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a b s t r a c t 

The beta distribution has traditionally been employed in the PERT methodology and generally used for 

modeling bounded continuous random variables based on expert’s judgment. The impossibility of es- 

timating four parameters from the three values provided by the expert when the beta distribution is 

assumed to be the underlying distribution has been widely debated. This paper presents the generalized 

bicubic distribution as a good alternative to the beta distribution since, when the variance depends on the 

mode, the generalized bicubic distribution approximates the kurtosis of the Gaussian distribution better 

than the beta distribution. In addition, this distribution presents good properties in the PERT method- 

ology in relation to moderation and conservatism criteria. Two empirical applications are presented to 

demonstrate the adequateness of this new distribution. 

© 2016 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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. Introduction 

The beta distribution has traditionally been applied in different

elds as a bounded distribution alternative to the normal distri-

ution. In addition, its use has been proposed when no data are

vailable but only the information provided by an expert about

he optimistic ( a ), most likely ( m ) and pessimistic ( b ) values. This

ethodology, originally proposed in the context of the Project

valuation and Review Technique (PERT), has been widely applied

n important projects, such as the Concorde plane [1,2] , and has

ven been included as a recommended practice in the Project

anagement Book of Knowledge [3] . Some authors have even

tated that PERT was applied in the Polaris Missile system [4–7] ,

lthough this fact has been questioned by many authors, such as

ngwall [8] based on an updated study of Sapolsky’ book [9] . 

The need to work with distributions defined on a bounded do-

ain and with different degrees of asymmetry has justified the

se of the beta distribution rather than the Gaussian distribution

n the PERT methodology and generally when working under ex-
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ert’s judgment [10,11] . However, the use of the beta distribution

ncounters some drawbacks since it is not possible to estimate the

our parameters of the beta distribution from the three values pro-

ided by the expert. Consequently, expressions (1) and (2) , pro-

osed by Malcolm et al. [12] cannot be directly obtained from the

robability density function (pdf) of a beta distribution: 

[ X ] = 

a + 4 m + b 

6 

(1) 

nd 

ar [ X ] = 

(b − a ) 2 

36 

. (2) 

These facts have generated a great discussion that continues to-

ay. First, Sasieni [13] questioned the historically repeated formu-

as presented by Malcolm et al. [12] and provided a new expres-

ion for the expected value (see expression (3) ), which is followed

y the expression of the variance provided by Golenko–Ginzburg

14] (see expression (4) ): 

[ X ] = 

a + km + b 

k + 2 

(3) 

nd 

ar [ X ] = 

k 2 (m − a )(b − m ) + (k + 1)(b − a ) 2 

(k + 3)(k + 2) 2 
. (4) 
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Table 1 

Studies about distributions in the PERT methodology. 

Author/s Research 

Parks and Ramsing [40] Introduced the Compound Poisson distribution 

Kotiah and Wallance 

[41] 

Used a maximum entropy approach that leads to a 

truncated normal distribution 

Kumaraswamy [42] Introduced the Kumaraswamy distribution 

Sculli and Wong [43] Explored the errors involved in the approximation 

of both the maximum and sum of two 

independent beta random variables 

Berny [44] Introduced a new distribution with four 

parameters 

Dodin and Sirvanci [45] Proposed an extreme value distribution 

Johnson [46] Used the triangular distribution as a proxy for the 

beta distribution 

Johnson [47] Studied the accuracy of a number of 

approximations using the gamma, lognormal and 

F distributions 

Cottrell [48] Used an approximation of the normal distribution 

to determine expected time and variance using 

two time estimates 

Kotz and vand Dorp 

[49] 

Provided a discussion of novel bounded 

distributions alternative to the beta one 

Abdelkader [50] Developed the moment’s method when activities 

are Weibull distributed 

García et al. [51] Suggested the application of the two-sided power 

distribution presented by van Dorp and Kotz [52] 

Mohan et al. [53] Suggested a two parameter lognormal 

approximation 

Hahn [35] Proposed the beta rectangular distribution 

García et al. [54] Proposed the generalized biparabolic distribution 

Hahn and López-Martín 

[55] 

Proposed the tilted beta distribution 
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Sasieni [13] also raised several questions related to the assump-

tions considered by Malcolm et al. [12] . He not only showed that

expressions (1) and (2) cannot be obtained from the pdf of the beta

distribution but also reported that the variance ignores the modal

value. Note that expression (1) is equal to expression (3) when

k = 4 . The question posed by Sasieni [13] was how to obtain and

justify this concrete value for the parameter k . Littlefield and Ran-

dolph [15] and Gallagher [16] provided some of the first answers

to these questions. 

