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• A robust approach for quadratic assignment problem (RQAP) with budgeted uncertainty.
• An exact and two heuristic methods to solve RQAP.
• Extensive experiments to show performance of methods and quality of solutions.
• RQAP can be solved significantly faster than minmax regret QAP.
• RQAP has adjustable conservativeness while minmax regret QAP has not.
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a b s t r a c t

We consider a generalization of the classical quadratic assignment problem, where material flows be-
tween facilities are uncertain, and belong to a budgeted uncertainty set. The objective is to find a robust
solution under all possible scenarios in the given uncertainty set. We present an exact quadratic formula-
tion as a robust counterpart and develop an equivalent mixed integer programmingmodel for it. To solve
the proposed model for large-scale instances, we also develop two different heuristics based on 2-Opt lo-
cal search and tabu search algorithms.We discuss performance of thesemethods and the quality of robust
solutions through extensive computational experiments.

© 2015 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

[1] introduced the standard quadratic assignment problem
(QAP). Standard QAP deals with choosing an optimal way to assign
n facilities to n locations to minimize the total material handling
cost, given all distances between locations and the amount of ma-
terial flow between each pair of facilities. A more general form of
the QAP was proposed by [2]. [3,4] considered multi-dimensional
QAP.

QAP is one of the hardest problems in combinatorial optimiza-
tion [5,6] and even finding a constant-factor approximate solu-
tion for the QAP is NP-hard [7]. However, some specific cases of
QAP are easy to solve [8,9]. Many exact and heuristic methods
have been developed to solve different cases of QAP. Approximated
dynamic programming [10], genetic algorithm [11], parallel al-
gorithms [12,13], hybrid algorithms [14], teaching learning based
optimization [15], semidefinite programming relaxations [16,17],

∗ Corresponding author. Tel.: +1 404 425 0885.
E-mail addresses: feizollahi@gatech.edu (M.J. Feizollahi), hadifeyz@buffalo.edu

(H. Feyzollahi).

http://dx.doi.org/10.1016/j.orp.2015.06.001
2214-7160/© 2015 The Authors. Published by Elsevier Ltd. This is an open access artic
mixed integer linear programming reformulation [18–22], refor-
mulation linearization technique (RLT) [23–25], formulation re-
ductions [26], and exploiting data structure [27] are some of these
techniques.

QAP has numerous applications such as backboard wiring [28],
scheduling problems [29], economic problems [30], designing
typewriter keyboards [31], facility layout [32–34], assembling
printed circuit boards [35] and many other applications. For a
detailed discussion about applications and solution methods for
QAP see [36,6,37,38].

In deterministic optimization, it is assumed that input data
(e.g. flows between facilities and distances between locations in
QAP) are precisely known in advance. Although this assumption
can be true in some applications, it is not realistic in many oth-
ers [39]. [40] proposed a design for robust facility layout under the
dynamic demand environment. In their approach, the layout of ex-
pected flow or expected demand is applied in all the periods. [41]
developed a fuzzy model to address uncertainty in QAP. [42] re-
viewed facility location problems under uncertainty. [43] studied
integration of facility layout design and flow assignment problem
under demand uncertainty. [44] considered uncertainty in a hospi-
tal layout problem and proposed a robust model for this problem.
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QAP with uncertain locations was studied in [39]. [45] used a ro-
bust deviation (minmax regret) approach to deal with uncertainty
in material flows.

In uncertain optimization problems with discrete variables, in
addition to robust deviation, we can use budgeted uncertainty
which has the same complexity as the original model and ad-
justable conservativeness [46,47]. In practice, for an uncertain
mixed integer programming (MIP) problem with interval data,
solving robust counterparts for budgeted uncertainty sets is much
easier than finding theminmax regret solution. For example, in re-
dundancy allocation problems, this difference is obvious by com-
paring the results in [48–51], respectively. In addition, former
method can find solutions with different levels of conservative-
ness, while the latter approach outputs only one conservative so-
lution.

In this paper, we consider a generalization of the QAPwhere the
flows are uncertain for some subset J of pairs of facilities. For the
flow between each pair of facilities only an interval estimate (un-
certainty interval) is available, and the flow can take on any value
from the corresponding uncertainty interval. But, for a given pro-
tection level Γ ∈ [0, |J|], it is assumed that at most ⌊Γ ⌋ of un-
certain flows are allowed to change, and one flow changes by a
ratio of at most (Γ −⌊Γ ⌋) of its uncertainty interval. We are inter-
ested in an assignmentwhichminimizes themaximumcost for any
possible realization of flows. In other words, because it is unlikely
that all uncertain flows adversely affect the cost of assignment, it
is assumed that only a subset of uncertain flows change from their
nominal values.

This paper is organized as follows. In Section 2, we present
notation and problem statement for deterministic and uncertain
QAP, and an efficient MIP equivalent for QAP. In Section 3, we
develop a mathematical programming formulation of the problem
aswell as an equivalentMIPmodel. Then, two heuristic algorithms
are described in Section 4. Experimental results are discussed in
Section 5, and conclusions are presented in Section 6.

2. Notation and problem statement

In this section, we first present notation and problem statement
for classical QAPwhich ismostly quoted from [45]with some slight
adjustments. Then, we present an efficient MIP equivalent for QAP
from the literature. Finally, we introduce budgeted uncertainty in
flow between facilities and describe some concepts related to the
proposed uncertain QAP.

2.1. Classical QAP

In the standard version of QAP, it is assumed that there are n fa-
cilities that should be assigned to n locations, in order to minimize
the total material handling cost [1]. LetN = {1, 2, . . . , n}. For each
pair i, j ∈ N of facilities, let fij ≥ 0 be the flow from facility i to fa-
cility j. In addition, for each pair k, l ∈ N of locations, let dkl ≥ 0 be
the travel distance from location k to location l. An assignment of
facilities to locations can be represented by an n× n binary matrix
X , where

xik =


1 if facility i is assigned to location k,
0 otherwise.

