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a b s t r a c t

Management decisions regarding maintenance protocols critically hinge on the underlying probability
distribution of the time between failures in most repairable systems. Replacement of the system with
a new one resets the system age to zero, whereas a repair does not alter the system age but may shift
the parameters of the failure-time distribution. Additionally, maintenance decisions lead to left-truncated
observations, and right-censored observations. Thus, the underlying stochastic process governing a
repairable system evolves based on the management decision taken.

This paper mathematically formalizes the notion of howmanagement actions impact the functioning
of a repairable system over time by developing a new stochastic process model for such systems. The
proposedmodel is illustrated using both simulated and real data. The proposedmodel compares favorably
to other models for well-known data on Boeing airplanes. The model is further illustrated and compared
to other models on failure time and maintenance data stemming from the South Texas Project nuclear
power plant.

© 2015 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Many repairable processes have finite lifetimes that may re-
quire corrective maintenance (CM) during their lifetimes, such as
adjustment, restoration, or lubrication. The process owner could
instead opt for replacement with a new process, referred to as
preventive maintenance (PM); an example of this kind of repair
would be a complete overhaul of the system. An important ap-
plication, considered later in this article, is nuclear-power genera-
tion. A nuclear power plant is comprised of numerous systems that
fail at random times, thus requiring frequentmaintenance. At each
maintenance time,management decideswhether themaintenance
should be corrective or preventive, and this potentially influences
the length of time until the next system failure. Failures may have
significant implications for safety and operating costs, as well as
the ability to satisfy customer demand for electricity.

A widespread assumption in the reliability literature is that the
parameters of the failure-time intensity are unchanged after CM,
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commonly termed theminimal repair assumption orminimal repair
hypothesis. In order to test and, if necessary, relax the minimal
repair assumption, a new stochastic process is introduced inwhich
the failure intensity following a CM is allowed to be distinctly
different than that following a PM; the failure intensity can
reflect repairs that improve reliability or make it worse. Relevant
properties of this stochastic process are characterized, and a two-
stage procedure is proposed for maximum likelihood estimation
of its parameters. As a byproduct of the maximum likelihood
estimation, Wald confidence intervals for the parameters of the
failure-time distribution are constructed. In addition, a likelihood
ratio test (LRT) of the minimal repair hypothesis is developed.

A crucial, practical feature in any repairable system is the pres-
ence of right censored failure times. Our stochastic process model
allows for such events, namely when maintenance is performed
prior to a failure occurring, common inmaintenance schedules. The
properties of our methods, including coverage probabilities of the
Wald confidence intervals and the sensitivity of the LRT, are stud-
ied using simulation.

To exemplify the methodological advances, we analyze two
datasets: (a) a classic repairable systems dataset on Boeing air
conditioners, and (b) themaintenance history and failure times for
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a water chilling system in the South Texas Project Nuclear Power
Plant.

The stochastic process model considered in this article is
related tomodels of repairable systems in the reliability literature;
for comprehensive reviews of this literature, see [1,2], and [3].
Renewal processes are commonly used if all the maintenance
repairs are PM, bringing the system to a ‘‘good-as-new’’ state each
time (known as perfect repair). This assumption simply restarts a
common failure intensity to its value at zero after every repair.
Note then that the term good-as-new is misleading in the presence
of decreasing intensity (and inter-failure hazard), as systems that
have not been repaired recently are actually more reliable than
those that have; this phenomenon is seen in the power plant data
in Section 5.

Non-homogeneous Poisson processes (NHPP) are used if all
repairs are CM, i.e. bring the system to a ‘‘good-as-old’’ state
(knownasminimal repair), leaving the failure intensity unchanged;
this can happen, for example, by replacing a failed sub-component
of a system. The NHPP is formally nested in the model proposed
in Section 2. Although common, the basic assumption of a
consistently ‘‘minimal’’ CM repair is questionable; usually several
types of maintenance, with varying degrees of effectiveness, are
undertaken throughout the lifetime of the system. For a recent
example assuming minimal repair, see [4].

Brown and Proschan [5] assume that repairs are either good-as-
new (PM) or bad-as-old (minimal repair) with probabilities p and
1− p, respectively. Block, Borges and Savits [6] allow these proba-
bilities p(t) to vary with system age; Whitaker and Samaniego [7]
assume the type of maintenance is known. Doyen [8] presents a
nonparametric estimation approach to thismodel for unknownbut
fixed p alongwith a review of recent literature on imperfect repairs
and maintenance scheduling. Presnell, Hollander and Sethura-
man [9] develop a test for the minimal repair assumption in a par-
ticular model that Block, Borges and Savits [6] proposed; however,
if minimal repair is rejected, the question remains as to whether
CM makes the system better or worse than in the case of minimal
repair. Inmany applications this distinction is crucial. If one ignores
maintenance decisions, Cooper, de Mello and Kleywegt [10] point
out that decisions based on the incorrect assumption of sufficient
minimal repairs could lead to a ‘‘spiral down’’ effect, where system
reliability gets worse after repair cycles, i.e., more failures than ex-
pected; this happens because the assumedminimal repairs are ac-
tuallyworse than ‘good-as-old’. Themodel we propose in Section 2
allows for a follow-up analysis of whether CM makes system reli-
ability better or worse than it was right before failure.

