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Abstract: We build a discrete-time non-linear model for volatility forecasting purposes. This
model belongs to the class of threshold-autoregressive models, where changes in regimes are
governed by past returns. The ability to capture changes in volatility regimes and using more
accurate volatility measures allow outperforming other benchmark models, such as linear
heterogeneous autoregressive model and GARCH specifications. Finally, we show how to
derive closed-form expression for multiple-step-ahead forecasting by exploiting information
about the conditional distribution of returns.

Keywords: volatility forecast; non-linear time series models

1. Introduction

Volatility plays an important role in financial econometrics. Measuring, modelling and forecasting
financial volatility are essential for risk management purposes, portfolio allocation and option pricing.
Although returns remain unpredictable, their second moment can be forecasted quite accurately, which
generated a lot of research during the last thirty years motivated by Engle’s seminal paper [1]. The
existing literature aiming to model and forecast financial volatility can be divided into two distinct
groups: parametric and non-parametric models. The former assumes a specific functional form for
volatility and models it as a function of observable variables, such as ARCH or GARCH models [1–3],
or as a known function of latent variables resulting in stochastic volatility models [4,5].

The second class defines financial volatility without imposing any parametric assumptions hence
called realized volatility models [6]. The main idea of the latter models is to construct consistent
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estimators for the unobserved integrated volatility by summing the squared returns over a very short
period within a fixed time span, typically one day. The availability of high-frequency data allows
high precision estimation of the continuous time pure diffusion processes given the large datasets of
discrete observations. As a result, volatility essentially becomes observable and, in the absence of
microstructure noise, can be consistently estimated by a realized volatility measure. This approach
has two main benefits compared with GARCH and stochastic volatility models. First, researchers can
treat volatility as observable and model it by applying a time series technique, for example ARFIMA
or autoregressive fractionally integrated moving average models [6]. Second, realized volatility models
significantly outperform models based on lower frequency (daily data) in terms of forecasting power;
see, e.g., [7–9]. Indeed, the latter models adapt new information and update the volatility forecast at a
slower daily frequency, while the former models can incorporate changes in volatility faster due to the
more frequent arrival of intraday information.

Although the literature proposes many different approaches for modelling volatility, there is still no
unique model that explains all of the stylized facts simultaneously. In particular, there is no consensus
on how to model long memory, since there are at least four approaches: the non-linear model with
regime switching [9]; the linear fractionally-integrated process [10]; the mixture of heterogeneous run
information arrivals [11]; and the aggregation of short memory stationary series [12]. Numerous methods
have been developed, since it is hard to distinguish between unit root and structural break data generating
processes [13,14]. [15] show that structural break models can outperform the long memory model if the
timing and sizes of future breaks are known. Although few academics and practitioners accurately
predicted the timing of the recent financial crises and European sovereign debt turmoil, a model with
structural breaks seems to be more economically plausible than a fractionally-integrated long memory
model. In addition, [15] recommend relying on economic intuition to choose between smooth transition
auto regressive models (STAR) and abrupt structural break models.

In this paper, we extend the heterogeneous autoregressive model proposed by [16] to take
into account different regimes of volatility. The resulting model is called a non-linear threshold
autoregression model, where regimes are governed by an exogenous trigger variable. This model
provides a better fit of the robust measure of realized volatility for both in-sample data and
out-of-sample forecasting. In addition to an improved performance in particular samples, a non-linear
model also produces superior multiple-step-ahead forecasts in population according to the Giacomini
and White test [17]. We also show that the superior performance of a non-linear model is
achieved during periods of high volatility. This is especially important during times of financial
crises, when investors are in particular need of more accurate forecasts. Finally, we derive a
closed form expression for multiple-step-ahead forecast, where the past returns govern changes in
volatility regimes.

Our paper finds that changes in the volatility regimes occur when return exceeds a −1% threshold,
which is in line with previous findings [9,18]. However, our model differs in terms of the estimation
procedure and the most recent dataset that includes financial crises. In fact, the superior performance
of a non-linear model becomes particularly significant during periods of elevated volatility, such as
recent financial crises. More importantly, we a derive a closed-form expression of multiple-step-ahead
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forecasts, whereas other authors either focus on one-step ahead forecasts [9] or using conditional
simulations [18].

The remainder of this paper is organized as follows. The non-linear threshold model for realized
volatility is defined in Section 2. Section 3 describes preliminary data analysis and estimation results
for the S&P 500 index. Section 4 describes one and multiple-step-ahead forecasts. Finally, Section 5
concludes and provides directions for future work.

2. Model

In this section, we introduce two building blocks: the heterogeneous autoregressive model and the
regime switching model. Then, we describe the econometric framework designed for the estimation and
inference of our threshold autoregressive model. Finally, we discuss the forecasting of our model and
how to derive a closed form expression for its multiple-days-ahead forecasts.

2.1. HAR-RV Model with Regime Switching

In this section, we discuss extensions of the heterogeneous autoregressive model (HAR) of realized
volatility proposed in [16]. First, let us assume that returns follow a continuous diffusion process:

dp(t) = µ(t)dt+ σ(t)dW (t) (1)

where p(t) is the logarithm of instantaneous price, µ(t) is continuous with a finite variation mean process,
σ(t) is instantaneous volatility and W (t) is standard Brownian motion. Given the process in (1), the
integrated variance corresponding to day t is defined as:

IV d
t =

∫ t

t−1
σ2(ω)dω (2)

Several authors show that as sampling frequency increases, integrated volatility IV d
t can be

approximated by realized variance defined as a sum of the intraday squared returns [6,19,20]. In essence,
volatility becomes observable and can be forecasted using time series techniques.

The presence of market microstructure noise makes realized variance inconsistent and is
a biased estimator of true volatility. Therefore, we use the realized kernel estimator developed in [21],
which remains consistent under the presence of market microstructure noise. The realized kernel RKK,δ

is an estimator of latent realized variance and is defined as follows:

RKK,δ = γ0(pt) +
H∑
h=1

k

(
h− 1

H

)
(γh(pt) + γ−h(pt)) (3)

where γh(pt) =
n(δ)∑
i=1

(pi,t − pi−1,t)(pi−h,t − pi−h−1,t), k(·) is a weight function and pi,t is i-th

intra-daily log price sampled at frequency δ and recorded at day t. In other words, i = 1, ..., n(δ)

and n(δ) = nseconds/δ, where nseconds is the number of seconds during the trading day. Thus, the
realized kernel is similar to the HAC (heteroskedasticity and autocorrelation consistent covariance
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matrix) estimator of the variance-covariance matrix for some stationary time series. Throughout this
paper, realized variance will equal the realized kernel measure defined in Equation (3).

The realized kernel has several advantages over other high-frequency proxies of latent volatility.
First, [22] show that the realized kernel performs better (in terms of forecasting value-at-risk) than other
high-frequency measures, including realized volatility, bi-power realized volatility, two-scales realized
volatility and daily range. Second, the realized kernel is a consistent estimator of latent variance, which
is robust to the market microstructure noise.