In any feasible assignment X ∈ {0, 1}n×n, each location must be
assigned exactly to one facility, and similarly each facility must be
located exactly in one location. Therefore, the set P of all possible
assignments is defined by constraints

n
k=1

xik = 1 ∀i ∈ N, (1)
n
i=1

xik = 1 ∀k ∈ N, (2)

xik ∈ {0, 1} i, k ∈ N. (3)

For any X ∈ P , let φX
i denote the location assigned to facility i

in assignment X . Let dXij be the distance between facilities i and j in
assignment X . Therefore,

dXij := dφX
i φX

j
=

n
k=1

n
l=1

dklxikxjl. (4)

Given an n×n flowmatrix f = (fij) and an assignment X = (xik) ∈

P , let ⟨f , X⟩ denote the corresponding cost of the assignment,

⟨f , X⟩ :=

n
i=1

n
j=1

n
k=1

n
l=1

fijdklxikxjl =

n
i=1

n
j=1

fijdXij . (5)

For a given flow matrix f , the classical QAP is:

QAP(f ) : Minimize {⟨f , X⟩ | X ∈ P} . (6)

2.2. Xia-Yuan linearization

[2] proposed a more general form of the QAP as follows:

min
X∈P

n
i=1

n
j=1

n
k=1

n
l=1

cijklxikxjl (7)

where cijkl ≥ 0, i, j, k, l ∈ N are given coefficients. Note thatQAP(f )
is a special case of (7) where cijkl = fijdkl, for all i, j, k, l ∈ N .
As discussed in [6], different approaches have been developed to
linearize the general QAP (7). [22] demonstrated experimentally
that [19] linearization is quite effective as a MIP formulation for
the general QAP. The Xia-Yuan linearization for general QAP (7) is:

min
X∈P

n
i=1

n
k=1

(wik + ciikkxik), (8)

wik ≥

n
j=1
j≠i

n
l=1
l≠k

cijklxjl − âik(1 − xik), ∀i, k ∈ N, (9)

wik ≥ likxik, ∀i, k ∈ N, (10)

where

lik = min
X∈P
xik=1

n
j=1
j≠i

n
l=1
l≠k

cijklxjl, and

âik = max
X∈P
xik=1

n
j=1
j≠i

n
l=1
l≠k

cijklxjl.

(11)

Observe that constants lik, âik are obtained by means of solving
the regular linear assignment problems (11) which can be done
in polynomial time [6]. Values lik are called Gilmore–Lawler con-
stants [6]. Formulation (8)–(10) has n2 binary variables, n2 contin-
uous variables, and 2n2

+ 2n linear constraints.

2.3. QAP with budgeted uncertainty

QAP(f ) is a valid optimization problem as long as the values of
flows and distances are known precisely. However, flows between
facilities are typically only estimated within most likely intervals.
In the remainder of the paper, we deal with uncertain flows.

Suppose that for any (i, j) ∈ N × N , two numbers f −

ij , f +

ij are
given, 0 ≤ f −

ij ≤ f +

ij , where f −

ij and f +

ij are lower and upper bounds
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for fij, respectively. Let J ⊂ N×N be the set of pairs (i, j) of facilities
with uncertain flow; that is, f −

ij < f +

ij for all (i, j) ∈ J , and f −

ij = f +

ij
for all (i, j) ∈ Jc = (N × N)\J . Assume that the flow fij can take
any value on [f −

ij , f +

ij ]. To normalize the uncertainty set, suppose
that fij = f −

ij + δijξij, where δij := f +

ij − f −

ij is the interval length
and ξij is an uncertain variable in [0, 1]. Let f −, f + and f = be the
scenarios (flow matrices) where for all i, j ∈ N , fij equals to f −

ij ,
f +

ij and 0.5 × (f −

ij + f +

ij ), respectively. For a given protection level
Γ ∈ [0, |J|], the set

UΓ :=


ξ ∈ ℜ

|J|
:


(i,j)∈J

ξij ≤ Γ , 0 ≤ ξij ≤ 1, ∀(i, j) ∈ J


(12)

is called a budgeted uncertainty set. [46] introduced budgeted un-
certainty to construct robust counterparts for LP and MIP models
with adjustable conservativeness. While Γ = 0 gives themost op-
timistic solution (deterministic problem with f = f −), Γ = |J|
generates the most pessimistic one (deterministic problem with
f = f +).

For any perturbation vector ξ , denote the corresponding flow
matrix by f (ξ). Then, the uncertainty set for flow matrix f is:

VΓ :=

f ∈ ℜ

n×n
: ∃ξ ∈ UΓ such that f = f (ξ)


=


f ∈ ℜ

n×n
:


(i,j)∈J

fij − f −

ij

δij
≤ Γ , f −

ij ≤ fij ≤ f +

ij ,

∀(i, j) ∈ N × N


. (13)

For a given Γ ∈ [0, |J|], the robust QAP is formulated as follows:

RQAP : min
X∈P

max
f∈VΓ

⟨f , X⟩. (14)

For any assignment X ∈ P , the value

Z(X) := max
f∈VΓ

⟨f , X⟩ = max
ξ∈UΓ

⟨f (ξ), X⟩ (15)

is called the worst-case or robust cost for X . A maximizer in (15)
is called a worst-case scenario for X , which is denoted by f X . The
corresponding worst-case perturbation vector is ξX where f X =

f (ξX ). RQAP seeks a feasible solution with the smallest robust cost.
Let Z∗ and X∗ be the optimal objective value and solution for RQAP,
respectively.

Let RC(X) denotes the difference between Z(X) and ⟨f −, X⟩

(i.e. the robust and optimistic costs of X , respectively) which is
called the robustness cost of assignment X . In other words,

RC(X) := Z(X) − ⟨f −, X⟩. (16)

By substituting ⟨f , X⟩ from (5) into (15), we have

Z(X) = max
ξ∈UΓ


n

i=1

n
j=1

fijdXij



= max
ξ∈UΓ


n

i=1

n
j=1

(f −

ij + δijξij)dXij



=

n
i=1

n
j=1

f −

ij d
X
ij + max

ξ∈UΓ


(i,j)∈J

δijdXij ξij



= ⟨f −, X⟩ + max
ξ∈UΓ


(i,j)∈J

δijdXij ξij


(17)

where the first and last equalities hold by definition. The second
equality is true because fij = f −

ij + δijξij, ∀i, j. The third equality
follows from the facts that for a given X , f −

ij d
X
ij is a constant ∀i, j,

and δij = 0 if (i, j) ∉ J . Eqs. (16) and (17) imply

RC(X) = max
ξ∈UΓ


(i,j)∈J

δijdXij ξij


. (18)

2.4. Worst-case scenario for a given assignment

In the following proposition, we show how to find a worst-case
scenario for a given X .