Kijima [11] proposed a model that includes perfect, minimal,
and in-between repairs by introducing the effective age of the sys-
tem after each repair, essentially providing a quantitative mea-
sure of whether the repair was successful. A particular case of
Kijima’s model allowing imperfect repair is considered by Mettas
and Zhao [12], who proposed a method to find the maximum like-
lihood estimates of the model’s parameters. Following Kijima [11],
Dorado, Hollander, and Sethuraman [13] allow for repairs of vary-
ing degree by including so-called known life supplements, num-
bers between zero and one indicating the degree of repair between
perfect and minimal. Veber, Nagode and Fajdiga [14] assume one
overall life supplement that is unknown, i.e. each repair reduces
the effective age of the system by the same fraction q. As an ex-
tension to a common q, Pan and Rigdon [15] allow the repair ef-
fectiveness parameter to vary from system to system. Gasmi [16]
considers the Weibull distribution in an alternating imperfect re-
pair scheme, i.e. PM followed by CM repeatedly, with common life
supplement q. Recently Li and Hanson [17] propose to regress the
life-supplement of each repair on covariates such as repair type,
materials used, et cetera using a Bayesian nonparametric model.
Tanwar, Rai, and Bolia [18] review much of the related literature
on Kijima-type models.
Our model joins a growing body of literature allowing for
differing types of departure from minimal repair, including
Kijima [11]. Doyen and Gaudoin [19] consider several classes of
imperfect repairmodels for increasing failure intensities, including
models where (a) failure intensity is reduced by a constant factor
relative to the current intensity; (b) failure intensity is reduced by
a constant factor, but only relative to the most recent repair; and
(c) several models based on the virtual age of the system, akin to
Kijima’s [11] models.

We note that the present article does not provide a method
to determine which of CM or PM is optimal for a system at
a given point in time. Such decisions critically depend on the
context; for instance, maintenance decisions in the context of a
nuclear power plant process versus a medical billing records pro-
cess would be substantially different. Second, the mathematical
framework needed to handle such context-specific decisions re-
quires stochastic optimization routines that are outside the scope
of the intended aims of this research. However, such routines re-
quire information about the underlying probability distribution of
the time until failure following each of PMor CM. That is, a decision-
maker must have sound knowledge of how the system’s reliability
is affected by maintenance decisions at any given point in time.
Dimitrov, Chukova, and Khalil [20] consider the related problem of
maintenance costs with imperfect repair, namely warrantee costs
within a Kijima Type I model. Garg, Rani, and Sharma [21,22] con-
sider maintenance scheduling for a paper mill assuming a Weibull
distribution. Doyen [8] also reviews recent literature on imperfect
repair and maintenance scheduling.

2. Methodology

The aim of Section 2.1 is to develop a newmathematical frame-
work that encapsulates the impact of management’s maintenance
decisions on the parameters of the failure-time distribution of re-
pairable systems. In Section 2.2, the failure-time distribution is
modeled as a Weibull since, in addition to its wide-spread use in
reliability applications, it has desirable theoretical and practical
properties that will be highlighted.

2.1. A general decision-dependent stochastic process model for
repairable systems

Consider a system that is put into operation at time t0 = 0. The
time until this system fails has probability density function (pdf)
f (y|θ), where θ is a vector of parameters indexing the density from
a class such as theWeibull family of distributions. At any time, the
system’s owner is allowed to perform maintenance of one of two
types. In the first type, the system’s components are replaced or
some other major restoration is performed such that the system’s
age is reset to zero. This is preventivemaintenance (PM). The second
type of maintenance involves partial repairs or upgrades that do
not (necessarily) restore the process to an ‘‘as good as new’’ state.
This is corrective maintenance (CM).

There exists a set of increasing times {t1, . . . , tn|ti < ti+1∀i =

0, 1, . . . , n−1}where, at each time, a decision is made to perform
either a PM or a CM. The time series of decisions is denoted {di}ni=0,
where di = 0 if a PM is performed at time ti and di = 1 if a CM is
performed; for example, d0 = 0 because we start with a newly
restored system. In addition, the time of the most recent PM is
denoted t∗i = max{tj|j < i, dj = 0}; for example, t∗1 = 0 always
because d0 = 0. A PM decision at time ti−1, i.e., di−1 = 0, resets the
age of the system to zero. The length of time until the next failure
(at time ti) then has pdf f (ti − t∗i |θ) = f (ti − ti−1|θ), where θ is
the parameter vector indexing the density associated with a newly
restored system.
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Now consider a CM decision at time ti−1, i.e., di−1 = 1. Since CM
is not a complete restoration of the system, the system’s age is not
reset to zero but instead remains at its value at the time of the CM,
which is given by ti−1 − t∗i : this is just the age that the system has
accumulated since the last PM, which occurred at time t∗i . The time
from the CM until the next failure is thus truncated at ti−1− t∗i , and
hence has pdf

f (ti − t∗i |ti > ti−1, θ + β)

= f (ti − t∗i |θ + β)/S(ti−1 − t∗i |θ + β), ti > ti−1,

where θ + β is the vector of parameters for the failure-time
distribution following a CM and S(y|·) =


∞

y f (u|·)du is the
reliability (or survival) function. Including β in the model allows
the failure-time distribution following a CM to have different
parameters than that following a PM, since each component of β is
free to assume positive or negative values. The evolutionary nature
of the stochastic process model is illustrated in Fig. 1 for the first
three failure times in a new system.

