concentrate, livestock 
numbers

Type II

Land, labor, machinery, 
buildings

Type III

Geographical location

Typically unobserved 
by econometrician but 
known to the farmer

Type IV

Farmer’s effort, reaction to 
environmental shocks 

Type V

Management abilities, 
human capital of labor 
force, availability of a 
farm successor

Type VI

Soil quality, climatic 
conditions

Unobserved by 
econometrician & 
unanticipated by the 
farmer

Type VII

Weather events, 
rainfall, diseases, legal 
requirements

-- --

Source:	 Authors.

Table 1.	 A typology of production factors in agriculture
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According to the implicit theoretical setup so far, all observed factors are assumed to be control 
variables and are treated as being fully flexible (as if they all belonged to type I). The typical as-
sumption in the literature (e.g. Chambers, 1988) is then that output and all factors are traded 
on perfectly competitive markets so that on each of the markets all farmers face the same 
one price for the traded good. If farmers maximize profits defined as revenues from the sale 
of output minus costs of all inputs and (∙) is a monotonous and concave function, the canonical 
decision rule for allocating inputs is identical for all inputs and says that the marginal revenue 
product of each factor should equal its factor price. For example, for materials this decision 
rule is as follows:

𝑝𝑝" #$
#%

= 𝑝𝑝%, (2) 

	

		  (2)

with pY denoting the price of output and pM that of materials, respectively. Estimation of (1) 
requires the assumption that the technology represented by f (∙) is identical for all farmers in-
cluded in the estimating sample. If all farmers also face the same price on each of the output 
and input markets, there is nothing in the model that induces heterogeneous factor use across 
farms except for the unobserved ωit. This is the collinearity problem pointed out recently by 
Bond and Söderbom (2005) and Ackerberg et al. (2007). Factor use across firms varies only 
with the unobserved ωit, so that again the different production elasticities are not identified.

Source:	 Authors.

Table 2.	 Identifying assumptions in production function estimation
(A)  
ωit is additively separable 
& time invariant

(B) 
Profit maximization & 
perfect competition on 
product & factor markets

(C) 
Heterogeneous frictions 
in factor adjustments

(D) 
ωit evolves monotonously 
with an observed 
characteristic of the firm

If correct, does the 
assumption solve 
the endogeneity 
problem?

Yes. Yes if prices can be used as 
instruments.

Yes if adjustment costs are 
sufficiently heterogeneous 
across inputs.

Yes.

Does it solve 
the collinearity 
problem?

Not without further 
assumptions.

Yes if there is only one 
free input.

Yes if adjustment costs are 
sufficiently heterogeneous 
across inputs.

Not without further 
assumptions (Ackerberg 
et al. 2015; Wooldridge 
2009).

Practical 
implementation

“Within” regression to 
sweep out fixed effect.

Share regression, 
approaches based on 
duality.

Typically combined 
with assumption (A) in 
a dynamic panel data 
regression model using 
first differences.

Semiparametric control 
function approaches 
using investment or 
intermediate inputs as 
proxies.

Remaining 
problems

Remaining variance 
may be too small to 
allow precise parameter 
estimation.

Prices with sufficient 
variation may not be 
observed. Heterogeneous 
firm-specific prices may 
not be exogenous.

Weak instruments, small 
variance of differenced 
variables.

Zero observations for 
proxies (e.g., investment). 
Slowly changing 
unobserved effects are 
not captured.

Plausibility in 
agriculture

Limited plausibility as 
farm- & time-specific 
effects are likely, e.g. 
reactions to weather 
shocks.

Limited plausibility as 
market imperfections 
on labor, land & capital 
markets are widespread in 
agriculture.

Plausible for land, labor, 
fixed capital, less for seed, 
fertilizer, plant protection, 
concentrate, energy.

Plausible for annually 
fluctuating shocks, less 
for slowly changing 
unobservables such as soil 
or management quality.

Examples in the 
literature

Widely used. See 
Mundlak (1961); overview 
in Griliches & Mairesse 
(1998).

Widely used. See overview 
in Mundlak (2001) and 
Bonnieux (1989) on 
French agriculture.

Blundell & Bond (2000); 
Hempell (2005). No 
agricultural applications 
so far.

Olley & Pakes (1996); 
Levinsohn & Petrin 
(2003); Kazukauskas et al. 
(2010) on Irish dairy farms, 
Petrin and Levinsohn 
(2012); Rizov et al. (2013) 
on EU-15.
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We now review the main approaches found in the literature to deal with either of these identi-
fication problems. The discussion is guided by Table 2, which summarizes the four approaches 
we distinguish. After introducing each approach, we ask how plausible the specific identifying 
assumption is in the context of agriculture. We then evaluate to what extent the two key iden-
tification problems presented before are addressed and how the resulting estimator can be 
applied in practice.

2.3	� Additively separable, time-invariant firm characteristics

The key idea of this approach is that  can be further decomposed into:

𝜔𝜔"# = 𝛾𝛾# + 𝜂𝜂" + 𝑣𝑣"#,	

	

	 (3)

where yt is a time-specific shock that is identical for all farms in t (likely a type VII event), ηi is a 
farm-specific fixed effect that does not vary over time (a type VI factor), and vit is the remaining 
farm- and time-specific productivity shock (type VII). Think of yt representing common weather 
or policy shocks and ηi capturing soil quality or time-invariant preferences of the manager. In a 
farming context, vit may represent local weather conditions that vary between farms and years. 
If they are not anticipated by the manager, vit is subsumed into εit. If the production function is 
linearly separable in the logs of observed and unobserved factors, a commonly used functional 
form is Cobb Douglas, so that the function can be written as as yit = α Aait + αLLit + αKkit + αMmit 
+ yt + ηi + εit, with lower case letters denoting logs, αX the coefficients to be estimated, and X 
a shorthand for the observed production factors X ∈ {A,L,K,M}.. Using panel data, a “within” 
transformation expresses all values as deviations from farm-specific means and thus eliminates 
ηi and all levels from the equation:

𝑦𝑦"# − 𝑦𝑦" = 𝛼𝛼' 𝑥𝑥"# − 𝑥𝑥"' + 𝛾𝛾# + (𝜀𝜀"# − 𝜀𝜀"),	 	

	

	 (4)

where 𝑥𝑥" 	 denotes farm-specific log means over time. The fixed effect is hence “swept out” of 
the equation. Introduced by Hoch (1955) and Mundlak (1961) in a farming context to elimi-
nate “management bias” from the equation, this model has found widespread application at 
different levels of aggregation. The effect of yt is typically taken into account by including time 
dummies into the model. An alternative to Within is to estimate the model in first differences, 
as discussed by Wooldridge (2010: 321-326). 

