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a b s t r a c t

In this paper, a new linguistic aggregation operator in linguistic environment is established and the de-
sirable properties: monotonic, focus effect, idempotent, commutative and bounded are studied. Then, a
new restricted ordering relation on the n-dimensional linguistic scales is proposed which satisfies strict
pareto-dominance and is restricted by a weighting vector. A practical multiple attribute decision making
methodology for an uncertain linguistic environment is proposed based on the proposed operator. An ex-
ample is given to illustrate the rationality and validity of the newapproach to decisionmaking application.

© 2015 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Due to the complexities of objectivity and the vagueness of hu-
man thinking, it is often more appropriate to use qualitative in-
formation rather than quantitative information when dealing with
practical evaluation and decision making problems (see for in-
stance [1–8], etc.).

In general, experts deal with many problems using qualitative
information usually expressed through linguistic terms [9]. For in-
stance, when evaluating the speed of a car, linguistic terms such
as ‘‘slow’’, ‘‘medium’’, ‘‘fast’’, or ‘‘very fast’’ can be used; similarly,
when evaluating the ‘‘comfort’’ or ‘‘design’’ of a car, linguistic terms
such as ‘‘bad’’,‘‘tolerable’’, ‘‘average’’, or ‘‘good’’ are usually used.
In essence, practical problem solving using qualitative information
involves a procedure in which the computing is conducted using
words. These linguistic approaches generally represent the quali-
tative aspects of a decision and, therefore, require the specification
of linguistic values using linguistic variables, which are words or
sentences in a natural or artificial language [10,11].

In recent years, decision-making problems have become a pop-
ular research field [12–18]. Such problems require the collection
of decision-making information about the attribute values and
attribute weights from a group of decision makers. One impor-
tant concept in decision-making problems is the compilation of
decision-making information and the sorting and fusing of a repre-
sentative output. The process of merging all collected information
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0/).
into a concrete representative value is known as information ag-
gregation [19]. Therefore, aggregation operators are essential tools
when seeking to deal with information fusion in decision-making
problems and have, themselves, become an extensively studied
field. From the literature review, there are generally two main
types ofmethods formodeling and aggregating qualitative linguis-
tic information.

(I) The computational model. Several computational models
have been proposed to manipulate linguistic information and
the main ones as follows: (1) The approximate model based on
extensionprinciple [20–23],which converts the linguistic informa-
tion into fuzzy numbers by means of the corresponding member-
ship functions. However, this model needs to assumemembership
function, and so it is often difficult to choose an appropriate mem-
bership function in an actual application [24,25]. (2) The symbolic
method based on ordinal scales [26–29], which uses the order of
the linguistic term set and makes computations on the subscripts
of linguistic terms. However, this model requires a linguistic ap-
proximation of the finally computed result in the initial term sets,
which can lead to inaccuracy and result in a loss of information
[20,30]. (3) The 2-tuple linguistic model [5,30–32], in which the
linguistic information is represented by means of 2-tuple (l, α),
in which l is a linguistic term and α is a numerical value sup-
porting the information of the symbolic translation. However, as
Herrera and Martínez themselves have pointed out in Ref. [33],
this method is only suitable for linguistic variables with equidis-
tant labels. (4) The model that computes with words directly
[34–37]. This method is straightforward and very convenient for
the calculations. However, while aggregating the information, the
aggregated results may not match any of the initial term sets; for
example, 0.5 ⊗ l3 = l1.5. Because virtual term sets only appear in

le under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.

http://dx.doi.org/10.1016/j.orp.2015.09.001
http://www.elsevier.com/locate/orp
http://www.elsevier.com/locate/orp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orp.2015.09.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:lanjibin@gxu.edu.cn
mailto:tochenyuwen@163.com
http://dx.doi.org/10.1016/j.orp.2015.09.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


J. Lan et al. / Operations Research Perspectives 2 (2015) 156–164 157
the operation and in the comparisons, what is the meaning of the
l1.5 in the initial term set L? Therefore, the results using thismethod
have caused controversy in some cases. Given a linguistic term set,
aggregate results which are also in the initial linguistic terms may
be more appropriate and more easily comprehended.

(II) Aggregation of Linguistic Information. Several types of ag-
gregation operators have been proposed as follows [38–40]: con-
junctive operators (which lie under theminimum, such as t-norms,
copulas and quasi-copulas), disjunctive operators (which lie over
the maximum, such as t-conorms, dual quasi-copulas and dual
copulas), averaging or median operators (which lie between the
minimum and maximum, such as means, geometric means on the
unit interval, andOWA’s), andmixed operators (those not included
in any of the previous classes, such as uninorms and nullnorms).
Clearly, the basic aggregation operations of the min and max have
been shown to cause somenon-compensatory difficulties and have
also been shown to violate pareto-dominance. T-norms generalize
the intersection and operator while the t-conorms generalize the
intersection or operator. However, the boundary conditions cre-
ate counterintuitive ties in the process of aggregation based on
t-norms and t-conorms. To recover from the pareto-dominance
violation limitation for the min and max, Dubois has proposed
the aggregation operations Discrimin(Discrimax) and Leximin
(Leximax) through a refinement of the min(max)-ordering [40].
However, these operators have also been found to have some
drawbacks as they are non-compensatory and conflict with in-
tuition. For instance, (1, 2, 3, 3, 3, 3) >Discrimin(1, 1, 6, 6, 6, 6): the
many 6′s are unable to compensate for a 1 and beat as many 3′s.