Suppose the distributional parameters following a CM are the
same as those following a PM. This means β = 0 and the pdf of the
time until the next failure becomes f (ti − t∗i |θ)/ Pr{ti > ti−1}. This
is just the pdf of the time until failure for a newly restored system,
conditional on the failure occurring after the CM; in other words,
the system is restored to its condition at the instant before the
CM. This is known asminimal repair in the literature on repairable
systems.

However, if at any point in time the parameters are decision
dependent (β ≠ 0), the reliability function associated with a CM
could bemore (or less) favorable than in the case ofminimal repair,
and this may lead to different maintenance decisions.

In the above formulation, no assumption was made about the
formof the probability density function f (y|θ). A practitioner could
use one of many well-known parametric forms for f . But as noted
in the beginning of this section it is common practice to let f follow
a Weibull distribution in reliability applications—a repairable sys-
tem is one such application. TheWeibull distribution is sufficiently
flexible to allow increasing, decreasing, or constant hazard rates.
Moreover, this distribution asymptotically approximates the reli-
ability of any system comprised of numerous similar components
in parallel, and as such is ideal for modeling system lifetimes. See
[21,22] for a recent application of the Weibull distribution to the
fuzzy reliability of a paper pulping mill.

2.2. Testing minimal repair hypothesis under a Weibull model for f

An excellent reference for Weibull distributions is Rinne [23].
Suppose that the failure time for a newly restored system has
a Weibull (α, λ) distribution with probability density function
parameterized as

f (y|α, λ) = αλyα−1 exp(−λyα),

where α is the shape parameter and λ is the scale parameter. The
Weibull reliability and hazard rate functions, respectively, are

S(y|α, λ) = exp(−λyα)

and

h(y) = αλyα−1.

For the case of minimal repair β = 0, the reliability function
following a CM is given by

S̃(ti − t∗i |θ) = S(ti − t∗i |θ)/S(ti−1 − t∗i |θ)
= exp[−λ(ti − t∗i )

α
]/ exp[−λ(ti−1 − t∗i )

α
]

= exp{−λ[(ti − t∗i )
α

− (ti−1 − t∗i )
α
]} ti > ti−1.
Fig. 1. Illustration of model for the first three failure times.

If instead the Weibull parameters are decision dependent, we
have β = (β1 β2)

′ andthe reliability function is given by

S̃(ti − t∗i |θ + β) = S(ti − t∗i |θ + β)/S(ti−1 − t∗i |θ + β)

= exp[−(λ + β2)(ti − t∗i )
α+β1 ]/ exp[−(λ + β2)

× (ti−1 − t∗i )
α+β1 ]

= exp{−(λ + β2)[(ti − t∗i )
α+β1

− (ti−1 − t∗i )
α+β1 ]} ti > ti−1.

Suppose that the scale (but not shape) parameter depends on
the decision. In this case, we have β = (0 β2)

′ and the reliability
function following CM S̃(ti − t∗i |θ + β) reduces to

S̃(ti − t∗i |θ + β) = exp{−(λ + β2)[(ti − t∗i )
α

− (ti−1 − t∗i )
α
]}

ti > ti−1.

Forβ2 < 0, it can be seen that S̃(ti−t∗i |θ+β) ≥ S̃(ti−t∗i |θ) for all
ti > ti−1; in other words, at any time following a CM the reliability
is at least as large as that under minimal repair β1 = β2 = 0.
Alternatively, for β2 > 0, the reliability is at most as large as that
under minimal repair. Hence, it is critical to formally test whether
β = 0.

Managerial impact of testing β2 > 0 and β2 < 0: From a
management perspective, if the scale λ increases after CM, i.e. we
conclude β2 > 0, CM does not bring the system to good-as-old but
actually to a worse condition than it was before the CM. Thus, the
system receiving successive CMs will fail more rapidly than what
management expects under minimal repair. Under this scenario,
it may be prudent for management to set the system clock back
to zero with a PM more quickly (assuming increasing inter-failure
hazard), or else implement measures to improve CM. If the scale λ
decreases after CM, i.e. we conclude β2 < 0, CM brings the system
to better-than-old and the system is actually younger than what
management perceives.

Given data, the minimal repair hypothesis H0: β = 0 may
be tested via a standard likelihood ratio test (LRT), whose test
statistic is 2[ln L(θ̂, β̂) − ln L(

⌣
θ , 0)], where ln L(θ̂, β̂) is the log

likelihood evaluated at themaximum likelihood estimates of θ and
β and ln L(

⌣
θ , 0) is the log likelihood evaluated at the maximum

likelihood estimate of θ under the constraint β = 0. The critical
value of the test is the 1−α quantile of the chi-squared distribution
with two degrees of freedom, where α is the significance level.

