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Abstract 
Various phenomena related to socio-economic aspects of our daily life exhibit equilibrium 
densities characterized by a power law decay. Maybe the most known example of this 
property is concerned with wealth distribution in a western society. In this case the 
polynomial decay at infinity is referred to as Pareto tails phenomenon (Pareto, Cours 
d’économie politique, 1964). In this paper, the authors discuss a possible source of this 
behavior by resorting to the powerful approach of statistical mechanics, which enlightens 
the analogies with the classical kinetic theory of rarefied gases. Among other examples, 
the distribution of populations in towns and cities is illustrated and discussed. 

 

(Published in Special Issue Agent-based modelling and complexity economics) 
 

JEL C02   C6   C68 
Keywords Kinetic models; Boltzmann-type equations; multi-agent systems; economic 
modeling equation 

 

Authors 
Stefano Gualandi,  Department of Mathematics, University of Pavia, Italy, 
stefano.gualandi@unipv.it 
Giuseppe Toscani, Department of Mathematics, University of Pavia, Italy 

 
Citation Stefano Gualandi and Giuseppe Toscani (2018). Pareto tails in socio- economic 
phenomena: a kinetic description. Economics: The Open-Access, Open- Assessment  
E-Journal, 12 (2018-31): 1–17. http://dx.doi.org/10.5018/economics-ejournal.ja.2018-31   

 
 
 
 
 
 
 
 
 
 
 
 

Received November 29, 2017  Published as Economics Discussion Paper December 12, 2017 
Revised April 9, 2018  Accepted April 23, 2018 Published May 18, 2018 
© Author(s) 2018. Licensed under the Creative Commons License - Attribution 4.0 International (CC BY 4.0) 

http://dx.doi.org/10.5018/economics-ejournal.ja.2018-31
http://www.economics-ejournal.org/special-areas/special-issues/agent-based-modelling-and-complexity-economics
mailto:stefano.gualandi@unipv.it
mailto:stefano.gualandi@unipv.it
http://dx.doi.org/10.5018/economics-ejournal.ja.2018-31
http://creativecommons.org/licenses/by/4.0/


Economics: The Open-Access, Open-Assessment E-Journal 12 (2018–31)

1 Introduction

Probability distribution functions with power decay appear in numerous biological, physical, social
and economic contexts, which look fundamentally different. In biology, power laws have been
claimed to describe the distributions of the connections of enzymes and metabolites in metabolic
networks, the number of interactions partners of a given protein, and other quantities (Karev
et al., 2002; Kuznetsov, 2003). Among others, in the physical context power laws appear when
studying the cooling of an inelastic dissipative gas by means of the Boltzmann equation (Ernst
and Brito, 2002a,b). Likewise, in network analysis power laws imply evolution of the network
with preferential attachment, i.e. a greater likelihood of nodes being added to pre-existing hubs
(Barabasi, 1999, 2002; Durrett, 2007; Simkin and Roychowdhury, 2011).

As documented in Gabaix (1999); Newman (2005) through an exhaustive list of references,
in addition to the most studied phenomena, power-law distributions occur in an extraordinarily
diverse range of situations, which range from firms size (Ishikawa, 2009; Fujimoto et al., 2011),
the sizes of cities (Gabaix, 1999), the size of earthquakes (Gutenberg and Richter, 1944) to the
frequency of use of words in any human language (Estoup, 1916; Zipf, 1949).

Most of these applications are quite recent, and reflect the increasing interest of mathematicians
towards applications to living systems (Marsan et al., 2016; Bassetti and Toscani, 2015; Bellomo
et al., 2013, 2008; Bellomo and Soler, 2012; Bellouquid et al., 2013; Ben-Naim et al., 2003a,b;
Ben-Naim, 2005; Bertotti and Delitala, 2008; Carrillo et al., 2010a,b; Cucker and Mordecki, 2008;
Cucker and Smale, 2007a,b).

As a matter of fact, however, maybe the first example of distributions with power decay is
concerned with the original study of Pareto on wealth distribution (Pareto, 1964). In reason of its
great importance in the development of modern societies, the unequal distribution of wealth in a
population described by Pareto, consequent to the formation of power tails, attracted the interest
of a number of economists, physicists and mathematicians (Castellano et al., 2009; Düring et al.,
2008, 2009; Gupta, 2006; Naldi et al., 2010; Pareschi and Toscani, 2013) (cf. also Bouchaud and
Mézard (2000); Burger et al. (2013, 2014); Cordier et al. (2009); Garibaldi et al. (2007); Hayes
(2002); Ispolatov et al. (1998); Scalas et al. (2006)). Among the various models present in the
literature, mostly based on the approach furnished by statistical mechanics, kinetic models of socio-
economic systems gained a lot of popularity (Bisi et al., 2009; Chakraborti, 2002; Chakraborti
and Chakrabarti, 2000; Chatterjee et al., 2004, 2005; Comincioli et al., 2009; Cordier et al., 2005;
Drǎgulescu and Yakovenko, 2000; Düring and Toscani, 2008; Maldarella and Pareschi, 2012;
Toscani et al., 2013), in reason of the strong analogies between them and the classical kinetic
theory of rarefied gases.