Mundlak et al. (2012: 146) present a recent application to agricultural productivity at the country 
level where the fixed and year effects alone explained 98.5% of output variation. Even so, the 
question remains whether it is legitimate to assume that vit is an innovation that is orthogonal 
to observed factor use so that all unobserved factors are indeed either time invariant or the 
same for all farms. Table 1 suggests that farm- and time-specific unobserved effects which the 
farmer still takes into account when making input decisions (type IV and V) are very likely to be 
relevant. Examples include annual fluctuations in rainfall or pest occurrence as well as patterns 
of livestock health. Furthermore, applications in practice have found that the within transfor-
mation removes (too) much variance from some of the variables, particular those which dis-
play little variation over time. In agriculture, input levels of the type II production factors land, 
labor and fixed capital often vary only little in time. As a consequence, the signal-to-noise ratio 
with regard to these factors is reduced and the estimated coefficients are biased downwards 
(Griliches and Mairesse, 1998: 180-185). Finally, without further assumptions, the collinearity 
problem is not addressed at all by this approach.
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2.4	� Profit maximization and perfect competition

This approach imposes further microeconomic theory upon the data, including its main assump-
tions of profit maximization and perfect competition on product and input markets. A key result 
of this theory is the first-order condition (2), which multiplied through with 𝑀𝑀

𝑝𝑝#𝑌𝑌	
 yields (for the 

case of materials):

!"
!#

#
$
= &'#

&($
.	 (5)	

𝑠𝑠*+# = 𝛼𝛼# + 𝛼𝛼##𝑚𝑚*+ + 𝛼𝛼#/𝑎𝑎*+ + 𝛼𝛼#1𝑙𝑙*+ + 𝛼𝛼#3𝑘𝑘*+ + 𝜔𝜔*+
# + 𝜀𝜀*+#,	 (6)	

𝑠𝑠*+# =
𝑝𝑝*+#𝑀𝑀*+

𝑝𝑝*+$𝑌𝑌*+
	

	
𝜔𝜔*+
#	 𝑠𝑠*+#	 𝜀𝜀*+#	 	 	 	 	

	

𝑣𝑣*+ = 𝜌𝜌𝜌𝜌*+<= + 𝑒𝑒*+,	with	 𝜌𝜌 < 1,	 (7)	

𝑦𝑦*+ = 𝛼𝛼B𝑥𝑥*+ − 𝛼𝛼B𝜌𝜌𝜌𝜌*+<= + 𝜌𝜌𝜌𝜌*+<= + 𝛾𝛾+ − 𝜌𝜌𝜌𝜌+<=B + 1 − 𝜌𝜌 𝜂𝜂* +

𝜀𝜀*+∗ .	 (8)	

𝑦𝑦*+ = 𝜋𝜋=BB 𝑥𝑥*+ + 𝜋𝜋IBB 𝑥𝑥*+<= + 𝜋𝜋J𝑦𝑦*+<= + 𝛾𝛾+∗ + 𝜂𝜂*∗ + 𝜀𝜀*+∗ ,	 (9)	

𝑖𝑖*+ = 𝑖𝑖+ 𝜔𝜔*+, 𝑘𝑘*+ ,	 (10)	

𝜔𝜔*+ = ℎ+ 𝑖𝑖*+, 𝑘𝑘*+ ,	 	

	 (5)

If one further assumes constant returns to scale, (5) says that the production elasticity of each 
input (left hand side) is equal to its value share in revenue (right hand side). All value shares add 
up to one. Given these assumptions, revenue shares of inputs are valid estimators of produc-
tion elasticities. For the simple Cobb Douglas technology, the problem of estimating produc-
tion elasticities has thus been “solved” by the imposition of strong theoretical assumptions. 
However, production function estimates of elasticities in agriculture were often found to differ 
from observed revenue shares (Mundlak 2001). These differences may even be an object of 
investigation, for example in studies of credit rationing (Petrick, 2005). Such studies thus require 
productivity estimation independent of the revenue share.

For more flexible functional forms, (5) has led to the widely applied share regression model. For 
example, if the production function is assumed to be Translog, thus also including quadratic and 
cross terms of the variable inputs in logs, the first order condition yields the following share 
regression (again for the case of materials):
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with 𝑠𝑠"#$ =
𝑝𝑝"#$𝑀𝑀"#

𝑝𝑝"#(𝑌𝑌"#
	

	

 the revenue share of materials of firm i at time t, αX the direct and cross- 
 
elasticities of the involved inputs, 𝜔𝜔"#$	 the part of the unobserved productivity characteristic 
that affects 𝑠𝑠"#$	, and 𝜀𝜀"#$	 an i.i.d. error term. Such an equation can be derived for all production 
factors, thus constituting a system of equations amenable to estimation by imposing the pa-
rameter restrictions derived from theory (Berndt and Christensen, 1973; see Bonnieux, 1989 
for an application to French agriculture). 

Note that (6) is still subject to the endogeneity and collinearity of factors. The way out of these 
problems typical to this approach is finding appropriate instruments for the input levels. The 
role of the instruments would be to distil that part out of m, a, l and k that is not correlated 
with 𝜔𝜔"#$	. In the given theoretical framework, the most natural candidates are factor prices, 
which were used to estimate systems of share equations like (6) by two- and three-stage least 
squares (Antle and Capalbo, 1988). Given the possibility to recover technology parameters 
also from profit and cost functions by means of duality theory (Chambers, 1988), there is now 
a large body of empirical literature with agricultural applications of this approach (see the criti-
cal review in Mundlak, 2001). 

Despite the applications in the literature, the use of prices to solve the two identification prob-
lems must be questioned on both theoretical and empirical grounds. To qualify as instruments, 
prices must not be endogenous to the decision problem of the farmer. This condition is usually 
ensured by the assumption of perfectly competitive markets on which atomistic agents have 
no price-setting power. In agriculture, it may hold for a number of output markets, but is very 



14 Identifying factor productivity

unlikely to prevail on most factor markets. For example, farmland markets are known to be 
characterized by spatial oligopolies and strong government regulation in many European coun-
tries (Huettel and Margarian, 2009; Ciaian, et al. 2012). As noted before, agricultural labor is 
usually very immobile due to life-cycle considerations and specific human capital. Agricultural 
credit may be due to a rationing regime that depends on the credit history of the farmer. Hence, 
factor prices may not be exogenous and may depend on past and current decisions of the farmer. 
Under such conditions, the theoretical model underlying this approach is clearly too simplistic 
to allow straightforward identification of the production function.3

On the other hand, if factor markets were at least approximately working as postulated by the 
theoretical ideal, there should be little price variation across farms so that the value of prices 
for solving the endogeneity and collinearity problems is doubtful. In the first place, this is a 
theoretical argument – on perfect markets, there is no price variation across firms and so the 
different flexible factors are not identified by the data generating process. In fact, empirical 
applications have shown that price variation is indeed often small and may be due to quality 
differentials (Griliches and Mairesse 1998: 189). With regard to agricultural labor or land, it 
may be hard to find appropriate price series at all.

