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a b s t r a c t

Voting power theories measure the ability of voters to influence the outcome of an election under a given
voting rule. In general, each theory gives a different evaluation of power, raising the question of their
appropriateness, and calling for the need to identify classes of rules for which different theories agree.
We study the ordinal equivalence of the generalizations of the classical power concepts – the influence
relation, the Banzhaf power index, and the Shapley–Shubik power index – to multi-choice organizations
and political rules. Under such rules, each voter chooses a level of support for a social goal from a finite
list of options, and these individual choices are aggregated to determine the collective level of support for
this goal. We show that the power theories analyzed do not always yield the same power relationships
among voters. Thanks to necessary and/or sufficient conditions, we identify a large class of rules for which
ordinal equivalence obtains. Furthermore, we prove that ordinal equivalence obtains for all linear rules
allowing a fixed number of individual approval levels if and only if that number does not exceed three. Our
findings generalize all the previous results on the ordinal equivalence of the classical power theories, and
show that the condition of linearity found to be necessary and sufficient for ordinal equivalence to obtain
when voters have at most three options to choose from is no longer sufficient when they can choose from
a list of four or more options.

© 2014 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

We study the ordinal equivalency of voting power theories for
multi-choice organizations. In general, organizations have voting
rules that are designed to guarantee a certain degree of fairness
in the distribution of voting rights, where fairness means that
more important stakeholders have a greater ability to affect group
decisions. For instance, in international economic organizations in-
cluding the International Monetary Fund and theWorld Bank, vot-
ing rights are apportioned among member countries on the basis
of financial contribution. Similarly, an international political body
such as the United Nations Security Council gives a greater amount
of power to the victors of World War II, and political institutions
(including the United States House of Representatives, the Par-
liament of Canada, and the European Union Council of Ministers)
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assign votes in proportion to the populations of the represented
states, provinces, or countries. Still, in joint stock companies, each
shareholder has a number of votes proportional to the number of
shares he holds.

Although fairness in the distribution of political power in or-
ganizations is a well-accepted principle, there is little agreement
among scholars on how power should be measured. Indeed, there
exist several theories of power in the literature, the most promi-
nent being the power indices proposed by Shapley and Shubik [1]
and by Banzhaf [2], and the influence relation introduced by Isbell
[3]. Both the Shapley–Shubik and Banzhaf power indices measure
how likely a voter can turn a losing coalition into a winning coali-
tion by joining it, but they differ in how these coalitions should be
counted. The influence relation is an ordinal measure of power ac-
cording to which a voter p is at least as influential as a voter q in
an election if whenever q can turn a losing coalition into a win-
ning coalition by joining it, p can achieve the same ceteris paribus.1

1 In this sense, individual influence is determined by the ability to affect the
outcome of the vote; this notion of influence differs from the one introduced in [4],
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These power concepts have been analyzed and applied in a wide
variety of contexts (see, e.g., [5–16], and the references therein).
Also, most of them have compelling axiomatic properties, so that
choosing one theory over the others in any theoretical or empirical
analysis would be arbitrary. Any hope of reconciling them there-
fore lies in the characterization of political rules for which they or-
dinally agree.

In reaction to the inconsistent evaluation of political power by
different theories, scholars have attempted to identify classes of
voting rules for which different theories induce the same ordinal
structure in the set of voters (see, e.g., [17,18,11,19,16] and the ref-
erences therein). This question was initially examined within the
class of voting rules under which each voter either supports or op-
poses a policy proposal, the final outcome being either the passage
of the proposal or its failure.2 Despite the popularity of these rules,
it has been argued that they are restrictive and do not capture real-
life political decisionmaking, as more than two levels of individual
and collective approval are generally observed [26,8,9,27–31]. This
convincing argument motivates our analysis of the ordinal equiva-
lence of power theories formulti-choice organizations andpolitical
rules.

1.1. Objective and findings

In this paper, we study the ordinal equivalence of the gener-
alizations of the Shapley–Shubik and Banzhaf power indices and
the influence relation for multi-choice organizations and political
rules. Under such rules, each voter chooses from a finite ordered
set of options his level of support for a given policy proposal, and
these individual choices are aggregated to yield the collective level
of support for this proposal [27,28]. Freixas and Zwicker [28] have
introduced the concept of (j, k) voting rules to model such politi-
cal rules, where j is the number of individual approval levels, and k
the number of collective approval levels. Within this wide class of
rules, simple games are (2, 2) voting rules. In general, (j, k) voting
rules can be used tomodel a wide variety of political and economic
organizations. For instance, the rule governing the selection of pa-
pers in peer-reviewed journals can be modeled by a (3, 3) voting
rulewherein each referee chooses to accept, reject, or invite the re-
submission of a paper, and an editor aggregates his own and refer-
ees’ opinions into one of these three recommendations (see [32] for
a thorough analysis of this class of rules). Similarly, in an election
opposing an incumbent and a challenger, a voter might choose to
support or oppose the incumbent or to abstain, the outcome of the
election being either the victory or the defeat of either candidate
(j = 3 and k = 2).3 In certain legislatures like the United States
Senate, a lawyer may support or oppose a bill or may abstain, or
may carry out a filibuster, the outcome being the passage or failure
of the bill, or its postponement (j = 4 and k = 3). Still, in a collab-
orative project, each participant might choose a high, medium or
low level of effort, or may not contribute any effort at all, the out-
come of the project being of excellent, good, fair, average or bad
quality (j = 4 and k = 5).