A definitive answer to the question raised by Sasieni was pro-

vided by Herrerías et al. [17] , in the same vein as Kamburowski

[18] . These authors showed that the value of k = 4 originates from

the intersection between the constant variance beta subfamily (a

set of beta distributions with the same variance as a normal distri-

bution truncated at ± 2.66, σ 2 = 1 / 36 , [5,11] ) and the mesokurtic

beta subfamily (a set of beta distributions with the same coeffi-

cient of kurtosis as the normal distribution, β2 = 3 ). In a separate

study, Xinghua [19] obtained the classic PERT expressions through

interpolation using the Chebyshev quadratic polynomial. This con-

crete type of beta distribution has been proposed as a good candi-

date for modeling bounded continuous random variables only with

the information provided by an expert not only in project manage-

ment but also in different fields, such as probabilistic resource as-

sessment [20] , construction duration [21,22] , and engineering [23] ,

among others. However, the presence of heavy tails in some ar-

eas, such as physics, hydrology, meteorology, engineering and fi-

nance (see, e.g., [24–30] , requires the use of alternative distribu-

tions. Thus, many authors have noted that the use of the beta dis-

tribution is only an assumption and not a definitive conclusion. 

Clark [5] reported that the author has no information concern-

ing distributions of activity times; in particular, it is not suggested

that the beta or any other distribution is appropriate . Following Mac-

Crimmon and Ryaec [31] and Moder and Rodgers [32] , Perry and

Greig [33] affirmed that the original PERT formulae employ the mode

and endpoints to estimate the mean and standard deviation of subjec-

tive probability distributions. Though widely used, they have met with

criticism for their inaccuracy, and for their being limited to the beta

distribution when there is not reason why the distribution should be

beta . Ajiboye [34] added that the assumption of a beta distribution

is just an assumption to approximate the distribution of activity dura-

tions, which can be dispensed with if necessary or validated through

empirical study . As stated by Clark [5] , the analysis requires a dis-

tribution, and the beta distribution is the first to come to the au-

thor’s mind, but it is required to use its constant variance version

to allow the estimation of the four parameters of the beta distri-

bution from the three points provided by the expert. This fact has

been widely criticized ( [35,36] ) because the constant variance beta

distribution ignores the most likely value, which could be under-

stood as the most committed value provided by the expert. Hahn

[35] even stated that the constant variance assumption may be in

conflict with reality . For this reason, there are many studies focused

on finding an alternative underlying distribution in the area of the

PERT methodology. 

In this sense, several authors have suggested some alternative

distributions (see Table 1 ). In contrast, Hadju and Bokor [37] re-

cently concluded that the precise estimation of the ‘three points’

has considerably greater significance on the project duration than

the applied activity distributions. However, this statement is based

only on the comparison of the beta, uniform, lognormal and tri-

angular distributions. Moreover, Tesfaye et al. [38] and Peters

[39] recommended special care regarding the selection and moti-

vation of the underlying distribution. 

In this paper, we present the generalized bicubic distribution as

an alternative to the beta distribution for modeling bounded ran-

dom variables under uncertainty. The primary motivation for this

work is to prove that the generalized bicubic distribution is more
ppropriate for the purpose of PERT than the beta and other dis-

ributions used in PERT. Among other properties, the generalized

icubic distribution approximates the kurtosis of the Gaussian dis-

ribution better than the beta distribution, and it also verifies the

oderation and conservatism criteria, which will be presented in

ection 5 . 

The remainder of this paper is organized as follows.

ection 2 introduces the generalized bicubic distribution, de-

oted as GBC, and some of its stochastic characteristics together

ith the standard version of the generalized bicubic distribution

SGBC). Section 3 shows that the standard generalized bicubic

istribution is consistent with the original motivation of Malcolm

nd that it can be a good alternative in the PERT methodology.

ection 4 presents the different subfamilies of the standard gener-

lized bicubic distribution and the classical subfamily distribution.

ection 5 analyzes the behavior of the standard generalized bicu-

ic distribution in relation to the moderation and conservatism

riteria. The obtained results are compared with the standard

wo-sided power (denoted as STSP) and the standard generalized

iparabolic distributions (denoted as SGBP). In Section 6 , two

llustrative examples using Monte Carlo simulations are provided.

n Section 7 , we discuss the main conclusions. 

. The generalized bicubic distribution 

Based on the generating density presented by van Dorp and

otz [56] , López [57] introduced the bicubic distribution, whose

robability density function is defined as 

f (x ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

−2 

(m − a ) 3 (b − a ) 
( x − a ) 

2 
( 2 x − 3 m + a ) if a < x ≤ m, 

−2 

(m − b) 3 (b − a ) 
( x − b ) 

2 
( 2 x − 3 m + b ) if m < x < b. 