2.5	 Heterogeneous frictions in factor adjustment

If prices are problematic instruments, another option is to look for a different source of exog-
enous variation that has explanatory power for productivity analysis. One such source now 
routinely employed, which is based on the literature on dynamic panel data modeling, are past 
decisions on factor use (Arellano and Bond, 1991; Blundell and Bond, 1998). This literature 
suggests that current variation in input use is caused by lagged adjustment to past productivity 
shocks. It thus introduces the history of input use as a source of identification. Such identification 
is plausible if modifications of input levels are subject to adjustment costs (Bond and Söderbom, 
2005). This approach effectively turns observed input levels into state variables (type II) and 
makes them subject to an intertemporal optimization problem. One way to account for costly 
adjustment is to allow serial correlation of the unobserved productivity characteristic of the 
firm, so that it could be written as:

𝑣𝑣"# = 𝜌𝜌𝜌𝜌"#&' + 𝑒𝑒"#,	with	 𝜌𝜌 < 1,		 (7)

where ρ denotes the autoregressive parameter and eit an independent mean zero innovation. 
Substituting (7) as well as (3) into a Cobb Douglas specification of (1), Blundell and Bond (2000) 
suggest a dynamic production function specification that can be estimated with a dynamic 
panel data estimator:

𝑦𝑦"# = 𝛼𝛼&𝑥𝑥"# − 𝛼𝛼&𝜌𝜌𝜌𝜌"#*+ + 𝜌𝜌𝜌𝜌"#*+ + 𝛾𝛾# − 𝜌𝜌𝜌𝜌#*+& + 1 − 𝜌𝜌 𝜂𝜂" + 𝜀𝜀"#∗ .		 (8)

Alternatively, this model can be written as:

𝑦𝑦"# = 𝜋𝜋&'' 𝑥𝑥"# + 𝜋𝜋*'' 𝑥𝑥"#+& + 𝜋𝜋,𝑦𝑦"#+& + 𝛾𝛾#∗ + 𝜂𝜂"∗ + 𝜀𝜀"#∗ ,		 (9)

3	 An important step to relax the rigid assumptions of this approach was the introduction of dynamic duality 
in studies of agricultural production (e.g., Thijssen, 1994; Sckokai and Moro, 2009). Conceptually, these 
studies build a bridge to the approaches described in subsequent sections. The empirical interest was often 
no longer on recovering factor productivities, however.
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subject to the common factor restrictions that π2X = –π1X π3 for all X. 

Blundell and Bond (2000) use lagged levels and differences of inputs as instruments in a Gen-
eral Methods of Moments (GMM) framework to estimate (8). If the ηi are removed by first dif-
ferencing (FD), this estimator allows the consistent recovery of all input elasticities in (1) as well 
as ρ. Blundell and Bond (2000) suggest the method of minimum distance (Wooldridge, 2010: 
545-547) to test whether the parameters estimated by the unrestricted model (8) conform with 
the restrictions imposed by (9).

Note that the within transformation (section 2.3) assumes strict exogeneity of inputs which 
means that ωit must not be transmitted to any future period (contrary to what is assumed in 
(7)). First differencing to eliminate fixed effects only assumes that input levels are sequentially 
exogeneous, i.e. transmission of ωit to the next but one and subsequent periods is allowed 
(Chamberlain, 1982; Wooldridge, 2010: 321-326). FD is thus the typical approach to eliminate 
time invariant heterogeneity in GMM applications, as it allows input levels lagged more than 
two periods to be used as instruments for contemporaneous differences (Arellano and Bond, 
1991). Of course, these instruments will only have power if there actually is such a transmission 
(e.g. motivated by adjustment costs). To increase the power of the GMM approach, Blundell and 
Bond (1998) have shown that in addition to past levels, also lagged differences of inputs can be 
used as instruments if they are orthogonal to the fixed effects (ηi) – an assumption which will 
hold if their variance is assumed to be, in the broadest sense, stationary (Roodman, 2009: 114-
115). This leads to the systems GMM estimator for production functions presented in Blundell 
and Bond (2000) and applied by Hempell (2005). Hempell uses data on German service firms 
from 1994 to 1999. In the empirical application of Blundell and Bond (2000), their preferred 
systems estimator produces a lower employment coefficient and a higher capital coefficient 
than OLS or Within estimators, thus correcting the expected bias.

If factor levels can suitably be instrumented by this approach, it addresses both the endogene-
ity and the collinearity problems. Contrary to the duality approach presented in section 2.4, it 
is much more plausible that the instruments proposed here are actually valid in an agricultural 
context. There are important production factors in agriculture which are subject to adjustment 
costs (or “transaction costs”; type II variables in Table 1) and such costs should be an element 
in any plausible theory of agricultural factor markets. As the nature of these costs is likely to 
differ among factors (see section 2.1), it is also plausible that different factors of production 
display different dynamic paths of adjustment. This is a favorable condition for identification 
(Bond and Söderbom; 2005). It is only with regard to some intermediate inputs such as seed, 
fertilizer, plant protection, concentrate, or energy that factor use appears to be more flexible 
so that the assumption of adjustment costs may be harder to justify (type I factors). In sum, this 
estimator is a promising candidate for agricultural applications.

2.6	 Monotonous coevolution of unobserved productivity shocks with observed firm char-
acteristics

The final method to be discussed here avoids the main disadvantage of any fixed effects ap-
proach to unobserved heterogeneity, which is the typically low variance of the transformed vari-
ables. However, it also does not rely on the strong a-priories about market structure of duality 
theory to identify the productivity parameters of interest. It rather attempts to proxy ωit (as 
a compound type IV to VI production factor) by a non-parametric control function which itself 
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contains only observed firm characteristics. Olley and Pakes (1996) were the first to suggest 
log investment (iit) as an observed characteristic driven by ωit:

𝑖𝑖"# = 𝑖𝑖# 𝜔𝜔"#, 𝑘𝑘"# ,		 (10)

where kit is the pre-determined level of capital use at time t. The latter is assumed to evolve 
according to kit+1 = (1 – δ) kit + iit, with δ the depreciation rate. 

The function it(∙) can vary over time and is not parametrically restricted except that it needs to 
be monotonous in ωit. This latter trait allows inversion of this function, so that:

𝜔𝜔"# = ℎ# 𝑖𝑖"#, 𝑘𝑘"# ,		

where ht is now potentially observable and acts as a proxy for ωit. Furthermore, it is assumed 
that unobserved productivity follows a first-order Markov process:

𝜔𝜔"# = 𝐸𝐸 𝜔𝜔"#|𝜔𝜔"#'( + 𝜉𝜉"#,		 (11)

where ξit is an innovation (a type VII factor) uncorrelated with kit, but possibly correlated with 
the other factors in the production function. Because kit is a type II factor, the moment condi-
tion E[kit ξit] = 0 can be used to identify αk.