The Shapley–Shubik and Banzhaf power indices examined in
this paper are the generalizations proposed by Freixas [35,36], and
the influence relation is the global influence relation introduced in

where influence is measured in terms of the ability to change the opinion of other
players.
2 These voting rules, commonly referred to as ‘‘Simple games’’, have been studied

or used in a wide range of economic and political analyses (see, e.g., [20,21,15,22,
23,13,24,25]).
3 See, e.g., [26,8] for alternative models of voting games with abstention, [33]

for the study of their equilibrium properties, and [34] for the analysis of attainable
hierarchies within this class of games.
Tchantcho et al. [31] for (3, 2) voting rules and generalized in Pon-
gou et al. [30] to (j, k) voting rules. We find that the three power
theories do not always ordinally coincide for linear multi-choice
political rules (Example 2). We provide a sufficient condition on
such rules for ordinal equivalence to obtain (Theorems 2 and 3).
This partial characterization is inspired by a related work [37] in
which we derive the global influence relation as a natural rule for
ranking workers in an on-the-job trial tournament, and study the
relationship between productivity rank and several compensation
schemes related to the Shapley value (see Theorem 1). As a corol-
lary of Theorem 3, we prove that all linear (2, k) and (3, k) voting
rules satisfy this characterization (Corollary 1). Importantly, this
implies that ordinal equivalence obtains for a large class of politi-
cal rules strictly including the class of von Neumann–Morgenstern
games.4

We also provide a necessary and sufficient condition on lin-
ear rules for the Banzhaf and the global influence relation to have
the same ordinal structure (Theorem 4). Furthermore, we establish
that the ordinal equivalence of the three power theories analyzed
in this paper obtains for all multi-choice political rules allowing a
fixed number of individual approval levels j if and only if j ≤ 3
(Theorem 5). This result implies that if j > 3, one can always con-
struct a linear political rule for which ordinal equivalence does not
obtain. All these characterization theorems allow us to identify a
large class of institutions forwhich the ordinal evaluation of power
given by different theories is identical, whichmakes it irrelevant to
argue about which power theory is more appropriate.

1.2. Contributions to the closely related literature

Our findings generalize previous analyses by Tomiyama [18]
and Diffo Lambo and Moulen [11] for the class of (2, 2) voting
rules, and recent studies by Tchantcho et al. [31] and Parker [38]
for the class of (3, 2) voting rules. Tomiyama [18] proved that the
Shapley–Shubik and Banzhaf power indices ordinally coincide for
quota games. Diffo Lambo andMoulen [11] extend this result to the
entire class of linear simple games, and Freixas et al. [16] to an even
larger class of simple games. Tchantcho et al. [31] show that the
Shapley–Shubik andBanzhaf power indices ordinally coincidewith
the global influence relation in the class of linear weakly equitable
(3, 2) voting rules. Parker [38] generalizes this result to the class
of linear (3, 2) voting rules. All these results are special cases of
Corollary 1.

Although our findings generalize all the previous results on
the ordinal equivalence of the classical power theories, they also
show that the condition of ‘‘linearity’’ found to be necessary and
sufficient for ordinal equivalence to obtain in the class of (2, 2) and
(3, 2) voting rules is no longer sufficient when voters can choose
froma list of four ormore options. Indeed, our analysis is the first to
establish that power theories donot always coincide under ‘‘linear’’
political rules in general.

Our analysis also identifies rules for which ordinal equivalence
never obtains, suggesting that such rules should never be used
to distribute power if one wants to avoid the debate over which
power theory is more appropriate. Fortunately, the class of voting
rules for which ordinal equivalence obtains is large enough to
allow any rule designer to choose from among them. Under such
rules, no matter which theory we choose to evaluate power in an
organization, we will obtain the same power relationships.

Another distinctive feature of our paper comes from the fact
that the proofs of our main results are new, as they are not based

4 The class of von Neumann–Morgenstern cooperative games is simply the class
of (2, k) voting rules where k is endogenously determined.
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on the arguments usually employed in the literature. Some of these
proofs are made easier thanks to two new reformulations of the
generalized Banzhaf power index. We therefore make a method-
ological contribution in addition to the more substantive findings.

As noted by Freixas et al. [16], importance rankings are a critical
topic in operational research. Cook [39] notes that power theories
and ordinal rankings have not been sufficiently studied, although
ordinal rankings are essential in aggregation theories, tournament,
and multi-criteria decision-making.5 By uncovering a large class
of games for which the most prominent power theories coincide,
this paper fills this gap in the literature. The results obtained in
this study can also be useful in multi-criteria decision-making
problems, where, as noted by Freixas et al. [16], voters can be
treated as criteria, or even as device components depending on the
context.

The remainder of this paper is organized as follows. Section 2
introduces the concept of multi-choice organizations and political
rules. Section 3 recalls the notion of global influence relation. In
Section 4, we show that power theories do not always coincide
even under linear political rules, and prove that the Banzhaf rule
weakly reflects global influence. In Section 5, we characterize
rules for which ordinal equivalence obtains, and in Section 6, we
conclude. For clarity, all the proofs are collected in the Appendix.

