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In this paper we describe the automatic instantiation of a Variable Neighborhood Descent procedure from 

a Mixed Integer Programming model. We extend a recent approach in which a single neighborhood struc- 

ture is automatically designed from a Mixed Integer Programming model using a combination of auto- 

matic extraction of semantic features and automatic algorithm configuration. Computational results on 

four well-known combinatorial optimization problems show improvements over both a previous model- 

derived Variable Neighborhood Descent procedure and the approach with a single automatically-designed 

neighborhood structure. 
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. Introduction 

The design of a metaheuristic algorithm comprises a number

f steps, including the definition of “good” neighborhood struc-

ures in the solution space as well as the “tuning” of a number

f parameters characterizing the higher level search strategy. Typ-

cally, to make the metaheuristic efficient, both the local and the

lobal improvement mechanisms must be tailored to: (a) the spe-

ific problem; (b) the distribution of the instances to be solved (i.e.,

he reference instance population ). Other relevant factors are: the

ime limit for the exploration of a single neighborhood structure,

he time limit for the whole procedure as well as the hardware at

isposal. The design process may take days, weeks or even months

nd is typically done by human experts through a number of steps,

ncluding: 

a) problem analysis: the problem structure as well as the charac-

teristics of the reference instance population are thoroughly ex-

amined in order to extract meaningful properties and features; 

b) literature scouting: the literature related to the same or simi-

lar problems is analyzed trying to identify algorithms and ap-

proaches that have proven to be successful; 

c) neighborhood structures design: a number of tentative neigh-

borhood structures are defined. Typically, these tentative de-
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signs are characterized by a set of parameters and some sort

of experimental design [1] is applied to determine the best pa-

rameters’ values; 

d) experimentation: the tentative neighborhood structures are as-

sessed on a sample ( training set ) extracted from the refer-

ence instance population. The results obtained in this phase

may suggest some modifications of the tentative neighborhood

structures. 

The aim of our research is to develop, without any human in-

ervention, “good” metaheuristics from a given Mixed Integer Pro-

ramming (MIP) model. The ultimate goal is to generate auto-

atically metaheuristics that may provide human competitive re-

ults [2] . Recently [3] introduced a three-step procedure, which

utomatically designs a single neighborhood structure from a MIP

odel: (1) a set of semantic features are automatically extracted

rom both the MIP model and a given feasible solution; (2) neigh-

orhood design mechanisms are derived from the extracted fea-

ures; (3) a “proper mix” of such mechanisms are searched during

n automatic configuration phase. In this paper we take a different

erspective and generalize the previous work in the context of an

ntire metaheuristic algorithm. More specifically, we focus on Vari-

ble Neighborhood Descent (VND) [4] and define a procedure that -

ased on a MIP model and a current feasible solution - determines

utomatically the size and the “shape” of the whole VND hierarchy

f neighborhoods, as well as the time limits for their exploration

hrough a general-purpose black-box MIP solver. 

The remainder of the paper is organized as follows. Section 2 is

evoted to a review of the literature relevant to our work. In
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Section 3 we present the basic idea underlying the proposed ap-

proach and describe its main procedures. In Section 4 we discuss

the computational results obtained on four well-known combina-

torial optimization problems. In particular, we discuss the improve-

ments provided by our automatically-designed VND with respect

to both a previous model-derived Variable Neighborhood Descent

procedure and the approach with a single automatically-designed

neighborhood structure. Finally, conclusions follow in Section 5 . 

2. Literature review 

Our work is related to several areas. First of all, it is related to

the field of model-derived neighborhoods. Among these contribu-

tions, very relevant are those based on the Local Branching con-

cept [5] in which spherical neighborhoods defined by appropriate

non valid inequalities are explored by using an off-the-shelf MIP

solver. In particular, for purely binary MIPs a neighborhood of the

current solution includes all the solutions in which the number of

variables changing value (i.e., the Hamming distance ) does not ex-

ceed a given threshold. Danna et al. [6] introduced the Relaxation-

Induced Neighborhood , which is defined by fixing the variables with

the same values in both the incumbent and the optimal solution of

the continuous relaxation. Then, after setting a cutoff equal to the

objective value of the current incumbent, the neighborhood is ex-

plored by solving the sub-MIP on the remaining variables. Parisini

and Milano [7] presented a search strategy called Sliced Neighbor-

hood Search that considers randomly selected slices of spherical

neighborhoods. Particularly relevant to our work are the contribu-

tions by Ghiani et al. [8] and Adamo et al. [3] , that showed how

to take advantage of a MIP compact formulation to automatically

design efficient neighborhood structures, without any human anal-

ysis. In particular, Ghiani et al. [8] used unsupervised learning to

automatically select “good” portions of the search space “around”

a given feasible solution. Adamo et al. [3] proposed a procedure ex-

tracting some semantic features from a given MIP model. Based on

the selected features, some neighborhood design mechanisms are

automatically derived and, finally, a “proper mix” of such mech-

anisms are determined by running an automatic configuration al-

gorithm on a training set representative of the reference instance

population. This approach was recently extended by Adamo et al.

[9] , that allowed the Automatic Neighborhood Design algorithm to

deal with an ensemble of Constraint Programming (CP) and MIP

models. 

Another area to which our paper is strongly related is that com-

bining model-derived neighborhoods and heuristic search. Such

approaches are typically referred to as matheuristics [10] , which

are defined as heuristic algorithms obtained by integrating meta-

heuristics and mathematical programming techniques. In partic-

ular, Hansen et al. [11] combined Local Branching with Variable

Neighborhood Search , whereas Lazi ́c et al. [12] proposed to solve

0–1 MIPs by a hybrid heuristic based on the principle of Vari-

able Neighborhood Decomposition Search . Then, [13] devised a gen-

eral matheuristic that decomposes the problem being solved in a

master and a subproblem. The main characteristic of the approach

is that it exploits features of the incumbent solution to gener-

ate one or more columns in the master problem. More recently,

[14] proposed a general approach for combinatorial optimization

termed Construct, Merge, Solve & Adapt , in which sub-instances of

the original problem are first generated by repeatedly construct-

ing probabilistic solutions and then solved by using a general-

purpose MIP solver. In the context of CP, Van Hentenryck and

Michel [15] showed how constraint-based local search algorithms

can be synthesized from high-level models, at least for some ap-

plication classes. Such synthesis is driven by the model structure,

as well as the role and the semantics of each single constraint.
n particular, the high-level model is first classified and then a

olution algorithm is selected from a predefined portfolio. These

deas have been exploited by Elsayed and Michel [16] to develop

 model-driven automatic search procedure generator written in

omet [17] . The generator examines a CP model instance, analyzes

he constraints as well as the variable declarations and synthesizes

 procedure that is likely to yield good performances on the con-

idered instance. More recently, Mouthuy et al. [18] showed how

hese concepts can be applied to a Very Large Scale Neighborhood

earch framework, whereas Kiziltan et al. [19] combined constraint

ropagation with the Local Branching general-purpose neighbor-

ood. 

An alternative approach involves the use of hyper-heuristics

20] in which, given a particular problem instance, an appropri-

te low-level heuristic is selected from a given set and applied

t each step. For instance, in the context of genetic programming

21] developed a system that uses a simple composition operator

o automatically discover local search heuristics for the boolean

atisfiability testing problem. A recent research trend [22,23] is to

mploy human-designed heuristics as building-blocks to automati-

ally generate new heuristics suited to a given problem or class of

roblems. 

Finally, our work is also related to Automatic Algorithm Con-

guration (AAC) [24–26] , in which an automatic procedure finds

he parameter configurations for which the empirical performance

n a given set of problem instances is optimized. Nowadays,

any AAC software packages have been developed, such as F-Race

27,28] , Calibra [29] , ParamILS [30] and irace [31] . AAC has also

een used in combination with grammar representations, as in

32] , where the authors proposed a novel representation of the

rammar by a sequence of categorical, integer, and real-valued pa-

ameters. Then, they used an AAC tool to search for the best algo-

ithm for the problem at hand. 

. Automatic instantiation of a variable neighborhood descent 

As stated before, the aim of our research is to develop automat-

cally “good” metaheuristics from a MIP model. The basic idea is

o try to reproduce the behavior of a human researcher that must

evelop a neighborhood search heuristic for a given combinatorial

ptimization problem P . The starting point is a knowledge base

f the problem, that is thoroughly examined in order to identify

he main components that are combined to obtain a feasible solu-

ion. For instance, in a vehicle routing problem such components

ould be the customers and the vehicles that must be associated

ach other to define the routes. Of course, the solution is feasible

f customers to vehicles assignment satisfies some requirements

constraints) that are identified from the problem description. After

efining the structure of a feasible solution, the researcher must

dentify neighborhood relationships on the search space that allow

o move from a current solution to a new (possibly improving) one.

or instance, in a vehicle routing problem a new solution could be

btained by moving a given number of customers from a route to

nother. 