3. Maximum likelihood estimation

To describe the estimation of the Weibull model parameters
θ and β, first note that if PM or CM is performed at time ti on
a working system (no accompanying failure), the failure time
stemming from the previous maintenance decision, di−1, is right
censored, indicated by δi = 0; otherwise, for uncensored failure
times, δi = 1. Together, these variables form the vector process
{(ti, di, δi)}ni=1 with initial conditions t0 = 0 and d0 = 0.

The likelihood function may be constructed by accumulating
the contributions from the distributions associated with each
maintenance decision. Following a PM decision at time ti−1, i.e.,
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di−1 = 0, a failure at time ti has likelihood contribution f (ti− t∗i |θ).
If the failure time is censored at time ti, however, the contribution
to the likelihood is S(ti − t∗i |θ). Now, for a CM decision di−1 = 1
at time ti−1, the discussion in Section 2 implies that the likelihood
contribution is f (ti − t∗i |θ+ β)/S(ti−1 − t∗i |θ+ β), but if the failure
time is censored the contributionwould be S(ti−t∗i |θ+β)/S(ti−1−

t∗i |θ + β). The likelihood function is then given by

L(θ, β) =

n
i=1


f (ti − t∗i |θ)

δiS(ti − t∗i |θ)
1−δi

1−di−1

×


f (ti − t∗i |θ + β)δiS(ti − t∗i |θ + β)1−δi

S(ti−1 − t∗i |θ + β)

di−1

.

Note that for di−1 = 0, the contribution is from observed or
right-censored data; for di−1 = 1, the contribution is from left-
truncated data that are also possibly right censored.

Maximization of the likelihood function above is a complex
problem for which there is no known closed-form solution. There-
fore, the maximum likelihood estimates were found using a nu-
merical optimization method. A two-stage estimation procedure
was implemented in a SASmacro named DDSME (Decision Depen-
dent Survival Model Estimation), as well as in an R script. DDSME
is available upon request, whereas the R script is given in the Ap-
pendix.

4. Illustration on Boeing air conditioner systems

A classic dataset introduced by Proschan [24] is considered
for illustration. Time between failures (and associated repairs)
for air conditioners in 13 planes were recorded. The first time
recorded is assumed to be time from a PM. Additionally, four of
the planes underwent onemajor overhaul during the study period;
we assume these also are PM giving a total of 17 PM repairs.
Upon consideration of each plane separately, plane 7908, with
21 CM times, showed the largest departure from the minimal
repair (i.e. non-homogeneous Poisson process) assumption with a
p-value of 0.009 under the likelihood ratio test. A follow-up Wald
test shows that the scale term significantly increases (p = 0.007)
from PM to CM, indicating worse-than-old condition of the air
conditioners after a CM repair.

The proposed model was compared to three others, (a) a
Weibull renewal process; (b) a Weibull non-homogeneous Pois-
son process which obtains when β = 0; and (c) a Kijima Type
II [11] model with common life-supplement q > 0 associated with
each CM. Under the Kijima model, q = 1 also implies the non-
homogeneous Poisson process; when q = 0 a renewal process is
obtained. Models (a) and (b) are described in [25]. The Akaike In-
formation Criterion (AIC) for these three fitted models are 437.8,
437.6, 439.6, respectively; the AIC for our proposedmodel is 432.2.
For these data, our model is preferred. Under the Kijima Type II
model, the estimate of q is 2.6 and the inter-failure hazard is in-
creasing; this confirms, via a different imperfect repair model, that
CM makes reliability worse than it was just before the repair, at
least for plane 7908.

5. A nuclear power generation application

The model and proposed estimation procedure are now illus-
trated using a history of maintenance decisions and failure-times
for one system from the South Texas Project Nuclear Operating
Company located in Bay City, Texas. The system of interest is the
essential chillers, a group of six 300-ton air conditioners, three for
each nuclear reactor unit. These chillers provide cold water for the
cooling coils of various air handling units to provide a suitable envi-
ronment for personnel and equipment during normal, faulted and
Fig. 2. Survival curves.

upset conditions. All three chillers in a reactor are automatically
started if either a safety injection signal or loss of offsite power
from the switchyard is detected. The dataset consists of daily times
ofmaintenance interventions and type ofmaintenance performed;
in addition, for each maintenance time, there is a record that indi-
cates whether it corresponds to a failure time. We have a total of
2572 observations that combines the records of all six chillers from
1987 until 2009.

Fits to the dataset of a Weibull renewal process, a Weibull
non-homogeneous Poisson process, and a Weibull Kijima Type II
models yield AIC values of 11467.4, 11 535.9, and 11469.4; the
proposed model has 11518.9. The renewal process and the Kijima
model are predictively better for these data and have essentially
the samemaximized log-likelihoods. The estimated q parameter is
0.0001 in the Kijima model, confirming the renewal process. The
rather striking differences in AIC among the models stems from
the many inter-failure times being quite small following both PM
and CM—241 are less than an hour and 90 are about a minute.
These are likely due to maintenance records that record every
instance of a unit being switched on and off as an inter-failure time,
even when this happens several times during the course of one
overall repair. If we remove all inter-failure times of less than one
hour, the AIC values are 11337.0, 11 354.4, 11 338.7, and 11346.4,
respectively for the four models under consideration. The renewal
process wins again, but this time the AIC values are more similar.
A renewal process assumes all inter-failure times are identically
and independently distributed from a Weibull distribution and is
commonly referred to as good-as-new. For these data, the inter-
failure hazard estimate from a renewal fit decreases sharply as
time increases. Both PM and CM bring the system time back to
zero when it is most likely to fail. This confirms that CM brings the
system into a statemuchworse than it was right before failure. For
these data, every repair allows the system to run, but restores it to
its most vulnerable state. System reliability improves the longer it
runs without any repairs.