Given this setup, estimation proceeds in two stages. The basic idea is to jointly control for the 
influence of k and ω in the first stage and to recover the true coefficient of k as well as ω in the 
second. Referring again to our Cobb Douglas example, all observed factors except capital are 
assumed to be fully variable type I factors. Their elasticities are determined in the first stage 
by substituting h(∙) into the production function and estimating:

𝑦𝑦"# = 𝛼𝛼&𝑎𝑎"# + 𝛼𝛼)𝑙𝑙"# + 𝛼𝛼+𝑚𝑚"# + 𝜙𝜙# 𝑖𝑖"#, 𝑘𝑘"# + 𝜀𝜀"#,		 (12)

where ϕt = αkkit + ht (iit, kit). In practice, ϕt is approximated by a low-order polynomial of i and 
k which controls for ωit. (12) shows that ϕt is assumed to be additively separable from the re-
maining variable inputs. Flexible functional forms involving interactions of all variable and fixed 
inputs (such as the Translog) thus cannot be implemented with this procedure.

In the second stage, αk is determined in a series of steps (see e.g. Petrin et al. 2004). First, using 
the parameters of ϕt and a candidate value for αk, a prediction 	𝜔𝜔"#	 it is computed for all periods. 
Next, 	𝜔𝜔"#	 is regressed on its lagged values to obtain a consistent predictor of that part of ω that 
is free of the innovation ξ. Finally, using the parameters of the variable factors from the first 
stage together with the prediction of the “clean” ωit and the moment condition E[kit ξit] = 0, a 
consistent estimate of αk can be obtained by minimum distance.4 In their original application to 
the US telecommunications equipment industry, Olley and Pakes (1996) show how this proce-
dure yields lower labor coefficients than OLS and higher capital coefficients than Within. In an 
agricultural application, Kazukauskas et al. (2010) found for Irish dairy farms that the materials 
coefficient estimated with an OP procedure was lower than the OLS result.

4	 This is the algorithm used in literature subsequent to Olley and Pakes (1996). In the original paper, it was 
combined with an exit and entry mechanism for firms which we ignore to simplify the exposition.
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One problem that arises from using investment as a proxy is zero observations for certain years 
and firms. Levinsohn and Petrin (2003) therefore suggested materials instead of investment 
as a proxy of ωit in the previous algorithm. Again, the assumption is that materials evolve mo-
notonously with the unobserved productivity characteristic, so that the effect of the latter can 
be inverted out. Materials is assumedly a type I factor and thus part of the production function. 
However, in the LP approach, its elasticity cannot be estimated in the first stage, as it is now 
part of h(∙). Therefore, the additional moment condition E[m-it1ξit] = 0 is postulated to obtain 
αk in the second stage.

If the control function fully captures the influence of ωit, it solves the endogeneity problem 
and provides a useful alternative to the fixed effects approaches described before. However, in 
agriculture, the assumptions on monotonicity and dynamic evolution of the productivity shock 
must be considered with caution. A key question is what exactly ωit is representing and whether 
investment or material use are good proxies for it. If ωit stands for annually fluctuating, unob-
served factors (type IV) such as management effort or reaction to environmental conditions, 
there may be cases where the “right behaviour” of the farmer (i.e., positive ωit) does not lead 
to more investment. The same is true for materials. The productivity enhancing reaction to en-
vironmental shocks in crop production may sometimes be less input use (fertilizer, chemicals) 
rather than more. In all these cases, neither investment nor materials will be good proxies of ωit. 
Furthermore, the “memoryless” first-order Markov process appears unconvincing if ωit actu-
ally represents unobserved type V factors which are subject to adjustment costs. They evolve 
slowly and will typically have implications for the intertemporal optimization problem, so that 
also kit is affected by them and (10) is misspecified. Investment may not be a good proxy for ωit 
if there are other important determinants of it beyond kit. In a farming context, this is likely to 
be the case, because investment decisions are usually influenced by long term business strate-
gies and/or the availability of a farm successor.

Another problem with the procedure suggested by OP and LP is that it does not solve the col-
linearity problem. As discussed at length by Ackerberg et al. (2015), unless one is willing to 
make very unintuitive assumptions on measurement error or timing, there is no data genera-
tion process that separately identifies the coefficients of the type I factors in either of the two 
approaches. Ackerberg et al. (2015) therefore suggest giving up estimation of these coefficients 
in the first stage altogether, and invoke additional timing assumptions that justify moment con-
ditions for estimating these coefficients in the second stage. Wooldridge (2009) suggests a 
simple procedure that borrows the identification strategy from OP and LP and modifies as well 
as extends the moment conditions to resolve the collinearity problem. Hence, this approach 
is referred to as the Wooldridge/Levinsohn/Petrin (WLP) estimator (Petrin and Levinsohn, 
2012). Unlike LP, Wooldridge (2009) assumes that εit is orthogonal not only to current but also 
all past values of a, l, k and m. In practical implementation, only current realizations and one 
lag of the inputs are assumed to be uncorrelated with the εit. Moreover, the innovation ξit is 
assumed to be uncorrelated with current and past realizations of k and past realizations of a, 
l and m. Now, the problem can be formulated in terms of two equations. The first is given by:

𝑦𝑦"# = 𝛼𝛼&𝑎𝑎"# + 𝛼𝛼)𝑙𝑙"# + 𝛼𝛼+𝑘𝑘"# + 𝛼𝛼-𝑚𝑚"# + ℎ 𝑚𝑚"#, 𝑘𝑘"# + 𝜀𝜀"#.		 (13)

The second can be obtained by plugging ωit = g[h(mit-1, kit-1)] + ξit, into the production function, 
with g(∙) a an unknown productivity function:

𝑦𝑦"# = 𝛼𝛼&𝑎𝑎"# + 𝛼𝛼)𝑙𝑙"# + 𝛼𝛼+𝑘𝑘"# + 𝛼𝛼-𝑚𝑚"# + 𝑔𝑔 ℎ 𝑚𝑚"#12, 𝑘𝑘"#12 + 𝑒𝑒"#,		 (14)
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where eit = ξit + εit. Given the above orthogonality conditions, in (13) and (14), current and past 
values of k, past values of a, l, and m as well as functions of these can be used as instruments. 
Additionally, in (13), contemporaneous proxy variables and current realizations of a and l are valid 
instruments. Given this setup, the two equations (13) and (14) can be estimated within a GMM 
framework. Alternatively, we can identify the production function parameters by estimating 
(14) using IV estimation with instruments for a, l, and m (Wooldridge, 2009: 113). Petrin and 
Levinsohn (2012) employ this second approach. h is approximated by low-order polynomials 
of first-order lags of m and k.