Based upon the above analyses, the aim of this paper is to de-
velop a new linguistic aggregation operator to dealwith qualitative
linguistic information. The remainder of this paper is organized as
follows. Section 2 introduces the basic definitions and operations
used in the remaining parts of the paper. In Section 3, we develop
the distance measures for a linguistic term set based on linguistic
scale functions. In Section 4, we propose a new uncertain linguis-
tic aggregation operator based on linguistic evaluation scales and
study the desirable properties of the proposed aggregation opera-
tor. In Section 5, a new restricted ordering relation on n-dimension
linguistic scales is proposed. In Section 6, an approach to multi-
ple attribute decision making with linguistic information is given
based on the proposed aggregation operator. Finally, an illustrative
example is given to show the rationality and validity of the pro-
posed method in Section 7 and conclusions are discussed in Sec-
tion 8.

2. Preliminaries

In this section, we briefly review some basic definitions
and operations of linguistic terms (linguistic variables). These
definitions and operations are used in the remaining parts of the
paper.

2.1. The linguistic term sets and their extension

Let L = {li|i = 0, 1, . . . , g} (g = 2h, h ∈ N) be a totally ordered
discrete and finite term set, in which li represents a possible value
for a linguistic variable, N is the set of natural numbers. It is
necessary for the linguistic term set L to satisfy the following
additional characteristics [41–43]:

(1) Order relation: li ≤ lj, if i ≤ j;
(2) Negation operator: neg(li) = lj, where i = g − j;
(3) Maximization operator: max{li, lj} = li, if i ≥ j;
(4) Minimization operator: min{li, lj} = li, if i ≤ j.
To avoid a loss of information, the discrete linguistic term set
L can be extended to a continuous setL = {lx|0 ≤ x ≤ g}, where
lx ∈ L implies lx belongs to the original linguistic term set and lx ∉ L
implies lx belongs to a virtual linguistic term set.

Definition 1. For any lx, ly ∈L, a binary relation ≼ is defined by

lx ≼ ly ⇔ x ≤ y and lx = ly ⇔ x = y.

Property 1. For any lx, ly, lz ∈ L, ≼ satisfies the following four
properties:
(1) (Comparability) Either lx ≺ ly or ly ≺ lx or lx = ly holds.
(2) (Reflexivity) lx ≼ lx, for any x ∈ [0, g].
(3) (Antisymmetry) lx ≼ ly and ly ≼ lx imply lx = ly.
(4) (Transitivity) lx ≼ ly and ly ≼ lz imply lx ≼ lz .

Proof. (1) For any x, y ∈ [0, g], we have either x < y or y < x or
x = y.

If x < y, then lx ≺ ly.
If y < x, then ly ≺ lx.
If x = y, then lx = ly.

(2) For any x ∈ [0, g], since x ≤ x, then lx ≼ lx.
(3) lx ≼ ly ⇒ x ≤ y, and ly ≼ lx ⇒ y ≤ x, so we have x = y and

lx = ly.
(4) lx ≼ ly ⇒ x ≤ y and ly ≼ lz ⇒ y ≤ z, so we have l ≤ z and

lx ≼ lz .

Therefore, (L, ≼) is a totally ordered set.

2.2. Linguistic scale functions and their extension

In linguistic term sets, to use the data more efficiently and to
flexibly express the semantics, it is necessary to explore and define
some new linguistic scale functions to transform the linguistic
information into a numeric value.

Definition 2 (See [25]). Let L = {li|i = 0, 1, . . . , g} be a linguistic
term set and θi ∈ R+ (R+

= r|r ≥ 0, r ∈ R) be a numeric
value, respectively. The linguistic scale function υ that conducts
the mapping from li to θi (i = 0, 1, 2, . . . , g) is defined as follows:

υ : li → θi (i = 0, 1, 2, . . . , g)

where 0 ≤ θ0 < θ1 < · · · < θg .

Clearly, function υ is a strictly monotonically increasing
functionwith regard to subscript i. The value θi, in fact, denotes the
semantics of the linguistic terms [25]. Without a loss of generality,
the value θi can be constrained in the unit interval [0, 1]. To
avoid a loss of information and to facilitate the calculation, the
above linguistic scale function υ can be expanded to the extended
continuous linguistic term setL as follows:

Definition 3. LetL be the extended continuous linguistic term set
and lx ∈L, then the numeric value θx can be determined using the
following function:

u(lx) = θx, x ∈ [0, g].

Here u :L → [0, 1] is monotonic with the following properties:
(1) u(l0) = 0;
(2) u(lg) = 1;
(3) u(ly) ≥ u(lx) if y ≥ x.

Similarly, u is a strictly monotonically increasing and continu-
ous function. The inverse function of u exists and is denoted as u−1.

In [25], Wang and Wu developed two kinds of composite
assessment scale expressions based on the exponential scale. To
reflect the changed rate in the numerical value of the term set,
three kinds of scale functions can be considered depending on the
function convexity.
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(1) Neutral linguistic scale function:

u1(lx) =
x
g
, (x ∈ [0, g]).

In this case, the evaluation scale of the linguistic infor-
mation given above is divided by the average. The absolute
deviation between the adjacent linguistic subscripts remains
unchanged.

(2) Optimistic linguistic scale function:

u2(lx) =


x
g

t

, (x ∈ [0, g]).

Here 1 < t . In this case, the absolute deviation between the
adjacent linguistic subscripts increases.

(3) Pessimistic linguistic scale function:

u3(lx) =


x
g

s

, (x ∈ [0, g]).

Here 0 < s < 1. In this case, the absolute deviation between
the adjacent linguistic subscripts will decrease.

In the above three scale functions, as the linguistic subscripts
i (i = 0, 1, 2, . . . , g) increase, the absolute deviation between
the adjacent linguistic subscripts may increase, decrease or
remain unchanged. As is well known, decision-makers need to
assume certain risks in practical decision making processes, but
different decision-makers have different attitudes toward risk. This
situation is handled by the utility function from expected utility
theory, which, in some cases, can be considered when selecting
linguistic scale functions.