As well-known in the scientific literature (cf. for example Simkin and Roychowdhury (2011)),
where a reasoned history of the rediscoveries of original works on preferential attachment published
one century ago Willis and Yule (1922); Willis (1922); Yule (1925) is dealt with), the kinetic
approach provides an alternative way to look at phenomena already discussed from a different
point of view. However, in various cases this approach allows to obtain rigorous analytical results
on the large-time behavior of the underlying models, including the formation of polynomial tails
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at large times, thus giving strong arguments to retain or reject them (Bassetti and Toscani, 2010,
2014; Matthes and Toscani, 2008).

With respect to the classical kinetic theory of rarefied gases, described by the Boltzmann
equation (Boltzmann, 1995), where the equilibrium density is found to be a Gaussian (known as
Maxwellian distribution (Bobylev, 1988; Cercignani, 1988; Cercignani et al., 1994)), kinetic models
of wealth distribution are restricted to a nonnegative wealth variable w, and the corresponding
equilibrium density, known as Pareto-type distribution (Pareto, 1964), is often represented by a
curve that exhibits a polynomial decay at infinity. If in equilibrium the wealth in a multi-agent
society is distributed according to a probability density f (w) (cf. the recent discussion in Düring
et al. (2017)), the distribution function of wealth, say F(w) satisfies, for w� 1

1−F(w) =
∫ +∞

w
f (v)dv∼= w−p, p > 1. (1)

The value of the positive constant p is usually called the Pareto index.
The equilibrium density of type (1) makes evident both the unequal distribution of wealth in

the society, and the existence of a (small) class of extremely rich people. Various studies of the
real data of western economies allowed to conclude that the Pareto index is varying between 1,5
and 3 (data referred to the year 2000: USA ∼ 1,6, Japan ∼ 1,8−2,2, Drǎgulescu and Yakovenko
(2000)). The main consequence is that typically less than the 10% of the population possesses at
least the 40% of the total wealth of the country, and follows that law.

Kinetic models of wealth distribution are based on binary trades between agents (Pareschi and
Toscani, 2013), and, as noticed in Düring et al. (2008, 2009); Matthes and Toscani (2008), the
structure of the microscopic trade is responsible of the macroscopic behavior. These enlightening
studies made possible to identify the types of microscopic interactions which lead to stationary
distributions with power tails. A kinetic model for knowledge formation in a western society,
still with a power tailed steady distribution has been introduced in Pareschi and Toscani (2014).
Next a kinetic model for conviction development was studied in Brugna and Toscani (2015). The
common features of all these models is that the classes of very rich people, with very high culture
and knowledge or a very high degree of conviction are very thin, even if they retain a large part of
their respective traits.

In the rest of this note, we discuss in some details this kinetic modeling, and its possible range
of application. In addition to the main known example, we will discuss how the basic principles of
kinetic modeling can help to clarify the evolution of the size of a population in towns and cities,
thus justifying the formation of Pareto tails in this case.

2 Learning from Kac’s caricature of a Boltzmann gas

Let us consider a rarefied gas with molecules that interact pairwise. In the one-dimensional
situation, the most general binary interaction between particles which is linear in the entering
velocities (v,w) can be described by assigning the exchange rules

v∗ = p1v+q1w, w∗ = p2v+q2w; pi,qi > 0, i = 1,2. (2)
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In (2) (pi,qi), for i = 1,2, are mixing parameters, and can be either fixed constants or random
variables, depending on the problem under study. Interactions of type (2) are very general, and
include, when the mixing parameters are random, most of the known one-dimensional Boltzmann-
type models of Maxwell type, including the famous Kac model (Kac, 1959). The mixing parameters
in Kac model are given by

p1 = cosθ , q1 =−sinθ , p2 =−q1, q2 = p1. (3)

In (3) θ is a random variable uniformly distributed on (−π,π). Note that p2
1 +q2

1 = p2
2 +q2

2 = 1,
which implies conservation of energy in any collision.