(5)

onsidering t = 

x −a 
b−a 

and M = 

m −a 
b−a 

, the standard bicubic distribu-

ion is obtained, whose probability density function is given by ex-
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Fig. 2. Kurtosis of beta PERT Eq. (2) (thick solid line); STSP( M , 5) [52] (dot-dashed 

line); SGBP(0, M , 1, 4.9367) (thin solid line); SGBC(0, M , 1,3) (dotted line); and kur- 

tosis of normal distribution (dashed line). 
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1 Recall that the expert is questioned in relation to the mode and not to the ex- 

pected value. 
ression (6) : 

(t) = 

⎧ ⎨ 

⎩ 

6 

[ (
t 
M 

)2 − 2 
3 

(
t 
M 

)3 
] 

if 0 < t ≤ M, 

6 

[ (
1 −t 

1 −M 

)2 − 2 
3 

(
1 −t 

1 −M 

)3 
] 

if M < t < 1 , 

(6) 

 new parameter n is introduced with the goal of increasing the

exibility of the distribution in relation to asymmetry and kurtosis.

n this case, it is stated that the random variable T is distributed

ccording to a standard generalized bicubic distribution, denoted

s SGBC(0, M , 1, n ) with n ≥ 0, if and only if its probability density

unction is given by: 

 ( t ) = 

3(n + 3)(n + 4) 

n + 6 

×
{ (

t 
M 

)n +2 − 2 
3 

(
t 
M 

)n +3 
if 0 < t ≤ M,(

1 −t 
1 −M 

)n +2 − 2 
3 

(
1 −t 

1 −M 

)n +3 
if M < t < 1 .

(7) 

From (7) , the expressions of the expected value and variance

re obtained as: 

[ T ] = 

Mn 

2 + (9 M + 1) n + 12 M + 9 

(n + 5)(n + 6) 
(8) 

nd 

ar [ T ] = 

(
2 M 

2 − 2 M + 1 
)
n 2 + 

(
30 M 

2 − 30 M + 16 
)
n + 

(
36 M 

2 − 36 M + 39 
)

( n + 5 ) 
2 
( n + 6 ) 

2 
. 

(9) 

Fig. 1 analyzes the effect of the distribution parameters ( M and

 ) on the skewness and coefficient of kurtosis [58] . Note that the

GBC distribution increases the coverage of the beta distribution

ver the area of unimodal distributions in a manner similar to the

tandard two-sided power (STSP) [56] and the standard general-

zed biparabolic distributions (SGBP) [54] . For this reason, we con-

ider that the SGBC distribution could serve as an alternative to

he beta distribution in all fields where it is applied. 

. The generalized bicubic distribution and the PERT 

ssumptions 

It is possible to interpret that in his original idea, Malcolm

12] pretended to use an underlying distribution similar to the nor-

al distribution but asymmetric. Thus, the underlying distribution

hould have the same coefficient of kurtosis as the Gaussian dis-

ribution and the same variance as a normal distribution truncated

t ± 2.66. This last assumption was recently questioned by Hahn

35] and Herrerías–Velasco et al. [36] , who argued that a constant

ariance may be in direct conflict with reality. 
Except for the constant variance assumption, the SGBC dis-

ribution satisfies the remainder of the assumptions for n = 3 .

ig. 2 shows the kurtosis of the SGBC distribution compared with

he SGBP, STSP and the beta PERT distributions. Note that the

GBP(0,M,1,4.9367) and SGBC(0,M,1,3) distributions have a kurtosis

lose to 3 (which is the Gaussian kurtosis) when M ∈ (0.32, 0.68). 

Conversely, note that for n = 3 , expression (8) becomes expres-

ion (1) , and the variance depends on M and is given by the fol-

owing expression: 

ar [ T ] = 

3 M 

2 − 3 M + 2 

108 

. (10) 

In this case, the variance of the SGBC(0, M , 1, 3) distribution has

ts minimum at M = 

1 
2 , whereas the variance of the beta distribu-

ion proposed by [36] has a maximum at this point. We believe

hat this fact deserves to be analyzed in more detail. 

Recall that the goal of the PERT methodology is to estimate E [ X ]

nd var [ X ] from the classical values ( a, m, b ). In addition, it is sat-

sfied that E [ X ] will be always between 

a + b 
2 and m or m and 

a + b 
2 ( 1 2 

nd M or M and 

1 
2 with the standard variable). Thus, if the expert

rovides 1 a value of m = 

a + b 
2 

(
M = 

1 
2 

)
, then the expected value of

ERT has been completely fixed with this information. From an-

ther perspective, within the PERT context, the expert is asked

bout the optimistic ( a ), most likely ( m ) and pessimistic ( b ) val-

es, or by standardizing (0, M , 1). Regardless, the expert provides

hree values that can be interpreted as a discrete distribution if

he expression (3) is accepted as the expected value. The variance

f this discrete distribution is the expression (11) that presents a

inimum for M = 1 / 2 . 

ar [ T ] = 

1 + k ( 1 − 2 ( 1 − M ) M ) 