We now discuss the implications to system reliability via an
analysis of the survival (or reliability) curves stemming from the
model proposed in this paper. The empirical reliability curves for
PM and CM, accounting for right censoring and left truncation (for
CM), are shown in Fig. 2. The results from applying our estimation
procedure to the data are reported in Table 1.

The LRT developed in Section 2.2 rejects the null hypothe-
sis of minimal repair (chi-squared statistic = 20.98, df = 2,
p-value <0.0001), implying that the maintenance decision does
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Table 1
Estimation results from history of water-chiller unit at South Texas Power.

Weibull parameter ML estimate 95% confidence interval
Lower endpoint Upper endpoint

Shape PM α 0.9193 0.8626 0.9785
Shape CM α + β1 0.8513 0.7764 0.9335
Scale PM λ 0.0324 0.0261 0.0401
Scale CM λ + β2 0.0584 0.0394 0.0866

Fig. 3. Survival curves for corrective maintenance.

affect the parameters of the failure-time distribution of the chilling
system at the power plant. One can further ascertain if the shape,
scale or both parameters are different for a PM as opposed to a
CM failure-time distribution. The null hypothesis that the shape
parameter is the same for the PM and CM failure-time distribu-
tions is not rejected by a Wald test (t statistic = −1.35, df
= 2572, p-value = 0.1765). However, the Wald test rejects that
the scale parameter is the same for the PM and CM failure-time dis-
tributions (tstatistic = 2.58, df = 2572, p-value = 0.0099).

It was noted in Section 2 that the survival or reliability function
following a CM is

S̃(ti − t∗i |θ + β) = exp{−(λ + β2)[(ti − t∗i )
α+β1

− (ti−1 − t∗i )
α+β1 ]}.

A graph of this function with the parameters replaced by
their maximum likelihood estimates (i.e., α = 0.9193, λ =

0.0324, β1 = 0.0680, β2 = 0.0260) is presented in Fig. 3.
For comparison, also presented in Fig. 3 is the reliability function
assuming minimal repair:

S̃(ti − t∗i |θ) = exp{−λ[(ti − t∗i )
α

− (ti−1 − t∗i )
α
]},

where, again, the parameters are replaced by their maximum
likelihood estimates (α = 0.9193, λ = 0.0324).

Both reliability functions in Fig. 3 are for a CM performed
when the system age equals the mean of the PM distribution
0(1+1/α)/λ1/α , where0(b) =


∞

0 rb−1 exp(−r)dr is the gamma
function. It is seen from Fig. 3 that, on any given day, the estimated
reliability probability is at most that of a minimal repair; in other
words, following a CM, the estimated reliability function of the
system is less favorable than that of a system of the same age that
has not undergone a CM.

For these water chiller data, now consider the impact of
assuming minimal repair. Under this assumption, we can compute
theWald 95% confidence interval for theWeibull shape parameter,
which is [0.9105, 0.9902], and which includes only cases where
the hazard function is monotonically decreasing. Thus, the plant
manager would conclude that a CM would always restore the
system to ‘better-than-new’, and hence would always choose
CM unless its cost exceeds that of PM by some threshold value.
Moreover, future data might seem to reinforce the decision to
always performCMbecause, fromTable 1, the CM shape parameter
appears to be significantly less than one: its 95% confidence
interval is [0.7764, 0.9335]; this once again implies a decreasing
hazard rate and preference for CM. Thus, the decision to always
perform CM would likely not improve even if the parameter
estimates are updated. This is analogous to the ‘‘spiral-down’’
effect noted by Cooper, de Mello and Kleywegt [10], wherein
decisions could become progressively worse after updating
parameter estimates of the underlying probability model.

6. Evaluation of estimation procedure and LRT

Since the nuclear power plant in Texas intends to implement
our model in real time, it is imperative to evaluate the accuracy of
the estimation procedure (Section 3) and the LRT (Section 2).

6.1. Simulating a Weibull-based decision dependent stochastic pro-
cess

Using the model detailed in Section 2, and random number
generation, we first construct a simulated history of maintenance
and failure times t0, t1, . . . , tn and decisions d0, d1, . . . , dn; these
are used to assess whether the estimation procedure described in
Section 3 ‘‘recovers’’ the Weibull shape and scale values used in
simulating the data.

To simulate the history of maintenance times, we first specify
the values of the Weibull shape and scale parameters that
govern the distribution of failure times following each CM and
PM decision. Then, an inversion-transform method is used to
sample from each of the corresponding failure-time distributions
as follows.