The heterogeneous autoregressive model is able to replicate the majority of stylized facts observed in
data: fat tails, volatility clustering and long memory. In particular, HAR is able to generate hyperbolic
decays in the autocorrelation function in a parsimonious way due to the volatility cascade property,
despite the fact that this model does not belong to the class of long memory models. This model is based
on the heterogeneous market hypothesis [23] , which implies that lower frequency volatility (weekly)
affects higher frequency volatility (daily), but not vice versa:

RV d
t+1 = c+ βdRV d

t + βwRV w
t + βmRV m

t + εdt+1 (4)

where RV d
t , RV w

t and RV m
t are daily, weekly and monthly realized variance, respectively, at period t.

The lower frequency, for example weekly, realized variance is computed as:

RV w
t =

RV d
t + ...+RV d

t−4

5
(5)

Similarly, the monthly realized variance is computed as the average of daily variances over 22 days.
Although the HAR model is able to capture long memory and volatility clustering, it cannot explain
abrupt changes in regimes. Indeed, recent subprime mortgage crises, European debt turmoil and a
number of other financial calamities led to significantly different behaviour in the dynamics of the
realized volatility during “good” and “bad” times, as we will discuss in Section 3. Therefore, we propose
to extend the benchmark HAR model and allow the possibility of multiple regimes, governed by either
endogenous or exogenous variables. We define the threshold HAR model with two regimes as follows:

RV d
t+1 =

c1 + βd1RV
d
t + βw1 RV

w
t + βm1 RV

m
t + εt+1, if Tt−l < τ

c2 + βd2RV
d
t + βw2 RV

w
t + βm2 RV

m
t + εt+1, if Tt−l ≥ τ

(6)

where Tt−l is a trigger variable with some lag l and τ is the value of a threshold. In this paper, we
consider only observable triggers, including returns and the realized kernel.

2.2. Econometric Framework for the Non-Linear Model

2.2.1. Estimation

Next, we present the econometric techniques designed to model non-linear dynamics of time series:
the self-exciting threshold autoregressive (SETAR) model and the threshold autoregressive (TAR) model
introduced by [24] and [25]. The main difference between these models is that the trigger variable can be
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either exogenous (TAR model) or endogenous (SETAR model). The TAR(m) model, where m denotes
the number of regimes, is defined as follows:

Yt+1 = θ
′

1Xt11,t(τ, l) + ...+ θ
′

mXt1m,t(τ, l) + εt+1 (7)

where Yt+1 is a univariate time series, Xt = (1, Yt, ..., Yt−p)
′
(p + 1) × 1 vector, τ = (τ1, ..., τm−1) and

τ1 < τ2 < ... < τm−1, 1j,t(τ, l) = 1(τj−1 ≤ Tt−l < τj), 1(·) is an indicator function and Tt−l is a
threshold variable. Let us assume that τ0 = −∞ and τm =∞, while the error term εt+1 is conditionally
independent on information set It and has a finite second moment:

E[ε2t+1] = σ2 <∞
E[εt+1|It] = 0

(8)

In particular, if variable Yt+1 follows the TAR(2) process, then the model (7) becomes:

Yt+1 =

θ
′
1Xt + εt+1, if Tt−l < τ

θ
′
2Xt + εt+1, if Tt−l ≥ τ

(9)

Recall that Model (9) nests a non-linear HAR specification (6) if we put constraints on the
corresponding AR(22) model in each regime. Now, define the vector of all parameters of Model (9)
as θ = (θ

′
1, θ

′
2, ..., θ

′
m, τ

′
, l)
′ . Under Assumption (8), the estimation of the TAR(m) model is performed

using a non-linear least squares approach:

θ̂ = argmin
θ

T∑
t=1

(Yt+1 − θ
′

1Xt11,t(τ, l)− ...− θ
′

mXt1m,t(τ, l))
2 (10)

Here, the minimization can be done sequentially. In particular, θ = (θ
′
1, ..., θ

′
m)
′ can be computed

through OLS regression of Y on X(τ, l) for fixed parameters d and τ :

θ(τ, l) =
(
X(τ, l)

′
X(τ, l)

)−1
X(τ, l)

′
Y (11)

where Y is the Tx1 vector consisting of observations of Yt+1, while X(τ, l) is the Tx4m matrix with t-th
row Xt(τ, l):

Xt(τ, l) = (Xt11t(τ, l), Xt12t(τ, l), ..., Xt1mt(τ, l))

Now, let us assume for simplicity that the non-linear model has only two regimes or m = 2.
Thus, two parameters τ and l can be estimated through minimization of the residual sum of squared
errors S(τ, l):

(τ̂ , l̂) = argmin
τ,l

S(τ, l) (12)

where S(τ, l) =
(
Y −X(τ, l)θ̂(τ, l)

)′ (
Y −X(τ, l)θ̂(τ, l)

)
.

The minimization can be performed through a grid search, while noting that l is discrete. We
follow [26] approach, which allows speeding up the minimization algorithm. In particular, he
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recommends eliminating the smallest and largest quantiles for the threshold variable in the grid search.
This elimination does not only reduce the computational time, but also serves as a necessary condition
for having enough observation in each regime. Indeed, asymptotic theory places additional constraints
on the optimal threshold level, such that nj

T
≥ τ as n → ∞. Although, there is no clear procedure for

how to optimally choose τ , [26] recommends to use a 10% quantile for the cut-off procedure.

2.2.2. Testing for Non-Linearity

We start by discussing the testing of the linear model or TAR(1) against the non-linear model or
TAR(m), where m > 1. Under the null hypothesis, all parameters θ1, ..., θm should be the same:

θ1 = θ2 = ... = θm (13)

Since the threshold parameter is not identified under the null hypothesis, the classical tests have a
non-standard distribution. This problem is called “Davies’ problem” due to [27,28]. [26,29] overcomes
this problem by using empirical process theory and derived the limiting distribution of the main statistics
of interest Fjk:

Fjk = T

(
Sj − Sk
Sk

)
(14)

where Sj and Sk are the sum of squared residuals and k > j. Computation of the asymptotic distribution
is not straightforward, but might be faster than a bootstrap calculation. Although the literature does
not assess the performance of the asymptotic against the bootstrap distribution in the context of SETAR
models, [30] show that the bootstrap technique performs better in the AR(1) context with Andrews
structural change test [31]. Thus, we use the following bootstrap algorithm for testing the linear model
against the non-linear TAR(2) model:

1. Draw residuals with replacement from the linear TAR(1) model.

2. Generate a recursively “fake” dataset using initial conditions Y0, ..., Yp and estimates of the TAR(1)
model, where p equals 22.