( k + 2 ) 
2 

. (11) 

Once the optimistic and pessimistic values are provided, the ex-

ert can select any value between them as the most likely value. If

he selected most likely value is the average point of the interval

M = 

1 
2 

)
, then the corresponding discrete distribution will present

 minimum variance. Thus, the information provided by the expert

an be interpreted as a discrete distribution, and the confidence

f this information will be greater as the variance is lower. Then,

he continuous underlying distribution in the PERT methodology

hould also have a minimum variance for M = 

1 
2 , which occurs

ith the triangular, beta rectangular, STSP, SGBP and SGBC distri-

utions, among others. Regardless, this could become a philosoph-

cal question depending on the interpretation given to the inten-

ions of the expert. 
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In conclusion, we consider that, despite the criticism, the as-

sumption of constant variance appears to be consistent when the

beta distribution is the underlying distribution in PERT since the

expression of the non-constant variance for the beta distribution

takes a maximum at the point M = 1 / 2 ( m = 

a + b 
2 ), which is when

the expert completely determines the expected value based only

on the mode. Consequently, we consider it appropriate to assume

constant variance for the beta distribution in PERT, and we will

continue with the SGBC with constant variance to follow with the

initial motivation of Malcolm [12] . 

Conversely, it is possible to analyze the behavior of the variance

and kurtosis of SGBC for different values of n , attempting to ex-

press expression (8) in line with Sasieni [13] , expression (3) . Thus,

the following values for n and k are obtained 

n = λ − 9 , 

k = 

(λ − 9) 2 + 9(λ − 9) + 12 

λ
, 

for λ > 9. Fig. 3 shows that the variance of SGBC decreases as n in-

creases, and Fig. 4 shows that the kurtosis increases as n increases,

‘hovering’ around three (Gaussian kurtosis) for n = 2 . 

4. The subfamilies of the SGBC distribution in the PERT 

methodology. 

Kamburowski [18] and Herrerías et al. [17] are the only au-

thors that based their response to the question raised by Sasieni

[13] about the ‘mysterious’ formula of PERT on the similarity be-

tween the beta and the normal distributions regarding their vari-

ance and kurtosis. In fact, Herrerías et al. [17] described the classi-
al distribution of PERT methodology as the intersection of the con-

tant variance and the mesokurtic subfamilies of the beta distribu-

ion. Recall that the subfamily of constant variance is defined as

he set composed by the distributions with the same variance as

he normal distribution when the random variable is standardized.

onversely, the mesokurtic subfamily is defined as the set of dis-

ributions with a coefficient of kurtosis equal to three. 

Now, we perform a comparative study of the subfamilies of the

GBC, SGBP and STSP distributions. For this comparison, it is im-

ortant to note that the relation between parameter k in the beta

istribution and parameter n in the STSP distribution is given by

 = k + 1 [51] . This same relation holds between the SGBP and

GBC distributions. In this situation, each probabilistic model has

he same range. 

Fig. 5 shows the relation between n and M for all the studied

ubfamilies. As shown, the mesokurtic beta distribution has no re-

ults for values of M on the interval (0.27, 0.72). We observe simi-

ar behavior when comparing the constant variance subfamilies of

he STSP, SGBP and SGBC distributions, where the parameter n is

igher when the mode becomes closer to 0 and 1 endpoints. The

pposite occurs when comparing the mesokurtic subfamilies of the

TSP, SGBP and SGBC distributions, i.e., the parameter n is lower

hen the mode is close to 0 and 1. Note that the SGBC distribu-

ion shows lower values of n for every value of M defined in the

nterval (0, 1) in the constant variance and the mesokurtic cases,

s shown in Fig. 5 . However, note that the graphical behavior of

he three probabilistic models is very similar. 

Table 2 presents the intersection points between the subfam-

lies. Note that the constant variance subfamily of the SGBC dis-

ribution, denoted as CV-SGBC, intersects only with the mesokur-

ic subfamily of the SGBC distribution, denoted as M-SGBC. As a

pecial situation, the constant variance STSP distribution, CV-STSP,

ntersects with all the mesokurtic subfamilies. 

As mentioned above, the classical beta distribution [17] is the

ntersection between the mesokurtic and the constant variance

ubfamilies of the beta distribution, and it is obtained when k = 4 .

able 3 presents the expressions of the expected values of the clas-

ical distributions supported on a bounded interval [ a, b ]. 

From the values shown in Table 2, Table 4 presents the values

or M and n required for obtaining the classical STSP [51] , SGBP

54] and SGBC distributions. Table 4 also includes the expected

alue from which we conclude that the classical STSP distribution

s the one that presents the most moderate mean. 

. Moderation and conservation criteria 

In the context of PERT, it is assumed that if the probabilis-

ic model presents a centered expected value, i.e., an expected

alue close to 0.5, then it will be more moderate in its estima-

ions [59,60] . Thus, we will compare the expected value of each of

he distributions. 