Proposition 1. Consider a fixed Γ ∈ [0, |J|], and a given X ∈ P.
Based on the value of Γ , a worst-case scenario for X can be found as
follows:

• If Γ is an integer, a scenario with ξij = 1 for Γ pairs (i, j) ∈ J with
the largest values of δijdXij , and ξij = 0 for the remaining pairs is a
worst-case scenario for X.

• If Γ is not integer valued, a scenario with ξij = 1 for ⌊Γ ⌋ pairs
(i, j) ∈ J with the largest values of δijdXij , ξij = (Γ − ⌊Γ ⌋) for the
next largest value of δijdXij , and ξij = 0 for the remaining pairs is a
worst-case scenario for X.

Proof. The distance matrix has non-negative elements which im-
plies dXij ≥ 0, for all i, j ∈ N . Therefore, ⟨f , X⟩ is a non-decreasing
linear function of f ∈ VΓ , or equivalently ⟨f (ξ), X⟩ is a non-
decreasing linear function of ξ ∈ UΓ . That is, for any pair of matri-
ces f̃ , f̂ ∈ VΓ if f̃ij ≤ f̂ij for all (i, j) ∈ N , then ⟨f̃ , X⟩ ≤ ⟨f̂ , X⟩. Thus,
there exists an extreme point ξX of polytope UΓ such that


(i,j)∈J

ξX
ij = Γ and ξX is a worst-case scenario for X maximizing ⟨f (ξ), X⟩

over ξ ∈ UΓ . Note that in all extreme points of UΓ with


(i,j)∈J ξ
X
ij

= Γ , ⌊Γ ⌋ of the ξX
ij are equal to 1, up to one ξX

ij is (Γ − ⌊Γ ⌋), and
the remaining are 0. �

It is worth mentioning that for a given assignment, finding the
worst-case scenario requires sorting δijdXij for (i, j) ∈ J which can
be done in O (|J| log(|J|)), i.e polynomial time in size of J and con-
sequently in n. In contrast, obtaining the worst-case scenario in
minmax regret QAP requires solving a general QAP which is NP-
hard [45].

3. Mathematical formulations of robust QAP

In this section, we propose a mixed integer quadratic program-
ming (MIQP) formulation of RQAP and a linear MIP equivalent.

3.1. MIQP formulation of RQAP

An alternative formulation for RQAP (14) is

min
X∈P


⟨f −, X⟩ + max

ξ∈UΓ


(i,j)∈J

ξijδijdXij


= min

X∈P


⟨f −, X⟩ + RC(X)


. (19)

An equivalent MIQP for (19) is proposed in Proposition 2.

Proposition 2. Problem (19) is equivalent to problem (20)–(21).

min
q∈ℜ+,r∈ℜ

|J|
+

,X∈P
⟨f −, X⟩ + Γ q +


(i,j)∈J

rij (20)

q + rij ≥ δijdXij , ∀(i, j) ∈ J. (21)
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Proof. By using the same idea as [46], one can substitute the inner
maximization problem in (19) with its dual

min
q∈R+,r∈ℜ

|J|
+

Γ q +


(i,j)∈J

rij (22)

q + rij ≥ δijdXij , ∀(i, j) ∈ J, (23)

which results in problem (20)–(21). �

Note that by definitions (4) and (5), dXij and ⟨f −, X⟩ are quadratic
functions of x. Thus, (20)–(21) is a MIQP problem with a quadratic
objective function, |J| quadratic and 2n linear constraints, n2 binary
and |J| + 1 continuous variables. To solve RQAP with an off the
shelf MIP solver, we need to linearize the objective function and
constraints in (20)–(21).

3.2. Linearization of RQAP

Next, we extend [19] linearization to RQAP.

Proposition 3. Problem (24)–(27) is a MIP equivalent of prob-
lem (20)–(21).

min
X∈P,w∈ℜN×N

q∈ℜ+,r∈ℜ
|J|
+

n
i=1

n
k=1

(wik + f −

ii dkkxik) + Γ q +


(i,j)∈J

rij (24)

wik ≥

n
j=1
j≠i

n
l=1
l≠k

f −

ij dklxjl − âik(1 − xik), ∀i, k ∈ N; (25)

wik ≥ likxik, ∀i, k ∈ N, (26)

q + rij ≥ δij


n

l=1

dklxjl + dmax
k (xik − 1)


,

∀(i, j) ∈ J, ∀k ∈ N (27)

where,

lik = min
X∈P
xik=1

n
j=1
j≠i

n
l=1
l≠k

f −

ij dklxjl, ∀i, k ∈ N,

âik = max
X∈P
xik=1

n
j=1
j≠i

n
l=1
l≠k

f −

ij dklxjl, ∀i, k ∈ N,

dmax
k = max

l∈N
{dkl}, ∀k ∈ N.

(28)

Proof. Note that equivalence of problems (20)–(21) and (24)–(27)
can be easily checked by using the same insights in [19]. First part
of the objective function in (24) together with constraints (25) and
(26) correspond to the minimization of ⟨f −, X⟩ in (20). Moreover,
in any X ∈ P , for all (i, j) ∈ J and k ∈ N

n
l=1

dklxjl + dmax
k (xik − 1) =


n

l=1

dklxjl = dXij , if xik = 1,

n
l=1

dklxjl − dmax
k ≤ 0, otherwise.

Therefore, (27) is a valid linearization of (21). �

Formulation (24)–(27) has 2n2
+ n(2 + |J|) linear constraints

and n2 binary and n2
+ |J| + 1 continuous variables.
4. Heuristic algorithms

Due to difficulty of the regular QAP, only relatively small
instances can be solved by exact methods [6]. To solve larger
problems, a number of heuristics have been developed in the liter-
ature [36,6]. Since the robust QAP is at least as hard as regular QAP,
heuristics are needed even more. In this section, we extend the 2-
Opt local search [52] and tabu search [53,54] for classical QAP to
solve RQAP.

4.1. 2-Opt local search

[52] used a local search based on 2-Opt neighborhood to solve
the general QAP (7). In thismethod, a neighbor of a current solution
X1 is obtained by swapping locations of any two facilities. Suppose
that X2 is obtained from X1 by swapping locations of facilities
a, b ∈ N , a ≠ b. Then,

φX2

i =


φX1

i , ∀i ≠ a and i ≠ b,
φX1

b , i = a,
φX1

a , i = b.