Analogously to a human-like approach, we must define a way

o represent the knowledge associated to the problem that allows

o easily and automatically identify and extract the main compo-

ents of the problem as well as the relationships among them ( se-

antic features , in the following). In this paper, we assume that

is given a factored representation (in which each state is coded

y a fixed set of variables, see [33] ) as a mixed-integer program.

et J = C ∪ G ∪ B = { 1 , . . . , n } be the variable index set ( C, G, and

denote the index sets for continuous, general integer and binary

ariables, respectively). A generic MIP model for P can be stated
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s: 

(P) min z = 

n ∑ 

j=1 

c j x j (1)

.t. 

n ∑ 

j=1 

a i j x j = b i , i = 1 , . . . , m (2)

 j ≥ 0 , j ∈ C (3)

 j ≥ 0 and integer , j ∈ G (4)

 j ∈ { 0 , 1 } , j ∈ B � = ∅ . (5)

owever, this kind of representation does not give any information

bout the problem components (customers and vehicles in the pre-

ious VRP example) and their relationships. Thus, we need a rep-

esentation that is closer to what humans do, namely a structured

epresentation (in which objects and their various and varying re-

ationships can be described explicitly, see [33] ). As [33] note: “In

act, almost everything that humans express in natural language

oncerns objects and their relationships”. For this reason, after

riting the MIP model for P, we require that it is coded through

n algebraic modeling language (e.g., AMPL [34] , GAMS [35] or OPL

36] ). Such languages rely on sets of objects (referred to as entities

rom now on, to be consistent with the notation of [3] , and as also

ery common in the context of computer science [37] ) such as cus-

omers, vehicles, or facilities. Entities are classified as fundamental

r derived , where a derived set is defined as subsets or Cartesian

roducts of other sets. As will be described later, our instantiation

echanisms are based on the information related to fundamental

ntities only. Then, each variable, constraint and parameter of the

IP model is indexed by one or more entities in the correspond-

ng algebraic modeling. The information about entities and their

elationships are automatically detected and extracted by using a

arser that is based on the syntax and the grammar of the alge-

raic modeling language used to encode the model. 

.1. Automatic extraction of semantic features 

The indexing mechanism illustrated before is key to identify se-

antic relationships between entities that are necessary for the

roper design of our neighborhood structures. In this section, we

etail the procedure used to extract the semantic features from

oth the MIP model and a given feasible MIP solution. 

Formally, we denote as E = E 1 ∪ · · · ∪ E K the set of fundamental

ntities characterizing our model, where E k (k = 1 , . . . , K) is a sub-

et of homogeneous entities, such as a set of vehicles, a set of cus-

omers, a set of commodities, etc. The semantic features can be of

wo types: model-based features, derived directly from an instance

f the MIP model, and solution-based features, identified from a

iven current feasible solution. 

With respect to the model-based features, we denote by p k 
he number of parameters indexed by entities in the set E k , with

 = 1 , . . . , K (e.g., in the generic MIP formulation (1) –(5) , the pa-

ameters of the model are a ij , b i , c j , with i ∈ 1 , . . . , m and j ∈
 , . . . , n ). Then, we define a dataset D k where each column (or

roup of columns) refers to one of the p k parameters, while each

bservation (i.e., row) is associated with an entity in E k . To take

nto account that some features can be more relevant than oth-

rs, we associate a weight w 

k 
l 

to the l -th parameter ( l = 1 , . . . , p k ;

 = 1 , . . . , K). After normalizing the weighted dataset, the model-

ased similarity between two entities e, e ′ ∈ E k is computed as the

nner product of the corresponding rows. We observe that, as in

3] , the most appropriate values of all weights w 

k 
l 

( l = 1 , . . . , p k 
nd k = 1 , . . . , K) are sought through an automatic configuration

hase performed on a training set (representative of the reference

nstance population and separated from the set of instances used

uring the test phase). 

In addition, the strength of the relationships between two en-

ities e, e ′ ∈ E k is measured with respect to the current solution.

irst of all, given a current feasible solution x ′ , we define as ad-

acent two entities e, e ′ ∈ E such that: (i) they are both indexing a

ariable having a nonzero value in x ′ , or (ii) there is a constraint

ndexed by e that is active in x ′ (i.e., the corresponding auxiliary

ariable used to standardize (2) is zero), in which a variable, in-

exed by e ′ , appears with a nonzero coefficient and has a nonzero

alue in x ′ (or vice versa). Such an adjacency is used to define the

ntity Adjacency Graph (EAG), that is a graph where the vertex set

s made up of a node for each entity in E . The objective function

 is treated as a special entity that is present in constraint (1) . In

his way, z is considered adjacent to the entities having a direct

mpact on it, i.e., the entities that index the variables appearing in

1) . Moreover, an arc is included in the EAG for each pair of adja-

ent entities in the vertex set. The EAG plays a fundamental role in

he definition of good neighborhood structures. 

In the following, we illustrate the previous concepts on a classic

ombinatorial optimization problem that is first modeled as a MIP

nd then written in the OPL algebraic modeling language. For this

roblem, we first show how to build the dataset used to identify

he model-based features and then how to construct the EAG. 

xample. As an example of combinatorial optimization problem,

e consider the well-known Traveling Salesman Problem (TSP),

hich is one of the test problems used in Section 4 . The TSP

mounts to determine a minimum cost Hamiltonian circuit on a

omplete directed graph G = (N, A ) , in which N = { 1 , . . . , n } is the

ertex set (representative of the customers to visit) and A = { (i, j) :

, j ∈ N; i � = j} is the set of arcs connecting the vertices. Each arc ( i,

 ) has an associated cost c ij for traversing it. A possible MIP formu-

ation [38] is: 

min z = 

∑ 

(i, j) ∈ A 
c i j x i j (6) 

s . t . 
∑ 

j∈ N 
x i j = 1 i ∈ N, (7) 

∑ 

i ∈ N 
x i j = 1 j ∈ N, (8) 

u i − u j + 1 ≤ (n − 1)(1 − x i j ) i, j ∈ N, i, j � = 1 , (9) 

u 1 = 1 , (10) 

2 ≤ u i ≤ n i ∈ N, i � = 1 , (11) 

x i j ∈ { 0 , 1 } (i, j) ∈ A, (12) 

here x ij , ( i, j ) ∈ A , is equal to 1 if arc ( i, j ) is in the tour, otherwise

ts value is 0. Variables u i , i ∈ N , are used for sub-tours elimination.

A possible OPL representation of formulation (6) –(12) is showed

n Fig. 1 . Here, the entities are the customers (set CUSTOMERS )
nd the arcs (set ARCS ). In particular, the customers are funda-

ental entities, whereas the arcs are derived, being a subset of the

artesian product of the set CUSTOMERS . Formally, K = 1 (the cus-

omers), E = E 1 = N and p 1 = 1 (the cost matrix). Variables x and

 , as well as the parameter cost , are indexed by the customers.
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1 int n = ...;

2 {int} CUSTOMERS = {i | i in 1..n};

3 int cost[CUSTOMERS][CUSTOMERS] = ...;

4 tuple Arc {key int i; key int j;};

5 {Arc} ARCS = {<i,j> | i, j in CUSTOMERS: i != j};

6 dvar boolean x[ARCS];

7 dvar float+ u[CUSTOMERS];

8 minimize sum(<i, j> in ARCS) cost[i][j] * x[<i,j>];

9 subject to {

10 forall(i in CUSTOMERS) sum(j in CUSTOMERS: <i,j> in ARCS) x[<i,j>] == 1;

11 forall(j in CUSTOMERS) sum(i in CUSTOMERS: <i,j> in ARCS) x[<i,j>] == 1;

12 forall(<i,j> in ARCS: i != 1 && j != 1)

13 u[i] - u[j] + 1 <= (n-1) * (1 - x[<i,j>]);

14 forall(i in CUSTOMERS: i != 1) u[i] <= n;

15 forall(i in CUSTOMERS : i != 1) u[i] >= 2;

16 u[1] == 1;

17 };

Fig. 1. OPL representation for the Traveling Salesman Problem. 

Table 1 

Dataset used to compute the model-based sim- 

ilarity for the Traveling Salesman Problem. 

Entity Parameters 

1 c 11 ... c 1 n c 11 ... c n 1 
... ... ... ... ... ... ... 

i c i 1 ... c in c 1 i ... c ni 

... ... ... ... ... ... ... 

n c n 1 ... c nn c 1 n ... c nn 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Example of an Entity Adjacency Graph for a formulation of the Traveling 

Salesman Problem. The dotted line indicates that the vertex representing z is con- 

nected with all the vertices associated with customers. 

i  

s  

d  

a  

t  

o  
On the other hand, all the constraints are indexed by the entities

in set CUSTOMERS , with the only exception of constraint reported

at line 16 of the OPL model. 

In Table 1 we report the dataset D 1 that is characterized by n

rows ( | E 1 | = n ). The i th row (associated to the i th customer) con-

tains the values of all the parameters indexed by i (i.e., all the el-

ements of cost that are related to customer i ). In the weighted

dataset the i th row will be weighted by w 

1 
1 
. 

With respect to solution-based features, the EAG is constructed

as follows. The set of vertices contains a vertex representative of

z , as well as a vertex for each customer in E 1 . In particular, given

a feasible solution z is adjacent to each entity in E 1 (in a feasible

TSP solution each customer must be visited) and each customer is

also adjacent to the customers visited just before and after it. The

latter information is obtained from: (i) variables x ij that take value

1 when i and j are consecutive; (ii) constraints (7) –(9) . A graphical

representation of the EAG is reported in Fig. 2 , where the dotted

line is used to indicate that the vertex representing z is connected

with all the vertices associated with customers. 