2. Multi-choice organizations and political rules

Amulti-choice organization or political rule is defined as a multi-
choice game (N, T , V ) where N = {1, . . . , n} is a non-empty
finite set of voters or players, T = {1, . . . , j} a finite set of in-
dividual approval levels ordered in increasing degree of support
(j is the highest level of approval, j − 1 the second highest level
of approval, and so on), and V a characteristic function that maps
each profile of approval levels into a collective approval level. De-
note by {v1, v2, . . . , vk} the range of V . We assume that v1 is the
highest level of collective approval, v2 the second highest, and so
on. Because one can always define a one-to-one correspondence
between {v1, v2, . . . , vk} and a set of real numbers of cardinality
k, we shall assume, without loss of generality, that vi ∈ R with
v1 > · · · > vk.6

Each profile of approval levels is a vote profile x = (x1, x2,
. . . , xn) of N , where xi is the approval level of voter i. We denote
by TN the set of all vote profiles. We will assume that V is mono-
tonic in the sense that a voterwho increases his support for a policy
proposal weakly increases the collective approval level of that pro-
posal ceteris paribus. Formally, V is monotonic means that for any
vote profiles x and y such that x ≥ y, V (x) ≥ V (y).

We note that a multi-choice game (N, T , V ) may also be inter-
preted as a market organization in which N is the set of employees
or workers assigned to fixed tasks, T the different levels of effort
a worker may exert, and V a production function mapping each
effort profile into a level of collective output. Although all our re-
sults can be interpreted in the context of a market organization,
we will nevertheless interpret our results mostly in the context of
voting.

5 See, e.g., [40–44].
6 We note that any tuple (N, T , V ) where V is a real-valued function is also a

multi-choice game where {v1, v2, . . . , vk} is endogenously determined by V . In
this sense, this model of a multi-choice organization, which is essentially the one
introduced by Hsiao and Raghavan [27] and Freixas and Zwicker [28], generalizes
the traditional model of transferable utility cooperative games introduced by von
Neumann and Morgenstern [45], where j = 2.
3. Global and local influence relations

In this section,we recall the notions of global and local influence
relations introduced in [30] to evaluate the ordinal structure of
influence among voters in a multi-choice game. Let x be a vote
profile and p a player. Denote by ep = (0, . . . , 0, 1, 0, . . . , 0) the
pth unit n-component vector. We have the following definition.

Definition 1. Let (N, T , V ) be amonotonicmulti-choice game, and
p and q two voters.
(1) Let s and r be two individual approval levels such that r > s. p

is said to be more (r, s)-influential than q, denoted p≽(r,s) q,
if: ∀x ∈ TN such that xp = xq = s, V (x + (r − s)ep) ≥

V (x + (r − s)eq).
(2) p is said to be globally more influential than q, denoted p ≽ q,

if: p≽(r,s) q for all s, r ∈ T such that r > s.
The symmetric and asymmetric components of each of these
relations are defined as usual.

(N, T , V ) is said to be linear if the global influence relation ≽ is
transitive and complete.

Literally, a voter p is more (r, s)-influential than a voter q in
a monotonic multi-choice game if the collective support for a
proposal increases more whenever p increases his support for that
proposal from level s to level r in a vote profile than if q does the
same. p is globally more influential than q if an increase in the
support of p always has more effect than a similar increase in the
support of q. The following example illustrates this definition.

Example 1. A family is comprised of a father (1), a mother (2), and
a son (3). The collective decision-making rule in the household is
as follows: the opinion of the father on any pass–fail issue always
prevails unless he abstains; if the father abstains, the opinion of the
mother always prevails unless she abstains; if the father and the
mother abstain, the opinion of the son prevails unless he abstains;
if everybody abstains, the issue fails. Such a decision rule can be
modeled as a function V defined from TN (N = {1, 2, 3} and T = {1
(no), 2 (abstain), 3 (yes)}) to {0 (fail), 1 (pass)} as follows: V (x) = 1
if (i) x1 = 3 or (ii) x1 = 2 and x2 = 3 or (iii) x1 = 2 and x2 = 2 and
x3 = 3; and V (x) = 0 for all other profiles.

We derive the following structure of influence within the
family:

1∼(1,2) 2, 1≻(1,2) 3, 2∼(1,2) 3;
1≻(1,3) 2, 1≻(1,3) 3, 2≻(1,3) 3;
1∼(2,3) 2, 1≻(2,3) 3, 2∼(2,3) 3; and
1 ≻ 2, 1 ≻ 3, 2 ≻ 3.

We note that if voter influence is evaluated on the basis of how
the outcome of an election would change if an individual shifts
his/her support from ‘‘abstention’’ to a ‘‘yes’’ vote or from a ‘‘no’’
vote to ‘‘abstention’’, then the father and themother are equivalent
(1∼(1,2) 2 and 1∼(2,3) 2), the father ismore influential than the son
(1≻(1,2) 3 and 1≻(2,3) 3), and the son is equivalent to the mother
(2∼(1,2) 3 and 2∼(2,3) 3). If influence is evaluated on the basis of
a shift from a ‘‘no’’ vote to a ‘‘yes’’ vote, then the father is more
influential than the mother and the son (1≻(1,3) 2 and 1≻(1,3) 3),
and the mother is more influential than the son (2≻(1,3) 3). In
termsof global influence,wenote that the father ismore influential
than the mother and the son (1 ≻ 2 and 1 ≻ 3), and the mother is
more influential than the son (2 ≻ 3).

4. The global influence relation and the Banzhaf value

In this section, we study the relationship between the global
influence relation and the generalized Banzhaf power index
proposed by Freixas [36]. The definition of this power concept is
recalled below.
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4.1. Definition of the Banzhaf value

Let (N, T , V )be amonotonicmulti-choice game, x a vote profile,
and p a voter such that xp > 1. Let l,m ∈ {1, 2, . . . , k} be such that
1 ≤ l < m ≤ k. p is said to be (l,m)-critical in x if vl = V (x) >

V (x − ep) = vm. We denote by ηl,m
p (V ) the number of profiles in

which p is (l,m)-critical.
The Banzhaf power index is defined below.