In our agricultural application, the intuition of this approach may be as follows (cf. Levinsohn 
and Petrin, 2003: 322). Consider ωit to represent a farm-specific stock of management knowl-
edge. Any positive shift of ωit assumedly increases the marginal productivity of mit and possibly 
all other production factors. As m can be readily adjusted, a profit-maximising farmer increases 
the level of mit in response to the shift, thus motivating our use of m as a proxy for ωit. The 
same process may also work in the other direction, so that farms with negative shocks reduce 
material inputs. If ω is persistent, the farm-specific over- or under-application of material in-
puts is likely to be correlated over time, so that past levels can be used as proxies for current 
productivity shifts. Consistent with primarily positive shifts is the empirical observation that, on 
average, both farm output and materials input increase over the years. This is precisely what 
our data confirms.

The assumption of costly factor adjustment is a cornerstone of both the dynamic panel data 
approach described in section 2.5 and the present one. In both cases, this assumption provides 
moment conditions necessary for consistent estimation of the parameters. The main difference 
is that the former approach allows time-invariant fixed effects, whereas the latter does not. The 
former imposes a linear structure on the dynamic process, while it can be arbitrary in the latter. 
Even so, factor adjustment is assumed to occur in a single period in OP and followers, whereas 
the process covers many periods in the dynamic panel data models. In the light of agricultural 
applications, this may be one key advantage of the dynamic panel data approach.5

2.7	 Interim evaluation of estimation approaches

The previous discussion has displayed the variety of assumptions invoked for addressing the 
endogeneity and collinearity problems inherent to production function estimation. In our opin-
ion, the assumptions underlying Within regression and the duality approach are fairly strong 
and implausible for the case of agriculture. Perhaps not surprisingly, they often have also not 
performed well in estimation practice. This insight shifts our attention to the promising new 
approaches using heterogeneous frictions in factor adjustment. We regard the presence of 
adjustment costs as particular relevant for the production factors that are of key interest in 
agricultural applications. They also provide an interesting link to more sophisticated theories 
of business structures in agriculture, which usually embody some form of adjustment frictions 
in agricultural factor use (such as Allen and Lueck, 2002 or Pollak, 1985). So far, there are al-
most no applications to agricultural data of these new estimators. The following sections aim 
to fill this void.

5	 Other subtle differences between the two approaches are discussed in Ackerberg et al. (2015).
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3	 Data

The data used in this study comes from the EU’s Farm Accountancy Data Network (FADN), which 
provides a stratified farm level data set that holds accountancy data for all 28 EU member states. 
The stratification criteria are region, economic size and type of farming. The farm universe con-
sists of all farms with more than one hectare or those with less than one hectare that provide 
the market with a specified amount of output. From this universe all non-commercial farms are 
excluded in order to arrive at the field of observation. To be classified as a commercial farm, a 
farm must exceed a certain economic size. It is measured in economic size units (ESU). One ESU 
represents a certain amount in euros and is periodically adjusted for inflation. To determine 
the economic size of farms, the concept of standard gross margin is used. In addition, farms are 
classified by type of farming (TF). 

In the present study, we only use field crop farms (TF1), to justify the assumption of a homog-
enous state of technology across farms. The sample of countries is selected to reflect the diverse 
farm sizes and structures in EU agriculture. The range is from small-scale family farms in Italy and 
West Germany up to medium-sized commercial farms in Denmark, France and the UK (European 
Commission, 2012). West Germany contains the nine federal states Baden-Württemberg, Ba-
varia, Hamburg, Hesse, Lower Saxony, North Rhine-Westphalia, Rhineland-Palatinate, Saarland 
and Schleswig-Holstein. It does not include Berlin and Bremen, which are not represented in 
the FADN data. Therefore, we produce separate results for the following countries:

•	 Denmark (DK), 
•	 France (FR), 
•	 Germany West (DEW), 
•	 Italy (IT), and the 
•	 United Kingdom (UK).

The raw data provided by FADN was arranged in a way that panel data estimators can be applied. 
For every country in the study, we created a panel data set covering the years from 2001 up 
to 2008. A small number of duplicates in the data were dropped. In total, 14,801 observations 
were included in the EU-wide sample.

The variables and their measurement are readily available in the codebooks provided by FADN 
(European Commission, 2007, 2008). Output is measured as the total farm output in euros. Labor 
is measured by the time worked in hours by total labor input on the farm, including both hired 
and family labor. The total utilized agricultural area is our land input in ha. It includes owned 
and rented land, and land in sharecropping.

A persistent issue in estimating production functions has been the specification of the capital 
variable. Typically, some simple measures of input quantities (such as fertilizers or pesticides) 
and machinery use (such as fuel expenses or tractor hours) are used in cross-sectional studies. 
In this study, the material or working capital input is proxied by total intermediate consump-
tion in euros. It consists of total specific costs and overheads arising from production in the ac-
counting year. Among others, it includes feed, fuel, lubricants, water, electricity and seed. We 
do not include fertilizer in our materials specification. As land and fertilizer are highly correlated 
in the data sample, they are applied in more or less fixed ratios on the average farm, which, in 
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return, might induce a multicollinearity problem in the estimations.6 Nevertheless, the nature of 
this co-movement between land and fertilizer implies that the effect of fertilizer might also be 
captured by the land input. By applying this strategy, we mitigate the potential multicollinear-
ity problem and maintain the correct model specification. Consistent with most of the recent 
literature on production function estimation with firm level data (such as Olley and Pakes, 1996, 
Blundell and Bond, 2000, Levinsohn and Petrin, 2003), we approximate fixed capital inputs 
by using the opening valuation of assets. In this case, we took the asset value of machinery and 
buildings from the FADN data.

To calculate revenue shares, we needed factor prices for labor, land and capital. These were 
taken from the actually paid wage to hired farm workers, the actually paid rent per hectare of 
rented land and the actually paid interest per debt capital. As there were many missing values, 
we calculated median factor prices per region (variable A1) and imputed these to all farms in 
that region. Table 3 summarizes the variable definitions and gives the actual FADN codes.

All monetary values are deflated to real values in 2005 prices using respective price indices. Price 
indices were extracted from the Eurostat online database and merged with the panels. Output 
was deflated by the agricultural output price index. Fixed capital was deflated by the agricultural 
input price index for goods and services contributing to agricultural investment, and materials 
by the agricultural input price index for goods and services currently consumed in agriculture. 
Revenue shares were all calculated in nominal terms.

6	 The inclusion of fertilizer leads to results that display negative estimates of land coefficients in conjunction 
with relatively high materials coefficients for several countries in the sample. See Kloss (2017: 50 – 53) for 
an in depth analysis on the role of materials and land in EU agriculture.

Note:	 L. denotes the one-year lag.
Source:	 Authors, FADN data.