3. Estimate the TAR(1) and TAR(2) models on the “fake” dataset.

4. Compute Sb1 and Sb2 on the fake dataset, where b refers to specific bootstrap replication.

5. Compute statistics F b
12 from (15).

6. Repeat Steps (1)–(5) a large number of times.

7. The bootstrap p-value (pbootstrap) equals the percentage of times that F b
12 exceeds the actual

statistic F12.

The algorithm in (1)–(7) can be used to evaluate the distribution of F12 under the assumption of either
homoscedastic or heteroscedastic errors. We compute the bootstrap p-value under the latter assumption,
since the residuals of Model (4) are heteroscedastic. This is in line with the literature [32]. These
diagnostic tests are available upon request.

2.2.3. Testing for Remaining Non-Linearity

The testing for remaining non-linearity is an important diagnostic check for the TAR (m) model.
One way to address this question is to test whether the presence of the additional regime is statistically
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significant or not. This test relies on the aforementioned algorithm, while the bootstrap p-value is
computed for statistics Fjj+1, where j > 1.

2.2.4. Asymptotic Distribution of the Threshold Parameter

The existing literature documents that the distribution of the parameter τ is non-standard if the
threshold effect is significant [26,33]. [29,34] derives an asymptotic distribution of likelihood ratio
statistics:

LR1(τ) =
S1(τ)− S1(τ̂)

σ̂2
(15)

where S1(τ) is the residual sum of squares given parameter τ and σ̂2 is the variance of residuals of the
TAR(2) model and equals S1(τ̂)

T−4 . Moreover, [29,34] shows that the confidence interval for the threshold
parameter is obtained by inverting the distribution function of a limiting random variable. In other
words, the null hypothesis H0 : τ = τ0 is rejected if the likelihood ratio LR1(τ0) exceeds the function of
confidence level α:

c(α) = −2log(1−
√
1− α) (16)

Alternatively, the confidence interval for the threshold parameter is formed as an area where
LR1(τ) ≤ c(α) and is called the “no-rejection region”. We have to interpret the confidence interval
for threshold parameter τ with caution, since it is typically conservative [26,29]. However, the ultimate
test of our non-linear model is the ability to produce superior out-of-sample forecasts, which requires a
tight confidence interval for the threshold parameter. We provide more discussion on page 15.

Although estimates θ̂1, ..., θ̂m depend on the threshold parameter τ , the asymptotic distribution
remains the same as in the linear model case, since estimate τ̂ is super-consistent [35]. [33] and [26]
prove that dependency on the threshold parameter is not of first order asymptotic importance, thus the
confidence interval for θ̂ can be constructed as if τ̂ is a known parameter.

2.2.5. Stationarity

The stationarity conditions for our TAR(2) model are not easily derived, and in general, not much
is known about this property for non-linear models with heteroskedastic errors—see the discussion
in [35] (pp. 79–80). The literature does propose sufficient conditions for a restricted class of non-linear
models and typically for models with homoscedastic errors. In particular, [36] consider SETAR(2)
specification with the AR(1) model in both regimes, while [37] establish necessary and sufficient
conditions for the existence of a stationary distribution for TAR(2) and SETAR(2) models with the
AR(1) process.

In contrast, our model has a richer structure within each regime, since the HAR model is a restricted
version of the AR(22) process. Because of this richer structure within each regime and because
neither self-exciting nor exogenous thresholds are used, it is not possible to use the results from [36]
and [37] to prove stationarity. In addition, our residuals exhibit volatility clustering, and because of
the heteroscedastic errors, it is not possible to exploit the necessary and sufficient conditions for strict
stationarity, even for the simple HAR model derived by [9]. The diagnostic checks show that this
assumption does not hold.
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In conclusion, as is the case in much empirical work, we have to make a trade-off between the
flexibility of the model and the analytical tractability of stationarity conditions. In this paper, we choose
to design a model aiming at providing more accurate volatility forecasts, and we leave the question of
stationarity for future work.

2.3. Forecasting

2.3.1. One-Step-Ahead Forecast

We assess the forecasting performance of various models by computing the one-step-ahead forecast of
the realized volatility measured by the square root of the realized kernel. These forecasts are computed
through rolling window estimation. First, the parameters of the model are estimated using an in-sample
set, and then the one-step-ahead forecast is computed. Second, the rolling window is moved by one
period ahead; the most distant observation is dropped, and the parameters of the model are re-estimated,
while the threshold parameter τ and optimal lag l are kept time invariant. Finally, the one-step-ahead
forecast is computed again.

We use the root mean square error (RMSE) and the mean absolute error (MAE) to compare the
forecast performance of four models:

et+1|t = Yt+1 − Yt+1|t

RMSE =

√√√√√ t+N∑
j=t+1

e2j+1|j

N

MAE =

t+N∑
j=t+1

|ej+1|j|

N

(17)

where Yt+1|t is the one-step-ahead conditional forecast of the daily realized volatility computed based on
the rolling window for one of the four models and Yt+1 is the daily realized volatility at period t+ 1. In
addition, we compute R2 of the following Mincer–Zarnowitz regression:

Yt+1 = d0 + d1Yt+1|t + νt (18)

Finally, we investigate the forecasting performance of different models in population using the
Giacomini and White (GW) test [17]. The GW test fits nicely in our framework due to the following
reasons. First, it does not favour models that overfit in-sample, but have high estimation errors. Second,
this test is designed to compare not only unconditional, but conditional forecasts, as well. Finally, the
GW test works with rolling window forecasts, where in-sample size is fixed, while out-of-sample size
is growing.

2.3.2. Conditional Distribution of Returns

In this section, we discuss multiple-step-ahead forecasts for aggregate volatility over periods of five
and 10 days. The extension of the multiple-step-ahead forecast to the linear model is straightforward,
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while the non-linear model has one important problem. We describe formulas used to compute the
multiple-step-ahead forecast for the HAR, GARCH(1,1) and GJR-GARCH(1,1) (proposed by [38])
models in Appendix A. In particular, the one-step-ahead forecast remains the same for both non-linear
and linear cases, while the two-step-ahead one is different:

Yt+1 = F (Yt, θ) + εt

E[Yt+1|It] = F (Yt, θ)

E[Yt+2|It] = E[F (Yt+1, θ)|It] 6= F (E[Yt+1, θ)|It])

(19)

where It is the information set available at period t, F is a non-linear function, θ is a vector of estimates
and Yt is the realized volatility at period t. Equation (19) illustrates the main problem related to
non-linear model: the expected value of a non-linear function differs from the value of a non-linear
function evaluated at the expected value. In the literature, several methods have been proposed for the
computation of the multiple-step-ahead forecast, including conditional simulations in [18]. However, we
choose a different strategy and derive a closed form solution for the multiple-step forecast. Specifically,
we follow an approach similar to [39] and [40] to derive the conditional distribution of returns. Given
the diffusion process (1), the standardized returns should follow a normal distribution:

rt+1|Yt+1, It ∼ N(µNYt+1, σ
2
NY

2
t+1)