Definition 2. Let (N, T , V ) be amonotonicmulti-choice game, and
p ∈ N a voter.

(1) The Banzhaf score of p is:

ηp(V ) =

k
m=2

m−1
l=1

(vl − vm)ηl,m
p (V ).

(2) The normalized Banzhaf index of p is:

βp(V ) =
ηp(V )

i∈N
ηi(V )

.

For our purpose, we will need the following equivalent refor-
mulation of the Banzhaf score shown in [46]:

ηp(V ) =
1
j


x∈TN

(V (x + (j − xp)ep) − V (x + (1 − xp)ep)).

Pongou et al. [46] also introduce the following binary relation,
useful in this paper. Let x and y be two vote profiles, p a voter. We
say y is p-equivalent to x if ∀q ≠ p, xq = yq. There are exactly j vote
profiles in any equivalence class, and there are jn−1 classes. Denote
by cl(p, x) the equivalence class of a given vote profile x, and by N j

p

the set of all p-equivalence classes. Also denote by TN
pq the set of all

vote profiles x such that xp = xq.
For any player p, denote by TN�{p} the set of vote profiles of

N�{p}. For any x ∈ TN�{p} and q ∈ N�{p}, let xpq be the corre-
sponding vote profile of N in which p and q have the same level
of approval. We have the following useful reformulation of the
Banzhaf score.

Proposition 1. Let G = (N, T , V ) be a multi-choice game, and p a
player.

For any q ∈ N,

ηp(V ) =


x∈TN�{p}

(V (xpq + (j − xq)ep) − V (xpq + (1 − xq)ep)).

We compute the normalized Banzhaf value of each voter in
Example 1, finding that this value is 9

13 for the father, 3
13 for the

mother, and 1
13 for the son. We note that these values agree with

the fact that the father is globallymore influential than themother,
who is globally more influential than the son, as shown in Exam-
ple 1. In the next subsection, we answer the question of whether
the Banzhaf value strictly reflects the global influence relation.

4.2. The Banzhaf value only weakly reflects global influence

Does a globally more influential voter always have a greater
Banzhaf value in all monotonic multi-choice games? The answer
is ‘‘no’’ in general, especially if the number of individual approval
levels is more than three. We illustrate this point in the following
example.
Table 1
Voting rule.

x V (x)

(1, 1) 0
(2, 1) 0
(3, 1) 0
(4, 1) 0
(1, 2) 0
(1, 3) 0
(1, 4) 0
(2, 2) 0
(3, 2) 1
(4, 2) 1
(2, 3) 0
(2, 4) 1
(3, 3) 1
(4, 3) 1
(3, 4) 1
(4, 4) 1

Example 2. A monotonic multi-choice game (N, T , V ) involves
two players and four approval levels. Its voting rule is defined in
Table 1. It can be easily checked that 1 is strictly globally more
influential than 2: 1 ≻ 2. But both players have the same Banzhaf
value: β1(V ) = β2(V ) =

1
2 . To see this, we note that 1 is (1, 0)-

critical in (3, 2), (2, 4) and (3, 3), and 2 is (1, 0)-critical in (3, 2),
(4, 2) and (2, 4). Therefore, the Banzhaf score of 1 and 2 is 3, from
which it follows that the Banzhaf value is 1

2 for each.

It follows from Example 2 that two players who differ in terms
of their global influence may have the same Banzhaf value in a
linear organization. However, we show below that two equally
influential players always have the same Banzhaf value.

Proposition 2. Let (N, T , V ) be amonotonic multi-choice game, and
p, q ∈ N two players. Then,

p ∼ q H⇒ βp(V ) = βq(V ).

This result implies that the global influence relation and the
Banzhaf value coincide for anonymousmulti-choice political rules,
as players always play interchangeable roles under such rules
[29]. We also show that the Banzhaf value is a weakly increasing
function of global influence.

Proposition 3. Let (N, T , V ) be a monotonic multi-choice game.
Then,

∀p, q ∈ N, p ≽ q H⇒ βp(V ) ≥ βq(V ).

Propositions 2 and 3 are encouraging, but the possibility of
two unequally influential players having the same Banzhaf value
is puzzling. Our goal is to characterize voting rules under which
the global influence relation is ordinally equivalent to the Banzhaf
value. We carry out this analysis in the next section.

5. Ordinal equivalence of power theories

In this section, we study the rank-order equivalence of the
global influence relation, the Banzhaf power index, and the Shap-
ley–Shubik power index. We provide necessary and/or sufficient
conditions for ordinal equivalence to obtain.

5.1. A sufficient condition for the ordinal equivalence of power
theories

We provide a sufficient condition for the global influence
relation and the Banzhaf power index to coincide. This condition
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is inspired by Pongou, Tchantcho and Tedjeugang [37] where it
is shown to be sufficient for the global influence relation and the
generalized Shapley value proposed by Freixas [35] to be ordinally
equivalent. Although the latter result was obtained in the context
of market organizations, we reinterpret it in the context of voting
in this section. These results therefore allow us to identify a large
class of multi-choice political rules for which the global influence
relation, the Banzhaf value, and the Shapley–Shubik value yield the
same rankings of voters.

The underlying condition of our partial characterization result
is introduced in the definition below.

Definition 3. Let (N, T , V ) be amonotonicmulti-choice game, and
p, q ∈ N two players.