3.2. Neighborhood structure design 

In order to define a neighborhood structure, the first step is to

identify a fragment of the current solution x ′ indexed by entities
n a set F ⊆ E that are classified as adjacent with respect to x ′ , or

imilar with respect to the model. Then, a neighborhood N ( x ′ ) is

efined as the set of feasible solutions obtained by first destroying

nd then repairing the selected fragment of x ′ indexed by the en-

ities in F . Formally, given an entity e ∈ E , let J e ⊆ J denote the set

f indices associated with variables indexed by e . We model the
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eighborhood structure N ( x ′ ) as the feasible region of the sub-

roblem: 

(P( x 

′ , F )) min 

∑ 

j∈ ⋃ 

e ∈ F 
J e 

c j x j + 

∑ 

j∈ J\ ⋃ 

e ∈ F 
J e 

c j x 
′ 
j (13)

s.t. (2) - (5) , and 

 j = x ′ j , j ∈ J \ ⋃ 

e ∈ F 
J e . (14)

roblems (13) –(14) are obtained from the original problems (1) –

5) by adding the fixing constraint (14) . The aim of this constraint

s to consider as fixed to their values in x ′ all the variables in-

exed by entities in F . On the other hand, the remaining vari-

bles can vary in their original domains. Then, the repair is done

y determining the optimal solution of sub-problem (13) –(14)

y means of an off-the-shelf MIP solver with a given parameter

etting. 

The key aspect is how to define a ‘good’ neighborhood struc-

ure, i.e., a ‘good mix’ of similar and adjacent entities to include in

 . The procedure we employ is the same as in [3] and is composed

f four steps, that are reported here for the sake of completeness: 

1. Select a subset F ′ of entities adjacent in x ′ and making up a

connected sub-graph of the EAG adjacent to z . In particular the

entities are selected on the EAG by performing a random walk

starting from z . This process is performed until the number of

variables indexed by entities in F ′ and having a nonzero value

in x ′ becomes greater than a threshold, obtained as a fraction

α′ of the overall number of variables. At each step of the defi-

nition of the connected sub-graph, an entity in E k (k = 1 , . . . , K)

is selected with probability π k (k = 1 , . . . , K) ; 

2. Select a subset F ′ ′ among the remaining entities that are most

similar to those in F ′ , according to the definition of Section 3.1 .

Analogously to step 1, we add entities to F ′ ′ until the cumula-

tive number of variables indexed by them and having a nonzero

value in x ′ is lower than or equal to a fraction α′ ′ of the overall

number of variables; 

3. Select a subset F ′ ′ ′ of entities not yet selected and adjacent in

x ′ to entities in F ′ ′ . Again, the cardinality of F ′ ′ ′ is such that

the number of variables indexed by its entities and having a

nonzero value in x ′ is lower than a fraction α′ ′ ′ of the overall

number of variables. 

4. Set F = F ′ ∪ F ′′ ∪ F ′′′ . 

It is worth noting that the size of neighborhood N ( x ′ ) is deter-

ined by the number of variables indexed by entities in F having

 nonzero value in x ′ . In particular, the neighborhood N ( x ′ ) corre-

ponding to (13) –(14) must be sufficiently small to be explored in a

easonable computing time, but still large enough to likely contain

etter solutions than x ′ . For these reasons, it is crucial to give ap-

ropriate values to the fractions α′ , α′ ′ , and α′ ′ ′ . Thus, the choice

f such values, as well as those of the other parameters of the pro-

edure, is performed through an AAC phase by using a state-of-

he-art tool. In particular, the parameters to be tuned are: 

• the upper bounds α′ , α′ ′ , and α′ ′ ′ selected at steps 1, 2, and 3,

respectively; 

• the weights w 

k 
l 

( l = 1 , . . . , p k ; k = 1 , . . . , K) needed to define the

model-based similarities among entities used in Step 2; 

• the probabilities π k ( k = 1 , . . . , K) of visiting an entity belong-

ing to E k ( k = 1 , . . . , K) in Step 1. 

Moreover, since our procedure aims to find the “best” neigh-

orhood structures that optimize the empirical performance of a

ND on the peculiar distribution of the instances to be solved,

he user must provide a training set representing the reference in-

tance population. Such training set is used by the AAC procedure
o determine the most appropriate values for the parameters (also

alled design variables ). 

.3. Variable neighborhood descent instantiation 

As a step towards the automatic instantiation of complex meta-

euristic algorithms, the main contribution of this paper is to ex-

end to a VND algorithm the approach previously developed by

3] for a single neighborhood structure. 

The VND pseudocode is as reported in Algorithm 1 . Given a

lgorithm 1 Pseudocode of a Variable Neighborhood Descent pro-

edure. 

1: procedure VND ( x ′ , N 1 , …, N r max , t 1 , …, t r max ) 

2: r ← 1 

3: while r ≤ r max do 

4: x ′′ ← NeighborhoodExploration ( x ′ , N r , t r ) 

5: x ′ , r ← NeighborhoodChange ( x ′ , x ′′ , r) 
6: end while 

7: return x ′ 
8: end procedure 

urrent solution x ′ , a finite number of r max pre-selected neighbor-

ood structures N r ( r = 1 , . . . , r max ), and a time limit t r for each

f them, the VND procedure systematically switches between the

ifferent neighborhood structures. A neighborhood structure N r 

 r = 1 , . . . , r max ) is defined by the set of parameters described at

he end of Section 3.2 that, together with x ′ , allow to obtain a set

 . In order to highlight the dependence on r , in the following we

ill refer to F as F r , and to α′ , α′ ′ and α′ ′ ′ as α′ 
r , α

′′ 
r and α′′′ 

r . 

Starting from the first structure N 1 , VND performs a local

earch phase (procedure NeighborhoodExploration , for which a

seudocode is illustrated in Algorithm 2 ) until a local optimum is

lgorithm 2 Pseudocode of the NeighborhoodExploration pro-

edure. 

1: procedure NeighborhoodExploration ( x ′ , N r , t r ) 

2: F r ← < Select entities according to N r > 

3: x ′′ ← < Solve (P ( x ′ , F r )) with time limit t r > 

4: return x ′′ 
5: end procedure 

eached or the time t 1 at disposal is consumed. From this new cur-

ent solution (which, of course, could be the same as the previous

ne), it continues the local search phase with N 1 if the objective

unction has been improved, otherwise it switches to N 2 . If an im-

roved solution can be found with this structure, VND returns to

sing N 1 again; otherwise, it continues with N 3 , and so forth. If

 r max has been explored and no further improvements are possi-

le, then the VND terminates. Function NeighborhoodChange (a

seudocode is reported in Algorithm 3 ) is in charge of comparing

lgorithm 3 Pseudocode of the NeighborhoodChange procedure.

1: procedure NeighborhoodChange ( x ′ , x ′′ , r) 

2: if 
n ∑ 

j=1 

c j x 
′′ 
j 

< 

n ∑ 

j=1 

c j x 
′ 
j 

then 

3: return 1 

4: else 

5: return r + 1 

6: end if 

7: end procedure 

he objective value of the incumbent with that of the new solution
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obtained by exploring the current neighborhood and switching be-

tween the different neighborhood structures. 

In our VND implementation, the hierarchy of r max neighbor-

hood structures is obtained by varying the size of F r , by consid-

ering different values for α′ 
r , α

′′ 
r and α′′′ 

r . In particular, the r -th

neighborhood ( r = 1 , . . . , r max ) is explored by solving - through a

black-box MIP solver - the following problem: 

(P ( x 

′ , F r )) min 

∑ 

j∈ ⋃ 

e ∈ F r 
J e 

c j x j + 

∑ 

j∈ J\ ⋃ 

e ∈ F r 
J e 

c j x 
′ 
j (15)

s.t. (2) –(5) , and 

x j = x ′ j , j ∈ J \ ⋃ 

e ∈ F r 
J e . (16)

As a result, the size and shape of the r th neighborhood structure

( r = 1 , . . . , r max ) depends on set F r , whose cardinality - as men-

tioned before - is influenced by the threshold values α′ 
r , α

′′ 
r and

α′′′ 
r . Thus, the design problem amounts to determine - through an

AAC procedure - the size and the time limit for each of the VND

neighborhoods, as well as the other parameters reported at the end

of Section 3.2 . 

4. Computational results 

We have tested our approach on four classical combinato-

rial optimization problems, namely the Traveling Salesman Problem

(TSP), the Generalized Traveling Salesman Problem (GTSP), the Ca-

pacitated Vehicle Routing Problem with Time Windows (VRPTW), and

the Multi-Plant, Multi-Item, Multi-Period Capacitated Lot-Sizing Prob-

lem (MPCLSP). For each of these test problems, the aim of our com-

putational experiments is to compare the performance of: (i) our

automatically-designed VND (AD-VND) made up of a hierarchy of

r max automatically-designed neighborhoods of different sizes and

shapes; (ii) a model-based VND using a hierarchy of r max spherical

neighborhoods (SN-VND) of different sizes. Moreover, to measure

the benefit of the VND with respect to the usage of a single, tuned

neighborhood size, we also compare to the single automatically-

designed neighborhood (ADN) of [3] . 

In the case of AD-VND, we consider r max = 3 . Then, given an

initial feasible solution x ′ , the r -th neighborhood is explored by

solving problems (P ( x ′ , F r )) ( r = 1 , 2 , 3 ) as detailed in Section 3.3 .

In this case, the design variables, whose values are obtained by an

AAC procedure, are: the time limits t 1 , t 2 and t 3 ; the thresholds α′ 
r ,

α′′ 
r and α′′′ 

r influencing the size of sets F r ( r = 1 , 2 , 3 ); the probabil-

ities π k ( k = 1 , . . . , K); the weights w 

k 
l 

given to the parameters of

the MIP models ( l = 1 , . . . , p k ; k = 1 , . . . , K). The most appropriate

values of the design variables identified by the AAC algorithm are

marked with an asterisk in the following. 