The difference between the objective values of X2 and X1 is

∆ab =

n
i=1

n
j=1

c
ijφX2

i φX2
j

−

n
i=1

n
j=1

c
ijφX1

i φX1
j

= (c
abφX1

b φX1
a

− c
abφX1

a φX1
b

) + (c
baφX1

a φX1
b

− c
baφX1

b φX1
a

)

+ (c
aaφX1

b φX1
b

− c
aaφX1

a φX1
a

) + (c
bbφX1

a φX1
a

− c
bbφX1

b φX1
b

)

+

n
i=1,i≠a,b

[(c
aiφX1

b φX1
i

− c
aiφX1

a φX1
i

) + (c
iaφX1

i φX1
b

− c
iaφX1

i φX1
a

)]

+

n
i=1,i≠a,b

[(c
ibφX1

i φX1
a

− c
ibφX1

i φX1
b

) + (c
biφX1

a φX1
i

− c
biφX1

b φX1
i

)].

In RQAP (19), the objective function consists of two parts
⟨f −, X⟩ and RC(X). Next, we extend the 2-Opt procedure to heuris-
tically solve RQAP. For this purpose, we need to change the way of
computing ∆ab values. For all (i, j) ∈ J , let gX

ij := δijdXij . For each
pair of facilities a and b, let ∆ab be as follows:

∆ab = ∆1
ab + ∆2

ab, (29)

where,

∆1
ab = ⟨f −, X2

⟩ − ⟨f −, X1
⟩

=

n
i=1

n
j=1

f −

ij dφX2
i φX2

j
−

n
i=1

n
j=1

f −

ij dφX1
i φX1

j

= (f −

abdφX1
b φX1

a
− f −

abdφX1
a φX1

b
) + (f −

badφX1
a φX1

b
− f −

badφX1
b φX1

a
)

+ (f −

aadφX1
b φX1

b
− f −

aadφX1
a φX1

a
) + (f −

bbdφX1
a φX1

a
− f −

bbdφX1
b φX1

b
)

+

n
i=1,i≠a,b

[(f −

ai dφX1
b φX1

i
− f −

ai dφX1
a φX1

i
)

+ (f −

ia dφX1
i φX1

b
− f −

ia dφX1
i φX1

a
)]

+

n
i=1,i≠a,b

[(f −

ib dφX1
i φX1

a
− f −

ib dφX1
i φX1

b
)

+ (f −

bi dφX1
a φX1

i
− f −

bi dφX1
b φX1

i
)], (30)
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and

∆2
ab = RC(X2) − RC(X1)

= max
ξ∈UΓ


(i,j)∈J

ξijδijdX
2

ij


− max

ξ∈UΓ


(i,j)∈J

ξijδijdX
1

ij



= max
ξ∈UΓ


(i,j)∈J

ξijgX2

ij


− max

ξ∈UΓ


(i,j)∈J

ξijgX1

ij


. (31)

Note that for the cases with i ≠ a, b, j ≠ a, b, we have gX2

ij =

gX1

ij . Therefore,weonly need to update gij, for other pairs of (i, j) ∈ J
as follows.

gX2

ij =



δabdφX1
b φX1

a
, i = a, j = b

δbadφX1
a φX1

b
, i = b, j = a

δaadφX1
b φX1

b ,
i = a, j = a

δbbdφX1
a φX1

a
, i = b, j = b

δajdφX1
b φX1

j
, i = a, j ≠ a, b

δbidφX1
a φX1

i
, i = b, j ≠ a, b

δiadφX1
i φX1

b
, i ≠ a, b, j = a

δibdφX1
i φX1

a
, i ≠ a, b, j = b.

To compute ∆2
ab in (31), we need to update gX2

ij for all (i, j) ∈ J , and
then sort them. Afterward, by Proposition 1, RC(X2) can be easily
computed.

Suppose the algorithm is started froma randomassignment and
(29)–(31) are exploited to compute ∆ab for all a, b ∈ N , a ≠ b.
Let ∆min = mina,b{∆ab}. If ∆min < 0, swap the locations of the
corresponding facilities, otherwise terminate the algorithm. This
procedure may be trapped in a local optimal solution. To remedy
this issue, we can use multi random initial assignments or extend
Taillard’s general QAP tabu search [55] to solve RQAP.

4.2. Tabu search

Tabu search [53,54] is a technique to overcome local optimality
in local search algorithms. For details of the general QAP tabu
search, the reader is referred to [55]. A step of tabu search will be
called a swap as it is based on an attempt to swap locations of two
facilities. Next, we extend Taillard’s tabu search procedure to solve
RQAP. In this method, we use (29)–(31) to compute ∆ab and the
rest of the procedure is similar to [55].

Note that the 2-Opt and tabu search algorithms do not provide
any lower bound for RQAP. But, they provide upper bounds for
RQAP while the robust (minmax regret) QAP tabu search in [45]
provides neither a lower bound nor an upper bound.

5. Experimental results

5.1. Details of problem instances

We tested our proposed methods on uncertain QAP instances
presented in [45]. These instances have been categorized into two
main families.
• Euclidean Random (ER) instances: In this family, locations are

chosen randomly on the 1000 × 1000 Euclidean grid as loca-
tions. For each pair of facilities i, j where i < j, f +

ij = f −

ij = 0
with probability 0.5, and with probability 0.5, f +

ij ∈ [0, 1000]
and f −

ij ∈ [0, f +

ij ] has been randomly generated. Based on the
number of facilities and locations, n, these instances are cate-
gorized into groups ER-07, ER-08, ER-09, ER-10, ER-11, ER-12,
ER-13, ER-15, ER-20, ER-25, and ER-30.
• QAPLIB instances: Instances of this family are generated from
some classical QAP instances available in the QAPLIB library

(http://www.seas.upenn.edu/qaplib/inst.html).

For more details on test instances see [45]. Similar to [45], 10
instances for each group of ER and QAPLIB families were used,
and the average performance results are reported unless explicitly
specified otherwise. The ER and QAPLIB groups were classified
into ‘‘easy’’, ‘‘moderate’’ and ‘‘hard’’ categories as follows. We tried
to solve the uncertain instance of the RQAP using CPLEX applied
to MIP model (24)–(27) with time limit 7,200 s, and if proven
optimality was achieved (respectively, not achieved) for all 10
instances and all tested values ofΓ , we classified these instances as
‘‘easy’’ (respectively, ‘‘hard’’). The remaining groupswere classified
as ‘‘moderate’’.