Table 3.	 Selection of variables
FADN code Variable description

Outputs

SE131 Total output (EUR)

Inputs

SE011 Labor input (hours)

SE025 Total utilized agricultural area (ha) = land

F72 + SE300 + 

SE305 + SE336 Costs for seed and seedlings + crop protection + other crop specific costs + 
overheads (EUR) = materials

L.SE450 + L.SE455 Opening valuation of machinery and buildings (EUR) = fixed capital

Factor prices

SE370/SE021 Wage per hour (EUR)

SE375/SE030 Land rent per ha (EUR)

SE380/SE485*100 Interest on capital (%)
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Outliers were identified on the basis of the fixed capital productivity per farm (real SE131/(real 
(L.SE450 + L.SE455))). Observations were dropped for the production function estimation if 
their value was beyond the upper or lower quartile ± 1.5 times the interquartile range (IQR). 
Furthermore, we only included farms which had some minimum panel representation in the 
data. Farms had to be present in the data for at least four years in a row. Descriptive statistics 
including the data patterns of the panels are given in the appendix (Table A1).

4	 Results

4.1	 Overview

For this study, we estimated nine models per country: Output shares, OLS Cobb Douglas, OLS 
Translog, Within Cobb-Douglas, Within Translog, LP Cobb Douglas, WLP Cobb Douglas, WLP 
Translog, BB Cobb Douglas. The Within Translog was obtained by interacting the groupwise de-
meaned logs of factors and using an appropriate degree of freedom correction. Other than by 
simply calling a built-in fixed effects panel estimation command with the interacted variables 
in logs, this procedure ensures that levels are effectively eliminated from the regression. 

Table 4 displays a summary evaluation of the estimators with regard to the estimated produc-
tion elasticities and returns to scale. The performance of the Translog specifications and the 
dynamic panel data model is given particular attention. Generally, the interest was to detect 
systematic differences across estimators and countries, and to assess their practical implemen-
tation. Detailed results tables are presented in the appendix, which includes an overview table 
for each country containing the results for the eight models, plus an additional table for each 
country including more in-depth diagnostic results for the BB model.

All estimations were performed with Stata 12. For the LP estimator we employed the user-written 
routine levpet (Petrin et al. 2004). To implement the WLP estimator the ivreg2 routine 
by Baum et al. (2007) was utilized as demonstrated in Petrin and Levinsohn (2012). This pro
cedure includes lags of inputs up to the second order. Therefore, the panel length is reduced 
by two years. The BB estimator was implemented with xtabond2 by Roodman (2009) using 
the h(2) option, and combined with Söderbom’s (2009) md _ ar1 minimum distance estima-
tor. To maintain a maximum of comparability and homogeneity of the estimation samples as 
well as utilizing the highest amount of data as possible for estimation, we proceeded as follows. 
Estimations for all estimators, except for the WLP estimator, are based on the BB estimation 
sample. Since this estimator implies a dynamic specification with first order lags of inputs and 
the dependent variable, the effective panel length is reduced by one year. We did not impose 
this ‘restriction’ for the WLP procedure, which includes lags of inputs up to the second order. 
Hence, the difference between the WLP estimation sample and the sample employed for all 
other estimators is one round of observations as depicted by the tables in the appendix. In the 
WLP model (14) we proxy for h with lags rather than contemporaneous values of m and k, as it 
is done in the traditional control function setup. This treatment allows for easy implementation 
of the Translog functional form (Petrin and Levinsohn, 2012: 718).

As a general tendency, factor elasticities were found to be low for land and capital, high for 
materials and somewhere in between for labor (Table 4 and Table 5). Estimates for the first two 
of these factors are in the range of 0.2 and lower, sometimes not significantly different from 
zero. The production elasticity of materials is typically between 0.5 and 0.8. Labour elasticities 
usually fluctuate at around 0.2.
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The estimates support the conventional wisdom that OLS tends to be upward biased for particu-
larly variable factors. In the present data, this primarily applies to materials, the OLS estimate 
of which is (except for Denmark) higher than its revenue share. It may be taken as evidence for 
the existence of serially correlated, unobservable factors (Olley and Pakes, 1996: 1274). The 
opposite bias is found for capital in the Within estimator, which is typically below the revenue 
share. This tendency is also in line with previous studies and can be attributed to the low vari-
ance of capital over time (Griliches and Hausman, 1986).

The LP estimator commonly produces a lower elasticity for materials than OLS, the only excep-
tion being the United Kingdom. In case of the WLP estimator the only exception is France. LP 
and WLP estimates are typically very similar which makes us feel confident of the proxy variable 
identification strategy. These models may thus be taken as plausible alternatives to the received 
estimators. However, on theoretical grounds the WLP model further corrects for collinearity 
which gives this estimator an edge over the LP model. In addition, empirically the former is oc-
casionally more successful in identifying the capital coefficient, i.e. with a higher precision as 
indicated by the standard errors.

Estimated elasticities of scale fluctuate around 1.0. Given the previous findings on production 
elasticities, OLS estimates tend to be higher than Within estimates. Overall, the scale elasticity 
in European crop farming appears to be close to one.

We report the production elasticities estimated by the WLP procedure for all subsamples in Table 
5 and compare them with two rather distinct agricultural benchmark studies. Heady and Dillon 
(1961) is an early collection of OLS Cobb Douglas production function estimates. It is based on 
farm-level data from 32 countries all over the world, with a focus on North America, Australia 
and India, and represents one of the most comprehensive collection of production elasticity 
estimates ever published. Table 5 simply reports the overall mean elasticities of all 32 studies. 
It should be noted that these studies display considerable variation among themselves (see the 
extensive discussion in Heady and Dillon (1961: 585-643). Mundlak et al. (2012) is a recent 
cross-country regression of a Cobb Douglas production function based on the Within estimator. 
The authors use data from 30 developing and developed countries for 1972-2000. While the 
choice of sample countries is different to our study, the sectoral integrity is maintained. Hence, 
it is meaningful to make comparisons on methodological grounds. Against these benchmarks 
from the literature, Table 5 illustrates a number of interesting tendencies:

•	 A comparatively low production elasticity of labor prevails throughout the EU samples and 
was also found by Heady and Dillon as well as Mundlak et al.

•	 The production elasticity of land is much lower in the EU than in the benchmark studies.
•	 The production elasticity of materials is much higher in the EU than in the benchmark studies.
•	 The Mundlak et al. study reveals remarkably low elasticities for labor and materials. Despite 

the use of the Within approach, the capital elasticity is surprisingly high. The low materials 
coefficient can be explained by the fact that the dependent variable in their model is value 
added.