With respect to the model-based VND using spherical neigh-

borhoods, as before we consider r max = 3 . Given an initial feasible

solution x ′ , the r th spherical neighborhood [5] is explored by solv-

ing - through a black-box MIP solver - model (1) –(5) together with

constraint ∑ 

j∈B: x ′ 
j 
=1 

(1 − x j ) + 

∑ 

j∈B: x ′ 
j 
=0 

x j ≤ �r , (17)

and imposing a time limit equal to t r . The most appropriate values

for the sizes �1 , �2 , �3 and the time limits t 1 , t 2 , t 3 are chosen

by an AAC procedure and are marked with an asterisk in the fol-

lowing. 

Finally, in the case of ADN we have considered the same pa-

rameter settings as in [3] . 

For the three approaches, the neighborhoods are explored by

using the black-box solver IBM ILOG CPLEX 12.6 (with thread-

concurrency enabled), while OPL and ParamILS are used as mathe-
atical programming language and automatic parameter tuner, re-

pectively. For each test problem, we have devoted the 40% of the

eference instance population for the training phase, while the re-

aining 60% has been considered as test set. We observe that, to

llow a fair comparison, the automatic parameter tuning procedure

nd the effort are the same used by [3] . The parser used to ana-

yze the structure of the OPL encoding of the MIP models is im-

lemented by using the tool ANTLR [39] . All the experiments have

een performed on a Linux machine equipped with an Intel Xeon

PU X5550 clocked at 2.67 GHz (cache size 8192 KB), and 27 GB of

AM. Moreover, we have imposed an overall time limit of 20 min

or the execution of the three tested approaches, whereas an over-

ll time limit of 24 h has been devoted to the tuning phase, with

 limit of 20 min for each run. 

For each test problem, we report: 

• the objective function value z 0 of the initial feasible solution

(when describing the different problems, we also illustrate how

such solutions are obtained); 

• the solution value z of the best solution found in each ap-

proach (ADN, SN-VND and AD-VND) as well as the percentage

improvement DEV z 0 with respect to z 0 . 

Moreover, when the optimal solution is known, as in the TSP

nd the GTSP, we report the percentage deviation (DEV opt ) of z 0 
rom the optimum. Otherwise, we report the percentage optimal-

ty gap (GAP) of z 0 as determined by the MIP solver, that is,

00 · | bestnode − z 0 | / (10 −10 + | z 0 | ) , where bestnode is the objec-

ive function value of the best node found by the MIP solver when

nputted with z 0 . We observe that GAP is an upper-bound (i.e., an

ver-estimation) of DEV opt . 

We do not present any result about the computing time, be-

ause the time limit of 20 min has always been reached. We also

eport the mean value of the percentage improvement (MEAN) as

ell as the width of the 95% confidence interval around the mean

CI). Finally, in each table bold numbers represent the best results

or a given instance or class of instances. 

.1. Traveling Salesman Problem 

For the TSP we have used the formulation of Section 3.1 . Such

 formulation contains just one type ( K = 1 ) of fundamental enti-

ies (the vertices) that are characterized by a single parameter (the

ost matrix). Hence, p 1 = 1 and π1 = 1 . Therefore, the design vari-

bles for AD-VND are α′ 
r , α

′′ 
r , α

′′′ 
r and t r ( r = 1 , 2 , 3 ). In particular,

he sets of possible values that we consider are {0.05, 0.10, 0.15}

or α′ 
1 
, {0.15, 0.20, 0.25} for α′ 

2 
, {0.25, 0.30, 0.35} for α′ 

3 
, {0.0 0 0,

.025, 0.050, 0.075, 0.100, 0.0125, 0.150, 0.175, 0.200} for α′′ 
r and

′′′ 
r ( r = 1 , 2 , 3 ), and {0, 1} for w 

1 
1 . On the other hand, the only de-

ign variables for SN-VND are �r and t r ( r = 1 , 2 , 3 ) with values

hosen in { n /256, n /128, n /64} for �1 , { n /64, n /32, n /16} for �2

nd { n /16, n /8, n /4} for �3 . With respect to the time limits, their

alues are chosen for both approaches in {60, 120, 180, 240, 300,

60} s. 

The values of the design variables for the AD-VND, identified

fter the training phase, are: π ∗
1 = 1 , w 

1 ∗
1 = 0 , α′∗

1 = 0 . 10 , t ∗1 =
20 s, α′∗

2 
= 0 . 20 , t ∗

2 
= 240 s, α′∗

3 
= 0 . 30 , t ∗

3 
= 360 s, α′′∗

r = 0 . 00

 r = 1 , 2 , 3 ) and α′′′∗
r = 0 . 00 ( r = 1 , 2 , 3 ). The meaning of w 

1 ∗
1 

= 0 ,
′′∗
r = 0 . 00 ( r = 1 , 2 , 3 ) and α′′′∗

r = 0 . 00 ( r = 1 , 2 , 3 ) is that the sets

 r ( r = 1 , 2 , 3 ) coincide with sets F ′ r , i.e., the neighborhood struc-

ures are directly influenced only by the solution-based features. 

With respect to the parameters of the SN-VND, their values

fter the training phase are: �∗
1 

= n/ 64 , t ∗
1 

= 120 s, �∗
2 

= n/ 32 ,

 

∗
2 

= 240 s, �∗
3 

= n/ 16 and t ∗
3 

= 300 s. 

The two approaches have been tested on instances based on

uclidean distance taken from the TSPLIB [40] for which initial
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Table 2 

Results for the TSP. 

Instance z 0 DEV opt ADN SN-VND AD-VND 

z DEV z 0 z DEV z 0 z DEV z 0 
(%) (%) (%) (%) 

lin318 54,019 22.20 50,615 6.30 49,241 8.85 49,116 9.08 

linhp318 54,019 23.46 50,615 6.30 49,152 9.01 49,116 9.08 

rd400 19,183 20.34 17,452 9.02 16,816 12.34 17,314 9.74 

fl417 15,013 21.00 14,012 6.67 12,868 14.29 12,860 14.34 

pr439 131,281 18.33 125,756 4.21 112,537 14.28 116,275 11.43 

pcb442 61,979 18.07 59,389 4.18 53,933 12.98 55,084 11.12 

d493 41,665 15.99 38,945 6.53 38,104 8.55 38,773 6.94 

u574 50,459 26.86 48,863 3.16 44,576 11.66 44,053 12.70 

rat575 8605 21.29 8126 5.57 7932 7.82 8052 6.43 

p654 43,457 20.28 39,188 9.82 38,343 11.77 38,723 10.89 

d657 61,627 20.63 56,493 8.33 56,051 9.05 55,973 9.17 

u724 52,943 20.84 52,093 1.61 49,176 7.12 50,031 5.50 

rat783 11,054 20.34 10,479 5.20 10,906 1.34 10,207 7.66 

pr1002 331,103 21.76 322,161 2.70 – – 322,039 2.74 

u1060 308,980 27.47 295,620 4.32 – – 292,541 5.32 

vm1084 301,477 20.63 292,357 3.03 – – 279,636 7.24 

pcb1173 71,978 20.96 70,434 2.15 – – 69,082 4.02 

d1291 60,214 15.63 59,731 0.80 – – 58,833 2.29 

rl1304 335,779 24.67 331,268 1.34 – – 330,404 1.60 

nrw1379 68,964 17.87 68,086 1.27 – – 66,760 3.20 

fl1400 27,447 26.67 26,513 3.40 – – 26,396 3.83 

u1432 188,807 18.98 181,503 3.87 – – 181,421 3.91 

d1655 74,033 16.08 73,210 1.11 – – 73,211 1.11 

u1817 72,030 20.59 71,293 1.02 – – 70,950 1.50 

u2152 79,260 18.93 78,778 0.61 – – 78,646 0.77 

u2319 278,765 15.97 275,999 0.99 – – 274,522 1.52 

pcb3038 176,310 21.90 175,974 0.19 – – 174,445 1.06 

MEAN 3.84 4.78 6.08 

CI 1.03 1.92 1.52 
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olutions are obtained by choosing a first vertex at random, se-

ecting its nearest neighbor, and iterating the procedure until all

he vertices are added to the tour. Table 2 reports the comparison

f the obtained results. First of all, it is worth noting that, as the

ize of the instances grows (in particular, for a number of vertices

reater than 783) the SN-VND is not even able to load the model,

hile this is not the case of AD-VND and ADN. The explanation to

his behavior is that the variable fixing introduced by constraints

14) results in a model of a reduced size with respect to the origi-

al model. Analyzing in detail the results, the average SN-VND im-

rovement is almost 5%, while the AD-VND provides an average

mprovement of about 6%. In this case, the main advantage of AD-

ND is its scalability, allowing to provide improvements (although

uite small in some case) even for very large instances. With re-

pect to the comparison with ADN, using a hierarchy of neighbor-

oods always allows to achieve better results, with values of DEV z 0 

hat in some cases are even four times higher. 

.2. Generalized Traveling Salesman Problem 

Let us consider a complete directed graph G = (N, A ) , where

 = { 1 , . . . , n } is the vertex set and A = { (i, j) : i, j ∈ N; i � = j} is the

et of arcs. N is partitioned into H clusters N h ( h = 1 , . . . , H). The

ravel cost from i to j is denoted with c ij , whereas the binary co-

fficient a ih , i ∈ N , h ∈ { 1 , . . . , H} has value 1 if node i belongs to

luster h , 0 otherwise. The GTSP aims to find a minimum-cost cy-

le that visits exactly one node from each cluster. The formulation

s the same used in Adamo et al. [3] and is reported for complete-

ess: 

min z = 

∑ 

(i, j) ∈ A 
c i j x i j 

s . t . 
∑ 

j∈ N\{ i } 
x i j = z i , i ∈ N, 
∑ 

j∈ N\{ i } 
x ji = z i , i ∈ N, 

∑ 

i ∈ N 
a ih z i = 1 , h = 1 , . . . , H, 

u i − u j + nx i j ≤ n − 1 , i, j ∈ N i, j ≥ 1 i � = j, 

y i − y j + 1 −
H ∑ 

h =1 

a ih a jh ≤ (H + 1)(1 − x i j ) , i, j ∈ N, j � = 0 ,

1 ≤ u i ≤ n, i ∈ N \ { 0 } , 
1 ≤ y i ≤ H, i ∈ N \ { 0 } , 
u 0 = y 0 = 0 , 

z 0 = 1 , 

z i ∈ { 0 , 1 } , i ∈ N \ { 0 } , 
x i j ∈ { 0 , 1 } (i, j ) ∈ A . 

he binary variables x ij , ( i, j ) ∈ A , take value 1 only if arc ( i, j ) is

n the tour. Variables y i , u i , i ∈ N , are used to exclude clusters sub-

ours and node sub-tours, respectively. Moreover z i , i ∈ N , models

he decision of including a node in the circuit or not. 