Fig. 6 (A), (B) and (C) show the comparison between the es-

imated mean of each subfamily considering that M ∈ (0, 0.3], M

 [0.3, 0.7], and M ∈ [0.7, 1), respectively, and that n is obtained

rom the conditions of constant variance equal to 1/36 and a kur-

osis equal to three. It is clear that each distribution, except for the

esokurtic beta distribution, has a common point in M = 0 . 5 , as

hown in Fig. 6 (B). 

From these results, we have determined an order of modera-

ion among the models presented in Table 5 . As shown, when the

alue of M becomes closer to 0 and 1 ( M < 0.21 or M > 0.79), the

esokurtic STSP distribution (M-STSP) is the most moderate. How-

ver, when the mode obtains moderate values (between 0.21 and

.79), the constant variance SGBP and SGBC distributions exhibit

imilar behavior and are the most moderate in mean. Normally,

he expert will not provide a standard mode extreme value since it
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Mesokurtic beta

Constant variance beta

Mesokurtic SGBP

Mesokurtic STSP

Mesokurtic SGBC

Constant variance SGBC

Constant variance SGBP Constant variance STSP

n

M

Fig. 5. Relationship between n and M in all constant variance and mesokurtic subfamilies of the STSP, SGBP and SGBC distributions. 

Table 2 

Intersection points ( M, n ) among different mesokurtic and constant variance subfamilies. 

CV-Beta CV-STSP CV-SGBP CV-SGBC 

M-Beta (0.1464, 5) (0.0746, 3.55560) (0.0942, 3.83618) No solution 

(0.8535, 5) (0.9254, 3.55560) (0.9058, 3.83618) 

M-STSP No solution (0.2529, 3.02344) (0.3937, 3.26526) No solution 

(0.7471, 3.02344) (0.6063, 3.26526) 

M-SGBP No solution (0.0552, 3.63282) (0.1235, 3.74669) No solution 

(0.9448, 3.63282) (0.8765, 3.74669) 

M-SGBC No solution (0.4493, 2.78220) No solution (0.1256, 1.97037) 

(0.5507, 2.78220) (0.8743, 1.97037) 

Table 3 

Expected value of the classical distributions with support 

[ a, b ]. 

Distribution Expected value and variance 

Classical beta E[ X] = 

a +4 m + b 
6 

Classical TSP E[X] = 0.2885a + 0.5029m + 0.2885b 

Classical GBP E[X] = 0.2192a + 0.5160m + 0.2192b 

Classical GBC E[X] = 0.2396a + 0.5208m + 0.2396b 

Table 4 

Values for M, n and expected value for the classical STSP, SGBP and SGBC dis- 

tributions. 

Distribution n M E ( T ) 

Classical STSP 3.02344 0.25287 or 0.74713 0.375715 or 0.624285 

Classical SGBP 2.74669 0.12835 or 0.87165 0.308218 or 0.691782 

Classical SGBC 0.97037 0.12565 or 0.87435 0.305025 or 0.694975 
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Table 5 

Order of moderation of the mesokurtic and constant variance 

subfamilies of the STSP, SGBP and SGBC distributions. 

Intervals of mode ( M ) Ordered distributions 

0 < M < 0.123526 M-STSP > M-SGBP ∼ M-SGBC 

0.123526 < M < 0.21 M-STSP > CV-SGBP ∼ CV-SGBC 

0.21 < M < 0.252867 CV-SGBP ∼ CV-SGBC > M-STSP 

0.252867 < M < 0.5 CV-SGBP ∼ CV-SGBC > CV-STSP 

0.5 < M < 0.747133 CV-SGBP ∼ CV-SGBC > CV-STSP 

0.747133 < M < 0.79 CV-SGBP ∼ CV-SGBC > M-STSP 

0.79 < M < 0.876474 M-STSP > CV-SGBP ∼ CV-SGBC 

0.876474 < M < 1 M-STSP > M-SGBP ∼ M-SGBC 
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ill be a risky position. Thus, the CV-SGBP and CV-SGBC could be

onsidered to be the most moderate alternative distributions when

he standard mode varies from 0.21 to 0.79. 

Similar to the above section, we will now study the behavior

f each probabilistic model with respect to their conservatism. It

s stated that a probabilistic model is more conservative when it

as a maximum value in its variance [59,60] . Thus, if we have two

robabilistic models with the same mean, it appears to be better

o work with the distribution that has a greater estimated variance

o minimize the risk of concluding with optimistic results [59,60] . 