Let f (v, t) denote the density of particles with velocity v at time t > 0. Then, the time evolution
of the density consequent to interactions of type (2) can be fruitfully written in weak form as

d
dt

∫
IR

ϕ(v) f (v, t)dv =

=
σ

2

〈∫
IR×IR

(ϕ(v∗)+ϕ(w∗)−ϕ(v)−ϕ(w)) f (v, t) f (w, t)dvdw
〉
. (4)

In (4) we denoted by σ a constant related to the collision frequency, and by 〈X〉 the mean value
of the random quantity X . Note that equation (4) allows to compute the evolution in time of all
observable quantities ϕ . Let the initial density f0(v) satisfy the normalization conditions∫

IR
f0(v)dv = 1,

∫
IR

v f0(v)dv = 0,
∫

IR
v2 f0(v)dv = 1. (5)

In the case of Kac model, obtained by mixing parameters (3), evaluating the evolution of the solu-
tion density f (v, t) in correspondence to ϕ(v) = 1,v,v2 shows that the solution satisfies conditions
(5) at any subsequent time t > 0. Also, the equilibrium density can be explicitly found. One can
easily check that the equilibrium density (of mass one) is the Gaussian density (Maxwell-type
distribution)

M(v) =
1√
2π

e−v2/2. (6)

Indeed, the exchange rule (2) in Kac’s case is given by a plane rotation around the origin of the
point P = (v,w) of an angle θ , to which it corresponds a Jacobian equal to one.

Then, since M(v)M(w) = M(v∗)M(w∗), the identity∫
IR×IR

(ϕ(v∗)+ϕ(w∗)) M(v)M(w)dvdw =

=
∫

IR×IR
(ϕ(v)+ϕ(w)) M(v∗)M(w∗)dvdw

gives the result. Note that this identity depends only of the expression of the mixing parameters
(3), and consequently it is independent of the law of θ .

Consider now in Kac model, for a given constant ε � 1, the coupling of an increasing value
σε = σ/ε of the collision frequency with a shrinking of the uniform distribution θ , say θε , where
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θε is uniformly distributed on (−
√

3ε,
√

3ε). This gives 〈θε〉 = 0, and 〈θ 2
ε 〉 = ε . Moreover

〈|θε |3〉 ∼= ε3/2. Let fε(v, t) denote the corresponding density solution of equation (4). Expanding
in Taylor’s series the functions ϕ(v∗) and ϕ(w∗) it is a simple exercise to obtain that the weak
form of Kac equation can be rewritten as

d
dt

∫
IR

ϕ(v) fε(v, t)dv = σ

∫
IR

(
1
2

ϕ
′′(v)− vϕ

′(v)
)

fε(v, t)dv+Rε(t),

where the remainder Rε(t) tends to zero as t→ 0 (cf. Toscani (1998) for details). Hence, in the limit
fε(v, t) converges to h(v, t) solution of the weak form of the linear Fokker–Planck equation (Risken,
1996)

∂h
∂τ

=
σ

2

(
∂ 2h
∂v2 +

∂

∂v
(vh)

)
. (7)

Since the stationary solution of Kac model is left unchanged by the scaling procedure, the Fokker–
Planck equation (7) has the Gaussian density (6) as stationary solution. Of course this can be
verified directly on the Fokker–Planck equation. Also, the same linear equation is obtained in the
limit by substituting one of the two densities in (4) with a fixed background density g(v) satisfying
the normalization conditions (5). In fact, it can be easily checked that the linear Fokker–Planck
equation obtained in the limit only depends on g through its moments at the first two orders.

This procedure is well-known under the name of grazing collision limit (Villani, 2002). It
corresponds to increase the collision frequency while at the same time the result of a single binary
collision is close to leave the incoming velocities unaffected.

One of the main advantages of this procedure is that while maintaining the same equilibrium
density, the limit equation is much easier to handle. In other words this asymptotic theory represents
a good balance between the microscopic binary collision dynamics, easy to implement from a
modeling point of view, and its macroscopic outcome provided by the equilibrium density. Indeed,
while this equilibrium density is in general difficult to identify resorting to the bilinear kinetic
model, the resulting Fokker–Planck equation always allows to recover explicitly its equilibrium
density.

3 The case of wealth distribution

The basic model discussed in this section has been introduced in Cordier et al. (2005) within
the framework of classical models of wealth distribution in economy, to understand the possible
formation of heavy tails, as predicted by the economic analysis of the Italian economist Vilfredo
Pareto (Pareto, 1964). This model belongs to a class of models in which the interacting agents are
exchangeable. In most of these models an agent’s state at any instant of time t ≥ 0 is completely
characterized by his current wealth v≥ 0 (Düring et al., 2008, 2009). When two agents encounter
in a trade, their pre-trade wealths v, w change into the post-trade wealths v∗, w∗ according to the
linear binary rule (2).