For this problem, the clusters and the arcs are considered de-

ived entities. In fact, the clusters are obtained as subsets of the

ertices, whereas the arcs, as in the case of the TSP, are a sub-

et of the Cartesian product of the vertices. Thus, there is only one

ype ( K = 1 ) of fundamental entities (the vertices) characterized by

 dataset D 1 with two attributes: arc cost c ij ( l = 1 ) and the binary

oefficient a ih ( l = 2 ). 

Hence, p 1 = 2 and it π1 = 1 . Therefore, the design variables for

D-VND are: α′ 
r , α

′′ 
r , α

′′′ 
r , t r ( r = 1 , 2 , 3 ), w 

1 
1 and w 

1 
2 . The sets of

ossible values that we consider are {0.05, 0.10, 0.15} for α′ 
1 
, {0.15,

.20, 0.25} for α′ 
2 
, {0.25, 0.30, 0.35} for α′ 

3 
, {0.0 0 0, 0.025, 0.050,

.075, 0.100, 0.0125, 0.150, 0.175, 0.200} for α′′ 
r and α′′′ 

r ( r = 1 , 2 , 3 ),

nd {0, 1} for w 

1 and w 

1 . On the other hand, the design vari-
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Table 3 

Results for the GTSP. 

Instance z 0 DEV opt ADN SN-VND AD-VND 

z DEV z 0 z DEV z 0 z DEV z 0 
(%) (%) (%) (%) 

64lin318 23,552 17.22 20,533 12.82 21,516 8.64 20,022 14.99 

80rd400 7826 20.93 6743 13.84 7509 4.05 6722 14.11 

84fl417 9246 5.91 8799 4.83 9197 0.53 8787 4.96 

88pr439 67,084 16.02 59,002 12.05 63,481 5.37 57,160 14.79 

89pcb442 27,358 23.85 22,781 16.73 24,830 9.24 22,560 17.54 

99d493 21,537 16.35 19,675 8.65 21,537 0.00 19,544 9.25 

115u574 19,522 16.78 17,625 9.72 19,522 0.00 17,679 9.44 

115rat575 3199 26.91 2713 15.19 3179 0.63 2693 15.82 

131p654 33,870 24.64 30,194 10.85 33,870 0.00 29,876 11.79 

132d657 29,172 28.15 24,421 16.29 29,172 0.00 23,781 18.48 

145u724 22,465 24.47 19,101 14.97 22,465 0.00 18,891 15.91 

157rat783 4956 35.15 4068 17.92 – – 4058 18.12 

201pr1002 158,910 29.59 141,750 10.80 – – 141,466 10.98 

212u1060 150,621 31.43 136,237 9.55 – – 135,497 10.04 

217vm1084 173,606 26.38 167,828 3.33 – – 157,781 9.12 

MEAN 12.36 2.59 13.37 

CI 2.14 2.15 2.02 
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ables for SN-VND are �r and t r ( r = 1 , 2 , 3 ) with values chosen

in { 0 . 05(2 H + 2) , 0 . 10(2 H + 2) , 0 . 15(2 H + 2) } for �1 , { 0 . 15(2 H +
2) , 0 . 20(2 H + 2) , 0 . 25(2 H + 2) } for �2 , { 0 . 25(2 H + 2) , 0 . 30(2 H +
2) , 0 . 35(2 H + 2) } for �3 . Finally, the time limits for both ap-

proaches are chosen in {60, 120, 180, 240, 300, 360} seconds. 

The values of the AD-VND design variables identified by the

AAC tool are: π ∗
1 

= 1 , w 

1 ∗
1 

= 0 , w 

1 ∗
2 

= 1 , α′∗
1 

= 0 . 10 , α′′∗
1 

= 0 . 05 ,

α′′′∗
1 

= 0 . 05 , t ∗
1 

= 60 s, α′∗
2 

= 0 . 20 , α′′∗
2 

= 0 . 10 , α′′′∗
2 

= 0 . 10 , t ∗
2 

=
60 s, α′∗

3 = 0 . 35 , α′′∗
3 = 0 . 175 , α′′′∗

3 = 0 . 175 , and t ∗3 = 120 s. 

The values of the SN-VND design variables after the training

phase are: �∗
1 

= 0 . 15(2 H + 2) , t ∗
1 

= 300 s, �∗
2 

= 0 . 20(2 H + 2) , t ∗
2 

=
300 s, �∗

3 = 0 . 30(2 H + 2) and t ∗3 = 300 s. 

The computational results are presented in Tables 3 , where the

instances are taken from Fischetti et al. [41] . In this case, initial so-

lutions are obtained by choosing a random vertex for each cluster

and then by sequencing them with a nearest-neighbor heuristic. 

As happens for the TSP, as the instances become larger (in-

stances from 157rat783 on) the SN-VND is not able to load the

model (the explanation is the same as for the TSP) and even

for smaller instances the improvements in many cases are very

small (0% in some cases). Overall, the average SN-VND improve-

ment is about 2.50%, with a maximum value of 9.24% for in-

stance 89pcb442. On the other hand, AD-VND is able to visit so-

lutions whose average objective function value is about 13% better

than that of the initial solution, with a minimum value of 4.96%

for instance 84fl417 and a maximum value of 18.48% for instance

132d657. In this case, the comparison with ADN shows that the

advantage of using neighborhoods of different sizes is not always

consistent. Indeed, the results of AD-VND are about 0.5% to 2% bet-

ter than ADN, with a single case in which ADN is about 0.3% better

(instance 115u574) and another case in which the deviation of AD-

ND is about 6% higher than ADN (instance 217vm1084). We no-

tice that the differences between the two approaches are further

lessened because of the confidence intervals that partially overlap. 

4.3. Capacitated Vehicle Routing Problem with Time Windows 

The VRPTW can be defined on a directed complete graph G =
(V, A ) , where set V contains n + 2 vertices. Let H denote the set

of vehicles. It is required that each vehicle route starts at vertex

0 and ends at vertex n + 1 (depots), respectively. The service time

at vertex i ∈ V is denoted by s i (with s 0 = s n +1 = 0 ), whereas each

arc ( i, j ) ∈ A has associated a travel cost c ij and a travel time t ij . For

each vertex i it is defined a time window [ a , b ] and a demand q ,
i i i 
hile Q is the vehicles’ capacity. The boolean variable x h 
i j 

states if

rc ( i, j ) is traversed by vehicle h . The continuous variable w 

h 
i 

rep-

esents the start service time for vehicle h at vertex i . Finally, we

espectively denote with δ+ (i ) and δ−( j) the set of predecessors

nd the set of successors, i.e. δ+ (i ) = { j : (i, j) ∈ A } and δ−( j) =
 i : (i, j) ∈ A } . We consider the following distance-minimizing for-

ulation [42] : 

min z = 

∑ 

h ∈ H 

∑ 

(i, j) ∈ A 
c i j x 

h 
i j 

s . t . 
∑ 

h ∈ H 

∑ 

j∈ δ+ (i ) 

x h i j = 1 i ∈ N (18)

∑ 

j∈ δ+ (0) 

x h 0 j = 1 h ∈ H (19)

∑ 

i ∈ δ−( j) 

x h i j −
∑ 

i ∈ δ+ ( j) 

x h ji = 0 h ∈ H, j ∈ N (20)

∑ 

i ∈ δ−(n +1) 

x h i,n +1 = 1 h ∈ H (21)

x h i j (w 

h 
i + s i + t i j − w 

h 
j ) ≤ 0 h ∈ H, (i, j) ∈ A (22)

∑ 

i ∈ N 
q i 

∑ 

j∈ δ+ (i ) 

x h i j ≤ Q h ∈ H (23)

a i ≤ w 

h 
i ≤ b i h ∈ H, i ∈ V (24)

x h i j ∈ { 0 , 1 } h ∈ H, (i, j) ∈ A. (25)

s showed in [42] , the above formulation can be linearized by us-

ng a big M constant. 

In this model, the types of entities are the vertices ( k = 1 ) and

he vehicles ( k = 2 ), i.e., K = 2 . Since the fleet is homogeneous, ve-

icles do not index any parameter ( p 2 = 0 ). Indeed, the sole vehi-

les’ parameter is the capacity, that is constant. On the other hand,

here are six parameters indexed by each vertex entity ( p 1 = 6 ):

he vertex-to-vertex costs ( l = 1 ), the service times ( l = 2 ), the re-

ease times ( l = 3 ), the deadlines ( l = 4 ), the vertex-to-vertex travel

imes ( l = 5 ), as well as the demands ( l = 6 ). Hence, the vertices
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Table 4 

Parameters’ values after the training phase for the AD-VND in the VRPTW case. The 

following parameters have the same values for each class of instances: π ∗
1 = 0 . 1 , π ∗

2 = 

0 . 9 , α′′∗
1 = α′′∗

2 = α′′∗
3 = 0 . 00 , α′′′∗

1 = α′′′∗
2 = α′′′∗

3 = 0 . 00 , w 

1 ∗
2 = 0 , w 

1 ∗
3 = 0 , w 

1 ∗
6 = 0 . 