4.2	 Validity of the proxy variable 

According to the theoretical set-up of the control function approaches the materials proxy should 
be increasing in unobserved productivity (ωit). Otherwise it is not ensured that materials us-
age is an appropriate proxy for ωit. To elaborate on this so-called monotonicity condition, we 
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proceed in a similar fashion as Levinsohn and Petrin (2003) by producing three-dimensional 
productivity surfaces of ω it = f (mit, kit). As ω it is by definition unobserved, we need to come 
up with an estimate 	𝜔𝜔"#	. To this end, we predict 	𝜔𝜔"#	 by using the parameter estimates of the 
production function. Now, having data for the three dimensions – omega, materials and capital 

– we interpolate and smooth the original data using thin plate splines due to Duchon (1976), a 
widely used data interpolation method for multidimensional data (see Hastie et al., (2009: 162-
167) for an overview). The processed data can then be used to draw three-dimensional surface 
plots and to visually inspect the monotonicity condition.

In Table 5, we summarize the results of this analysis. In general, the monotonicity condition 
holds throughout the sample of countries (Figures A1 – A5 in the appendix). In Denmark, West 
Germany, Italy and the United Kingdom materials increases in omega for every given level of 
capital. In France, the monotonicity condition only holds for up to medium levels of materials 
usage and medium to high levels of capital. Supposedly, a possible explanation is that the re-
gions where the monotonicity condition holds are the ones with particularly good data support, 
i.e. in regions where increasing levels of materials (for a given level of capital) are observed the 
number of sample observations is large, too. Indeed, this is the case in France for about 60% 
of the observations. This finding is in line with Olley and Pakes (1996: 1265) who state that the 
monotonicity condition should be fulfilled for at least a subset of the data.

4.3	 �Functional form: Cobb Douglas vs. Translog

The results on the Translog specification display remarkably uniform features across countries. 
The Within Translog elasticities were at sample means typically close to the Within Cobb Douglas, 
and the interaction terms of the Translog were often not jointly different from zero. The OLS 
Translog, on the other hand, produced unreasonable results throughout, e.g. reflected in the co-
existence of negative production elasticities for some factors and elasticities bigger than one for 
others (at sample means). Similarly unreasonable results are observed for the WLP Translog. In 
this model not a single country displayed interaction terms that were jointly significantly different 
from zero. Additionally, we applied the Kleibergen and Paap (2006) under-identification test to 
the WLP Translog model. This tests whether the model equation is identified, i.e. the excluded 
instruments are correlated with the endogenous regressors.7 Failing to reject the null hypothesis 
that the equation is unidentified implies an increased bias in the estimated coefficients. The bias 
is in the same direction as in the OLS estimator (Baum et al. 2007). While we always rejected the 
null at the 5% and even the 1% significance level in the Cobb Douglas model, we could not do 
so in the cases of Denmark (p = 0.41) and the United Kingdom (p = 0.62) in the Translog model.

To sum up, the Translog specification does not perform well. Our findings are in line with other 
recent studies utilizing FADN data with this functional form (cf. Zhengfei et al., 2006; Latruffe 
and Nauges, 2013). The prime reason for these difficulties is multicollinearity, which is suppos-
edly even more severe in the Translog than in the Cobb Douglas, as many more parameters have 
to be estimated. While we cannot ultimately decide whether the true data generation process 
followed a Translog technology, we can say that farm-level data typically does not allow esti-
mating its parameters. This makes the Translog a less credible functional form for applied work.

7	 “Excluded” means that these instruments are not part of the model equation. Tests for over-identification 
restrictions could not be performed because the model is just identified.
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4.4	� Dynamic panel data estimation

The performance of the BB estimator was examined in some detail. We present results for the 
unrestricted and the restricted model along with Arellano-Bond tests for serial correlation of 
error terms. If the model is correctly specified, the test should reject autocorrelation of order 
one but not of order two (Arellano and Bond, 1991). We also apply Hansen’s over-identification 
(OID) test for instrument validity (Hansen, 1982). While serial correlation of the error terms for 
the models was never a problem and the common factor restriction was also never rejected, 
the Hansen OID test of instrument validity was not passed in three instances. 

To allow further diagnosis, simple autoregressive models of order one (AR(1)) were estimated 
separately for all factors and output, following Blundell and Bond (2000). Labor and land were 
found to be highly persistent, which makes dynamic panel data estimation a natural option. 
Moreover, we regressed the differences of the latest available year on the lagged levels of all 
available previous years and the latest available levels on all available lagged differences of pre-
vious years. The reported p-values and coefficients of determination allow an insight into the 
explanatory power of the instrument sets. Generally, the instrument performance was better for 
levels (instrumented by differences) than for Differences (instrumented by levels). System GMM 
approaches which do not only use differences but also levels for instrumentation (Blundell and 
Bond, 1998) are thus warranted. Even so, the elasticities of the persistent factors labor, land 
and capital could often not be identified. Parameters were very sensitive to the selection of the 
sample and the precise specification of the estimator. Occasionally, dynamic factor evolution 
apparently followed an explosive process, as the AR(1) coefficient was estimated to be bigger 
than one. On the other hand, the estimates for materials appear very reasonable throughout, 
as they were typically somewhere between the OLS and Within results. It is here where the BB 
estimator can likely claim some superiority. 

There are some noteworthy findings for Denmark compared to the other countries. Denmark 
was the only country where materials elasticity was lower than the materials’ revenue share. 

DK FR DEW IT UK Heady Dillon 
(1961)

Mundlak et al. 
(2012)

Labor 0.62 0.17 0.22 0.32 0.19 0.21 0.01#

Land 0.23 0.04 -0.01# -0.01# 0.17 0.38 0.44

Materials 0.00# 0.80 0.77 0.51 0.62# 0.39 0.10

Capital 0.10# 0.12 0.09 0.02# 0.10# -- 0.46

Ret. to Scale 0.95 1.13 1.08 0.84 1.09 0.98 1.00*

Monotonicity + o + + + -- --

Notes:	� Results for field crop farms in EU countries based on Wooldridge/Levinsohn/Petrin (WLP) estima-
tor. Heady and Dillon (1961) represents mean elasticities from a sample of 32 cross-sectional Cobb 
Douglas estimates originating from various countries (their table 17.15). Mundlak et al. (2012) based 
on a cross country regression of 30 countries for 1972-2000, using value added as dependent variable 
and the Within estimator (their table 2, first column). * imposed on model. # not significantly different 
from zero at conventional confidence levels. Montonicity: + holds throughout, o holds partially.

Source:	� Authors.

Table 5.	 Agricultural production elasticities in comparison
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Shares add up to the extremely high value of 2.07 (which is actually inconsistent with the inter-
pretation as shares). This outcome may be an artefact of systematically higher imputed factor 
prices than in other countries. The unbalanced panel pattern of Denmark made it difficult to 
perform the diagnostic regressions on the explanatory power of the lagged instruments in the 
BB approach. Admittedly, the capital coefficient in such regressions is rather low (0.52). Even so, 
compared to the control function estimation approaches the BB estimator is able to identify a 
materials output elasticity. The reason LP and WLP estimators leaving the materials elasticity 
unidentified might be explained by the non-parametric control function utilized in these esti-
mators. In this function higher order and interaction terms of materials enter so that the same 
captures a lot of the explaining variance. Hence, there is not enough variation left for the sole 
materials input. Furthermore, there is also an extreme materials coefficient decrease in size from 
LP to WLP which might be explained by the lower sample size of the latter and consequently 
reinforces the problem. Given specification tests do not fail and the materials coefficient is close 
to the Within regression, the BB coefficient for this parameter is a more plausible candidate.