Given a PM at time ti−1 and theWeibull assumption, the length
of time until the next failure ti − ti−1 may be generated from the
inverse Weibull cdf evaluated at a uniform (0, 1) random number
u, i.e., ti − ti−1 = [− ln(1 − u)/λ]

1/α . If instead a CM is performed
at time ti−1, then from the assumptions in Section 2, the length of
time ti − t∗i (given ti > ti−1) has cdf

F̃(ti − t∗i |θ + β) = 1 − exp{−(λ + β2)[(ti − t∗i )
α+β1

− (ti−1 − t∗i )
α+β1 ]},

which has inverse

F̃−1(u|θ + β) = inf{ti − ti−1 : F̃(ti − t∗i |θ + β) ≥ u}

= [(ti−1 − t∗i )
α+β1 − ln(1 − u)/(λ + β2)]

1/(α+β1).

Hence, the failure time ti may be generated as

ti = t∗i + [(ti−1 − t∗i )
α+β1 − ln(1 − u)/(λ + β2)]

1/(α+β1)

i = 1, 2, 3, . . . .

Right censoring of failure times is simulated as follows. For each
failure time ti, an independent and identically distributed time ci,
called the censoring time, is simulated. If ci < ti, then the main-
tenance is performed at time ci, and the failure time ti is right
censored at that time; otherwise, if ci ≥ ti the maintenance is per-
formed at time ti and there is no censoring. At each maintenance
time, a fair coin is tossed to determine whether PM or CM is per-
formed.

The values of the shape and scale parameters considered in the
simulations are given in Table 2; these ranges were selected based
on input from the nuclear plant engineers. The shape parameter
values for PM are chosen to give decreasing (α = 0.5), constant
(α = 1), and increasing (α = 3) hazard functions. The value
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Table 2
Estimates of power for test of minimal repair.

Case Shape parameter Scale parameter Mean µ Power (n = 200) Power (n = 2000)
PM α CM α + β1 PM λ CM λ + β2 PM CM

1 0.5 0.5 0.44721 0.44721 10 10 0.05 0.05
2 0.5 0.53510 0.44721 0.44721 10 8 0.07 0.38
3 0.5 0.47522 0.44721 0.44721 10 12 0.07 0.19
4 0.5 0.5 0.44721 0.5 10 8 0.06 0.25
5 0.5 0.5 0.44721 0.40825 10 12 0.07 0.18
6 1 1 0.1 0.1 10 10 0.06 0.04
7 1 1.09016 0.1 0.1 10 8 0.17 0.94
8 1 0.93775 0.1 0.1 10 12 0.12 0.68
9 1 1 0.1 0.125 10 8 0.12 0.82

10 1 1 0.1 0.0833 10 12 0.11 0.58
11 3 3 0.0007121 0.0007121 10 10 0.06 0.05
12 3 3.31241 0.0007121 0.0007121 10 8 0.90 1.00
13 3 2.78623 0.0007121 0.0007121 10 12 0.54 1.00
14 3 3 0.0007121 0.001391 10 8 0.746 1.00
15 3 3 0.0007121 0.0004121 10 12 0.502 1.00
of the scale parameter λ for PM is chosen such that the mean
time until failure is µ = 10. Now, given µ and α, the scale
parameter is found from λ = [0(1 + 1/α)/µ]

α because the mean
of the Weibull distribution is given by µ = 0(1 + 1/α)/λ1/α .
For each pair of PM shape and scale values, five pairs of CM shape
and scale values are considered. The first CM pair corresponds
to minimal repair, i.e., the pair is the same as that for PM. The
remaining four CM pairs have the shape or scale value shifted such
that themean time until failure is 20% greater (or less) than the PM
mean of 10.

As in the case of PM, the scale parameter for CM, λ + β2,
that gives the desired mean value may be found directly from
the formula for the mean of the Weibull distribution. The shape
parameterα+β1, however, is foundnumerically. From the formula
for the mean of the Weibull distribution, it follows that (α +

β1){ln[0(1 + 1/(α + β1))] − lnµ} − ln(λ + β2) = 0, from which
the shape parameter α + β1 is found via a binary search.

Note that the above approach to choosing the shape and scale
values results in a 20% difference between CMand PMoccurring for
maintenance performed when the system age is zero. However, it
would seem that maintenance would typically not be performed
when the system age is zero. It is perhaps ideal if the shape and
scale values are instead chosen such that the 20% difference occurs
at themean system age at maintenance. Implementing this is both
difficult and infeasible, because thismean is not knownanalytically
and, in fact, may depend on the CM shape and scale parameters.
To circumvent this difficulty, since real data are available at the
nuclear power plant, a pragmatic approach that the nuclear power
plant engineers are experimenting with is to assume a value for
the system age ti−1 − t∗i at the time of maintenance; for example,
the mean of the distribution stemming from a PM, as in Section 4.
Nonetheless, using any systemage greater than zero is complicated
because the mean time until failure following a CM on a system of
age ti−1 − t∗i is

∞

ti−1−t∗i

S̃(r|θ + β)dr = exp[(λ + β2)(ti−1 − t∗i )
α+β1 ]

×


∞

ti−1−t∗i

exp[−(λ + β2)rα+β1 ]dr,

which does not have a closed-form expression. For the sake of
illustration, in this simulation study a system age of zero is used
and the CM shape and scale values are found as described above.