Dataset Parameter No TW β = 0 β = 0 . 25 β = 0 . 33 β = 0 . 5 

C1 α′∗
1 0.12 0.12 0.12 0.06 0.12 

α′∗
2 0.21 0.21 0.21 0.21 0.21 

α′∗
3 0.24 0.30 0.24 0.30 0.24 

t ∗1 60 60 60 60 60 

t ∗2 60 60 60 60 120 

t ∗3 60 60 60 120 120 

w 

1 ∗
1 0 1 0 0 1 

w 

1 ∗
4 , w 

1 ∗
5 1 1 1 0 1 

C2 α′∗
1 0.06 0.06 0.12 0.12 0.12 

α′∗
2 0.15 0.21 0.15 0.21 0.21 

α′∗
3 0.24 0.30 0.30 0.30 0.30 

t ∗1 , t 
∗
2 , t 

∗
3 120 60 60 60 120 

w 

1 ∗
1 0 0 0 0 0 

w 

1 ∗
4 , w 

1 ∗
5 0 0 0 1 1 

R1 α′∗
1 0.12 0.12 0.06 0.12 0.06 

α′∗
2 0.15 0.21 0.21 0.21 0.21 

α′∗
3 0.24 0.30 0.30 0.30 0.30 

t ∗1 , t 
∗
2 , t 

∗
3 60 60 60 120 60 

w 

1 ∗
1 0 0 0 0 1 

w 

1 ∗
4 , w 

1 ∗
5 0 1 1 0 0 

R2 α′∗
1 0.12 0.06 0.06 0.12 0.12 

α′∗
2 0.15 0.15 0.21 0.21 0.21 

α′∗
3 0.24 0.24 0.30 0.30 0.24 

t ∗1 60 60 60 60 60 

t ∗2 120 60 60 60 120 

t ∗3 120 60 120 60 120 

w 

1 ∗
1 , w 

1 ∗
4 , w 

1 ∗
5 0 0 0 0 0 

RC1 α′∗
1 0.12 0.12 0.06 0.12 0.12 

α′∗
2 0.15 0.15 0.15 0.21 0.21 

α′∗
3 0.24 0.30 0.30 0.30 0.30 

t ∗1 , t 
∗
2 60 60 60 60 60 

t ∗3 60 120 120 60 60 

w 

1 ∗
1 0 0 0 1 0 

w 

1 ∗
4 , w 

1 ∗
5 0 0 0 1 1 

RC2 α′∗
1 0.12 0.12 0.06 0.06 0.12 

α′∗
2 0.15 0.21 0.15 0.21 0.21 

α′∗
3 0.30 0.24 0.30 0.30 0.30 

t ∗1 60 60 60 60 120 

t ∗2 60 60 120 60 120 

t ∗3 120 120 120 120 120 

w 

1 ∗
1 0 0 0 0 0 

w 

1 ∗
4 , w 

1 ∗
5 0 0 0 0 1 

d  

D  

α  

 

a  

V  

0  

0  

{  

t  

t  

f  

f  

b  

3

 

[  

p  

1  

C  

w  

o  

c  

w

a  

t  

t

 

T  

t

 

g

 

T  

t  

a  

w  

p  

t  

m  

r  

W  

m

 

f  
ataset D 1 has six groups of columns whilst the vehicles dataset

 2 is empty. Therefore, the design variables for the AD-VND are:
′ 
1 , α

′ 
2 , α

′ 
3 , α

′′ 
1 , α

′′ 
2 , α

′′ 
3 , α

′′′ 
1 , α

′′′ 
2 , α

′′′ 
3 , t 1 , t 2 , t 3 , w 

1 
1 , w 

1 
2 , w 

1 
3 , w 

1 
4 , w 

1
5

nd w 

1 
6 

as well as π1 and π2 . The sets of possible values for AD-

ND are: {0.06, 0.09, 0.12} for α′ 
1 
, {0.15, 0.18, 0.21} for α′ 

2 
, {0.24,

.27, 0.30} for α′ 
3 , {0.0 0 0, 0.025, 0.050, 0.075, 0.10 0, 0.0125, 0.150,

.175, 0.200} for α′′ 
r and α′′′ 

r ( r = 1 , 2 , 3 ), whereas these sets are

0, 1} for w 

1 
l 

( l = 1 , . . . , 6 ) and {0.1, 0.5, 0.9} for π1 and π2 . On

he other hand, the only design variables for SN-VND are �r and

 r ( r = 1 , 2 , 3 ) with possible values chosen in {0.07 γ , 0.11 γ , 0.15 γ }

or �1 , {0.20 γ , 0.25 γ , 0.29 γ } for �2 and {0.37 γ , 0.44 γ , 0.51 γ }

or �3 , where γ = 2 n + | H| . With respect to the time limits, for

oth approaches their values are chosen in {60, 120, 180, 240, 300,

60} s. 

Our tests have been made on the Solomon’s instances

43] which are composed of six classes: C1, C2, R1, R2, RC1, RC2. In

articular, class C1 is made up of nine instances, class R1 contains

2 instances, class R2 is composed of 11 instances, whereas classes

2, RC1, and RC2 contain eight instances each. In order to vary the

idth of the time windows, we have generated additional classes

f test instances as follows. Let [ a i , b i ] be the time window of a

ustomer i in a Solomon’s instance. We have tightened the time
indow of each customer i as follows: [ a i + β(b i − a i ) , b i − β(b i −
 i )] for β = 0 , 0.25, 0.33 and 0.5. We have also completely relaxed

he time windows by setting [ a i = a 0 , b i = b 0 ] , where [ a 0 , b 0 ] is the

ime window of the vehicle depot. 

The values outputted by the AAC tool are reported in

ables 4 and 5 (for AD-VND and SN-VND, respectively), differen-

iated for each class of instance. 

The initial solutions were obtained by using the Constraint Pro-

ramming model reported in CP Optimizer Forum [44] . 

The results of our experiments are detailed in Tables 6–10 .

he AD-VND clearly outperforms the SN-VND. More specifically,

he maximum average objective function improvement of the

utomatically-designed VND is 60.46% for the case when the time

indows are relaxed, while the corresponding SN-based VND im-

rovement is 26.20%. This is the case for which the gap between

he two VND procedures is the largest. The maximum improve-

ent of SN-VND is 32.68% when β = 0 , still very far from the cor-

esponding AD-VND improvement which turns out to be 60.12%.

e observe that the gap between the two VND procedures is al-

ost negligible for β = 0 . 5 (about 3%). 

When compared with ADN, the AD-VND still performs satis-

actorily, even if the improvements are reduced with respect to
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Table 5 

Parameters’ values after the training phase for the SN-VND in the VRPTW case. 

Dataset Parameter No TW β = 0 β = 0 . 25 β = 0 . 33 β = 0 . 5 

C1 �∗
1 0.15 γ 0.15 γ 0.15 γ 0.15 γ 0.15 γ

�∗
2 0.29 γ 0.29 γ 0.29 γ 0.20 γ 0.29 γ

�∗
3 0.51 γ 0.51 γ 0.51 γ 0.37 γ 0.37 γ

t ∗1 , t 
∗
2 120 60 60 60 60 

t ∗3 120 60 60 120 60 

C2 �∗
1 0.15 γ 0.15 γ 0.15 γ 0.15 γ 0.07 γ

�∗
2 0.29 γ 0.29 γ 0.29 γ 0.20 γ 0.29 γ

�∗
3 0.37 γ 0.37 γ 0.51 γ 0.51 γ 0.51 γ

t ∗1 60 60 60 60 60 

t ∗2 120 60 60 60 120 

t ∗3 120 120 120 60 120 

R1 �∗
1 0.15 γ 0.15 γ 0.15 γ 0.15 γ 0.07 γ

�∗
2 0.20 γ 0.29 γ 0.20 γ 0.20 γ 0.29 γ

�∗
3 0.37 γ 0.37 γ 0.51 γ 0.37 γ 0.51 γ

t ∗1 , t 
∗
2 120 120 120 120 60 

t ∗3 120 120 120 120 120 

R2 �∗
1 0.15 γ 0.15 γ 0.15 γ 0.15 γ 0.15 γ

�∗
2 0.20 γ 0.20 γ 0.20 γ 0.29 γ 0.29 γ

�∗
3 0.51 γ 0.37 γ 0.51 γ 0.51 γ 0.37 γ

t ∗1 60 60 60 120 60 

t ∗2 120 60 120 120 60 

t ∗3 120 120 120 120 60 

RC1 �∗
1 0.15 γ 0.15 γ 0.15 γ 0.15 γ 0.07 γ

�∗
2 0.20 γ 0.29 γ 0.20 γ 0.29 γ 0.29 γ

�∗
3 0.51 γ 0.37 γ 0.51 γ 0.37 γ 0.51 γ

t ∗1 120 60 60 120 60 

t ∗2 120 60 120 120 60 

t ∗3 120 60 120 120 120 

RC2 �∗
1 0.15 γ 0.15 γ 0.07 γ 0.07 γ 0.07 γ

�∗
2 0.29 γ 0.29 γ 0.20 γ 0.29 γ 0.20 γ

�∗
3 0.37 γ 0.37 γ 0.37 γ 0.37 γ 0.37 γ

t ∗1 60 120 60 60 120 

t ∗2 60 120 120 60 120 

t ∗3 60 120 120 120 120 
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v  
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f  

0  

π  

{  

1  

β  
the comparison with SN-VND. In particular, the values for DEV z 0 

are about 1% to 6% greater than ADN. There are only three cases

for which ADN is slightly better than our automatically-designed

VND. More specifically, this is the case of instances of class C2 and

RC2 when the time windows are relaxed (average difference of less

than 1%, Table 6 ), and instances of class R1 when β = 0 . 25 (average

difference of about 1%, Table 8 ). As in the GTSP, for some classes of

the Solomon’s instances the differences between ADN and AD-VND

are somehow reduced because of the confidence intervals that par-

tially overlap. 