In practical decision making, if the decision-maker is a risk
taker, then an optimistic linguistic scale function is adopted.
Conversely, if the decision-maker is risk averse, then a pessimistic
linguistic scale function is adopted. If the decision-maker has a
medium risk perspective, then a neutral linguistic scale function
is adopted.

3. Distance measures for linguistic term set

Distance measures have been used widely to measure the
deviation degrees between different arguments. Based on the
aforementioned linguistic scale functions, distance measures for
the linguistic term set can be defined as follows.

Definition 4. Let L = {li|i = 0, 1, . . . , g} be a linguistic term set
and d : L × L → [0, 1] be a binary function. For any li, lj ∈ L, d is
defined as follows:

d(li, lj) =
u(li) − u(lj)

 . (1)

Here u :L → [0, 1] is an extension of the linguistic scale functions
such that u(l0) = 0, u(lg) = 1.

Example 1. Assume that L = {l0, l1, l2, l3, l4},u1(lx) =
x
4 , u2(lx) =

( x
4 )

2, u3(lx) = ( x
4 )

1
2 , then

du1(l0, l1) =

0 −
1
4

 =
1
4
.

Similarly, we have du1(l1, l2) = du1(l2, l3) = du1(l3, l4) =
1
4 .

Similarly, we have

du2(l0, l1) =
1
16

, du2(l1, l2) =
3
16

,

du2(l2, l3) =
5
16

, du2(l3, l4) =
7
16
and

du3(l0, l1) =
1
2
, du3(l1, l2) =

√
2 − 1
2

,

du3(l2, l3) =

√
3 −

√
2

2
, du3(l3, l4) =

2 −
√
3

2
.

Property 2. For any li, lj, lk ∈ L, d satisfies the following four
conditions:

(1) 0 ≤ d(li, lj) ≤ 1;
(2) d(li, lj) = 0 if and only if li = lj;
(3) (Commutativity) d(li, lj) = d(lj, li);
(4) (Triangle inequality) d(li, lk) ≤ d(li, lj) + d(lj, lk).

Proof. The proofs are obvious and thus omitted.

4. New aggregation operator in linguistic environment

In a multiple attribute decision making problem with linguistic
information, there are generally a finite set of alternatives and a
collection of attributes. It collects the information about attribute
values and attribute weights, needs weighted aggregation of the
attribute values across all attributes for each alternative to get an
overall attribute value.

Similarly, in a group decision making problem with linguistic
information, for each alternative, the decision makers generally
need to provide their evaluations by means of linguistic variables.
Then, all the individual evaluation information is fused to become
a group opinion, which can sufficiently reflects the opinion of
every member of the group. As a result, the group evaluation of
the alternatives should be as close as possible to all the decision
makers’ individual opinion. This means that the computation of
the distance between all individual evaluations and the aggregated
group evaluation on a given alternative is an integral part of the
solution to a linguistic decision making problem.

For convenience,we consider a linguistic decisionmaking prob-
lem with n(n ≥ 1) decision makers. For a given alternative, each
decision maker gives a preference value lxi (i = 1, 2, . . . , n), lxi ∈

L, L = {li|i = 0, 1, . . . , g}. w = (w1, w2, . . . , wn)
T is the

weight vector of decision makers, where wi ≥ 0 (i = 0, 1,
. . . , n),

n
i=1 wi = 1. To obtain the group opinion, we construct

the following objective function

f (u(lx)) =

n
i=1

wi(d(lxi , lx))
2

=

n
i=1

wi(u(lxi) − u(lx))2

= u2(lx) − 2


n

i=1

wiu(lxi)


u(lx) +

n
i=1

wiu2(lxi), (2)

where x ∈ [0, g], that is, lx ∈L and u :L → [0, 1] is an extension
of the linguistic scale functions.

Obviously, the symmetrical axis of f (u(lx)) is

u(lx) =

n
i=1

wiu(lxi). (3)

Since u is a strictly monotonic increasing and continuous
function which satisfies: u(l0) = 0, u(lg) = 1. Thus,

lx = u−1(u(lx)) = u−1


n

i=1

wiu(lxi)


. (4)
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Consider the mathematical programming model as follows:

(MP1) min
lx∈L

F(lx) =

n
i=1

wi(d(lxi , lx))
2

=

n
i=1

wi(u(lxi) − u(lx))2. (5)

Theorem 1. Let l∗ be the optimal solution for (MP1).

(i) If lx ∈ L, then l∗ = lx = u−1(
n

i=1 wiu(lxi)).
(ii) If lx ∉ L, then there exists a non-negative integer j (0 ≤ j ≤

g − 1), such that lj ≺ lx ≺ lj+1. There are three cases as follows:
If u(lj+1) − u(lx) < u(lx) − u(lj), then l∗ = lj+1.
If u(lj+1) − u(lx) > u(lx) − u(lj), then l∗ = lj.
If u(lj+1) − u(lx) = u(lx) − u(lj), then l∗ = lj or l∗ = lj+1.

Proof. Based on the operational properties of the quadraticmodel,
it is easy to prove, so the proof steps are omitted here.

Now, we present the linguistic aggregation operator generated
by the quadratic model.

Definition 5. Let (lx1 , lx2 , . . . , lxn) ∈ Ln. An uncertain linguistic
aggregation operator (ULAF ) of dimension n is a mapping ULAF :

Ln → L according to the following formula:

ULAF (lx1 , lx2 , . . . , lxn) = min{lj|F(lj) = min
lx∈L

F(lx)}. (6)

The ULAF operator is monotonic, focus effect, idempotent,
commutative and bounded. These desirable properties can be
provided as in the following property.