Yt+1 =
√
RV d

t+1

(20)

where It = F (rt, rt−1, ...) is information at the period t set generated by the history of returns and µN
is the mean of standardized returns, and µN and σ2

N should be close to zero and one, correspondingly.
See Table B1 in Appendix B for details. Meanwhile, the conditional distribution of realized volatility is
closely approximated by the inverse Gaussian distribution with the following density function:

Yt+1|It ∼ IG(σt+1, αIG),

pdfIG(z, σt+1, αIG) =
( 1
αIGσt+1

)−0.5z−1.5

(2π)0.5
exp

(
αIG − 0.5

[
αIGσt+1

z
+
αIGz

σt+1

])
αIG =

λIG
σt+1

(21)

where σt+1 is a conditional mean and λIG is a shape parameter of the inverse Gaussian distribution. The
conditional mean is assumed to be filtered from the non-linear TAR(2) model as follows:

σt+1 = 1(rt < τ) ·X ′tθ1 + 1(rt ≥ τ) ·X ′tθ2 (22)

Combining Equations (20) and (21), the conditional distribution of returns becomes a normal-inverse
Gaussian distribution (NIG) with the probability density function computed as:

pdf(rt+1|It) =
∫
Yt+1

pdf(rt+1|Yt+1, It) · pdf(Yt+1|It) dYt+1

rt+1|It ∼ NIG(µN , σN , σt+1, αIG)

(23)
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The NIG distribution provides a relatively accurate fit of the unconditional distribution of returns (see
Appendix B for details). Having the distributional assumption for returns, Theorem 1 demonstrates how
to obtain the closed form expression for the multiple-step ahead forecast of the realized volatility.

Theorem 1. Let {Yt} follow the TAR(2) process defined in (6), while returns follow the NIG distribution
with the conditional probability density function defined in (23), and rt+h−1 (h ≥ 2) are independent of
ε1,...,εt+h−1. Then, the h-step-ahead forecast (h ≥ 2) is obtained as follows:

Ŷt(h) = E[Yt+h|It] = c1πt + c2(1− πt) +
(
βd1πt + βd2(1− πt)

)
Ŷt(h− 1)+

+ (βw1 πt + βw2 (1− πt)) Ŷ w
t (h− 1) + (βm1 πt + βm2 (1− πt)) Ŷ m

t (h− 1)
(24)

where:

πt = Pr[rt+1 < τ |It] =
∫ τ

−∞
pdf(rt+1|It)drt+1

θ =
(
c1, β

d
1 , β

w
1 , β

m
1 , c2, β

d
2 , β

w
2 , β

m
2

)′
Ŷ w
t (h− 1) =

[
Ŷt(h− 1) + ...+ Ŷt(h− 5)

5

]

Ŷ m
t (h− 1) =

[
Ŷt(h− 1) + ...+ Ŷt(h− 22)

22

]
(25)

Proof. See Appendix C.

In essence, Formula (24) is similar to the multiple-step-ahead forecast of the GJR-GARCH(1,1)
model — see Appendix A for details. However, the TAR model has an additional flexibility, since
probability πt is time varying, while GJR-GARCH assumes that the corresponding probability equals
to 0.5. To facilitate comparison between these two models, we compute the unconditional probability
of a high volatility regime occurring based on the NIG distribution (23) and from returns data. Here,
the probability equals the frequency of returns occurring, which is lower than the threshold value. The
results show a close match between these two methods: 11.3% (NIG) vs. 13.2% (historical returns) for
in-sample data.

Finally, we describe the multiple-step-ahead forecast using the rolling window approach. First, the
parameters of the model are estimated using in-sample data, and probability πt is computed. Second,
multiple-step-ahead forecasts for the TAR model are calculated based on Expression (24), while πt
remains constant. Probability πt can be computed for each step of forecast, as well, but this will add
additional computational burden, while the results should change only marginally. In other words, we
assume that πt+h|t = πt ∀h, where πt+h|t = Pr[rt+h < τ |It]. We compute h-step-ahead forecasts for
the HAR, GARCH(1,1) and GJR-GARCH(1,1) models based on the formulas presented in Appendix
A. Finally, the rolling window is moved by one period ahead; the first observation is dropped, and the
parameters of the model, including πt+1, are re-estimated.
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3. Empirical Analysis

3.1. Data

The empirical analysis is based on high-frequency data for the S&P 500 index obtained through
the Realized Library of Oxford-Man Institute of Quantitative Finance (Library Version 0.2), which is
freely available:

“Researchers may use this library freely without restrictions so long as they quote in any work which
uses it: Heber, Gerd, Asger Lunde, Neil Shephard and Kevin Sheppard (2009) “Oxford-Man Institute’s
realized library”, Oxford-Man Institute, University of Oxford.”

The sample covers the period from 3 January of 2000 to 12 June of 2014, overall 3603 trading days.
We exclude all days from the sample when the market was closed. [41] have created the Realized Library
database, which provides daily data for about 11 realized measures for 21 assets. The authors clean the
raw data obtained through Reuters Data Scope Tick History and compute high-frequency estimators
from cleaned data. We use a realized kernel [21] as a proxy for integrated variance.

3.2. Preliminary Data Analysis

We start with data analysis of five main time series of interest: standardized returns, returns, realized
variance, realized volatility and the logarithm of realized variance. Table 1 presents the descriptive
statistics, while Figure 1 illustrates the time series dynamics of these variables.

Table 1. Descriptive statistics.

rt√
RVt

rt RVt

√
RVt log(

√
RVt)

Mean 0.08 8.0E-05 1.2E-04 9.3E-03 −9.65
Variance 1.19 1.5E-04 7.5E-08 3.8E-05 1.08
Skewness −3.3E-03 −0.15 14.26 3.32 0.50
Kurtosis 2.57 10.24 381.25 24.58 3.47
D-F test p = 0.00 p = 0.00 p = 0.00 p = 0.00 p = 0.06

Normality test (J-Btest) p = 0.00 p = 0.00 p = 0.00 p = 0.00 p = 0.00
L-Btest 5 lags p = 0.01 p = 0.00 p = 0.00 p = 0.00 p = 0.00

L-B test 10 lags p = 0.08 p = 0.00 p = 0.00 p = 0.00 p = 0.00
L-B test 15 lags p = 0.07 p = 0.00 p = 0.00 p = 0.00 p = 0.00

ARCH effect p = 0.00 p = 0.00 p = 0.00 p = 0.00 p = 0.00

Four of the variables are stationary at 5% according to the augmented Dickey–Fuller test, while
log(
√
RVt) is stationary at 6%. The recent financial crises and European sovereign debt turmoil affected

the volatility pattern and led to several spikes in the realized variance series. Although these spikes
look less pronounced in the logarithm of realized variance, they remain very distinct from the volatility
behaviour observed during calm times. This observation motivates the introduction of the regime
switching model for volatility process.