4.4. Multi-Plant, Multi-Item, Multi-Period Capacitated Lot-Sizing 

Problem 

Given a planning horizon partitioned into T periods, the MP-
CLSP aims to determine a least cost feasible solution for the fol-
lowing decisions: the quantity of items to be produced and then
Table 6 

Results for the VRPTW when the time windows are relaxed. The values 

posing each class. 

Instance z 0 GAP ADN 

z DEV z 0 CI 

(%) (%) (%) 

C1 4,095,069.33 92.38 1,753,815.93 57.23 1.31 

C2 3,468,978.75 83.51 1,135,744.72 64.30 2.20 

R1 3,183,083.50 81.47 1,543,985.46 50.50 4.85 

R2 3,765,233.27 84.50 1,282,060.10 65.74 2.31 

RC1 3,825,735.63 85.90 1,808,967.64 51.42 4.51 

RC2 4,793,855.75 88.91 1,508,102.78 68.40 2.74 

MEAN 59.60 
tored at each plant in each period, the quantity of items to be
ransferred between plants in each period. Let us denote with M
nd N the set of plants and the set of items to produce, respec-
ively. For each ( i, j, t ), i ∈ N, j ∈ M, t ∈ T we define the following pa-
ameters: the demand d it ; the setup time f ijt ; the unit production

ost c ijt ; the setup cost s ijt ; the unit inventory cost h ijt ; the unit

rocessing time b ijt . Moreover, we denote with C jt the production

apacity of plant j in period t , whereas the parameter u j j ′ t repre-

ents the unit transportation cost of an item between plant j and
lant j ′ in period t . For each ( i, j, t ), i ∈ N, j ∈ M, t ∈ T , we define the
ecision variables y ijt , x ijt and I ijt as follows. The binary variable y ijt 

s set to 1 or 0 to model the decision to produce or not the item i
t plant j in period t . The integer variable x ijt represents the quan-

ity of item i manufactured at plant j during period t . The integer
ariable I ijt denotes the inventory level of item i at plant j at the

nd of the period t . Finally, the integer variable q i j j ′ t models the

ecision about the quantity of item i to be transferred from plant
 to plant j ′ in period t . The formulation of the MPCLSP we use is
he following [45] : 

min z = 

∑ 

i ∈ N 

∑ 

j∈ M 

∑ 

t∈ T 

( 

c i jt x i jt + s i jt y i jt + h i jt I i jt + 

∑ 

j ′ ∈ M, j ′ � = j 
u j j ′ t q i j j ′ t 

) 

s . t . I i j,t−1 + x i jt −
∑ 

j ′ ∈ M, j ′ � = j 
q i j j ′ t + 

∑ 

j ′ ∈ M, j ′ � = j 
q i j ′ jt − I i jt = d i jt i ∈ N, j ∈ M, t ∈ T 

x i jt ≤
( ∑ 

j∈ M 

∑ 

l ∈ T,l ≥t 

d i jl 

) 

y i jt i ∈ N, j ∈ M, t ∈ T 
∑ 

i ∈ N 

(
b i jt x i jt + f i jt y i jt 

)
≤ C jt j ∈ M, t ∈ T 

I i j0 = 0 i ∈ N, j ∈ M 

x i jt , I i jt ≥ 0 i ∈ N, j ∈ M, t ∈ T 
q i j j ′ t ≥ 0 i ∈ N, j ∈ M, j ′ ∈ M, t ∈ T 
y i jt ∈ { 0 , 1 } i ∈ N, j ∈ M, t ∈ T . (26)

In this formulation, we have three types ( K = 3 ) of entities: the

tems ( k = 1 ), the plants ( k = 2 ) and the time periods ( k = 3 ). Each

tem indexes five parameters ( p 1 = 5 ), while there are seven pa-

ameters indexed by plants and time periods ( p 2 = p 3 = 7 ). As de-

cribed in Section 3.1 , we define three datasets: an items dataset

 1 of | N | rows and five groups of columns, a plants dataset D 2 of

 M | rows and seven groups of columns and a time periods dataset

 3 of T rows and seven groups of columns. Therefore, the design

ariables for AD-VND are: α′ 
r , α

′′ 
r , α

′′′ 
r , t r ( r = 1 , 2 , 3 ), π1 , π2 , π3 ,

 

1 
l 

( l = 1 , . . . , 5 ), w 

2 
l 

( l = 1 , . . . , 7 ) and w 

3 
l 

( l = 1 , . . . , 7 ). In particu-

ar, the sets of possible values that we consider are {0.005, 0.010,

.015} for α′ 
1 
, {0.015, 0.020, 0.025} for α′ 

2 
, {0.025, 0.030, 0.035}

or α′ 
3 
, and {0.0 0 0, 0.025, 0.050, 0.075, 0.100, 0.0125, 0.150, 0.175,

.200} for α′′ 
r and α′′′ 

r ( r = 1 , 2 , 3 ). Moreover, the values of π1 , π2 ,

3 range in {0.00, 0.33, 0.50, 1.00}, whereas every w is chosen in

0, 1}. With respect to SN-VND, the possible values for �r ( r =
 , 2 , 3 ) are selected in { β/512, β/256, β/128} for �1 , { β/128, β/64,

/32} for �2 and { β/32, β/16, β/8} for �3 , where β = | N| · | M| · T .
z 0 , GAP, z , and DEV z 0 are averaged over the several instances com- 

SN-VND AD-VND 

z DEV z 0 CI z DEV z 0 CI 

(%) (%) (%) (%) 

2,884,524.33 28.66 3.41 1,540,821.00 62.12 1.61 

2,224,204.63 34.34 3.36 1,146,191.88 63.74 1.44 

2,610,826.50 18.10 4.00 1,527,623.92 50.96 3.07 

2,700,543.73 28.25 4.37 1,240,245.73 66.91 2.31 

3,103,693.25 18.59 2.19 1,804,874.50 51.68 4.84 

3,382,901.38 29.22 3.30 1,558,726.50 67.33 2.73 

26.20 60.46 
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Table 7 

Results for the VRPTW with β = 0 . The values z 0 , GAP, z , and DEV z 0 are averaged over the several instances composing each class. 

Instance z 0 GAP ADN SN-VND AD-VND 

z DEV z 0 CI z DEV z 0 CI z DEV z 0 CI 

(%) (%) (%) (%) (%) (%) (%) 

C1 4,095,069.33 85.66 1,489,235.92 63.47 1.36 2,488,458.89 36.86 4.54 1,450,537.00 63.95 4.31 

C2 3,468,978.75 81.83 1,153,256.08 64.18 4.85 1,977,009.63 45.56 4.50 958,137.13 69.37 4.49 

R1 3,183,083.50 74.07 1,708,897.03 44.89 4.82 2,327,596.50 26.82 2.97 1,6 87,4 89.50 45.99 5.09 

R2 3,765,233.27 81.98 1,315,912.04 64.78 2.31 2,602,982.64 30.97 3.83 1,289,774.18 65.64 1.89 

RC1 3,825,735.63 81.30 2,010,863.24 45.89 4.77 2,913,944.63 23.44 4.25 2,029,636.75 45.95 4.06 

RC2 4,793,855.75 86.21 1,563,805.27 67.20 2.32 3,229,064.75 32.46 3.55 1,4 40,4 45.13 69.83 2.13 

MEAN 58.40 32.68 60.12 

Table 8 

Results for the VRPTW with β = 0 . 25 . The values z 0 , GAP, z , and DEV z 0 are averaged over the several instances composing each class. 

Instance z 0 GAP ADN SN-VND AD-VND 

z DEV z 0 CI z DEV z 0 CI z DEV z 0 CI 

(%) (%) (%) (%) (%) (%) (%) 

C1 3,908,173.00 77.87 1,614,729.37 58.45 3.45 2,282,293.78 39.75 4.68 1,465,473.89 60.84 4.33 

C2 3,754,977.13 81.77 1,146,491.76 65.85 1.40 2,173,373.63 42.43 4.24 982,430.88 71.07 4.79 

R1 2,545,156.67 58.10 1,902,210.99 24.44 4.58 1,953,402.33 22.78 3.57 1,918,718.08 23.42 3.53 

R2 3,252,372.73 74.66 1,430,847.67 55.49 3.52 2,298,351.09 28.92 3.74 1,317,565.45 58.86 4.54 

RC1 2,868,663.50 61.40 2,358,259.05 17.60 2.04 2,309,612.75 19.36 3.06 2,061,248.00 27.94 3.65 

RC2 4,4 4 4,461.13 79.90 1,705,719.05 60.97 4.95 2,925,159.75 33.86 2.70 1,588,804.25 63.40 4.18 

MEAN 47.13 31.18 50.92 

Table 9 

Results for the VRPTW with β = 0 . 33 . The values z 0 , GAP, z , and DEV z 0 are averaged over the several instances composing each class. 