Property 3. Let (lx1 , lx2 , . . . , lxn) and (ly1 , ly2 , . . . , lyn) be two
linguistic argument collections, then the ULAF operator satisfies:

(i) (Monotonic) If lxi ≼ lyi for all i (0 ≤ i ≤ n), then

ULAF (lx1 , lx2 , . . . , lx2) ≼ ULAF (ly1 , ly2 , . . . , lyn).

(ii) (Focus effect (See [44])) For the weighting vector w, if wk is
sufficiently close to 1, and lxk ≺ lyk , then

ULAF (lx1 , lx2 , . . . , lxn) ≺ ULAF (ly1 , ly2 , . . . , lyn).

(iii) (Idempotent) If lxi = l for all i (0 ≤ i ≤ n) and l ∈ L, then

ULAF (lx1 , lx2 , . . . , lxn) = l.

(iv) (Commutative) If w = (w1, w2, . . . , wn)
T

= ( 1
n ,

1
n , . . . ,

1
n )

T ,
then

ULAF (lx1 , lx2 , . . . , lxn) = ULAF (ly1 , ly2 , . . . , lyn),

where (ly1 , ly2 , . . . , lyn) is any a permutation of (lx1 , lx2 , . . . ,
lxn).

(v) (Bounded) For any the weighting vector w, the following
inequality holds:

min{lx1 , lx2 , . . . , lxn} ≼ ULAF (lx1 , lx2 , . . . , lxn)

≼ max{lx1 , lx2 , . . . , lxn}.

Proof. (i) Let us give the proof of monotonic firstly.
Since lxi ≼ lyi for all i (0 ≤ i ≤ n), then

u(lx) =

n
i=1

wiu(lxi) < u(ly) =

n
i=1

wiu(lyi).

If lx ∈ L, then ULAF (lx1 , lx2 , . . . , lxn) = lx ≺ ly, so,

ULAF (lx1 , lx2 , . . . , lxn) ≼ ULAF (ly1 , ly2 , . . . , lyn).
If lx ∉ L, then a non-negative integer j (0 ≤ j ≤ g − 1) exists, such
that lj ≺ lx ≺ lj+1. We distinguish the two cases,

(1) If u(lx) − u(lj) ≥ (lj+1) − u(lx), then ULAF (lx1 , lx2 , . . . , lxn) =

lj+1.
Obviously, u(ly)−u(lj) > u(lj+1)−u(ly) and lj ≺ ly. In this case,

if lj+1 ≺ ly, then

ULAF (lx1 , lx2 , . . . , lxn) ≼ ULAF (ly1 , ly2 , . . . , lyn).

Else if lj ≺ ly ≼ lj+1, then ULAF (ly1 , ly2 , . . . , lyn) = lj+1 and

ULAF (lx1 , lx2 , . . . , lxn) = ULAF (ly1 , ly2 , . . . , lyn).

(2) If u(lx) − u(lj) < (lj+1) − u(lx), then ULAF (lx1 , lx2 , . . . , lxn) =

lj.
Since lj < u−1(

n
i=1 wiu(lxi)) ≤ u−1(

n
i=1 wiu(lyi)), it is clear

that lj ≼ ULAF (ly1 , ly2 , . . . , lyn), therefore

ULAF (lx1 , lx2 , . . . , lxn) ≼ ULAF (ly1 , ly2 , . . . , lyn).

This concludes the proof of monotonic.
(ii) Note that the proofs of focus effect, idempotent, commuta-

tive and bounded are straightforward and thus omitted.

Example 2. Let us consider a simple example to illustrate the
focus effect of the ULAF operator. Let (lx1 , lx2 , lx3 , lx4 , lx5) =

(l5, l5, l5, l1, l5), (ly1 , ly2 , ly3 , ly4 , ly5) = (l1, l2, l4, l3, l1). Take w =

(0.004, 0.002, 0.002, 0.99, 0.002)T and u(lx) =
x
6 . Obviously,

lx4 = l1 ≺ ly4 = l3 and w4 is sufficiently close to 1. We
have u(lx) ≈ 0.173 and u(ly) = 0.498. So, we can obtain ULAF
(lx1 , lx2 , lx3 , lx4 , lx5) = ULAF (l5, l5, l5, l1, l5) = l1. Similarly,wehave
ULAF (ly1 , ly2 , ly3 , ly4 , ly5) = ULAF (l1, l2, l4, l3, l1) = l3. So

ULAF (l5, l5, l5, l1, l5) ≺ ULAF (l1, l2, l4, l3, l1).

From a practical point of view, the focus effectmeans that if one
alternative satisfies themost important criterionwhere the ratings
of the two alternatives differ then it should be preferred [44].

Property 4. Let (lx1 , lx2 , . . . , lxn), (ly1 , ly2 , . . . , lyn) ∈ Ln.
If
n

i=1 wiu(lxi) ≤
n

i=1 wiu(lyi), then

ULAF (lx1 , lx2 , . . . , lxn) ≼ ULAF (ly1 , ly2 , . . . , lyn).

Proof. Since Property 4 can be easily proven, the proof is omitted.

Let u⃗ = (lu1 , lu2 , . . . , lun), v⃗ = (lv1 , lv2 , . . . , lvn) ∈ Ln.
Strict pareto-dominance is defined as u⃗≺p v⃗ if and only if ∀i =

1, . . . , n, lui ≤ lvi and ∃j, luj < lvj (see [44]).

Example 3. Let (lx1 , lx2 , lx3 , lx4 , lx5) = (l1, l2, l3, l2, l1), (ly1 , ly2 ,
ly3 , ly4 , ly5) = (l1, l2, l3, l3, l1). Obviously, lxi ≼ lyi (i = 1, 2, 3, 5)
and lx4 ≺ ly4 .