Fig. 7 shows the estimated variance of each distribution when

t belongs to the constant variance and mesokurtic subfamilies.

rom these results, we can describe the order of conservatism

f each probabilistic model summarized in Table 6 . Note that

orking with the constant variance subfamily, the different dis-
ributions have the same value since the variance of all distribu-

ions is equal to 1/36. This is why we have used the notation

CV subfamilies’ in Table 6 . We can conclude that the mesokurtic

TSP distribution is the most conservative model when M ∈ (0,

.252867) ∪ (0.747133, 1). In the other cases, when the standard

ode varies from 0.252867 to 0.747133, the CV subfamilies have

he maximum estimated variance. 

To summarize, note that the expert will generally provide a

oderate standard mode, and in this case, the CV-SGBC distribu-

ion will be the most moderate (together with the CV-SGBP dis-

ribution) and the most conservative (together with the remaining

onstant variance subfamilies). 

From another perspective, the intersection between the con-

tant variance and the mesokurtic subfamilies will make stochastic

ense if the corresponding estimations are similar between them.

he Chow structural change test allows the statistical homogene-

ty to be studied. If we fail to reject the null hypothesis, then

here is no structural change and the estimations are similar. In

he case of the subfamilies CV-SGBC and M-SGBC, we have that

 exp = 0 . 04932 , and then the estimations obtained by these sub-
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Table 6 

Order of conservatism of the mesokurtic and constant variance subfamilies of the beta, STSP, 

SGBP and SGBC distributions. 

Intervals of mode ( M ) Ordered distributions 

0 < M < 0.125649 M-STSP > M-Beta > M-SGBC ∼ M-SGBP > CV subfamilies 

0.125649 < M < 0.146437 M-STSP > M-Beta > CV subfamilies > M-SGBC > M-SGBP 

0.146437 < M < 0.252867 M-STSP > CV subfamilies > M-SGBP > M-SGBC > M-Beta 

0.252867 < M < 0.747133 CV subfamilies > M-STSP > M-SGBC > M-SGBP 

0.747133 < M < 0.853553 M-STSP > CV subfamilies > M-SGBC > M-SGBP > M-Beta 

0.853553 < M < 0.874351 M-STSP > M-Beta > CV subfamilies > M-SGBC > M-SGBP 

0.874351 < M < 1 M-STSP > M-Beta > M-SGBC ∼ M-SGBP > CV subfamilies 

Fig. 6. Estimation of the expected values for M-Beta (thick black solid), CV-Beta 

(thin black solid), M-STSP (green), CV-STSP (dotted), M-SGBP (cyan), CV-SGBP (pur- 

ple), M-SGBC (red), and CV-SGBC (blue). (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this 

article.) 

 

 

 

 

Fig. 7. Estimation of the variance values for M-Beta (thick black solid), CV-Beta 

(thin black solid), M-STSP (green), CV-STSP (dotted), M-SGBP (cyan), CV-SGBP (pur- 

ple), M-SGBC (red), and CV-SGBC (blue). (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this 

article.) 

Table 7 

Empirical application data proposed by Render [61] . 

Activity Description Predecessor a m b 

A Build internal components – 1 2 3 

B Modify roof and floor – 2 3 4 

C Construct collection stack A 1 2 3 

D Pour concrete and install frame B 2 4 6 

E Build high-temperature burner C 1 4 7 

F Install control system C 1 2 9 

G Install air pollution device D,E 3 4 1 

H Inspection and testing F,G 1 2 3 
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r  
families come from the same distribution (with a 95% of confi-

dence), and this fact makes the intersection between the constant

variance and the mesokurtic subfamilies more natural. 

6. Empirical applications 

We will now analyze the behavior of the classical beta, classical

STSP, classical SGBP and classical SGBC distributions in two em-
irical PERT applications previously proposed by Render [61] and

euwirth and Zelnick [62] , respectively. Following Hadju and Bokor

37] , we have included in the comparison the classical beta us-

ng −10% and + 10% durations for pessimistic, most likely and op-

imistic durations. 

.1. Empirical application 1 

This problem presented by Render [61] is based on a metal-

orks plant in Milwaukee, General Foundry, Inc., that is required

o install a complex air filter system on its main smokestack. The

ctivities involved in the project, the precedence relations among

hem, and the durations in weeks are shown in Table 7 . 

The critical path is given by A-C-E-G-H with an expected time

f 15 weeks to finish the activity. We will simulate the distribu-

ion of the total time required to perform the project one hundred

housand times by applying Monte Carlo simulations. 

Figs. 8 , 9 , 10 and 11 show the total variable project duration by

sing the classical distributions. Note that the behavior of each

robabilistic model is very similar. 

The main stochastic characteristics are shown in Table 8 . The

esults obtained using the classical SGBP and the classical SGBC
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Table 8 

Stochastic characteristics of the total project time variable for the classical beta, classical STSP, classical 

SGBP and classical SGBC distributions obtained by Monte Carlo simulations. 