Instance z 0 GAP ADN SN-VND AD-VND 

z DEV z 0 CI z DEV z 0 CI z DEV z 0 CI 

(%) (%) (%) (%) (%) (%) (%) 

C1 3,939,832.22 73.35 1,716,724.92 55.96 5.57 2,184,093.00 42.84 4.03 1,525,932.89 60.13 5.39 

C2 4,185,462.63 84.83 1,218,299.86 70.08 4.44 2,282,243.00 44.83 4.88 1,073,760.13 73.27 5.66 

R1 2,438,978.33 51.30 2,004,816.67 17.15 2.63 1,917,594.83 20.86 2.11 1,823,316.92 24.73 2.50 

R2 3,230,956.00 70.70 1,491,276.46 53.31 3.80 2,197,847.36 31.78 2.98 1,287,632.91 59.70 3.47 

RC1 2,896,091.57 50.85 2,456,283.89 14.68 3.23 2,352,513.57 18.63 3.44 2,191,363.29 23.83 3.40 

RC2 4,455,520.63 76.95 1,720,859.19 60.99 4.77 2,920,403.88 34.31 2.88 1,535,787.25 65.22 3.34 

MEAN 45.36 32.21 51.15 

Table 10 

Results for the VRPTW with β = 0 . 5 . The values z 0 , GAP, z , and DEV z 0 are averaged over the several instances composing each class. 

Instance z 0 GAP ADN SN-VND AD-VND 

z DEV z 0 CI z DEV z 0 CI z DEV z 0 CI 

(%) (%) (%) (%) (%) (%) (%) 

C1 4,077,181.89 30.92 2,636,402.20 25.01 3.10 2,471,204.78 22.96 3.97 2,206,442.33 27.05 4.66 

C2 4,178,275.63 39.29 1,916,409.35 38.06 4.73 2,327,125.88 31.15 3.90 1,843,218.00 39.29 4.88 

R1 3,905,566.83 21.16 3,0 0 0,584.19 18.14 1.91 2,887,368.42 20.41 1.97 2,850,071.25 21.16 2.06 

R2 3,659,437.09 28.82 2,351,581.43 26.21 2.81 2,365,718.45 25.93 2.63 2,221,423.27 28.82 3.00 

RC1 5,212,424.13 23.87 3,835,937.88 20.80 2.79 3,705,231.38 22.85 2.74 3,637,545.00 23.87 2.92 

RC2 3,516,686.88 14.83 2,608,179.43 13.73 3.08 2,715,935.88 12.10 2.60 2,535,352.50 14.83 3.30 

MEAN 23.66 22.57 25.84 
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o  
inally, the time limits for both approaches are chosen in {60, 120,

80, 240, 300, 360, 420, 480, 540, 600} s. 

The values of the design variables for the AD-VND are: π ∗
1 

=
 , π ∗

2 = 0 , π ∗
3 = 0 , w 

1 ∗
l 

= 0 (l = 1 , . . . , 5) , w 

2 ∗
l 

= 0 (l = 1 , . . . , 7) ,

 

3 ∗
l 

= 0 (l = 1 , . . . 7) , α′∗
1 = 0 . 010 , α′∗

2 = 0 . 015 , α′∗
3 = 0 . 025 , t ∗1 =

20 s, t ∗
2 

= 240 s, t ∗
3 

= 360 s, α′′∗
r = 0 . 00 ( r = 1 , 2 , 3 ) and α′′′∗

r =
 . 00 ( r = 1 , 2 , 3 ). As in the TSP, the meaning of all weights w and

he parameters α′′ 
r and α′′′ 

r ( r = 1 , 2 , 3 ) being zero is that the sets

 r ( r = 1 , 2 , 3 ) coincide with sets F ′ r , i.e., the neighborhood struc-

ures are directly influenced only by the solution-based features. 

On the other hand, the values of the design variables for the

N-VND are: �∗
1 

= β/ 128 , �∗
2 

= β/ 64 , �∗
3 

= β/ 32 . With respect to

he time limits, the AAC procedure has produced different values
epending on the set of instances. In particular, for the instances

ith 80 items the values are t ∗
1 

= 120 s, t ∗
2 

= 240 s, t ∗
3 

= 360 s,

hile for the instances with 150 items the values are t ∗
1 

= 480 s,

 

∗
2 = 540 s, t ∗3 = 600 s. 

Experiments for this problem have been performed by using

our classes of 10 instances randomly generated according to Nasci-

ento et al. [45] , with 12 time periods, 15, 20 or 30 plants, and

he item set containing either 80 or 150 elements. The initial solu-

ions are obtained by running the MIP solver and stopping it after

nding the first feasible solution. 

The results are reported in Table 11 . For this problem, the AD-

ND is slightly better than the SN-VND (3.84% compared to 2.17%

n the average). Moreover, in one case (12 time periods, 30 plants
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Table 11 

Results for the MPCLSP. The values z 0 , GAP, z , and DEV z 0 are averaged over the several instances composing each class. 

Instance z 0 GAP ADN SN-VND AD-VND 

T | M | | N | z DEV z 0 CI z DEV z 0 CI z DEV z 0 CI 

(%) (%) (%) (%) (%) (%) (%) 

12 15 80 2,732,591.28 5.62 2,651,807.16 2.96 0.08 2,651,680.89 2.96 0.67 2,646,774.87 3.14 0.09 

20 80 3,814,898.44 9.95 3,594,061.98 5.52 2.86 3,611,242.19 5.13 2.36 3,558,121.36 6.47 2.82 

150 6,767,476.22 5.35 6,608,230.43 2.35 0.10 6,726,335.84 0.61 0.15 6,542,148.13 3.33 0.10 

30 150 10,036,839.70 5.10 9,890,667.62 1.46 0.06 10,036,839.70 0.00 – 9,791,760.94 2.44 0.06 

MEAN 3.07 2.17 3.84 

Table 12 

Analysis of the performance of the two model-based VND procedures. 

Test problem SN-VND AD-VND 

Visited solutions Local Optima Visited solutions Local Optima 

r = 1 r = 2 r = 3 (%) r = 1 r = 2 r = 3 (%) 

TSP 2.00 2.94 1.00 87.68 5.66 6.00 5.83 95.93 

GTSP 2.77 1.17 1.00 80.56 5.70 3.49 1.45 94.57 

VRPTW No TW 2.36 1.60 1.12 84.32 2.60 3.08 3.23 98.63 

VRPTW β = 0 3.19 1.43 1.00 90.28 1.94 2.57 2.98 98.51 

VRPTW β = 0 . 25 3.36 1.75 1.00 91.10 1.55 2.35 2.93 98.09 

VRPTW β = 0 . 33 4.28 2.00 – 92.22 1.72 2.19 3.32 99.02 

VRPTW β = 0 . 5 1.44 1.03 1.00 94.98 1.34 1.34 1.16 10 0.0 0 

MPCLSP 2.10 2.01 1.30 78.22 1.39 1.73 3.47 10 0.0 0 
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and 150 items) SN-VND does not improve the initial solution (the

improvement of AD-VND is 2.44%) and in another case (12 time

periods, 20 plants and 150 items) the improvement is limited to

0.61% (compared to 3.33% of AD-VND). 

With respect to ADN, we observe that our automatically-

designed VND consistently achieve better results, even if the im-

provements are not considerably higher. The minimum difference

between the two approaches is about 0.20%, whereas the maxi-

mum value is about 1%. In this case, we notice that the confidence

intervals overlap only for the class of instances with 12 periods, 20

plants and 80 items. 

4.5. Further analysis 

In this subsection we further analyze the performance of the

two model-based VND procedures in terms of how precisely they

search the different neighborhoods, as well as of the number of so-

lutions visited for each neighborhood. In particular, in Table 12 we

report, for each test problem and for each neighborhood structure

in the hierarchy, the average number of solutions explored by the

two approaches, as well as the percentage of local optima found

during the whole search (computed as the number of local optima

found divided by the overall number of neighborhoods explored). 

In general, we observe that AD-VND explores more solutions

than SN-VND, with a few exceptions that typically are limited to

r = 1 . The difference in the number of neighbors visited becomes

more evident as the size of the neighborhood structures increases.

We also notice that for the VRPTW with β = 0 . 33 SN-VND never

makes use of the biggest neighborhood structure (a ‘ - ’ is reported

in the corresponding entry). With respect to the percentage of lo-

cal optima certified during the whole search (i.e., when the ex-

ploration of a neighborhood has been performed exhaustively be-

fore the time limit), the results show that both approaches find a

considerable number of local optima. However, AD-VND is able to

exhaustively explore the different neighborhoods more often than

SN-VND for each test problem (about 87% for SN-VND compared to

about 98% for AD-VND). 
. Conclusions 

This paper has proposed a procedure to automatically instanti-

te a Variable Neighborhood Descent procedure from a MIP model.

n particular, we have moved on from a recent paper in which

 single neighborhood structure is automatically designed from

 MIP model. Here, we have generalized this approach and de-

ned a procedure that - based on a MIP model and a current

easible solution - defines automatically the hierarchy of neigh-

orhood structures of an entire VND algorithm. Our computa-

ional results have tested the performance of our approach on

our well-known combinatorial optimization problems. In partic-

lar, our automatically-generated VND has been compared with

he previous single-neighborhood procedure and another model-

erived VND procedure. In the first case, the results have con-

rmed that using a hierarchy of neighborhood structures allow

o achieve better solutions, even if in some cases the improve-

ent is not very high. On the other hand, the second compari-

on shows that our automatically-generated VND outperforms the

ther model-derived VND procedure with respect to both scalabil-

ty and solution quality. 
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