5.2. Implementation details and parameters of the algorithms

The algorithms were coded in C++. IBM ILOG CPLEX, version
12.5.1, was used for solving the linearization of RQAP in the exact
approaches. All experiments were conducted on a UNIX machine
restricted to use of only one core with 2.27 GHz speed and 20 GB
RAM.

In the 2-Opt algorithm, we started the method from a random
assignment. The best possible swap was chosen to produce the
largest reduction in the objective function. Swapping the locations
of facilities was continued until there was no potential swap with
cost reduction. The method restarted 10 × n2 times to reduce
the chance of being trapped in a local optimal solution. In tabu
search, we started the method from a random assignment with a
termination criterion of 100 × n2 iterations.

In the Exact method, we used CPLEX (default parameters) to
solve MIP model (24)–(27) with time limit 7,200 s and memory
limit 20 GB. Relative optimality gap tolerance was set to 10−6.
In addition, the CPLEX internal ‘‘MIPEmphasis’’ switch was set to
‘‘emphasize optimality over feasibility’’. For each instance RQAP
was solved for all Γ ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256} such that
Γ ≤ |J| for that instance.

5.3. Illustrative example

The quality of the robust solutions are examined in this
subsection. For this purpose, we compare the solutions of the RQAP
model for an uncertain QAP with n = 9. The f +, f − and dmatrices
are presented in Table 1. This example has |J| = 34uncertain flows.
The solutions of RQAP for all values of Γ ∈ [0, 34] are presented in
Table 2. In this table, X7 is the minmax regret solution. In addition,
Opt(f −) = X1, Opt(f =) = X4, and Opt(f +) = X6.

Fig. 1 depicts robust cost, Z(X), of solutions X1, . . . , X7 versus
Γ ∈ [0, 34]. In this figure, it is clear which assignment has the best
(minimum) robust cost for each value of Γ . Note that Z(X) of X4

and X5 are very similar to X3. Therefore, for clarity of the graphs in
Fig. 2, the graphs corresponding to X4 and X5 are omitted.

For 10,000 runs we generated uncertain flow fij, ∀(i, j) ∈ J , and
simulated total cost. For this purpose, we used truncated normal,
symmetric triangular, and uniformdistributions in [f −, f +

] to gen-
erate random flows. The results of the simulations are presented
in Table 3 and Fig. 2. Let C(X) = ⟨f , X⟩ be the random cost of
assignment X , which depends on the realization of f . In Table 3,
E(C(X)) and σ(C(X)) are empirical estimations of the expectation
and standard deviation of C(X), respectively. Moreover, C0.95(X)
and C0.99(X) are the 0.95 and 0.99 quantiles of C(X), respectively.
Cmax(X) is the maximum observed C(X) in the simulation. For all
three simulated distributions,X4 andX6 have the least E(C(X)) and
σ(C(X)), respectively. X4 has also the least C0.95(X) for normal and
the least C0.95(X) and C0.99(X) for triangular distribution.X3 has the

http://www.seas.upenn.edu/qaplib/inst.html
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Table 1
Input data of the illustrative example.

Matrix f + Matrix f − Matrix d
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 0 518 0 0 0 624 491 915 0 0 147 0 0 0 296 379 681 0 0 604 657 830 280 795 1340 246 593
2 518 0 577 0 0 0 183 0 0 147 0 94 0 0 0 122 0 0 604 0 515 544 404 633 1430 358 223
3 0 577 0 0 0 360 0 0 0 0 94 0 0 0 290 0 0 0 657 515 0 173 457 138 915 411 738
4 0 0 0 0 0 410 0 0 138 0 0 0 0 0 336 0 0 131 830 544 173 0 630 89 886 584 767
5 0 0 0 0 0 565 760 0 403 0 0 0 0 0 191 474 0 154 280 404 457 630 0 595 1060 130 593
6 624 0 360 410 565 0 217 0 683 296 0 290 336 191 0 25 0 547 795 633 138 89 595 0 797 549 856
7 491 183 0 0 760 217 0 128 592 379 122 0 0 474 25 0 6 302 1340 1430 915 886 1060 797 0 1190 1653
8 915 0 0 0 0 0 128 0 54 681 0 0 0 0 0 6 0 40 246 358 411 584 130 549 1190 0 463
9 0 0 0 138 403 683 592 54 0 0 0 0 131 154 547 302 40 0 593 223 738 767 593 856 1653 463 0
Table 2
Optimal solutions of the example for different protection levels.

Protection level Solution

0 ≤ Γ ≤ 0.40 X1
= (2, 1, 7, 4, 5, 6, 8, 9, 3)

0.41 ≤ Γ ≤ 1.04 X2
= (3, 4, 7, 1, 9, 5, 2, 6, 8)

1.05 ≤ Γ ≤ 2.49 X3
= (8, 9, 2, 7, 3, 6, 5, 1, 4)

2.50 ≤ Γ ≤ 5.34 X4
= (8, 9, 2, 7, 3, 4, 5, 1, 6)

5.35 ≤ Γ ≤ 8.58 X5
= (8, 2, 9, 7, 3, 4, 5, 1, 6)

8.59 ≤ Γ ≤ 34 X6
= (8, 2, 9, 7, 4, 5, 3, 1, 6)

Minmax regret X7
= (2, 5, 1, 7, 3, 4, 8, 9, 6)

Fig. 1. Robust cost of assignments x1, . . . , x7 versus protection level Γ .

minimum C0.99(X) and Cmax(X) for normal and triangular distri-
butions, respectively. It has also the least C0.95(X) and C0.99(X) for
uniform distribution. Minimum Cmax(X) for normal and uniform
distributions is found for X5. Although Opt(f +) = X6, X6 did not
provide the minimum Cmax(X) for any of the simulated distribu-
tions.

According to the results in Table 3 and Fig. 2, assignments X3,
X4 and X5 outperform the other assignments almost in all of the
metrics and distributions. As illustrated in this example, RQAP
with budgeted uncertainty provides a pool of robust assignments
depending on the value of Γ . Then, the decision makers can pick
one of these assignments based on their risk preferences.