Distribution Mean S. Deviation Skewness Kurtosis Interval 95% 

Classical beta 15.008165 1.855174 0.270186 2.931070 (11.660234, 18.870979) 

Classical beta −10% 13.501358 1.664028 0.274479 2.939714 (10.490845, 16.996131) 

Classical beta + 10% 16.495701 2.034742 0.282465 2.963557 (12.812710, 20.753840) 

Classical STSP 15.487874 1.801529 0.417302 3.007731 (12.382658, 19.395115) 

Classical SGBP 15.452421 1.692248 0.365241 2.983243 (12.482779, 19.085543) 

Classical SGBC 15.429422 1.687322 0.376980 2.992578 (12.481305, 19.050390) 

Fig. 8. Distribution of project duration using the classical beta (k = 4) distribution. 

Fig. 9. Distribution of project duration using the classical STSP (n = 3 . 02344) dis- 

tribution. 

Fig. 10. Distribution of project duration using the classical SGBP (n = 2 . 74669) dis- 

tribution. 
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Fig. 11. Distribution of project duration using the classical SGBC (n = 0 . 97037) dis- 

tribution. 

Fig. 12. Cumulative density function of the classical beta, classical beta −10% and 

classical beta +10% (solid), classical STSP (dashed), classical SGBP (dotted) and clas- 

sical SGBC (dot-dashed) distributions. 
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istributions are quite similar. Note that the estimations of the

tandard deviation and coefficient of kurtosis of the four distribu-

ions are close to the values of the normal distribution, as shown

n Table 8 , and consequently, the distribution used to estimate the

otal project duration retains the principal properties of the Gaus-

ian model. 

Note that the classical STSP, classical SGBP and classical SGBC

istributions are more prudent because the estimations of the av-

rage durations are higher than in the case of the classical beta

istribution. Furthermore, the classical STSP distribution is more
onservative in variance than the classical SGBP and classical SGBC

istributions. 

However, if we study the 95% confidence interval, we observe

hat the beta distribution presents the largest interval. The range

f this interval is 7.21. Conversely, the classical SGBC distribution

as the smallest interval. 

Fig. 12 shows the comparison among the four classical distribu-

ions studied in this paper together with the classical beta distri-

ution using −10% and +10% durations for pessimistic, most proba-

le and optimistic durations by following [37] . It is shown that the

lassical beta distribution is always above the other distributions.

his result implies that, for the same probability, in the classical

TSP, classical SGBP and classical SGBC distributions, the estimation

f the total project time is higher than the estimation provided by

he classical beta distribution. This is why we can conclude that

hese probabilistic models provide more prudent estimations. 
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Table 9 

Empirical application data proposed by Neuwirth and Zelnick [62] . 

Activity Description Predecessor a m b 

0 Reorganization approved – – – –

1 Administrator’s appointment announced 0 0.1 1 2 

2 Progress reporting system installed 1 1 3 4 

3 Personnel evaluations updated 2 4 6 12 

4 New position descriptions completed 2 0.1 2 4 

5 New personnel specifications completed 4 1 1.5 3 

6 New salary classifications determined 5 1 4 8 

7 Manpower forecasts completed to 1962 5 1 3 4 

8 Manpower forecasts completed to 1967 7 1 2 4 

9 Recruitment program launched 6 0.1 1 4 

9 Recruitment program launched 7 0.1 2 3 

10 Organization costs estimated 6 0.1 1 3 

10 Organization costs estimated 7 0.1 1 2 

11 Procedural system started 2 0.1 1 2 

12 Existing procedures documented 11 6 13 30 

13 Essential new procedures documented 12 10 12 40 

14 First stage completed 9, 10, 11, 13, 3, 8 0 0 0 

Fig. 13. Distribution of project duration using the classical beta (k = 4) distribution. 

Fig. 14. Distribution of project duration using the classical STSP (n = 3 . 02344) dis- 

tribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Distribution of project duration using the classical SGBP (n = 2 . 74669) dis- 

tribution. 

Fig. 16. Distribution of project duration using the classical SGBC (n = 0 . 97037) dis- 

tribution. 
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6.2. Empirical application 2 

We will now analyze the behavior of the classical beta, classical

STSP, classical SGBP and classical SGBC distributions in an empiri-

cal PERT application originally proposed by Neuwirth and Zelnick

[62] in relation to the installation of a new organizational struc-

ture. Table 9 shows the PERT network. We will simulate the distri-

bution of the total time required to conduct the project one hun-

dred thousand times by applying Monte Carlo simulations. 

Figs. 13 , 14 , 15 and 16 show the total variable project duration

by using the classical distributions. Note that the behavior of each

probabilistic model is very similar. 