For each combination of parameter values given in Table 2,
10,000 datasets of n = 200 maintenance times, and 200 datasets
of n = 2000 each are simulated. Then, the proposed estimation
procedure is applied to each of these datasets. For each parameter,
the performance of the estimation procedure is measured by
the estimated coverage probability—the fraction of datasets for
which the 95% Wald confidence interval includes the value of the
parameter. The coverage calculations are performed using a SAS
macro DDSMSE (Decision Dependent Survival Model Simulated
Estimation) available on request.

A key takeaway from the simulation results for the 15 cases
in Table 2 is this: the estimated coverage probabilities of each
Wald confidence interval for the shape and scale parameters of the
different Weibull distributions range from 94% to 96%, and are all
approximately equal to the nominal 95% value, as desired. That is,
the estimation procedure described in Section 3 is robust.

6.2. Evaluating the power of the LRT used in testing hypotheses 1
and 2

The simulated datasets described above are now used to study
the power of the LRTwith respect to the null hypothesis ofminimal
repair defined previously. Recall that the null hypothesis is that
the shape and scale parameters are invariant to the maintenance
decision (H0 : β = 0). The power of the LRT is estimated for all
15 cases of parameter values considered in Section 6.1, assuming a
significance level of 5%.

The estimated power is reported in the last column of Table 2.
Note that for Cases 1, 6, and 11 in Table 2, the data were simulated
under the null hypothesis of minimal repair; hence, the estimated
power is an estimate of the LRT’s significance level. In each of these
three cases, the estimate of the significance level approximately
equals the nominal value of 5%, as desired.

For the remaining twelve cases in Table 2, the alternative
hypothesis of decision dependent parameters holds; hence, a power
of one is desired. The estimated power in the presence of decision
dependence ranges from 0.06 to 0.90 for n = 200 and from 0.18
to 1.00 for n = 2000. Moreover, the estimated power seems to
be strongly affected by the PM shape parameter α. For α = 0.5
(decreasing hazard), the estimated power is only slightly greater
than the estimate of the significance level (0.05) for n = 200,
whereas for α = 3 and n = 200 the estimated power ranges from
0.50 to 0.90. These numbers improve substantially by increasing
the sample size tenfold to n = 2000—in fact the power increases
to one when α = 3 and n = 2000. Finally, the estimated power for
a 20% decrease in the mean time until failure is usually larger than
that for a 20% increase.

Acknowledging that no statistical test is perfect, nonetheless, as
sample sizes increase, ceteris paribus, the proposed methodology
performs as it should. It is important to note that in nuclear
power plant maintenance, collecting and updating data are given
considerable attention since reliability cannot be overvalued;
hence, engineers and managers who implement statistical and
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other analytical procedures to bettermanage the plant have access
to good and relevant data that should go a long way in ensuring
the viability of stochastic models for repairable systems developed
here. The simulation study offers us confidence in themethodology
proposed in this paper.

7. Discussion

A new decision dependent stochastic process for repairable
systems was introduced in which the failure-time distribution
following corrective maintenance is allowed to be distinctly dif-
ferent than that following a preventive maintenance. In particu-
lar, the parameters of these distributions are allowed to depend on
the most recent maintenance decision. Relevant properties of this
stochastic process were described. Using aWeibull model for time
to failure, a two-stage, numerical procedure was used to obtain
the maximum likelihood estimates of the model parameters. As
a byproduct, Wald confidence intervals for the parameters of the
failure-time distributionswere obtained. Importantly, a Likelihood
Ratio Testwas constructed to assesswhether the parameters of the
failure-time distribution depend on the maintenance decision; it
was shown that this test provides an assessment of the commonas-
sumption of minimal repair, and how erroneously assuming min-
imal repair could lead to the wrong maintenance decisions. The
hypothesis of decision dependence was empirically validated using
data from a water chilling system at a nuclear power plant com-
pany in Bay City, Texas. From a management perspective, decision
dependence has practical implications. System safety, cost, and the
service level provided to customers are some of the variables that
are influenced by maintenance decisions.

Various extensions of the proposed model are possible.
For example, instead of the stochastic process depending on
maintenance type, it may depend on other observed decisions,
actions, or events that affect the parameters of the failure-time
distribution. For example, if an exogenous event changes a system,
the parameters of the failure-time distribution might also change.
Such events can be modeled by treating them as CM in our model.
Another generalization of the model is to allow the system age
to be adjusted following CM using a virtual age scheme proposed
in [11]. This would provide additional flexibility in the model by
allowing CM to reduce the ‘‘effective systemage’’ and allow testing,
for example, if CM forms a renewal process.