5.4. Numerical results

In this subsection, we present the extensive results of imple-
menting the proposed robust methods on ‘‘easy’’, ‘‘moderate’’ and
‘‘hard’’ instances. Recalling from Section 4, each of the proposed
exact and heuristic methods for RQAP provides an upper bound
for optimal robust cost of RQAP. Let ubEX, ub2O and ubTS be the up-
per bounds obtained by Exact, 2-Opt and tabu search, respectively.
Note that only the Exact method provides lower bounds, which we
denote by lbEX. We define gapEX as

gapEX =
ubEX − lbEX

ubEX
× 100.

Table 4 reports CPU time in seconds spent by CPLEX on Exact
method to solve MIP model (24)–(27). This time is denoted by tEX.
|J| indicates the number of uncertain flows. In all of these instances,
Exact method was able to find the optimal solution, i.e. gapEX = 0
and ubEX = lbEX for all easy instances.

According to Table 4, for almost all easy instances, increasing Γ

results in a significant increase in tEX. This observation is also true
for moderate instances in Table 10. That means that increasing Γ

loosens linearization (24)–(27) for RQAP.
By comparing tEX in Table 4 with the time spent to obtain

minmax regret solutions (Tables 2 and 3 in [45]), it is observed that
even for large values of Γ , tEX is about 10%–30% of minmax regret
solution time for most of the easy instances.

Table 5 presents the CPU time in seconds spent on 2-Opt (t2O)
and tabu search (tTS) to heuristically solve RQAP for easy instances.
Unlike tEX, increasing Γ did not affect t2O and tTS systematically.
Therefore, formoderate andhard instances,we only report average
CPU times for different values of Γ .

To assess the quality of solutions obtained from heuristics, we
used ub2O and ubTS, upper bounds fromheuristics, and lbEX, the best
lower bound from the Exactmethod.Wedefined gap2O and gapTS as

gap2O =
ub2O − lbEX

ub2O
× 100 and gapTS =

ubTS − lbEX
ubTS

× 100.

In group chr15c, for Γ = 1, 2, 8 and 16 the gapTS was 0.01%, 0.08%,
0.06% and 0.47%, respectively. This gap for chr15b and Γ = 8 was
0.04%. For the rest of cases, tabu search found the optimal robust
solutions. For chr15c and Γ = 1, 2, 4, 8 and 16, gap2O was 0.01%,
0.03%, 0.33%, 0.52% and 0.12%, respectively. This gap for chr15a and
Γ = 1, 2, 4 and 8 was 0.10%, 0.07%, 0.24% and 0.38%, respectively.
Moreover, gap2O = 0.18% for chr12c and Γ = 8. For the rest of
cases, 2-Opt found the optimal robust solutions.

Tables 6–11 represent the numerical results for moderate in-
stances. For each group and Γ , Table 6 shows the number of in-
stances (out of 10) which were solved optimally by Exact method
within 7,200 s. Some moderate instances were not solved opti-
mally, and a positive optimality gap remained for these cases.
Table 7 reports the average optimality gap (among 10 instances)
for each group and Γ . Tables 8 and 9 present the number (in thou-
sands) of all nodes and the remaining nodes, respectively, in the
branch-and-cut tree explored by CPLEX.

In all of the moderate instances, ub2O = ubTS ≤ ubEX. In other
words, the exact method was not able to outperform the heuris-
tics in any of the moderate instances. Moreover, in all of these
instances, 2-Opt and tabu search got the same solutions, which
outperform the solutions of Exact method.

Table 10 reports tEX for moderate instances. t2O and tTS for these
instances are reported in Table 11. Moreover, the effective time
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Fig. 2. Probability distributions of total cost for assignments x1, x2, x3, x6 , and x7 in simulation results from normal, triangular, and uniform distributions for uncertain
material flows.
Table 3
Summary of the simulation for assignments x1-x7 from normal, triangular, and uniform distributions.

Results from truncated normal distribution Results from symmetric triangular distribution Results from uniform distribution
X E(C(X)) σ (C(X)) C0.95(X) C0.99(X) Cmax(X) E(C(X)) σ (C(X)) C0.95(X) C0.99(X) Cmax(X) E(C(X)) σ (C(X)) C0.95(X) C0.99(X) Cmax(X)

X1 4925943 183732 5231124 5353466 5593676 4918265 225385 5287349 5429806 5654092 4922488 318317 5450792 5633086 5983884
X2 4625630 130569 4840172 4931579 5068223 4621308 161304 4887201 4984846 5196267 4623809 225544 4996801 5131568 5374541
X3 4591398 91583 4741441 4801663 4917547 4587817 113873 4778583 4855632 5044375 4592330 157627 4853489 4941902 5160347
X4 4588999 92627 4740427 4803665 4913413 4585379 115035 4778064 4852616 5047118 4590022 159355 4854413 4944834 5170011
X5 4606422 89165 4753007 4812793 4913326 4603112 111119 4788751 4863401 5048748 4607485 153171 4860528 4947754 5154671
X6 4674114 83334 4809191 4868794 4992954 4671868 102937 4840905 4907941 5108466 4672872 143334 4906776 5003099 5161551
X7 4678934 89033 4824954 4881580 4990871 4675413 110900 4860870 4934662 5081722 4679470 153151 4931791 5026293 5235742
Table 4
CPU time spent on the Exact method (tEX) for easy instances.

Protection level Γ
Group |J| 1 2 4 8 16 32 64

chr12a 22 2 4 6 9 18 – –
chr12b 22 0.6 0.9 1 1.7 2.4 – –
chr12c 22 6 6 8 14 22 – –
chr15a 28 39 36 49 90 123 – –
chr15b 28 7 8 11 24 38 – –
chr15c 28 53 81 129 362 579 – –
esc16a 76 33 15 31 56 184 278 235
esc16d 42 17 31 26 26 28 34 –
esc16e 42 1.1 1.1 1.3 1.5 1.8 1.8 –
esc16g 42 2 2.1 3 4 7 8 –
esc16i 30 2 2 2.2 2.1 1.7 – –
esc16j 24 0.3 0.3 0.4 0.4 0.4 – –
ER07 20 0.1 0.2 0.3 0.4 0.6 – –
ER08 29 0.5 0.5 0.7 1.2 2.5 5 –
ER09 31 2.3 3 4 7 11 22 –
ER10 43 10 12 20 32 65 169 –
ER11 55 83 95 114 129 235 647 2865
scr12 56 8 10 10 15 30 68 –
tai10a 90 41 46 54 67 115 175 397
tai10b 90 5 7 8 8 11 15 15
tai12b 127 11 12 13 17 24 17 13

teff2O (teffTS ) and the effective iteration itereff2O (itereffTS ) for 2-Opt (tabu
search), which are the time and iteration count of discovering the
best solution in these algorithms, are reported in this table. We
see that the robust cost was not improved by 2-Opt or tabu search
after their effective time and iteration count. Based on the results in
Table 11, teff2O and teffTS are almost 5% of t2O and tTS, respectively. Note
that t2O and tTS depend on iteration limits that we set for 2-Opt
and tabu search, respectively. Similarly, we denoted the number of
effective restarts in tabu search by Restarteff2O.