The main stochastic characteristics are shown in Table 10 . Sim-

ilar to the first application, the results from the classical SGBP and

the classical SGBC distributions are quite similar. The four distribu-

tions provide estimations of the standard deviation and kurtosis

coefficient that are similar to the normal distribution, as shown
n Table 10 , and consequently, the distribution used to estimate

he total project duration retains the principal properties of the

aussian model. Note that the classical STSP and classical SGBP

istributions are more prudent because the estimations of the av-

rage durations are higher than in the case of the classical beta

istribution. Furthermore, the classical STSP distribution is more

onservative in variance. 

However, if we study the 95% confidence interval, we observe

hat the classical STSP distribution presents the largest interval.

he range of this interval is 26.08. Conversely, the classical SGBC

istribution has the smallest interval. 

Fig. 17 shows the comparison among the four classical distribu-

ions studied in this paper together with the classical beta distri-

ution using −10% and +10% durations for pessimistic, most proba-

le and optimistic durations by following [37] . It is shown that the

lassical beta distribution is always above the other distributions.

his result implies that, for the same probability, in the classical
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Table 10 

Stochastic characteristics of the total project time variable for the classical beta, classical STSP, classical SGBP 

and classical SGBC distributions obtained by Monte Carlo simulations. 

Distribution Mean S. Deviation Skewness Kurtosis Interval 95% 

Classical beta 35.869323 6.393357 0.470557 3.026389 (25.132198, 49.763173) 

Classical beta −10% 32.302552 5.764584 0.476537 3.033078 (22.641757, 44.953618) 

Classical beta + 10% 39.457435 7.036563 0.472908 3.038709 (27.661468, 54.780050) 

Classical STSP 38.727221 6.826805 0.577564 3.052636 (27.864311, 53.945726) 

Classical SGBP 38.526419 6.398061 0.507454 2.998448 (28.075792, 52.500611) 

Classical SGBC 38.426060 6.390328 0.519158 2.991826 (28.086665, 52.493270) 

Fig. 17. Cumulative density function of classical beta, classical beta −10% and clas- 

sical beta +10% (solid), classical TSP (dashed), classical GBP (dotted) and classical 

GBC (dot-dashed) distributions. 
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TSP, classical SGBP and classical SGBC distributions, the estimate

or a total project time is higher than that estimated by the classi-

al beta distribution. This is why we can conclude that these prob-

bilistic models provide more prudent estimations. 

. Conclusions 

The original assumption of the PERT methodology was that the

ctivity time follows a beta distribution with expressions (1) and

2) . These expressions cannot be obtained from the probability

ensity function of the beta distribution since the four parameters

f the beta distribution cannot be estimated from the three values

rovided by the expert. Herrerías et al. [17] showed that the distri-

ution obtained by the intersection between the constant variance

nd mesokurtic subfamilies of beta distributions is the one that

resents the same mean and variance used in the traditional PERT

ethodology and that can be estimated by using only the informa-

ion provided by the expert. This fact answers the question raised

y Sasieni [13] regarding the formula of PERT, justifying the value

f k = 4 due to the similarity with the normal distribution. 

Beyond the beta distribution, numerous authors have proposed

lternative distributions to be applied in this methodology. This

aper presents the standard generalized bicubic distribution and

hows that for n = 3 , it has an expected value similar to the one

nitially proposed for the PERT methodology [14] and a kurtosis

lose to the Gaussian one when M ∈ (0.32, 0.68). Since the con-

tant variance assumption has been recently criticized, an explicit

xpression is also presented for the variance of the SGBC for n = 3 .

his non-constant variance has a minimum for M = 0 . 5 and n ≥
, which we consider to be consistent with the original motiva-

ion of Malcolm. In contrast, the beta distribution has a maximum

or M = 0 . 5 , and this fact could justify the assumption of constant

ariance for the beta distribution. 
Moreover, we have also analyzed the subfamilies of the SGBC

istribution in relation to the criteria of conservatism and mod-

ration showing very appropriated characteristics. Finally, we il-

ustrate all the results with two empirical examples, confirming

he suitability of the generalized bicubic distribution. Tables 8 and

0 show the estimations of the expected value with the classi-

al distributions for the first and second applications, respectively.

ote that the difference between the expected value obtained from

he classical beta and the expected value obtained from any of the

ther classical distributions is approximately 3% in the first appli-

ation, increasing to 8% in the second application. 

This fact contrasts with the statement provided by Hadju and

okor [37] , who considered irrelevant the applied distribution

ased only on the comparison of the beta, uniform, lognormal and

riangular distributions. In both examples, we have shown that to

se alternative distributions to beta, one can be almost as relevant

s an upward systematic error in the estimations with the great

ifference that estimation errors are in both directions. For this

eason, we agree with Hadju and Bokor [37] that it is necessary

o incorporate many more projects and alternative distributions to

raw a universal conclusion. In conclusion, we consider that the

BC distribution can be an alternative to the beta distribution not

nly in project management but also in the treatment of uncer-

ainty in general. 
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