(1) Let x, y ∈ TN be two vote profiles. y is said to harmonize the
views of p and q in x if:

∀z ∈ N r {p, q} , xz = yz and yp = yq.

We denote by TN
x (p, q) the set of all vote profiles which harmo-

nize the views of p and q in x.
(2) (N, T , V ) is said to satisfy condition C1 if for any vote profile

x such that xp = xq = r:

∀s ≠ r, V (x + (s − r)ep) ≠ V (x + (s − r)eq)

H⇒

∃y ∈ TN
x (p, q) such that,

V (y + (j − yp)ep) ≠ V (y + (j − yq)eq) or
V (y + (1 − yp)ep) ≠ V (y + (1 − yq)eq).

Condition C1 identifies voting rules that discriminate among
voters at the top level or at the bottom level of approval. Denote
by ≽B and ≽S the preorders induced on the set of voters by the
Banzhaf and Shapley–Shubik values, respectively. The following
result in [37] states that in linear monotonic multi-choice games
satisfying condition C1, the global influence relation and the
preorder induced by the Shapley–Shubik value coincide.

Theorem 1. Let (N, T , V ) be a linear monotonic multi-choice game
satisfying condition C1. ≽ and ≽S coincide.

We show below that global influence is strictly reflected by
the Banzhaf value in monotonic multi-choice games satisfying
condition C1.

Proposition 4. Let (N, T , V ) be a monotonic multi-choice game
satisfying condition C1, and p, q ∈ N two players. Then,

∀p, q ∈ N, p ≻ q H⇒ βp(V ) > βq(V ).

The following result states that condition C1 is a sufficient con-
dition for the global influence relation and the preorder induced by
the Banzhaf value to ordinally coincide.

Theorem 2. Let (N, T , V ) be a linear monotonic multi-choice game
satisfying condition C1. ≽ and ≽B coincide.

A straightforward implication of Theorems 1 and 2 is that the
global influence relation and the Banzhaf and Shapley–Shubik
preorderings coincide in any linear monotonic multi-choice game
satisfying condition C1.

Theorem 3. Let (N, T , V ) be a linear monotonic multi-choice game
satisfying condition C1. ≽, ≽B and ≽S coincide.

A corollary of Theorem 3 is that under voting rules with at most
three levels of individual approval and any possible number of
collective approval levels, ≽, ≽B and ≽S coincide. This is because
all such voting rules automatically satisfy condition C1, as stated
below.
Corollary 1. Let (N, T , V ) be a linear monotonic multi-choice game
with at most three levels of individual approval and any possible
number of collective approval levels. Then, ≽, ≽B and ≽S coincide.

We note that the ordinal equivalence of the influence relation
and the Banzhaf and Shapley–Shubik preorderings obtained in
[18,11] for linear (2, 2) voting rules, and in Tchantcho et al. [31]
and Parker [38] for linear (3, 2) voting rules are special cases of
Corollary 1. Indeed, linear (2, 2) voting rules are a special case of
linear monotonic multi-choice games with two levels of individual
approval. Also, Tchantcho et al. [31] show that ordinal equivalence
obtains for the class of linear weakly equitable (3, 2) voting rules.
Parker [38] extends this result to the entire class of linear (3, 2)
voting rules. According to Corollary 1, ordinal equivalence obtains
for the entire class of (2, k) and (3, k) voting rules where k is any
natural number greater than or equal to 2. Corollary 1 is therefore
a more general result. Furthermore, Theorem 3 provides a general
characterization of multi-choice political rules for which ordinal
equivalence obtains even when the number of individual approval
levels allowed by these rules is strictly greater than 3.

5.2. Two necessary and sufficient conditions for ordinal equivalence

In this section, we provide two necessary and sufficient con-
ditions for ordinal equivalence. The first condition is a condition
on political rules for the global influence relation and the Banzhaf
preordering to coincide. The second condition is a condition on the
number of individual approval levels for the global influence rela-
tion and the Banzhaf and Shapley–Shubik preorderings to coincide
for all rules allowing that number of individual approval levels.

The first condition defines political rules underwhichwhenever
a voter who, by increasing his support for a social option, has a
greater impact than another voter who does the same still has a
greater impact if he had increased his support from the bottom
level of approval to the top level of approval. This condition is
formalized below.

Definition 4. Let (N, T , V ) be a monotonic multi-choice game.
(N, T , V ) is said to satisfy condition C2 if for any players p and q,
and any vote profile x such that xp = xq = s:

∀r > s, V (x + (r − s)ep) > V (x + (r − s)eq)

H⇒

∃y ∈ TN
pq such that,

V (y + (j − yp)ep) − V (y + (1 − yp)ep)
> V (y + (j − yq)eq) − V (y + (1 − yq)eq).

We have the following characterization result:

Theorem 4. Let (N, T , V ) be a linear monotonic multi-choice game.
≽ and ≽B coincide if and only if (N, T , V ) satisfies C2.

A natural extension of this analysis would be to determine
whether condition C2 is a necessary and sufficient condition for the
Shapley–Shubik value and the global influence relation to have the
same ordinal structure.

We state below our second characterization result. This result
is inspired by Example 2, an illustration of a linear monotonic
multi-choice game allowing four individual approval levels for
which the influence relation and the Banzhaf and Shapley–Shubik
preorderings do not have the same ordinal structure. In general, we
show that the ordinal equivalence of these three power theories
obtains for all voting rules allowing a fixed number of input
approval levels j if and only if j ≤ 3.