Daily returns are weakly correlated and follow a leptokurtic and negative skewed distribution. By
contrast, the distribution of the standardized returns is much closer to Gaussian, which is in line with
previous empirical findings: [10,42]. Figure 2 documents the long memory observed in realized volatility
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as the autocorrelation function decays at a hyperbolic rate. This result is also consistent with the
literature: [6,15,32].
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Figure 1. Daily standardized returns, returns, realized variance, realized volatility and the
logarithm of the realized variance of the S&P500 index. The sample period goes from
January 2000 till June 2014 (3603 observations).
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Figure 2. Sample autocorrelations and partial autocorrelations of returns and
realized volatility.

3.3. Benchmark HAR Model

We start with the estimation of the benchmark linear Model (4) for the three specifications of
dependent variable RV ,

√
RV and log(

√
RV ), correspondingly. Table 2 presents the estimation results

with the standard errors computed based on the HAC variance-covariance matrix.
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Table 2. Heterogeneous autoregressive model (HAR) estimation.

RVt

√
RVt log

√
RVt

Estimate SE Estimate SE Estimate SE

c 1.3E-05 ∗∗∗ 4.5E-06 4.6E-04 ∗∗∗ 2.0E-04 −0.44 ∗∗∗ 0.108
βd 0.223 0.146 0.395 ∗∗∗ 0.058 0.336 ∗∗∗ 0.025
βw 0.461 ∗∗∗ 0.165 0.384 ∗∗∗ 0.081 0.440 ∗∗∗ 0.036
βm 0.216 ∗∗∗ 0.073 0.171 ∗∗∗ 0.048 0.178 ∗∗∗ 0.029
R2 50.4% 72.6% 73.2%

Reported are in-sample estimation results of the linear HAR model and corresponding standard errors
computed based on the HAC variance-covariance matrix. The in-sample covers the period from February
2000 to June 2014 (3582 observations). Here, ∗∗∗ means that the corresponding p-value is lower than 0.01.

Despite relatively high R2 for
√
RV and log(

√
RV ), the benchmark model fails to model spikes

in volatility during turbulent times on financial markets. Figure 3 illustrates this point and depicts a
comparison between the in-sample forecast and the actual realized kernel.
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Figure 3. In-sample comparison of actual realized volatility (blue line) and volatility
recovered from the HAR model (red line). The in-sample covers the period from February
2000 to June 2014 (3582 observations).

In particular, benchmark Model (4) underestimates volatility by around 40% during financial crises
in 2007–2009. A similar pattern is observed during spikes in volatility in 2010 and 2011. One of the
explanations of the poor performance of the HAR model during turbulent volatility periods is that it fails
to take into account changes in volatility regimes. Indeed, if volatility reacts to negative returns more
than to positive returns, then the arrival of the consequent negative shocks and volatility persistence can
substantially increase the future volatility level. On the other hand, different economic regimes might
affect volatility differently. We choose the TAR over SETAR model based on the higher value of the
F12 statistics or, alternatively, the lower value of pbootstrap defined in Subsection 2.2.2. These results are
available upon request.
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3.4. The TAR(2) Model

Next, we estimate the TAR(2) model (Tables 3 and 4), where past returns govern changes in the
volatility regimes.

Table 3 shows that regression R2 improves substantially if regimes are driven by past returns. As a
result, high values of the F12 statistics lead to the rejection of the null hypothesis (13) for all specifications
at a 5% significance level. In addition, the optimal value of the threshold parameter remains the same for
two specifications: RVt and

√
RVt. The τ that corresponds to logarithm specification is closely related

to the second threshold of the TAR(3) model. However, the confidence interval for this parameter is
very wide, which leads to the imprecise estimate of the threshold parameter. Not surprisingly, this model
produces a less accurate one-step forecast than TAR(2). In particular, [43] document that the imprecise
estimate of the threshold parameter leads to the poor forecasting performance of the simple switching
model compared to the random walk model. In both cases, changes in regimes are driven not only by
negative returns (leverage effect), but by significantly negative returns: −1.3% on a daily scale. [9] also
show that the transition between volatility regimes is governed not by negative past returns, but by “very
bad news” or very negative past returns.

Table 3. Comparison of the TAR(1) (or HAR) and TAR(2) models.

RVt

√
RVt log(RVt)

R2 of TAR(1) 50.4% 72.6% 73.2%
R2 of TAR(2) 58.0% 74.9% 74.7%

τ −0.013 −0.013 0.001
l 0 0 0
F12 649.6 318.3 214.0

pbootstrap 0.00 0.03 0.00

Reported are in-sample estimation results of the linear HAR model and non-linear TAR(2) model. The
in-sample covers the period from February 2000 to June 2014 (3582 observations). pbootstrap is computed
based on 500 replications using the heteroscedastic bootstrap method. We set the maximum amount of lags
equal to 10 in the TAR estimation.

The fact that changes in regimes are triggered by “very negative returns” can be explained by the
volatility persistence and higher intensity of shocks during bad times. Although the value of the threshold
is not very large (it corresponds to the 11th percentile of the returns distribution), the increasing number
of negative returns can generate a spike in the volatility. This explanation is similar to the option
pricing literature, where researchers modelled volatility by adding infinite activity jumps to the return’s
process [44]. Even though the appearance of one small or medium jump is not enough to generate
a significant surge in volatility, high volatility persistence can lead to pronounced spikes in the future
volatility. Indeed, Figure 4 shows that the frequency of returns that are lower than the threshold (red line)
increased dramatically during recent financial crises. By contrast, returns that exceed the threshold (blue
line) completely dominated “very negative returns” during the period of low volatility in 2003–2007.

Table 4 shows that parameters βd, βw and βm are very different in high- and low-volatility regimes.
In particular, βw1 is twice as large as the corresponding estimate in the low-volatility regime for

√
RVt

specification. Although some estimates have negative signs, they are not statistically significant at 10%
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for both realized volatility and variance models. By contrast, intercepts in both regimes are statistically
negative for logarithmic specifications. Overall, corresponding estimates differ substantially in different
regimes, which highlights the importance of using the regime switching model. Next, Figure 5 shows
that the 95% confidence interval for the threshold parameter is quite narrow (τopt ∈ [−0.014,−0.012]),
although it includes two disjoints sets.
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Figure 4. Daily returns in high (red line) and low (blue line) volatility regimes. The high
(low) volatility regime occurs when the return is lower (higher) than the threshold. The
sample period goes from February 2000 till June 2014 (3603 observations).

Table 4. TAR(2) estimation.