Similarly to Kac model, the mixing parameters pi and qi are non-negative random variables.
The meaning of these parameters is linked to the economic setting one wants to describe. While
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q1 denotes the fraction of the second agent’s wealth transferred to the first agent, the difference
p1−q2 is the relative gain (or loss) of wealth of the first agent due to market risks. It is usually
assumed that pi and qi have fixed laws, which are independent of v and w, and of time. This means
that the amount of wealth an agent contributes to a trade is (on the average) proportional to the
respective agent’s wealth.

In Cordier et al. (2005) the trade has been modeled to include the idea that wealth changes
hands for a specific reason: one agent intends to invest his wealth in some asset, property etc in
possession of his trade partner. Typically, such investments bear some risk, and either provide the
buyer with some additional wealth, or lead to the loss of wealth in a non-deterministic way. An
easy realization of this idea consists in coupling the saving propensity parameter (Chakraborti,
2002; Chakraborti and Chakrabarti, 2000) with some risky investment that yields an immediate
gain or loss proportional to the current wealth of the investing agent

v∗ =
(

1− γ +η1

)
v+ γw, w∗ =

(
1− γ +η2

)
w+ γv, (8)

where 0 < γ < 1 is the parameter which identifies the saving propensity, namely the intuitive
behavior which prevents the agent to put in a single trade the whole amount of his money. In this
case

pi = 1− γ +ηi, qi = γ (i = 1,2).

The coefficients η1,η2 are random parameters, which are independent of v and w, and distributed
so that always v∗, w∗ ≥ 0, i.e η1, η2 ≥ γ − 1. Unless these random variables are centered, i.e
〈η1〉= 〈η2〉= 0, it is immediately seen that the mean wealth is not preserved, but it increases or
decreases exponentially (see the computations in Cordier et al. (2005)). For centered ηi,

〈v∗+w∗〉= (1+ 〈η1〉)v+(1+ 〈η2〉)w = v+w, (9)

implying conservation of the average wealth. In this case, if the initial density f0(v), v ∈ IR+,
satisfies the normalization conditions∫

IR+

f0(v)dv = 1,
∫

IR+

v f0(v)dv = 1, (10)

the same conditions are satisfied by the solution f (v, t) at any subsequent time t > 0.
Various specific choices for the ηi have been discussed in Matthes and Toscani (2008). The

easiest one leading to interesting results is ηi =±r, where each sign comes with probability 1/2.
The factor r ∈ (0,γ) should be understood as the intrinsic risk of the market: it quantifies the
fraction of wealth agents are willing to gamble on. Within this choice, one can display the various
regimes for the steady state of wealth in dependence of γ and r, which follow from numerical
evaluation. In the zone corresponding to low market risk, the wealth distribution shows again
socialistic behavior with slim tails. Increasing the risk, one falls into a capitalistic, where the
wealth distribution displays the desired Pareto tail. A minimum of saving (γ > 1/2) is necessary
for this passage; this is expected since if wealth is spent too quickly after earning, agents cannot
accumulate enough to become rich. Inside the capitalistic zone , the Pareto index decreases from
+∞ at the border with socialist zone to unity. Finally, one can obtain a steady wealth distribution
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which is a Dirac delta located at zero. Both risk and saving propensity are so high that a marginal
number of individuals manages to monopolize all of the society’s wealth. In the long-time limit,
these few agents become infinitely rich, leaving all other agents truly pauper.

The analysis of Matthes and Toscani (2008) essentially shows that the microscopic interaction
(8) considered in Cordier et al. (2005) is such that the kinetic equation (4) is able to describe all
interesting behaviors of wealth distribution in a multi-agent society, thus producing various types
of equilibria, which are heavily dependent on the details of the trades. This makes the situation
completely different from the case described by Kac model, where the equilibrium density is
uniquely identified.

This difference is mainly related to the conservation properties of the binary interactions. In
Kac model, the mixing parameters pi and qi, i = 1,2 are such that there is pointwise conservation
of energy. On the contrary, the mixing parameters of trade (8), as given by (9), only ensure
conservation in the mean of wealth.