Theorem 5. ≽, ≽B and ≽S coincide for all linear monotonic multi-
choice games allowing a fixed number of individual approval levels j
if and only if j ≤ 3.
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6. Conclusion

Which voting power theory should we use to evaluate the abil-
ity of individuals to affect the outcome of a vote in an organiza-
tion? Although each theory gives a different evaluation of power in
general, our study shows that the generalizations of three classical
power concepts – the global influence relation, the Banzhaf power
index, and the Shapley–Shubik power index – ordinally coincide
for a large class of multi-choice organizations and political rules.
The analysis therefore implies that one can avoid the debate over
the appropriateness of each particular theory if the voting rule of
an organization is chosen from this class, as different power theo-
rieswould yield the same power relationships among itsmembers.

Two characterizations of voting rules for which ordinal equiva-
lence obtains are given, and it is shown that all voting rules that
allow up to three levels of individual approval and any possible
number of collective approval levels satisfy the condition under-
lying these characterizations. Although our findings generalize all
the previous results on the ordinal equivalence of the classical vot-
ing power theories, they also show that the condition of linearity
found to be necessary and sufficient for ordinal equivalence to ob-
tain when voters have at most three options to choose from is no
longer sufficient when they can choose from a list of four or more
options.
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Appendix. Proofs

Proof of Proposition 1. LetG = (N, T , V )be amulti-choice game,
and p, q ∈ N two players. We know that:

ηp(V ) =
1
j


x∈TN

(V (x + (j − xp)ep) − V (x + (1 − xp)ep)).

But TN
=


X∈N j

p
X , and there are exactly jn−1 equivalence

classes and j vote profiles in each class. Moreover, each class is
uniquely associated with a vote profile of N�{p}. It follows that:

ηp(V ) =
1
j


X∈N j

p


x∈X

(V (x + (j − xp)ep) − V (x + (1 − xp)ep)).

Since for all x, y ∈ X ,

V (x + (j − xp)ep) − V (x + (1 − xp)ep)
= V (y + (j − yp)ep) − V (y + (1 − yp)ep),

we have:
x∈X

(V (x + (j − xp)ep) − V (x + (1 − xp)ep))

= j(V (z + (j − zp)ep) − V (z + (1 − zp)ep))

for any representative vote profile z in X .
Finally,

ηp(V ) =
1
j


z∈N j

p

j(V (z + (j − zp)ep) − V (z + (1 − zp)ep))

=


z∈N j

p

(V (z + (j − zp)ep) − V (z + (1 − zp)ep)).
As noted earlier, each class is uniquely associated with a vote
profile of N�{p}. Therefore, given a vote profile x of N�{p}, by
considering the representative xpq, which is a vote profile of N in
which p and qhave the same level of approval and the other players
have the same level of approval as in x, we can write:

ηp(V ) =


x∈TN�{p}

(V (xpq + (j − xq)ep) − V (xpq + (1 − xq)ep))

where q ∈ N�{p}. �

Proof of Proposition 2. If p ∼ q, then p and q are interchangeable
in any vote profile, hence p and q have the same Banzhaf value. �

Proof of Proposition 3. Let (N, T , V ) be a multi-choice game, and
p and q two players such that p ≽ q.

p ≽ q implies that for all vote profiles x such that xp = xq = s,
and for all r ∈ {1, 2, . . . , j}, the following holds:
if r < s, then V (x + (r − s)ep) ≤ V (x + (r − s)eq);
and if r > s, then V (x + (r − s)ep) ≥ V (x + (r − s)eq).

Thus, for r = 1 and r = j, respectively, V (x + (1 − s)ep) ≤

V (x + (1 − s)eq) and V (x + (j − s)ep) ≥ V (x + (j − s)eq) for any
vote profile x such that xp = xq.

We also have:
ηp(V ) =


x∈TN�{p}

(V (xpq + (j − xq)ep) − V (xpq + (1 − xq)ep))

and
ηq(V ) =


x∈jN�{q}

(V (xpq + (j − xp)eq) − V (xpq + (1 − xp)eq)).

Note that TN�{p} and TN�{q} have exactly jn−1 elements each.
There is a natural bijection b from TN�{p} to TN�{q} that maps each
x ∈ TN�{p} into the corresponding vote profile b(x) ∈ TN�{q} in
which q is merely replaced with p thus implying that xq = b(x)p. It
is obvious that xpq = b(x)pq, which implies that:

ηp(V ) =


x∈TN�{p}

(V (xpq + (j − xq)ep) − V (xpq + (1 − xq)ep))

and
ηq(V ) =


x∈TN�{p}

(V (b(x)pq + (j − b(x)p)eq) − V (b(x)pq

+ (1 − b(x)p)eq))
=


x∈TN�{p}

(V (xpq + (j − xq)eq) − V (xpq + (1 − xq)eq)).

Now consider a vote profile x in TN�{p}; then xpq is the corre-
sponding vote profile in TN in which p and q have the same level of
approval.

Therefore:

V (xpq + (j − xq)ep) ≥ V (xpq + (j − xq)eq) and
V (xpq + (1 − xq)ep) ≤ V (xpq + (1 − xq)eq);

which implies:

V (xpq + (j − xq)ep) − V (xpq + (1 − xq)ep)
≥ V (xpq + (j − xq)eq) − V (xpq + (1 − xq)eq).