Take w = (0.2, 0.2, 0.2, 0.2, 0.2)T and u(lx) =
1
6x, we have5

i=1 wiu(lxi) = 0.3,
5

i=1 wiu(lyi) =
1
3 . So ULAF (l1, l2, l3,

l2, l1) = ULAF (l1, l2, l3, l3, l1) = l2.

Obviously, (l1, l2, l3, l2, l1) ≺p(l1, l2, l3, l3, l1). Hence, the above
example shows that the result of the aggregation operator ULAF
does not satisfy strict pareto-dominance and conflicts with the
intuition.

5. Ordering relation on Ln

From Example 3 and the aforementioned analysis, the uncer-
tain linguistic aggregation operator ULAF violates strict pareto-
dominance, so the aggregated result conflicts with the intuition in
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some cases. To overcome this drawback, a new restricted ordering
relation is proposed as follows:

Definition 6. Let L = {l0, l1, . . . , lg} be a linguistic term set. For
any (lx1 , lx2 , . . . , lxn), (ly1 , ly2 , . . . , lyn) ∈ Ln, a binary relation -w

on Ln is defined by

(lx1 , lx2 , . . . , lxn) -w(ly1 , ly2 , . . . , lyn) ⇔

n
i=1

wiu(lxi) ≤

n
i=1

wiu(lyi)

and

(lx1 , lx2 , . . . , lxn) ∼w(ly1 , ly2 , . . . , lyn)

⇔

n
i=1

wiu(lxi) =

n
i=1

wiu(lyi).

Here u : L → [0, 1] is an extension of linguistic scale functions
such that u(l0) = 0, u(lg) = 1. w = (w1, w2, . . . , wn)

T is the
weighting vector, such that 0 ≤ wi ≤ 1 (i = 1, 2, . . . , n) andn

i=1 wi = 1.

Property 5. For any (lx1 , lx2 , . . . , lxn), (ly1 , ly2 , . . . , lyn), (lz1 , lz2 ,
. . . , lzn) ∈ Ln, the binary relation -w satisfies the following five prop-
erties:

(1) (Comparability)
Either (lx1 , lx2 , . . . , lxn) ≺w(ly1 , ly2 , . . . , lyn)
or (ly1 , ly2 , . . . , lyn) ≺w(lx1 , lx2 , . . . , lxn)
or (lx1 , lx2 , . . . , lxn) ∼w(ly1 , ly2 , . . . , lyn) holds.

(2) (Reflexivity) (lx1 , lx2 , . . . , lxn) -w(lx1 , lx2 , . . . , lxn).
(3) (Antisymmetry)

If (lx1 , lx2 , . . . , lxn) -w(ly1 , ly2 , . . . , lyn), (ly1 , ly2 , . . . , lyn)
-w(lx1 , lx2 , . . . , lxn), then (lx1 , lx2 , . . . , lxn) ∼w(ly1 , ly2 , . . . , lyn).

(4) (Transitivity)
If (lx1 , lx2 , . . . , lxn) -w(ly1 , ly2 , . . . , lyn), (ly1 , ly2 , . . . , lyn)

-w(lz1 , lz2 , . . . , lzn), then (lx1 , lx2 , . . . , lxn) -w(lz1 , lz2 , . . . , lzn).
(5) (Strict pareto-dominance)

If lxi ≼ lyi (i = 1, . . . , n) and j exists such that lxj ≺ lyj , then
(lx1 , lx2 , . . . , lxn) ≺w(ly1 , ly2 , . . . , lyn).

Proof. Let (lx1 , lx2 , . . . , lxn), (ly1 , ly2 , . . . , lyn), (lz1 , lz2 , . . . , lzn) be
any collection of L.

(1) Since (lx1 , lx2 , . . . , lxn), (ly1 , ly2 , . . . , lyn) ∈ Ln, we have

either
n

i=1

wiu(lxi) <

n
i=1

wiu(lyi)

or
n

i=1

wiu(lyi) <

n
i=1

wiu(lxi)

or
n

i=1

wiu(lxi) =

n
i=1

wiu(lyi).

If
n

i=1 wiu(lxi) <
n

i=1 wiu(lyi), then (lx1 , lx2 , . . . , lxn)
≺w(ly1 , ly2 , . . . , lyn).

If
n

i=1 wiu(lyi) <
n

i=1 wiu(lxi), then (ly1 , ly2 , . . . , lyn)
≺w(lx1 , lx2 , . . . , lxn).

If
n

i=1 wiu(lyi) =
n

i=1 wiu(lxi), then (ly1 , ly2 , . . . , lyn)
∼w(lx1 , lx2 , . . . , lxn).

(2) Since
n

i=1 wiu(lxi) ≤
n

i=1 wiu(lxi), we have

(lx1 , lx2 , . . . , lxn) -w(lx1 , lx2 , . . . , lxn).
(3) From Definition 6, we have

(lx1 , lx2 , . . . , lxn) -w(ly1 , ly2 , . . . , lyn)

⇒

n
i=1

wiu(lxi) ≤

n
i=1

wiu(lyi)

and

(ly1 , ly2 , . . . , lyn) -w(lx1 , lx2 , . . . , lxn)

⇒

n
i=1

wiu(lyi) ≤

n
i=1

wiu(lxi).

So we have
n

i=1 wiu(lyi) =
n

i=1 wiu(lxi), then

(lx1 , lx2 , . . . , lxn) ∼w(ly1 , ly2 , . . . , lyn).