5	 Conclusions

The aim of this study was to provide a comparison of innovative production function estimators 
and to apply them to a recent firm-level dataset representing the agricultural sector of six EU 
countries. The starting point of our analysis was the recently revived debate in the literature on 
how the classical identification problems of endogeneity and collinearity could be addressed. 
By introducing a typology of production factors in agriculture, we argue that their adjustment 
flexibility over time and whether the econometrician observes them are of crucial importance 
for the choice of an appropriate estimator.

On theoretical grounds, we show that the assumptions underlying Within regression and the 
duality approach are fairly strong and implausible for the case of agriculture. Within approaches 
neglect the potentially important unobserved factors that vary over time. Duality relies on 
short-term profit maximization of agents and perfect competition on output and factor mar-
kets. In agriculture, these conditions are unlikely to be met, which may be a reason why these 
approaches have not performed well in estimation practice. 

This insight shifted our attention to more innovative approaches using heterogeneous frictions 
in factor adjustment for identification. In light of the comprehensive literature on adjustment 
frictions on rural land, labor and capital markets, we regard the presence of adjustment costs 
as particular relevant for the production factors that are of key interest in agricultural applica-
tions. Olley and Pakes (1996), Blundell and Bond (2000), Levinsohn and Petrin (2003) and 
Wooldridge (2009) all base their identification strategy on adjustment frictions in factor allo-
cation, which seems to be an a-priori plausible approach. The main difference is that BB allow 
time-invariant fixed effects, whereas OP, LP and WLP do not. The former impose a linear struc-
ture on the dynamic process, while it can be arbitrary in the latter. Even so, factor adjustment 
is assumed to occur in a single period in the proxy or control function approaches, while the 
process potentially covers many periods in the dynamic panel data models. In agricultural applica-
tions, this is a conceptual advantage of the BB approach. Adjustments of land, labor and capital 
are typically of an intertemporal nature, which is not appropriately covered by a one-year lag. 
Furthermore, OP and LP do not satisfactorily address the problem of collinearity in production 
function estimation. These approaches regard labor and land as fully flexible production factors 
for which there is no source of identifying variance across observations (Ackerberg et al., 2015). 
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However, Wooldridge (2009) proposes a solution to this issue by modifying and extending the 
central identifying assumptions of OP and LP.

In the empirical section, we provide results for revenue shares, OLS Cobb Douglas and Translog, 
Within Cobb Douglas and Translog, WLP Cobb Douglas and Translog as well as OP, LP and BB 
Cobb Douglas models. Each model was estimated separately for panels of field crop farms in 
Denmark, France, West Germany, Italy, and the United Kingdom. Compared to the revenue shares, 
OLS and Within display the biases expected from the literature. OLS typically overestimated 
the variable factor materials, while Within underestimated the relatively fixed factor capital.

LP produced plausible results and may be taken as an easy-to-implement alternative to the re-
ceived estimators. Given the conceptual problems in identifying the supposedly flexible inputs 
labor and land, which the other estimators except for BB and WLP share, this is only a second-
best choice. Generally, LP and WLP produced very similar results which strengthens our confi-
dence in the proxy approach on the whole. However, the theoretical advantage in identifying 
the land and labor coefficients gives the latter an edge over the former. 

The BB estimator did not always perform satisfactorily. The combined first-difference and in-
strumental variable approach of this estimator goes a long way in trying to get rid of all the 
factors perturbing an unbiased estimation of productivity. Its assumptions on adjustment costs 
are theoretically very plausible and could be empirically supported for labor, land and capital. 
However, there is evidence that in agriculture this approach overshoots the mark. This is be-
cause adjustment costs are so high and factor evolution is so persistent that, despite using the 
systems GMM approach of Blundell and Bond (1998), there is often too little variance left for 
identification. It is only with regard to materials that this estimator appeared to produce rea-
sonable estimates.

Extending the received Cobb Douglas specification to a Translog generally did not add meaning-
ful insights. Either the results were obviously implausible (OLS and WLP) or little different from 
Cobb Douglas (Within). These results are supposedly a direct consequence of multicollinear-
ity. Hence, the more parsimonious parameterization of the Cobb Douglas remains a pragmatic, 
empirically well-supported alternative. We regard the analysis of alternative functional forms 
in conjunction with FADN data as an interesting starting point for future research. For instance, 
Zhengfei et al. (2006) proposed augmented Translog specifications that incorporate agronomic 
principles. However, so far, in applied empirical work there has been a trade-off between more 
flexible functional forms for production functions and methodological sophistication with re-
gards to estimation methods. 

Our estimates show a consistent picture of very low production elasticities for labor, land and 
fixed capital, whereas the elasticity of materials is around 0.7 throughout indicating that im-
proving the availability of working capital is the most promising way to increasing agricultural 
productivity. This finding is in contrast to recent estimates by Mundlak et al. (2012), which 
report significant returns to land and fixed capital in a cross-country sample of developing and 
developed countries. Compared to other world regions, field crop technologies in the EU are 
characterized by a strong responsiveness to variable inputs such as fuel, fertilizer and chemi-
cals. In a policy perspective, attempts to increase agricultural productivity in the EU in the short 
run, i.e. with given technology, should focus on this factor. Whether farmers actually exhaust 
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the returns to such inputs should be analyzed in subsequent work, for example by calculating 
shadow prices of production factors based on the estimates provided in this article. 

Summing up the methodological insights of this analysis, the recently suggested approaches to 
the estimation of production functions provide attractive conceptual improvements over the 
received Within and duality models. Using adjustment costs for identification of factor use seems 
particularly plausible in a sector like agriculture, in which long-lasting adjustment frictions in 
land, labor and capital have been recognized for a long time. Even so, empirical implementation 
of the conceptual sophistications built in these estimators does not always live up to expecta-
tions. This is particularly true for the dynamic panel estimator suggested by Blundell and Bond 
(2000), which mostly failed to identify reasonable elasticities for the (quasi-) fixed factors. Less 
demanding proxy approaches such as due to Levinsohn and Petrin (2003) and Wooldridge 
(2009) represent an interesting alternative for agricultural applications.
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Figure A1.	� Prediction of omega as a function of materials and capital, Denmark
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Figure A2.	� Prediction of omega as a function of materials and capital, France
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Figure A3.	� Prediction of omega as a function of materials and capital, Germany (West)
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Figure A4.	� Prediction of omega as a function of materials and capital, Italy
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Figure A5.	� Prediction of omega as a function of materials and capital, United Kingdom
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