Given the fact that this inequality holds for any vote profile x of
N�{p}, we have:


x∈TN�{p}

(V (xpq + (j − xq)ep) − V (xpq + (1 − xq)ep))

≥


x∈TN�{p}

(V (xpq + (j − xq)eq) − V (xpq + (1 − xq)eq));

which in turn implies ηp(V ) ≥ ηq(V ) and βp(V ) ≥ βq(V ). �
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Proof of Proposition 4. Let p, q ∈ N such that p ≻ q. It suffices to
prove that ηp(V ) > ηq(V ).

It is the case that p ≻ q H⇒ p ≽ q and not (q ≽ p). But, not
(q ≽ p) implies:∃x ∈ TN , xp = xq = s ∈ {2, . . . , , j} , ∃r > s such that
V (x + (r − s)ep) = vl > vm = V (x) and
V (x + (r − s)eq) < vl.

This in turn implies V (x + (r − s)eq) < V (x + (r − s)ep).
We haveV (x+(r−s)eq) ≠ V (x+(r−s)ep). Given that condition

C1 is satisfied, it is the case that there exists y ∈ TN
x (p, q) such that

V (y + (1 − yp)ep) ≠ V (y + (1 − yq)eq) or V (y + (j − yp)ep) ≠

V (y + (j − yq)eq).
Without loss of generality, suppose that V (y + (j − yp)ep) ≠

V (y + (j − yq)eq). It follows from p ≽ q that:

V (y + (1 − yp)ep) ≤ V (y + (1 − yq)eq) and
V (y + (j − yp)ep) > V (y + (j − yq)eq).

Following Proposition 3, p ≽ q also implies that for all z ∈

TN�{p}, V (zpq + (j − zq)ep) ≥ V (zpq + (j − zq)eq) and V (zpq + (1 −

zq)ep) ≤ V (zpq + (1 − zq)eq).
This implies:


z∈TN�{p}

(V (zpq + (j − zq)ep) − V (zpq + (1 − zq)ep))

≥


z∈TN�{p}

(V (zpq + (j − zq)eq) − V (zpq + (1 − zq)eq)).
(1)

Because the vote profile y considered above belongs to TN
x (p, q),

there exists another vote profile z ∈ TN�{p} such that y = zpq.
And since V (y + (j − yp)ep) > V (y + (j − yq)eq) and V (y +

(1 − yp)ep) ≤ V (y + (1 − yq)eq), we have:

V (y + (j − yp)ep) − V (y + (1 − yp)ep)

> V (y + (j − yq)eq) − V (y + (1 − yq)eq). (2)

From (1) and (2), we deduce:


z∈TN�{p}

(V (zpq + (j − zq)ep) − V (zpq + (1 − zq)ep))

>


z∈TN�{p}

(V (zpq + (j − zq)eq) − V (zpq + (1 − zq)eq)),

that is, ηp(V ) > ηq(V ). �

Proof of Theorem 2. Considering Propositions 1, 2 and 4 and the
fact that ≽ is complete, it is obvious that ≽ and ≽B coincide. �

Proof of Corollary 1. Given Theorem2, it suffices to show that any
linearmonotonicmulti-choice game (N, T , V ) such that |T | = 2 or
|T | = 3 satisfies condition C1.

(1) The proof is straightforward for the case of |T | = 2.
(2) Now assume that |T | = 3.
Let x ∈ TN and p, q ∈ N such that xp = xq = s.
Let r ≠ s such that V (x + (r − s)ep) ≠ V (x + (r − s)eq). Find

y ∈ TN
x (p, q) such that V (y + (1 − yp)ep) ≠ V (y + (1 − yq)eq) or

V (y + (j − yp)ep) ≠ V (y + (j − yq)eq).
Case 1: Suppose s = 1 and r ∈ {2, 3}.
If r = 2, then V (x + ep) ≠ V (x + eq). Set y ∈ TN such that

yp = yq = 2; yi = xi for any i ∈ N r {p, q}. We have y ∈ TN
x (p, q),

y− ep ≠ x+ eq; y− eq = x+ ep. Given that V (x+ ep) ≠ V (x+ eq),
it follows that V (y − ep) ≠ V (x + eq).

If r = 3, then V (x + 2ep) ≠ V (x + 2eq). We can take y = x.
Case 2: Suppose s = 2 and r ∈ {1, 3}.
If r = 1, then V (x − ep) ≠ V (x − eq), and we take y = x.
If r = 3, then V (x + ep) ≠ V (x + eq), and we take y = x.
Case 3: Suppose that s = 3 and r ∈ {1, 2}.
If r = 1, then we take y = x.
If r = 2, then set y ∈ TN such that yp = yq = 2 and yi = xi for

any i ∈ N r {p, q}. We have y ∈ TN
x (p, q), y + ep = x − eq, and

y + eq = x − ep. Given that V (x − eq) ≠ V (x − ep), it follows that
V (y + ep) ≠ V (y + eq). We conclude that any linear monotonic
multi-choice game (N, T , V ) such that |T | = 3 satisfies condition
C1. �

Proof of Theorem 4. (1) Let us show that if for any multi-choice
game (N, T , V ), [∀p, q ∈ N, p ≽ q ⇔ βp(V ) ≥ βq(V )],
then (N, T , V ) satisfies condition C2. Assume by contradiction that
(N, T , V ) does not satisfy C2. Then, there exist a vote profile x, two
players p and q such that xp = xq = s, and r > s such that
V (x+(r−s)ep) > V (x+(r−s)eq) and V (y+(j−yp)ep)−V (y+(1−

yp)ep) ≤ V (y + (j − yq)eq) − V (y + (1 − yq)eq) for all y ∈ TN
pq (**).