Appendix. Sample R code for Boeing data

library(survival)
t=c(194,90,130,74,153,55,15,23,97,50,359,50,130,487,102,

413,14,58,37,100
65,9,169,447,184,36,201,118,34,31,18,18,67,57,62,
7,22,34)

d=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,
1,0,1,1,1,1,1,1,1,1,1)

c=rep(1,38)
##################################################
# t=inter-failure times
# d=0 if PM and 1 if CM: decision *prior* to inter-failure
time
# c=0 if right-censored, c=1 left-censored
# data must start with a PM, i.e. d[1]=0
# note that all model parameters are on log scale:
# alpha1=exp(b[1]), lambda1=exp(b[2])
# alpha2=exp(b[1]+b[3]), lambda2=exp(b[2]+b[4])
##################################################
# obtain optimization starting values from PM only
pm=t[which(d=0)] # pulls out PM failure times
pc=c[which(d=0)] # pulls out non-censored indicators
f1=survreg(Surv(pm,pc)∼1,dist="weibull")
a1=log(1/f1$scale); b1=-f1$coef/f1$scale
# negative log-likelihood function to be minimized: full
model
ff=function(b){
ld=function(t,a,l){-exp(l)*tt4ht=&#x00A0;AÂexp(a)+a+l+
(exp(a)-1)*log(t)}
ls=function(t,a,l){-exp(l)*tt4ht=&#x00A0;AÂexp(a)}
ll=0
for(i in 1:length(t)){
if(d[i]==0){
lpm=i
if(c[i]==1){ll=ll+ld(t[i],b[1],b[2])}
if(c[i]==0){ll=ll+ls(t[i],b[1],b[2])}

}
if(d[i]==1){
if(c[i]==1){ll=ll+ld(sum(t[lpm:i]),b[1]+b[3],b[2]+b[4])
-ls(sum(t[lpm:(i-1)]),b[1]+b[3],b[2]+b[4])}
if(c[i]==0){ll=ll+ls(sum(t[lpm:i]),b[1]+b[3],b[2]+b[4])
-ls(sum(t[lpm:(i-1)]),b[1]+b[3],b[2]+b[4])}

}
}
-ll
}
# negative log-likelihood function to be minimized:
reduced NHPP model
fr=function(b){
ld=function(t,a,l){-exp(l)*tt4ht=&#x00A0;AÂexp(a)+a+
l+(exp(a)-1)*log(t)}
ls=function(t,a,l){-exp(l)*tt4ht=&#x00A0;AÂexp(a)}
ll=0
for(i in 1:length(t)){
if(d[i]==0){
lpm=i
if(c[i]==1){ll=ll+ld(t[i],b[1],b[2])}
if(c[i]==0){ll=ll+ls(t[i],b[1],b[2])}

}
if(d[i]==1){
if(c[i]==1){ll=ll+ld(sum(t[lpm:i]),b[1],b[2])-ls(sum(t
[lpm:(i-1)]),b[1],b[2])}
if(c[i]==0){ll=ll+ls(sum(t[lpm:i]),b[1],b[2])-ls(sum(t
[lpm:(i-1)]),b[1],b[2])}

}
}
-ll
}
maxf=optim(c(a1,b1,0,0),ff,hessian=T) # minimize negative
log-likelihood
maxr=optim(c(a1,b1),fr,hessian=T) # minimize negative
log-likelihood
par=maxf$par # MLE’s from full model: b[1], b[2]. b[3],
b[4]
se=sqrt(diag(solve(maxf$hessian))) # standard errors
1-pchisq((par[3]/se[3]) 2,1) # does shape change w/ CM?
(p -value)
1-pchisq((par[4]/se[4]) 2,1) # does scale change w/ CM?
1-pchisq(2*(maxr$value-maxf$value),2) # do both change?
##################################################
# Kijima model II w/ common life-supplement q=exp(b[3])
for CM
##################################################
fk=function(b){
ld=function(t,a,l){-exp(l)*tt4ht=&#x00A0;AÂexp(a)+a+l+
(exp(a)-1)*log(t)}
ls=function(t,a,l){-exp(l)*tt4ht=&#x00A0;AÂexp(a)}
ll=0
for(i in 1:length(t)){
if(d[i]==0){
lpm=i
if(c[i]==1){ll=ll+ld(t[i],b[1],b[2])}
if(c[i]==0){ll=ll+ls(t[i],b[1],b[2])}

}
if(d[i]==1){
den=0
for(j in lpm:(i-1)){den=den+b[3]t4ht=&#x00A0;AÂ(i-j+1)
*t[j]}
num=den+t[i]
if(c[i]==1){ll=ll+ld(num,b[1],b[2])-ls(den,b[1],b[2])}
if(c[i]==0){ll=ll+ls(num,b[1],b[2])-ls(den,b[1],b[2])}

}
}
-ll
}
# good-as-old is reduced model above
maxk=optim(c(maxr$par[1],maxr$par[2],1),fk,hessian=T)
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par=maxk$par # MLE’s from full model
se=sqrt(diag(solve(maxk$hessian))) # standard errors
##################################################
# renewal process
##################################################
rp=survreg(Surv(t,c)∼1,dist="weibull")
##################################################
# AIC: RP, NHPP, KM, ours respectively
##################################################
cat("Weibull renewal process AIC=’’,2*2-2*rp$loglik[1],
"/n")
cat("Weibull NHPP AIC=’’,2*2+2*maxr$value,"/n")
cat("Weibull Kijima Type II AIC=’’,2*3+2*maxk$value,"/n")
cat("Weibull ZHDP AIC=’’,2*4+2*maxf$value,"/n")
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