RVt

√
RVt log

√
RVt

Estimate SE Estimate SE Estimate SE

c1 −2.6E-06 4.1E-05 −9.3E-05 9.5E-04 −0.321 ∗∗∗ 0.138
βd1 0.331 ∗ 0.189 0.332 ∗∗∗ 0.085 0.347∗∗∗ 0.029
βw1 1.091 ∗∗∗ 0.372 0.811 ∗∗∗ 0.191 0.475 ∗∗∗ 0.045
βm1 −0.138 0.275 −0.018 0.128 0.133 ∗∗∗ 0.037
c2 2.1E-05 ∗∗∗ 5.6E-06 0.001 ∗∗∗ 1.8E-04 -0.515∗∗∗ 0.150
βd2 0.182 0.156 0.340 ∗∗∗ 0.067 0.220 ∗∗∗ 0.038
βw2 0.260 ∗ 0.139 0.317 ∗∗∗ 0.067 0.498∗∗∗ 0.050
βm2 0.268 ∗∗∗ 0.097 0.204 ∗∗∗ 0.045 0.243 ∗∗∗ 0.041
τ −0.013 −0.013 0.001
l 0 0 0
R2 58.0% 74.9% 74.7%

Reported are in-sample estimation results of the non-linear TAR(2) model and corresponding standard errors
computed based on the HAC variance-covariance matrix. The in-sample covers the period from February
2000 to June 2014 (3582 observations). The first four rows correspond to the high-volatility, while the last
four rows correspond the low-volatility regime, respectively. Here, ∗∗∗ and ∗ mean that the corresponding
p-values are lower than 0.01 and 0.1, respectively.
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Figure 5. Ninety five percent confidence interval for the threshold parameter of the TAR(2)
model with

√
RVt specification. The red line corresponds to c(0.05) ≈ 7, while the blue

points represent LR.

Finally, we compare the in-sample performance of the SETAR(2) and TAR(2) models for different
indices, including both developing and developed countries: Bovespa (Brazil), DAX (Germany) and
IPC Mexico (Mexico). The main findings remain robust to the different sets of indices: the non-linear
model with an exogenous trigger is preferred over the corresponding specification with the endogenous
variable. These results are available upon request.

4. Forecast

In this section, we discuss one- and multiple-step-ahead forecasts of realized volatility based on the
TAR(2) model and several competing benchmarks. We assess their forecasting performance using low-
and high-volatility periods.

4.1. One-Day-Ahead Forecast

We start with the one-day-ahead forecast of the realized volatility, which is measured as the square
root of the realized kernel. The in-sample period covers 1968 days from January 2000 to January
2008. In addition to the HAR model, we choose several GARCH specifications as benchmarks,
including symmetric GARCH(1,1) and asymmetric GJR-GARCH(1,1). [45] show that it is extremely
hard to outperform a simple GARCH (1,1) model in terms of forecasting ability. Meanwhile, TAR(2)
is a non-linear model; therefore, we need to add asymmetric GARCH specification to guarantee
a “fair” model comparison. Figure 6 and Table 5 assess the forecasting performance of high- and
low-frequency models.



J. Risk Financial Manag. 2015, 3 327

2008 2009 2010 2011 2012 2013
0

0.02

0.04

0.06

0.08

0.1

TAR

2008 2009 2010 2011 2012 2013
0

0.02

0.04

0.06

0.08

0.1

HAR

2008 2009 2010 2011 2012 2013
0

0.02

0.04

0.06

0.08

0.1

GARCH

2008 2009 2010 2011 2012 2013
0

0.02

0.04

0.06

0.08

0.1

GJR−GARCH

Figure 6. Comparison of actual and one-day-ahead forecasts based on the TAR(2),
HAR, GARCH(1,1) and GJR-GARCH(1,1) models from January 2008 to June 2014 (1614
observations). The red line indicates the one-step forecast, while the blue line the actual data.

Table 5. One-day-ahead out-of-sample forecast (although realized volatility ignores
overnight returns, the superior performance of the high-frequency models is unlikely to
be affected).

January 2008 to January 2009 July 2011 to December 2011 January 2008 to June 2014

TAR HAR GARCH GJR TAR HAR GARCH GJR TAR HAR GARCH GJR

RMSE 7.0 0.96 0.78 0.85 4.9 0.96 0.72 0.73 3.8 0.98 0.77 0.82
MAE 4.1 0.97 0.67 0.76 3.6 0.95 0.63 0.66 2.3 0.99 0.67 0.71
R2 0.70 0.68 0.56 0.64 0.42 0.38 0.24 0.39 0.75 0.74 0.66 0.70
pGW NA 0.54 0.00 0.00 NA 0.12 0.00 0.00 NA 0.71 0.00 0.00

The first four columns correspond to the period of recent financial crises in the U.S. from January 2008 to
January 2009 (247 observations). The next four columns correspond to Eurozone crises from July 2011 to
December 2011 (123 observations). The last four columns correspond to the period from January 2008 to
June 2014 (1614 observations). The performance metrics are root mean square error (RMSE), mean absolute
error (MAE), the R2 of the Mincer–Zarnowitz regression and the p-value of the Giacomini and White test
based on the MAE metric. Two forecasts are identical in population under the null hypothesis, while TAR
beats its competitors under the alternative. We compare TAR against all other models, while NA corresponds
to the TAR vs. TAR case. The TAR column represents the actual value of RMSE and MAE errors, while the
HAR, GARCH and GJR columns, corresponding to the RMSE and MAE rows, equal the ratio of the TAR
model to the following benchmark. Thus, a number below one indicates the improvement of the TAR model
over its competitor. Observations for RMSE and MAE of the TAR model are standardized by 1000.

Next, we investigate whether the TAR forecast remains superior in population or not using the
Giacomini and White test. Recall that the GW test is designed for the situation where in-sample size
is fixed, while out-of-sample size is growing. Thus, we assess the forecasting performance of different
models using the GW test only for the period from January 2008 to June 2014 and not for U.S. and
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Eurozone financial crises. In the latter cases, the GW test is likely to perform poorly, since we have a
relatively short period of sample periods: 247 and 123 observations, correspondingly.

The main results of this comparison are the following. First, high-frequency models significantly
outperform lower frequency symmetric (GARCH) or asymmetric (GJR-GARCH) daily models. This
result highlights the importance of more accurate volatility measuring based on the intra-daily data.
Second, non-linear TAR(2) specification dominates the linear HAR model thanks to an additional
flexibility to capture changes in regimes according to the first three metrics. Surprisingly, TAR(2) does
not outperform the HAR model according to the GW test.

Finally, we assess the performance of volatility forecasts during times of financial turmoil: the U.S.
financial crises in 2008 and the Eurozone crises in 2011. Although high-frequency models continue to
dominate GARCH specifications, the benefits of using the non-linear TAR(2) model become substantial
compared to linear specification: the latter’s MAE is higher by 3% (U.S. crises) and 6% (Eurozone
crises). By contrast, the MAE of the HAR model is only 1% higher during the whole out-of-sample
period. Figure 7 shows that TAR(2) better captures spikes in volatility than linear specification during
the recent U.S. financial crises. Finally, both RMSE and MAE are lower for Eurozone crises and whole
out-of-sample periods compared with recent U.S. financial crises, which reflects the learning process of
the model, where recent volatility spikes help to improve the models’ performance.