In analogy with Section 2, for a given constant ε � 1, let us consider the coupling of an in-
creasing value σε = 1/ε of the collision frequency with a shrinking of the quantities characterizing
the trade (8), where γε = εγ , and, by assuming 〈η2

i 〉= λ , for i = 1,2, ηi,ε = ηi
√

ε , i = 1,2. Let
fε(v, t) denote the corresponding density solution of equation (4). Then (cf. the details in Cordier
et al. (2005); Pareschi and Toscani (2014)) one shows that in the limit ε → 0 fε(v, t) converges to
h(v, t), weak solution of the Fokker–Planck equation

∂h
∂τ

=
λ

2
∂ 2

∂v2

(
v2h
)
+ γ

∂

∂v
((v−1)h) . (11)

It is immediately recognizable that the solutions of equation (11) satisfy the normalization condi-
tions (10), and that there exists a unique stationary solution of unit mass, given by the Gamma-like
distribution (Bouchaud and Mézard, 2000; Cordier et al., 2005)

h∞(v) =
(µ−1)µ

Γ(µ)

exp
(
− µ−1

v

)
v1+µ

, (12)

where
µ = 1+2

γ

λ
> 1.

This stationary distribution exhibits a power-law tail for large values of the wealth variable.
Moreover, the size of the tails is dependent of the quotient between the saving rate γ and the
variance λ of the risk variable.

Remark 1 The asymptotic procedure leading from the bilinear kinetic model of Boltzmann type to
the Fokker–Planck description is clear. One considers a system of agents in which the frequency
of trades is increasing, while the result of the trades is not varying in a significant way the value
of the incoming wealths. In this regime, formation of tails prevails. In other words, formation of
Pareto tails is in this picture consequence of the fact that the system exhibits a very large number
of binary interactions, most of them of grazing nature (gain or loss in each of them is very low). In
this regime, the details of the random variables ηi, i = 1,2 are not important, and the equilibrium
density only retains the mean value λ .
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4 Distribution of knowledge exhibits tails

A Fokker–Planck equation similar to (11) appears when considering the formation of knowledge
in a multi-agent society according to a microscopic kinetic model of Boltzmann type (Pareschi and
Toscani, 2014).

This description of knowledge formation was introduced in Pareschi and Toscani (2014) with
the aim of a better understanding of the possible effects of knowledge in wealth distribution.
Indeed, different degrees of knowledge in a society are usually considered as responsible of wealth
inequalities.

Let us briefly explain the main motivations about microscopic interactions which determine
the individual knowledge, which can be described as a familiarity with someone or something
unknown, which can include information, facts, descriptions, or skills acquired through experience
or education. Knowledge is in part inherited from the parents, but the main factor that can enrich it
is the environment in which the individual grows and lives (see Teevan and Birney (1965)). Indeed,
the experiences that produce knowledge can not be fully inherited from the parents, such as the
genome, but rather are acquired over a lifetime of several elements of the environment. The learning
process is very complicated and produces different results for each individual in a population.
Although all individuals are given the same opportunities, at the end of the cognitive process
every individual appears to have a different level of knowledge. Also, the personal knowledge
is the result of a selection, which leads to retain mostly the notions that the individuals consider
important, and to discard the rest. As noticed in Pareschi and Toscani (2014), this aspect of the
process of learning has been recently discussed in a convincing way by Eco (2011), one of the
greatest philosophers and contemporary Italian writers. In his fascinating lecture, Eco outlines the
importance of a drastic selection of the surrounding quantity of information, to maintain a certain
degree of ingenuity.

Resorting once more to the legacy of kinetic theory, one assumes that, as the actual velocity of
a gas particle is the result of a huge number of collisions, personal knowledge is the result of a
huge number of microscopic variations. Each microscopic variation is interpreted as an interaction
where a fraction of the knowledge of the individual is lost by virtue of his selection, while at the
same time the external background (the surrounding environment) can move a certain amount
of its knowledge to the individual. If we quantify the nonnegative amount of knowledge of the
individual with v ∈ IR+, and with z ∈ IR+ the knowledge achieved from the environment in a single
interaction, the new amount of knowledge can be computed using the interaction

v∗ = (1−P(v)+η)v+PE(v)z. (13)

In (13) the functions P and PE quantify, respectively, the amounts of selection and external learning,
while η is a random parameter which takes into account the possible unpredictable modifications of
the knowledge process. If one assumes that 〈η2〉= λ , and that the average value of the distribution
of knowledge in the environment is equal to ME , it is immediate to recognize that in the grazing
limit procedure described in Sections 2 and 3, the prototype of the Fokker–Planck equation for the
density k = k(v,τ) of the agents which possess knowledge v at time τ > 0 is given by

∂k
∂τ

=
λ

2
∂ 2

∂v2

(
v2k
)
+

∂

∂v
((P(v)v−PE(v)ME)k) . (14)
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It is clear that in the simple case in which the personal amounts of selection and external knowledge
are constant, so that P(v) = P and PE(v) = PE , the stationary solution of equation (14) is explicitly
computable and exhibits Pareto tails (cf. the equilibrium (12)). This is a nice way to say that the
model is in agreement with the existence in the society of a (very small) class of learned people.