Since (N, T , V ) is linear, either p ≽ q or q ≽ p. But thanks
to the vote profile x (of N) for which xp = xq = s, r > s and
V (x + (r − s)ep) > V (x + (r − s)eq), q ≽ p is impossible, thus
p ≽ q. At the same time, the existence of x above implies p ≻ q
and therefore βp(V ) ≥ βq(V ).

As shown in Proposition 1, we have:

ηp(V ) =


x∈TN�{p}

(V (xpq + (j − xq)ep) − V (xpq + (1 − xq)ep))

and
ηq(V ) =


x∈TN�{p}

(V (b(x)pq + (j − b(x)p)eq) − V (b(x)pq

+ (1 − b(x)p)eq))
=


x∈TN�{p}

(V (xpq + (j − xq)eq) − V (xpq + (1 − xq)eq));

and since p ≽ q, for all x ∈ TN�{p},

V (xpq + (j − xq)ep) − V (xpq + (1 − xq)ep)
≥ V (xpq + (j − xq)eq) − V (xpq + (1 − xq)eq).

This implies:


x∈TN�{p}

(V (xpq + (j − xq)ep) − V (xpq + (1 − xq)ep))

≥


x∈TN�{p}

(V (xpq + (j − xq)eq) − V (xpq + (1 − xq)eq)).

Now, since condition C2 is not satisfied, (**) implies:

∀y ∈ TN
pq, V (y + (j − yp)ep) − V (y + (1 − yp)ep)

≤ V (y + (j − yq)eq) − V (y + (1 − yq)eq).

That is,

∀x ∈ TN�{p}, V (xpq + (j − xq)ep) − V (xpq + (1 − xq)ep)
≤ V (xpq + (j − xq)eq) − V (xpq + (1 − xq)eq).

Summing up over TN�{p}, we get:
x∈TN�{p}

(V (xpq + (j − xq)ep) − V (xpq + (1 − xq)ep))

≤


x∈TN�{p}

(V (xpq + (j − xq)eq) − V (xpq + (1 − xq)eq)),

which implies thatηp(V ) ≤ ηp(V ). This clearly shows thatβp(V ) =

βq(V ).
Finally, since p and q are such that p ≻ q and βp(V ) = βq(V ),

the equivalence [∀p, q ∈ N, p ≽ q ⇔ βp(V ) ≥ βq(V )] is not true
(in fact, the implication [∀p, q ∈ N, βp(V ) ≥ βq(V ) ⇒ p ≽ q] is
not true).

(2) Conversely, let us assume that (N, T , V ) satisfies condition
C2. Let p, q ∈ N be two players.
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We know from Proposition 3 that p ≽ q ⇒ βp(V ) ≥ βq(V ).
Now assume that not(p ≽ q) and show that not(βp(V ) ≥

βq(V )), that is, βp(V ) < βq(V ).
not (p ≽ q) implies that q ≻ p. Also,

q ≻ p ⇒

q ≽ p and
∃y ∈ TN

: yp = yq = s, ∃r > s : V (y + (r − s)eq)
> V (y + (r − s)ep)

⇒


∀x ∈ TN

pq, V (x + (j − xq)eq) − V (x + (1 − xq)eq)
≥ V (x + (j − xp)ep) − V (x + (1 − xp)ep)

and
∃y ∈ TN

pq : V (y + (j − yq)eq) − V (y + (1 − yq)eq)
> V (y + (j − yp)ep) − V (y + (1 − yp)ep)

(thanks to C2) ⇒




x∈TN�{p}

(V (xpq + (j − xq)eq)

− V (xpq + (1 − xq)eq))
≥


x∈TN�{p}

(V (xpq + (j − xq)ep)

− V (xpq + (1 − xq)ep))
and
∃y ∈ TN�{p}

: V (ypq + (j − yq)eq)
− V (ypq + (1 − yq)eq) >

V (ypq + (j − yq)ep) − V (ypq + (1 − yq)ep)

(thanks to C2) ⇒




x∈TN�{p}

(V (xpq + (j − xq)eq)

− V (xpq + (1 − xq)eq))
>


x∈TN�{p}

(V (xpq + (j − xq)ep)

− V (xpq + (1 − xq)ep))
⇒ βq(V ) > βp(V ). �

Proof of Theorem 5. (⇐H) Let (N, T , V ) be a linear monotonic
multi-choice game such that |T | = 2 or |T | = 3. The fact that
≽, ≽B and ≽S coincide simply follows from Corollary 1.

(H⇒) It suffices to show that of all linear monotonic multi-
choice games allowing a fixed number of input approval levels
j > 3, there exists one for which ≽, ≽B and ≽S do not coincide.

If j = 4, then the proof follows from Example 2 where 1 ≻ 2,
but the Banzhaf value is 1

2 for each of the two players, implying that
1∼B 2. It can also be shown that the Shapley–Shubik value is 1

2 for
each of the two players, implying that 1∼S 2.

If j > 4, let N = {1, 2} and the voting rule be defined by
V (j−1, j−2) = 1;V (x) = 0 if x ≤ (j−1, j−2) and x ≠ (j−1, j−2);
V (x) = 0 if x is such that x2 < j − 2; and V (x) = 1 if x is such that
(j − 1, j − 2) ≤ x. As in Example 2, we can show that 1 ≻ 2, but
that the Banzhaf and the Shapley–Shubik value is 1

2 for each of the
two players, implying that 1∼B 2 and 1∼S 2. �
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