To sum up, the benefits of using the non-linear TAR(2) model are most evident during periods of
elevated volatility. In addition, the model is able to predict spikes in volatility, even when we use a
relatively calm period for in-sample estimation, since changes in regimes are driven by moderately low
returns. As a result, we do not rely on extreme market events to forecast volatility.
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Figure 7. Comparison of actual and one-day-ahead forecasts based on the TAR(2) and HAR
models during U.S. financial crises from January 2008 to January 2009 (247 observations).
Red and green lines indicate one-step forecasts based on the TAR(2) and HAR models,
correspondingly, while the blue line the actual data.
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4.2. Multiple-Step-Ahead Forecast

This section describes multiple-step-ahead forecasts for aggregate volatility. Specifically, the object

of interests is the h-step forecast of aggregate realized volatility
h∑
i=1

Yt+j|t. Table 6 compares TAR(2)

and other benchmark models during recent U.S. financial crises, Eurozone crisis and the out-of-sample
period in 2008–2014. Figure 8 plots five-step-ahead forecasts for all models.

The main findings remain similar to the one-step-ahead forecasts. First, high-frequency models
continue to dominate daily models at the five and 10 days’ ahead forecast. Second, TAR(2) performs
better than the linear HAR model according to RMSE, MAE and R2. More importantly, the non-linear
model outperforms linear specification, not only in a particular sample, but also in population: we reject
the null hypothesis of the GW test that two forecast are identical at the 5% significance level. We based
our conclusion on the results of the GW test for the 2008–2014 years to take into account the growing
size of the out-of-sample dataset, as discussed in the Section 4.1. The GW test is based on the MAE
metric. In addition, the U.S. financial crises have substantially higher RMSE and MAE compared with
other periods, since periods of elevated volatility allow one to produce more accurate forecasts.

Finally, we compare TAR(2) and its competitors during recent financial crisis. The improvement in
the MAE and RMSE metrics is comparable for crisis and longer out-of-sample periods and equal to
approximately 2%. Although the GW test indicates that the TAR(2) and HAR model have the same
forecasting errors, this can be explained by the relatively short size of the out-of-sample for both U.S.
and Eurozone crises.

Table 6. Multiple-days-ahead out-of-sample forecast.
January 2008 to January 2009 July 2011 to December 2011 January 2008 to June 2014

TAR HAR GARCH GJR TAR HAR GARCH GJR TAR HAR GARCH GJR
5-days-ahead forecast

RMSE 33.5 0.98 0.56 0.55 23.1 0.99 0.60 0.59 17.3 0.99 0.53 0.55
MAE 22.2 0.98 0.49 0.47 14.5 0.96 0.46 0.45 10.1 0.98 0.43 0.44
R2 0.67 0.67 0.61 0.64 0.27 0.26 0.16 0.20 0.76 0.75 0.71 0.75
pGW NA 0.13 0.00 0.00 NA 0.06 0.00 0.00 NA 0.03 0.00 0.00

10-days-ahead forecast
RMSE 69.2 0.98 0.48 0.48 47.6 0.98 0.50 0.50 35.2 0.98 0.44 0.45
MAE 47.0 0.97 0.41 0.40 30.6 0.96 0.36 0.35 20.6 0.97 0.33 0.33
R2 0.63 0.63 0.61 0.61 0.15 0.15 0.16 0.14 0.73 0.73 0.71 0.74
pGW NA 0.21 0.00 0.00 NA 0.31 0.00 0.00 NA 0.01 0.00 0.00

The first four columns correspond to the period of recent financial crises in the U.S. from January 2008 to
January 2009 (247 observations). The next four columns correspond to Eurozone crises from July 2011 to
December 2011 (123 observations). The last four columns correspond to the period from January 2008 to June
2014 (1604 observations). The performance metrics are the root mean square error (RMSE), mean absolute
error (MAE), the R2 of the Mincer–Zarnowitz regression and the p-value of the Giacomini and White test
based on the MAE metric. Two forecasts are identical in population under the null hypothesis, while TAR
beats its competitors under the alternative. The TAR column represents the actual value of RMSE and MAE
errors, while the HAR, GARCH and GJR columns, corresponding to the RMSE and MAE rows, equal the
ratio of TAR model to the following benchmark. Thus, a number below one indicates the improvement of
the TAR model over its competitor. Observations for RMSE and MAE of the TAR model are standardized
by 1000. Finally, the first four rows correspond to the 5-step-ahead, while the next four to the 10-step-ahead
forecast, respectively. Observations from RMSE and MAE are standardized by 1000.



J. Risk Financial Manag. 2015, 3 330

2008 2009 2010 2011 2012 2013
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

TAR

2008 2009 2010 2011 2012 2013
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

HAR

2008 2009 2010 2011 2012 2013
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

GARCH

2008 2009 2010 2011 2012 2013
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

GJR−GARCH

Figure 8. Comparison of aggregate volatility over five days and corresponding forecasts
based on the TAR(2), HAR, GARCH(1,1) and GJR-GARCH(1,1) models from January 2008
to June 2014 (1604 observations). The red line indicates the aggregate five-step forecast,
while the blue line the actual data.

To sum up, our non-linear model outperforms its competitors thanks to its ability to capture different
regimes in volatility and to measure volatility much more accurately than daily models. In addition,
our model achieves approximately the same rate of improvement over the HAR model as much
more complicated non-liner models, but with lower computational costs, since the TAR(2) model has
only two regimes. For example, [18] modelled realized volatility with five regimes and achieved an
improvement in forecasting performance over the HAR model of around 3%. This feature is essential for
practical applications.

5. Conclusions

This paper develops a non-linear threshold model for RV (realized volatility), allowing us to obtain a
more accurate volatility forecast, especially during periods of financial crisis. The changes in volatility
regimes are driven by negative past returns, where the threshold equals approximately−1%. This finding
remains robust to different functional forms of volatility and different set of indices from both developing
and developed countries. The additional flexibility of the model allows one to produce a more accurate
one-day-ahead forecast compared to the linear HAR specification and GARCH family models. More
importantly, the superior multiple-step-ahead forecasting performance of TAR is achieved not only in
particular samples, but also in population according to the GW test for the out-of-sample period from
2008 to 2014. Finally, we derive a closed form solution for multiple-step-ahead forecast, which is based
on the NIG conditional distribution of returns. The non-linear threshold model primarily outperforms its
competitors during periods of financial crisis.
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The superior forecasting performance of TAR over other high-frequency models, as well as inter-daily
GARCH specifications might warrant further examination. First, while the option pricing literature
primarily relies on GARCH-type models, very few works exploit the availability of high-frequency data
(e.g., see [40,46,47]). Thus, it might be useful to incorporate the TAR model into the option pricing
framework, especially during periods of elevated volatility. We conjecture that a more accurate volatility
model should result in lower hedging costs and, therefore, produce economic gains.