Distribution of school knowledge. Figure 1 shows the distribution of school knowledge in Italy,
using data collected from the 2011 census. The plot is based on the data given in Table 1, which
shows the number of citizens per type of school degree in the second column, and the (inverse)
cumulated number of people for school degree in the fourth column. The first basic level of
school knowledge includes every citizen who holds the middle school degree as highest degree,
which corresponds nowadays to the Italian mandatory school. The second and third levels include
people who got a high school degree and an undergraduate degree as highest degree, respectively.
The fourth level includes the 1124802 Italians who got a “short” (less than 1 year of studies)
post graduate degree. Finally, the last two levels give the number of citizens which hold either
a “specialization” or PhD as highest school degree, which are respectively 634 503 and 159 455
citizens, a very small percentage of the whole Italian population.

Indeed, Figure 1 shows that this empirical (inverse) cumulated distribution exhibits a tail.

Figure 1: Distribution of school knowledge in Italy by highest degree, 2011 census.
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Highest degree Citizens (%) Cumulated values (%)
Middle school 32 906 278 61.6% 53 422 830 100.0%
High school 13 906 688 26.0% 20 516 552 38.4%
Undergraduate 4 691 104 8.8% 6 609 864 12.4%
Post degree 1 124 802 2.1% 1 918 760 3.6%
Specialization 634 503 1.2% 793 958 1.5%
PhD 159 455 0.3% 159 455 0.3%
(totals) 53 422 830 100.0%

Table 1: Tabular data of the distribution of school knowledge in Italy, 2011 census.

5 The size of towns and cities

Among social phenomena that lead to tailed distributions, the size of the populations of towns
and cities seems to follows a similar behavior. This interesting observation goes back at least
to Felix Auerbach (Auerbach, 1913), who noticed it by studying the distribution of the size of
German towns (cf. also Newman (2005); Zipf (1949) for more detailed aspects). The time scale
of the evolution of population in towns is of many orders greater than the corresponding one
used to analyze wealth distribution in a society. What we see in the present time is the end of a
process which started many centuries ago, with a population which increased enormously from
the beginning. However, the process which is behind the formation and the size of the modern
towns can be reasonably modelled using the same microscopic rules adopted for the formation of
knowledge.

Let us consider a simplified situation in the mean value of the population of a country does
not vary in a sensible way over years, which corresponds to equate the number of deaths with the
number of births over a certain period of time, say N years. In this way we can essentially relate
the size of cities to the phenomenon of migration. Then, if we denote by sn > 0 the size of the
population of a town in a certain year n, the size of the population of the town at the year n+1 will
result from a balance between the negative variation of the population due to migration towards
other towns, and the positive variation of the population due to immigration from the rest of the
country. In addition, we assume that there is a random variation of the population, proportional to
the population itself and of zero mean, which takes into account the modification of the size of the
population due to unpredictable events. Following Gualandi and Toscani (2017), we will assume
that the rate of emigration E(sn) depends of the size of the city, and it is inversely proportional to
the size itself

E(sn) =
1−λ +λ sn

1+ sn
, (15)

where 0 ≤ λ ≤ 1 can be both a constant value, or a random variable. Note that, in the case in
which λ is a fixed constant, E(sn) decreases when λ < 1/2, and increases when λ > 1/2. Thus,
the case λ < 1/2 represents a society in which the rate of migration from a city is decreasing from
the value 1−λ when the size of the city increases, approaching a constant rate of migration λ as
sn→ ∞.
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If one introduces this simple and natural rate of change, and a constant immigration rate from
the environment, the size of the population after one period of time varies according to

sn+1 = (1−E(sn)+µ)sn + IEz. (16)

In (16), the variable z ∈ IR+ indicates the amount of population that can be achieved from the
rest of the country in the period of time, which one can assume to be distributed according to a
certain distribution E (z), with finite mean ME . Last, the random variable µ such that 〈µ〉= 0 and
〈µ2〉= α measures the random unknown variations of the population. This is a very important
parameter, which takes into account for example natural events which can force the population to
move away, or the foundation of new factories, that can attract a number of people looking for a job.
The grazing limit procedure described in Sections 2, 3 and 4, allows to describe the evolution of
the size density p(s,τ) of towns with size s at time τ > 0 in terms of the Fokker–Planck equation