(4) From Definition 6, we have

(lx1 , lx2 , . . . , lxn) -w(ly1 , ly2 , . . . , lyn)

⇒

n
i=1

wiu(lxi) ≤

n
i=1

wiu(lyi)

and

(ly1 , ly2 , . . . , lyn) -w(lz1 , lz2 , . . . , lzn)

⇒

n
i=1

wiu(lyi) ≤

n
i=1

wiu(lzi).

We have
n

i=1 wiu(lxi) ≤
n

i=1 wiu(lzi), then

(lx1 , lx2 , . . . , lxn) -w(lz1 , lz2 , . . . , lzn).

(5) Since u is a strictly monotonic increasing and continuous
function, lxi ≼ lyi (i = 1, . . . , n) and j exists such that lxj ≺ lyj ,
we have u(lxi) ≤ u(lyi) and u(lxj) < u(lyj).

So
n

i=1 wiu(lxi) <
n

i=1 wiu(lyi), then (lx1 , lx2 , . . . , lxn)
≺w(ly1 , ly2 , . . . , lyn).

This proves that the ordering relation -w satisfies strict pareto-
dominance. This completes the proof. Hence, (Ln, -w) is a totally
ordered set.

Example 4. Let (lx1 , lx2 , lx3 , lx4 , lx5) = (l5, l2, l2, l1, l1), (ly1 , ly2 ,
ly3 , ly4 , ly5) = (l1, l2, l3, l2, l5). Take w1 = (0.6, 0.1, 0.1, 0.1, 0.1)T

and u(lx) =
1
6x, then we have

5
i=1 w1iu(lyi) = 0.3 <

5
i=1 w1i

u(lxi) = 0.6.
So (l1, l2, l3, l2, l5) ≺w1(l5, l2, l2, l1, l1).
Take w2 = (0.1, 0.1, 0.1, 0.1, 0.6)T and keep u unchanged. We

have
5

i=1

w2iu(lxi) ≈ 0.267 <

5
i=1

w2iu(lyi) ≈ 0.633.

So (l5, l2, l2, l1, l1) ≺w2(l1, l2, l3, l2, l5).

This example shows that the ordering relation -w is affected by
the weighting vector w.

Example 5. (lx1 , lx2 , lx3 , lx4 , lx5), (ly1 , ly2 , ly3 , ly4 , ly5) remain the
same as those in Example 3, and then lxi ≼ lyi (i = 1, 2, 3, 5), lx4 ≺

ly4 .
For any w = (w1, w2, w3, w4, w5)

T , such that 0 ≤ wi ≤

1,
5

i=1 wi = 1, take u(lx) =
1
6x, obviously,

5
i=1 wiu(lxi) <5

i=1 wiu(lyi). So

(l1, l2, l3, l2, l1) ≺w(l1, l2, l3, l3, l1).

Therefore, the ordering relation -w satisfies strict pareto-
dominance.
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6. Application in multiple attribute decision making

Through an analysis of the applicable condition for the ULAF
operator, we can see that it can be applied to similar situations
where information is assessed using linguistic variables. For
example, the ULAF operator can be applied to decision making in
areas such as statistics, engineering, economics, decision theory
and soft computing. Below, we focus on an application of the ULAF
operator to a decision-making problem. Specifically, we consider
a multi-attribute decision making problem, in which the attribute
weights are completely unknown.

Let A = {A1, A2, . . . , Am} be the discrete set of alternatives,
and C = {C1, C2, . . . , Cn} be the set of attributes, and w =

(w1, w2, . . . , wn)
T be the weight vector of attributes, which

satisfies 0 ≤ wj ≤ 1 and
n

j=1 wj = 1.
For each alternative Ai ∈ A, the expert gives a preference

value aij with respect to attribute Cj ∈ C . Thus, aij represents the
assessment information given by the expert about the jth attribute
of alternative Ai, where aij is a linguistic variable. That is aij ∈ L, so
all the preference values of the alternatives make up the decision-
making matrix A = (aij)m×n.

The maximizing deviation method was proposed by Wang
[45] to deal with multiple attribute decision making problems
with numerical information. If the performance values of each
alternative have little difference under an attribute, this indicates
that such an attribute plays a small role in the priority procedure.
Conversely, if some attributemakes the performance values among
all the alternatives have obvious differences, such an attribute
plays an important role in choosing the best alternative. So to
the view of sorting the alternatives, if one attribute has similar
attribute values across alternatives, it should be assigned a small
weight; otherwise, the attribute which makes larger deviations
should be evaluated a bigger weight, in spite of the degree of its
own importance. Especially, if all available alternatives score about
equallywith respect to a given attribute, then such an attributewill
be judged unimportant by most decision makers. In other words,
such an attribute should be assigned a very small weight. Wang
[45] suggested that zero should be assigned to the attribute of this
kind.

The deviation method is selected here to compute the
differences of the performance values of each alternative. Under
linguistic environment, for the attribute Cj ∈ C , the deviation of
alternative Ai to all the other alternatives can be defined as follows:

Hij =

m
k=1

d(aij, akj), i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n}. (7)

Let

Hj =

m
i=1

Hij, i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n}. (8)

Hj represents the deviation of all alternatives to other
alternatives for the attribute Cj.

Based on the aforementioned analysis, the weight vector w is
used to maximize all deviation values for all the attributes that
should be selected. So, we have

wj =
Hj
n

j=1
Hj

. (9)

Note that Hj represents the deviation from all alternatives to
other alternatives for the attribute Cj. The larger the Hj, the more
important the attribute Cj. Eq. (9) is obtained directly using eachHj
divided by the sum of Hj, which is considered as an explanation
to the maximizing method. The theoretical foundation of this
method is that the attribute providingmore information should be
evaluated a bigger weight [46].