Second, the extension of the univariate to the multivariate models remains an important area of
research given significant demand from practitioners. However, non-synchronicity is the key problem
of estimating the covariance matrix despite the abundance of high-frequency data. Alternatively, a
copula-based approach allows one to avoid this problem and to estimate the joint distribution of many
assets. It would be interesting to incorporate the non-linear TAR model into the copula framework, since
the current literature focuses either on the GARCH or HAR models ([48] and [49]).

Finally, the present work assumes that the diffusion process is continuous and, therefore, leaves the
discussion of the jump process for further research.
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Appendix A

First, the GARCH(1,1) model is defined as:
rt = µ+ εt

εt = zt
√
ht, zt ∼ i.i.d. N(0.1)

ht = ω + α1ε
2
t−1 + β1ht−1

The m-step-ahead forecast is computed according to:

ĥt+m|t = ω + α1ε̂
2
t+m−1|t + β1ĥt+m−1|t

ε̂2t+m|t = ĥt+m|t if m > 0

ε̂2t+m|t = ε2t+m, ĥt+m|t = ht+m, if m ≤ 0

(A1)

Second, the GJR-GARCH(1,1) model is defined as:
rt = µ+ εt

εt = zt
√
ht, zt ∼ i.i.d. N(0.1)

ht = ω + α1ε
2
t−1 · [1− 1(εt−1 > 0)] + γ1ε

2
t−1 · 1(εt−1 > 0) + β1ht−1

The recursive formula for the multiple-step-ahead forecast of the GJR-GARCH(1,1) model is
calculated as:
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ĥt+m|t = ω +

(
α1 + γ1

2
+ β1

)
ĥt+m−1|t (A2)

Appendix B

The first three graphs in Figure B1 demonstrate the very close match between parametric and
non-parametric unconditional distributions of standardized returns and realized volatility, respectively.
Table B1 shows the corresponding parameters of normal and inverse Gaussian distributions.

Table B1. Parameters of normal and inverse Gaussian distributions for standardized returns
and volatility.

Parameters All Sample In-Sample

µN 0.0840 0.0488
σN 1.0907 1.0937
µIG 0.0093 0.0087
λIG 0.0296 0.0369

The first column corresponds to the in-sample period, while the second to the whole sample. µIG is a scale
parameter for the unconditional inverse Gaussian (IG) distribution of realized volatility.
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Figure B1. Comparison of parametric (solid blue line) and non-parametric kernel
distributions (red dashed line) of standardized returns, realized volatility and returns. The
first graph compares the normal distribution of standardized returns with the non-parametric
distribution, while the second plots the corresponding QQ plot. The third graph illustrates
the comparison between the IG distribution and the non-parametric distribution for realized
volatility. The final graph shows the normal-inverse Gaussian (NIG) distribution for returns
and the corresponding non-parametric distribution.
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Appendix C

Proof of Theorem 1.
Recall that process Yt+1 is described as:

Yt+1 = F (Yt) + εt+1

F (Yt) = 1(rt < τ)X
′

tθ1 + 1(rt ≥ τ)X
′

tθ2
(C1)

where X ′t =
[
1, Yt,

Yt+...+Yt−4

5
, Yt+...+Yt−21

22

]
and θ = (θ

′
1, θ

′
2)
′ . The one-step-ahead forecast is obtained

as:
Ŷt(1) = E[Yt+1|It] = F (Yt)

Next, consider the the-step-ahead forecast from Equation (9):

Ŷt(2) = E[Yt+2|It] = E[F (Yt+1) + εt+2|It] = E[F (Yt+1)|It] =
= E[1(rt+1 < τ)X

′

t+1θ1 + 1(rt+1 ≥ τ)X
′

t+1θ2|It] =
= E[1(rt+1 < τ)X

′

t+1θ1|It] + E[1(rt+1 ≥ τ)X
′

t+1θ2|It] =
= S1 + S2

(C2)

Simplifying the first summand S1, we obtain:

S1 = E

[
1(rt+1 < τ) ·X ′t+1θ1|It] = E[1(rt+1 < τ) ·

(
1, Yt+1,

Yt+1 + ...+ Yt−3
5

,
Yt+1 + ...+ Yt−20

22

)′
θ1|It

]
=

= E

[
1(rt+1 < τ) ·

(
1, F (Yt) + εt+1,

F (Yt) + εt+1 + ...+ Yt−3
5

,
F (Yt) + εt+1 + ...+ Yt−20

22

)′
θ1|It

]
=

= [θ1 = (c1, β
d
1 , β

w
1 , β

m
1 )
′
] =

= E[(1(rt+1 < τ)|It)] · E[(c1 + βd1(F (Yt) + εt+1) + βw1

(
F (Yt) + εt+1 + ...+ Yt−3

5

)
+

+ βm1

(
F (Yt) + εt+1 + ...+ Yt−20

22

)
|It] =

= E

[
(1(rt+1 < τ)|It) · (c1 + βd1F (Yt|It) + βw1

(
F (Yt|It) + ...+ Yt−3

5

)
+ βm1

(
F (Yt|It) + ...+ Yt−20

22

)]
(C3)

Thus, Expression (C3) can be simplified as follows:

E

[
(1(rt+1 < τ)|It) · (c1 + βd1F (Yt|It) + βw1

(
F (Yt|It) + ...+ Yt−3

5

)
+ βm1

(
F (Yt|It) + ...+ Yt−20

22

)]
=

= Pr(rt+1 < τ |It) ·
(
c1 + βd1F (Yt|It) + βw1

(
F (Yt|It) + ...+ Yt−3

5

)
+ βm1

(
F (Yt|It) + ...+ Yt−20

22

))
(C4)
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Using πt = Pr(rt+1 < τ |It), Expression (C4) becomes:

Pr(rt < τ |It) ·
(
c1 + βd1F (Yt|It) + βw1

(
F (Yt|It) + ...+ Yt−3

5

)
+ βm1

(
F (Yt|It) + ...+ Yt−20

22

))
+

+ (1− Pr(rt < τ |It)) ·
(
c2 + βd2F (Yt|It) + βw2

(
F (Yt|It) + ...+ Yt−3

5

)
+ βm2

(
F (Yt|It) + ...+ Yt−20

22

))
=

= c1πt + c2(1− πt) +
(
βd1πt + βd2(1− πt)

)
Ŷt(1) + (βw1 πt + βw2 (1− πt))

[
Ŷt(1) + ...+ Yt−3

5

]
+

+ (βm1 πt + βm2 (1− πt))

[
Ŷt(1) + ...+ Yt−20

22

]
(C5)

where Ŷt(s) = Yt+s is s < 0. Finally, the formula for the multiple-step-ahead forecast Ŷt(h) with
h > 2 is extended recursively from Result (C5).
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