∂ p
∂τ

=
α

2
∂ 2

∂ s2

(
s2 p
)
+

∂

∂ s
((E(s)s− IEME)p) . (17)

If E(s) is given by (15), the equilibrium solution of the Fokker–Planck equation (17) is given by
the solution to the differential equation

α

2
∂

∂ s

(
s2 p(s)

)
+

(
1−λ +λ s

1+ s
s− IEME

)
p(s) = 0. (18)

Solving (18) with respect to the unknown function s2 p(s) shows that the equilibrium is a probability
density of the form

p∞(s) =
κ

s2

(
(1+ s)1−2λ

s1−λ

)2/σ

exp
(
−2IE ME

σ s

)
, (19)

The equilibrium distribution (19) has a polynomial rate of decay at infinity given by

1+ γ = 2
(

1+
λ

σ

)
, (20)

which is related to both the parameters λ and σ denoting respectively the asymptotic value of the
rate of migration and the variance of the random migration. Hence, the expected rank R(v) for
large values of v in this situation is

R(s) =
∫ +∞

s
p(s′)ds′ ∼= s−γ = s−1−2λ/σ . (21)

The value γ = 1 (Zipf’s law) is obtained only for λ = 0, namely in presence of almost no emigration
from cities of extremely large size. Among others, as the data that follows clearly show, this
behavior seems to be typical of the population of India. The size of population in towns of various
countries clearly indicate the presence of tailed distributions. Figure 2 shows the cumulative
empirical Pareto distributions in log-log scale of six different countries. For each country the
distribution of population size of the largest towns has been collected from the latest official
census.1 We have fitted the data of each country by the method presented in Clauset et al. (2009),
using the R implementation therein recommended.2

1 Data collected from https://citypopulation.de/. Only for Italy, data have been collected from the Italian National
Institute of Statistics (ISTAT) at http://www.istat.it
2 R package for fitting power law distributions: http://tuvalu.santafe.edu/~aaronc/powerlaws/
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Figure 2: Empirical and fitted Pareto distributions of population in tows (in blue the empirical data, and in red the fitted
distribution).

6 Conclusions

In analogy with some classical argument of kinetic theory, originally developed to establish
rigorous relationships between collisional Boltzmann-type and Fokker–Planck type equations in
the limit of grazing collisions (Villani, 2002), we introduced and discussed various social and
economic phenomena which are characterized by equilibria exhibiting power law tails. In most
of these applications, this procedure allows to understand the socio-economic reasons behind the
formation of power laws, by relating this phenomenon to few understandable rules characterizing
the microscopic interactions. In particular, on the basis of the recent analysis presented in Gualandi
and Toscani (2017), a possible microscopic interaction which produces Zipf’s law in the distribution
of the size of cities is presented. At difference with the motivations introduced by Gabaix (Gabaix,
1999) to justify this power law behavior, recently criticized in Bee et al. (2013), the equilibrium
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distribution found by kinetic arguments seems to cover in a satisfactory way the distribution of all
the sizes of the cities (Gualandi and Toscani, 2017).
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Drǎgulescu, A., and Yakovenko, V. M. (2000). Statistical mechanics of money. Eur. Phys. Jour. B.,
17: 723–729.

Düring, B., Georgiou, N., and Scalas, E. (2017). A stylised model for wealth distribution, pages
135–157. Singapore: Springer Singapore.

Düring, B., Matthes, D., and Toscani, G. (2008). Kinetic equations modelling wealth redistribution:
A comparison of approaches. Phys. Rev. E., 78. 056103.

Düring, B., Matthes, D., and Toscani, G. (2009). A Boltzmann-type approach to the formation
of wealth distribution curves. Riv. Mat. Univ. Parma., 8: 199–261. Notes of the Porto Ercole
School, June 2008.

Düring, B., and Toscani, G. (2008). International and domestic trading and wealth distribution.
Commun. Math. Sci., 6: 1043–1058.

Durrett, R. (2007). Random graph dynamics. Cambridge: Cambridge University Press.

Eco, U. (2011). Memoria e dimenticanza. In http://www.3dnews.it/node/1824.

Ernst, M. H., and Brito, R. (2002a). High energy tails for inelastic Maxwell models. Europhys.
Lett., 58: 182–187.

www.economics-ejournal.org 15



Economics: The Open-Access, Open-Assessment E-Journal 12 (2018–31)

Ernst, M. H., and Brito, R. (2002b). Scaling solutions of inelastic Boltzmann equation with
over-populated high energy tails. J. Stat. Phys., 109: 407–432.

Estoup, J.-B. (1916). Gammes sténographiques. Institut Stenographique de France.