To some extent, wj represents the weight of attribute Cj, there-
fore, the weight vector of attributes is w = (w1, w2, . . . , wn)

T .
Using (7)–(9), a simple and exact formula for determining the at-
tribute weights has also been obtained.

In the following, a new approach based on the uncertain
linguistic aggregation operator ULAF is proposed to solving
the multiple attribute decision making problems, in which the
information about attribute weights is completely unknown, and
the attribute values take the form of linguistic variables. The new
approach involves the following steps:

Step 1: Let A = (aij)m×n be a decision-making matrix, where aij ∈

L of each alternative Ai ∈ A of each attribute Cj ∈ C , and
w = (w1, w2, . . . , wn)

T be the weight vector of attributes,
where wj ∈ [0, 1], j = 1, 2, . . . , n.

Step 2: Suppose the weights of the attributes are completely
unknown, then Eq. (9) is used to calculate the weight
vector of attributes w = (w1, w2, . . . , wn)

T .
Step 3: The approximate function expression of u(li) can be

determined based on decision-maker’s attitude toward
risk. Utilize the ULAF operator to consolidate the decision-
making information to determine the collective evaluation
value of each alternative.

Step 4: Rank all the alternatives Ai (i = 1, 2, . . . ,m) (if there is no
difference in the collective evaluation value between two
alternatives Ai and Aj, according to the rules in Definition 6,
we can rank the alternatives Ai and Aj). Select the best
alternative(s).

Step 5: End.

7. Illustrative example

In this section, an illustrative example is provided to show the
feasibility and validity of the proposed aggregation operator. We
consider an investment selection decision making problem.

Example 6. Suppose an engineering investment company wants
to invest a sum of money in the best option. There is a panel with
four possible alternatives in which to invest the money:

A1 A car company;
A2 A food company;
A3 A computer company;
A4 An arms company.

The engineering investment company must make a decision
according to the following four attributes:

C1 Risk analysis;
C2 Growth analysis;
C3 Social–political impact analysis;
C4 Environmental impact analysis;
C5 Technological analysis.

The four alternatives Ai (i = 1, 2, 3, 4) are evaluated using the
linguistic term set

L = {l0 = None, l1 = Very low, l2 = Low,

l3 = Medium, l4 = High, l5 = Very high, l6 = Perfect}.

The performance evaluations for each alternative Ai (i =

1, 2, 3, 4) are listed in Table 1.
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Table 1
Linguistic decision-making matrix R.

aij c1 c2 c3 c4 c5

A1 l1 l2 l5 l3 l3
A2 l2 l3 l1 l4 l1
A3 l4 l4 l3 l5 l4
A4 l5 l2 l4 l4 l2

7.1. Illustration of the proposed approach

The approach proposed in Section 6 is employed to determine
the best alternative(s), as described in the following steps. Case
1: Taking the linguistic scale function u(lx) = x/6 (x ∈ [0, 6]),
the evaluation scale of the linguistic information given above
is divided by the average. The absolute deviation between the
adjacent linguistic subscripts remains unchanged, so then, the
linguistic label L is equidistant.

Step 1: Calculate the weight vector of the attributes.
Applying Eqs. (7)–(8), we get the deviation value Hj of

all alternatives to other alternatives for the attribute Cj:

H1 =
14
3

, H2 =
7
3
, H3 =

13
3

,

H4 = 2, H5 =
10
3

.

Use Eq. (9) to calculate the weight vector of the attributes

w = (0.28, 0.14, 0.26, 0.12, 0.2)T .

Step 2: Use Eq. (3) and the weight vector of the attributes w to
calculate

u(lA1x ) = w1u(l1) + w2u(l2) + w3u(l5)
+ w4u(l3) + w5u(l3)

= 0.28 ×
1
6

+ 0.14 ×
2
6

+ 0.26 ×
5
6

+ 0.12 ×
3
6

+ 0.2 ×
3
6

= 0.47,

u(lA2x ) = w1u(l2) + w2u(l3) + w3u(l1)
+ w4u(l4) + w5u(l1)

= 0.28 ×
2
6

+ 0.14 ×
3
6

+ 0.26 ×
1
6

+ 0.12 ×
4
6

+ 0.2 ×
1
6

= 0.32,

u(lA3x ) = w1u(l4) + w2u(l4) + w3u(l3)
+ w4u(l5) + w5u(l4)

= 0.28 ×
4
6

+ 0.14 ×
4
6

+ 0.26 ×
3
6

+ 0.12 ×
5
6

+ 0.2 ×
4
6

≈ 0.643,

u(lA4x ) = w1u(l5) + w2u(l2) + w3u(l4)
+ w4u(l4) + w5u(l2)

= 0.28 ×
5
6

+ 0.14 ×
2
6

+ 0.26 ×
4
6

+ 0.12 ×
4
6

+ 0.2 ×
2
6

= 0.6.

Step 3: Utilize the ULAF operator to aggregate the linguistic ar-
gument collections to determine the collective evaluation
value of each alternative Ai (i = 1, 2, 3, 4) as follows:

A1 : ULAF (l1, l2, l5, l3, l3) = l3,
A2 : ULAF (l2, l3, l1, l4, l1) = l2,
A3 : ULAF (l4, l4, l3, l5, l4) = l4,
A4 : ULAF (l5, l2, l4, l4, l2) = l4.

Step 4: Although A3 and A4 have the same collective evaluation
value, according to Definition 6 and u(lA2x ) < u(lA1x ) <

u(lA4x ) < u(lA3x ), then

A2 ≺w A1 ≺w A4 ≺w A3.

Thus the best alternative is A3.