Hard instances were solved heuristically by 2-Opt and tabu
search methods for all values of the protection level Γ ∈ {1, 2, 4,
8, 16, 32, 64, 128, 256} such that Γ ≤ Γmax, and the results are
reported in Table 12.We omitted Exactmethod for these instances,
because there was no hope to solve them exactly. For these cases,
we reported gap#2O and gap#TS in Table 12 which are defined as

gap#2O =
ub2O − min{ub2O, ubTS}

ub2O
× 100,

and

gap#TS =
ubTS − min{ub2O, ubTS}

ubTS
× 100.

Note that for the cases with the same value of n, increasing |J|
results in a significant increase in t2O and tTS. This is because, in each
iteration of 2-Opt and tabu search, computing ∆2

ab for each pair of
facilities a, b ∈ N in (31) requires sorting a vector of length |J|.

Recalling from Section 5.2, we used an iteration limit of 100×n2

for tabu search and 10 × n2 restarts for 2-Opt. With this setting,
according to Tables 11 and 12, for most of the moderate and hard
instances, t2O and tTS are very close to each other. But, teffTS and
itereffTS are almost half of teff2O and itereff2O, respectively, in most cases.
Furthermore, based on the values of gap#2O and gap#TS in Table 12,
formost hard instances, the quality of solutions obtained from tabu
search is better than 2-Opt.

By comparing t2O and tTS in Table 12, with the time spent
to obtain approximate minmax regret solutions (Tables 6 and 7
in [45]), it is observed that t2O and tTS are about 10%–30%ofminmax
regret solution time for most hard instances.

6. Conclusions and future research

We studied the robust quadratic assignment problem where
uncertain interfacility flows belong to a budgeted uncertainty set.
Unlike minmax regret QAP, in the robust optimization approach
with budgeted uncertainty framework, finding the worst-case
scenario and evaluating the robust cost of a given assignment can
be done in polynomial time. Therefore, the proposed heuristic and
exact methods for RQAP in this paper are significantly faster than
heuristic and exact methods, respectively, for minmax regret QAP.
Moreover, the robust approach with budgeted uncertainty has an
adjustable conservativeness, and the decisionmaker can get a pool
of solutions with different levels of conservativeness. The main
contributions of the paper are as follows:
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Table 5
CPU time spent on 2-Opt (t2O) and tabu search (tTS) for easy instances.

Protection level Γ
t2O (s) tTS (s)

Group 1 2 4 8 16 32 64 Avg 1 2 4 8 16 32 64 Avg

chr12a 1.2 1.3 1.1 1.1 1.2 – – 1.2 1.5 1.4 1.4 1.4 1.6 – – 1.5
chr12b 1.3 1.3 1.1 1.2 1.4 – – 1.3 1.5 1.5 1.4 1.5 1.6 – – 1.5
chr12c 1.2 1.2 1.1 1.1 1 – – 1.1 1.5 1.4 1.4 1.3 1.4 – – 1.4
chr15a 5 4.7 4.3 4.9 4.7 – – 4.7 4.4 4.2 4.2 4.4 4.4 – – 4.3
chr15b 4.4 5.1 5.1 4.6 4.8 – – 4.8 4.4 4.7 5 4.6 4.4 – – 4.6
chr15c 4.2 3.8 4 4.2 4.1 – – 4.1 4 4.3 4.1 4.8 4.7 – – 4.4
esc16a 11 11 12 11 11 11 12 11 16 15 15 15 15 16 16 15
esc16d 6.8 6.8 6.5 7.1 6.7 6.5 – 6.7 8.1 7.8 8.6 8.1 8.7 7.7 – 8.2
esc16e 5.9 6 5.8 5.9 5.3 5.8 – 5.8 8.5 8.6 8.2 9.2 8.3 8.6 – 8.6
esc16g 5.1 4.9 5.1 5.7 5.1 5.5 – 5.2 7.7 7.3 8.2 8.9 8.4 8.5 – 8.2
esc16i 3.6 3.8 3.6 3.5 3.6 – – 3.6 5.6 6.2 5.9 5.7 6.2 – – 5.9
esc16j 2.9 2.6 2.9 2.8 2.7 – – 2.8 5.2 5.1 5.4 5.6 5.5 – – 5.4
ER07 0.05 0.05 0.05 0.05 0.05 – – 0.05 0.1 0.1 0.1 0.1 0.1 – – 0.1
ER08 0.1 0.1 0.1 0.1 0.1 0.2 – 0.1 0.2 0.2 0.2 0.2 0.2 0.3 – 0.2
ER09 0.3 0.3 0.3 0.3 0.3 0.3 – 0.3 0.5 0.4 0.5 0.5 0.5 0.6 – 0.5
ER10 0.9 0.8 0.8 1 0.9 0.9 – 0.9 1.3 1.3 1.2 1.4 1.3 1.3 – 1.3
ER11 1.9 1.8 1.7 2.1 2 2 2.7 1.9 2.5 2.3 2.3 2.7 2.4 2.7 3.3 2.5
scr12 2.7 2.8 2.8 2.5 2.8 2.8 – 2.7 3.3 3.5 3.7 3.1 3.7 3.8 – 3.5
tai10a 1.9 1.8 1.8 1.7 1.9 1.8 1.8 1.8 3.2 3.1 3.1 2.9 3.2 3.1 3.1 3.1
tai10b 1.9 2 1.9 1.9 1.8 1.7 1.9 1.9 2.8 3 2.9 2.9 2.7 2.6 2.9 2.8
tai12b 7.1 8.2 7.9 7.8 8.1 7.7 7.5 7.7 8.9 9.3 9.1 9 9.1 8.4 8.6 8.9
Table 6
Number of optimally solved moderate instances by the exact method.