Case 2: Taking the linguistic scale function u(lx) = (x/6)2 (x ∈

[0, 6]), the absolute deviation between the adjacent linguistic
subscripts increases, so the linguistic label L is non-equidistant.
In such a case, as Herrera and Martínez themselves have pointed
out in Ref. [33], the 2-tuple linguistic representation model is
unable to deal with the non-equidistant labels. However, the
proposed method in this paper is able to overcome this limitation,
as described in the following steps.

Step 1: The weight vector of the attributes remains the same as in
case 1, w = (0.28, 0.14, 0.26, 0.12, 0.2)T .

Step 2: Use Eq. (3) and the weight vector of the attributes w to
calculate

u(lA1x ) = w1u(l1) + w2u(l2) + w3u(l5)
+ w4u(l3) + w5u(l3)

= 0.28 ×
1
36

+ 0.14 ×
4
36

+ 0.26 ×
25
36

+ 0.12 ×
9
36

+ 0.2 ×
9
36

≈ 0.284,

u(lA2x ) = w1u(l2) + w2u(l3) + w3u(l1)
+ w4u(l4) + w5u(l1)

= 0.28 ×
4
36

+ 0.14 ×
9
36

+ 0.26 ×
1
36

+ 0.12 ×
16
36

+ 0.2 ×
1
36

≈ 0.132,

u(lA3x ) = w1u(l4) + w2u(l4) + w3u(l3)
+ w4u(l5) + w5u(l4)

= 0.28 ×
16
36

+ 0.14 ×
16
36

+ 0.26 ×
9
36

+ 0.12 ×
25
36

+ 0.2 ×
16
36

≈ 0.424,

u(lA4x ) = w1u(l5) + w2u(l2) + w3u(l4)
+ w4u(l4) + w5u(l2)

= 0.28 ×
25
36

+ 0.14 ×
4
36

+ 0.26 ×
16
36

+ 0.12 ×
16
36

+ 0.2 ×
4
36

≈ 0.401.

Step 3: Utilize the ULAF operator to aggregate the linguistic ar-
gument collections to determine the collective evaluation
value of each alternative Ai (i = 1, 2, 3, 4) as follows:

A1 : ULAF (l1, l2, l5, l3, l3) = l3,
A2 : ULAF (l2, l3, l1, l4, l1) = l2,
A3 : ULAF (l4, l4, l3, l5, l4) = l4,
A4 : ULAF (l5, l2, l4, l4, l2) = l4.
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Step 4: Although A3 and A4 have the same collective evaluation
value, according to Definition 6 and u(lA2x ) < u(lA1x ) <

u(lA4x ) < u(lA3x ), then

A2 ≺w A1 ≺w A4 ≺w A3.

Thus the best alternative is A3.
Obviously, the final results in the above two cases are the
same.

7.2. Comparison analysis and discussion

To further test the validity of the multiple attribute decision
making method proposed in this paper, a comparison analysis is
conducted using the method proposed by Wu and Chen [46] and
the analysis is based on the same illustrative example described
above.

Using the multiple attribute decision making method based on
the LWAA operator [46], the overall assessment of the alternative
A1 can be determined as follows:

LWAA(l1, l2, l5, l3, l3)
= 0.28 × l1 + 0.14 × l2+0.26 × l5+0.12 × l3+0.2 × l3
= l0.28×1 + l0.14×2 + l0.26×5 + l0.12×3 + l0.2×3

= l0.28×1+0.14×2+0.26×5+0.12×3+0.2×3 = l2.82.

Analogously, the overall assessment of the other alternatives
can be obtained:

LWAA(l2, l3, l1, l4, l1) = l1.92,
LWAA(l4, l4, l3, l5, l4) = l3.86,
LWAA(l5, l2, l4, l4, l2) = l3.6.

Then, the rank ordering among the alternative is A2 ≺ A1 ≺

A4 ≺ A3.

Obviously, the two methods have the same ranking results.
Therefore, the method proposed in this paper is rational and valid.

Although the selection order is the same, the results of the
LWAA may not match any of the initial term sets. For example,
LWAA(l1, l2, l5, l3, l3) = l2.82 ∉ L. In such a case, as Wang et al. [47]
have pointed out in their introduction, there is an awareness that
l2.82 does not have any syntax or semantics assigned, because such
a virtual linguistic term makes sense only in comparison and in
operation. Moreover, in the LWAA calculation process, the product
between the numerical value and the linguistic variable is usually
employed to calculate the alternative collective evaluation value.
For example, 0.28×l1, under themeaning of linguistic label,means
‘‘0.28 × Very low’’. However, what does ‘‘0.28 × Very low’’ mean
in the actual decision problem? Therefore, this method has its own
weaknesses.

The main difference that the ULAF from other operators is that
it converts the linguistic variable to the unit interval [0, 1] using
the linguistic scale function and consequently effectively avoids
the problems caused by the product between the numerical values
and linguistic variables.

Furthermore, the main advantage of using the ULAF operator is
that the aggregated results belong to the initial linguistic terms,
which is more appropriate and more easily comprehended. As
Herrera andMartínez pointed out in Ref. [33], the 2-tuple linguistic
representation model is only suitable for linguistic variables
with equidistant labels. The proposed method in this paper is
able to overcome this limitation as the ULAF operator can be
used to aggregate linguistic variables with non-equidistant labels.
Consequently, the proposed method is effective and advantageous
in dealing with multiple attribute decision making problems.
8. Conclusions

In this paper, we provided a tentative method to establish
an uncertain linguistic aggregation ULAF operator in linguistic
environment and studied some desirable properties of the
proposed aggregation operator. Further, a new restricted ordering
relation on n-dimensional linguistic scales was proposed. The
new restricted ordering relation satisfies strict pareto-dominance
and is restricted by the weighting vector. Based on the proposed
aggregation operator and the new ordering relation, we obtained
a new multiple attribute decision making method.
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