Protection level Γ
Group |J| 1 2 4 8 16 32 64 128

chr18b 34 10 10 10 8 3 1 – –
had12 132 10 10 10 10 9 8 0 0
nug12 132 10 10 10 10 10 6 0 1
rou12 132 10 10 10 10 10 6 0 0
ER12 67 10 10 10 10 10 8 – –
ER13 73 9 9 9 9 7 3 0 –
tai12a 132 10 10 10 10 10 8 1 0

Table 7
Optimality gap (%) for moderate instances using exact method.

Protection level Γ
Group 1 2 4 8 16 32 64 128

chr18b 0 0 0 0.21 6.1 11.6 – –
had12 0 0 0 0 0.2 1.1 15.2 26.6
nug12 0 0 0 0 0 1.1 12.5 12.1
rou12 0 0 0 0 0 2.4 12.9 19.9
ER12 0 0 0 0 0 0.14 – –
ER13 0.08 0.17 0.24 0.68 1.7 7 18.8 –
tai12a 0 0 0 0 0 0.81 7.9 13.9

Table 8
Number of all branch-and-cut nodes (in thousands) for moderate instances.

Protection level Γ
Group 1 2 4 8 16 32 64 128

chr18b 5.7 8.8 87 826 1720 2078 – –
had12 206 195 222 337 490 907 956 501
nug12 361 403 536 629 864 1277 1009 1077
rou12 342 402 438 565 788 1080 893 825
ER12 241 218 203 297 551 1359 – –
ER13 1191 1349 1407 1396 1491 1705 1360 –
tai12a 308 327 376 372 570 838 891 864

1. A mathematical programming formulation of the RQAP under
budgeted uncertainty.

2. A linearized MIP formulation for RQAP which was solved by
CPLEX as an exact method.

3. Two heuristic methods (2-Opt and tabu search) to solve RQAP.
4. Extensive experimental results.
Table 9
Number of remaining branch-and-cut nodes (in thousands) formoderate instances.

Protection level Γ
Group 1 2 4 8 16 32 64 128

chr18b 0 0 0 110 861 1395 – –
had12 0 0 0 0 84 176 814 465
nug12 0 0 0 0 0 107 575 631
rou12 0 0 0 0 0 221 581 691
ER12 0 0 0 0 0 23 – –
ER13 55 107 93 220 389 897 1105 –
tai12a 0 0 0 0 0 104 400 610

Table 10
CPU time spent on Exact method (tEX) for moderate instances.

Protection level Γ
Group 1 2 4 8 16 32 64 128

chr18b 28 42 225 2245 5797 6948 – –
had12 610 613 737 1136 1760 4140 7200 7200
nug12 971 1088 1486 2052 3325 5558 7200 7047
rou12 960 1179 1370 1833 3264 5673 7200 7200
ER12 419 364 391 613 1209 4300 – –
ER13 2307 2494 2965 3052 3920 6198 7200 –
tai12a 955 985 1124 1167 2307 4209 7096 7200

Table 11
Heuristic results for moderate instances.

2-Opt tabu search
Group t2O teff2O itereff2O Restarteff2O tTS teffTS itereffTS

chr18b 11.1 0.62 1605 165 11.7 0.31 932
had12 9.3 0.37 454 71 7.1 0.22 325
nug12 9 0.93 1234 214 6 0.65 1009
rou12 9.3 0.49 592 99 6.7 0.25 356
ER12 4.7 0.06 171 23 4 0.13 391
ER13 6.9 0.17 338 41 6.6 0.19 457
tai12a 9.9 0.54 663 110 7.1 0.21 302

The main conclusions are as follows:

1. The Exact method is well-suited for easy instances (e.g. in-
stances with n ≤ 11).

2. In the Exact method, CPU time significantly increases by
increasing the protection level Γ .
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Table 12
Experimental results for hard instances.

2-Opt tabu search
Group |J| Γmax t2O teff2O itereff2O Restarteff2O gap#2O tTS teffTS itereffTS gap#TS
esc16b 184 128 39 0.5 274 34 0 43 0.3 164 0
esc16c 101 64 20 0.3 332 41 0 22 0.2 220 0
esc16h 229 128 55 0.4 155 17 0 54 0.5 221 0
had14 181 128 24 1.8 1120 139 0 26 0.7 530 0
had18 305 256 137 40 9770 947 0.07 120 11 2692 0
lipa20a 368 256 262 133 21017 1999 0.39 222 82 14634 0.01
lipa20b 358 256 242 117 20583 1931 0.73 210 43 8068 0.02
nug14 181 128 18 3.2 2433 340 0.03 22 1.7 1342 0
nug15 210 128 29 8.3 4960 640 0.12 32 3.3 2269 0
nug16a 240 128 45 15 7315 887 0.28 48 6.5 3496 0
nug16b 238 128 42 16 8079 985 0.34 45 5.6 3175 0
nug17 272 256 68 27 10182 1147 0.45 68 11 4721 0.01
rou15 210 128 29 7.4 4513 584 0.02 32 2.6 1836 0
rou20 378 256 245 128 22702 2098 0.74 205 58 11232 0.01
ER15 108 128 22 1 1012 102 0 20 0.8 908 0
ER20 192 128 177 24 8126 541 0 112 12 4109 0
ER25 291 256 802 238 37447 1850 0.03 378 69 11321 0
ER30 432 256 3671 1608 104384 3940 0.08 1351 305 20199 0.01
scr15 84 64 12 0.8 1448 150 0 11 1 2012 0
scr20 124 64 83 24 15921 1149 0.04 56 9.2 6509 0
tai15a 208 128 37 10 4909 625 0.02 42 4 2212 0
tai15b 210 128 42 2.3 1210 116 0 38 0.8 480 0
tai17a 266 256 81 35 10429 1206 0.32 84 17 5758 0
tai20a 374 256 239 127 22472 2128 0.94 208 59 11260 0.01
tai20b 380 256 262 117 24728 1775 1.47 176 57 12832 0.01
3. In 2-Opt and tabu search, for the cases with the same n,
CPU times significantly increase by increasing the number of
uncertain flows |J|.

4. In all moderate instances, 2-Opt and tabu search methods
outperformed the Exact method.

5. In most hard instances, in the same time and number of
iterations, tabu search outperformed 2-Opt. Thus, tabu search
is recommended for larger instances.

A possible direction for future research may be developing
tighter formulations for the linear equivalent of RQAP. Moreover,
researchers can design other heuristic methods to solve RQAP and
compare the results with 2-Opt and tabu search.
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