Fujimoto, S., Ishikawa, A., Mizuno, T., and Watanabe, T. (2011). A new method for measuring tail
exponents of firm size distributions. Economics: The Open-Access, Open-Assessment E-Journal,
5: 1–20.

Gabaix, X. (1999). Zipf’s law for cities: an explanation. The Quarterly journal of economics,
114(3): 739–767.

Garibaldi, U., Scalas, E., and Viarengo, P. (2007). Statistical equilibrium in simple exchange
games II. The redistribution game. Eur. Phys. Jour. B., 60: 241–246.

Gualandi, S., and Toscani, G. (2017). Size distribution in cities: A kinetic explanation. (Preprint).

Gupta, A. K. (2006). Models of wealth distributions: a perspective. Econophysics and Sociophysics:
Trends and Perspectives, pages 161–190.

Gutenberg, B., and Richter, R. (1944). Frequency of earthquakes in California. Math. Models
Methods Appl. Sci., 34: 185–188.

Hayes, B. (2002). Follow the money. American Scientist, 90: 400–405.

Ishikawa, A. (2009). Power-law and log-normal distributions in temporal changes of firm-size
variables. Economics: The Open-Access, Open-Assessment E-Journal, 3: 1–25.

Ispolatov, S., Krapivsky, P. L., and Redner, S. (1998). Wealth distributions in asset exchange
models. Eur. Phys. Jour. B., 2: 267–276.

Kac, M. (1959). Probability and related topics in the physical sciences. New York Interscience,
London.

Karev, G. P., Wolf, Y. I., Rzhetsky, A. Y., Berezovskaya, F. S., and Koonin, E. V. (2002). Birth and
death of protein domains: A simple model of evolution explains power law behaviour. BMC
Evol. Biol., 2.

Kuznetsov, V. A. (2003). Statistics of the numbers of transcripts and protein sequences encoded
in the genome. In Computational and Statistical Approaches to Genomics, pages 125–171.
Springer.

Maldarella, D., and Pareschi, L. (2012). Kinetic models for socio–economic dynamics of specula-
tive markets. Physica A., 391: 715–730.

Marsan, G. A., Bellomo, N., and Gibelli, L. (2016). Stochastic evolutionary differential games
toward a systems theory of behavioral social dynamics. Mathematical Models and Methods in
Applied Sciences, 26(06): 1051–1093.

www.economics-ejournal.org 16



Economics: The Open-Access, Open-Assessment E-Journal 12 (2018–31)

Matthes, D., and Toscani, G. (2008). On steady distributions of kinetic models of conservative
economies. J. Stat. Phys., 130: 1087–1117.

Naldi, G., Pareschi, L., and Toscani, G. (2010). Mathematical modeling of collective behavior in
socio-economic and life sciences. Springer Verlag, Heidelberg.

Newman, M. E. (2005). Power laws, Pareto distributions and Zipf’s law. Contemporary physics,
46(5): 323–351.

Pareschi, L., and Toscani, G. (2013). Interacting multiagent systems. Kinetic equations and Monte
Carlo methods. Oxford University Press, Oxford.

Pareschi, L., and Toscani, G. (2014). Wealth distribution and collective knowledge. A Boltzmann
approach. Phil. Trans. R. Soc. A, 372. 20130396.

Pareto, V. (1964). Cours d’économie politique, volume 1. Librairie Droz.

Risken, H. (1996). The Fokker–Planck equation. Methods of solution and applications. Springer-
Verlag. Berlin.

Scalas, E., Garibaldi, U., and Donadio, S. (2006). Statistical equilibrium in the simple exchange
games I. Methods of solution and application to the Bennati–Dragulescu–Yakovenko (BDY)
game. Eur. Phys. J. B., 53: 267–272.

Simkin, M., and Roychowdhury, V. (2011). Re-inventing Willis. Physics Reports, 502(1): 1 – 35.

Teevan, R. C., and Birney, R. C. (1965). Readings for introductory psychology. Harcourt, Brace
and World, New York.

Toscani, G. (1998). The grazing collision asymptotics of the non cut-off Kac equation. Math. Mod.
Num. Anal., 32: 763–772.

Toscani, G., Brugna, C., and Demichelis, S. (2013). Kinetic models for the trading of goods. J.
Stat. Phys., 151: 549–566.

Villani, C. (2002). A review of mathematical topics in collisional kinetic theory. Handbook of
Mathematical Fluid Dynamics, 1(71-305): 3–8.

Willis, J. (1922). Age and area: A study in geographical distribution and origin of species.
University Press, Cambridge(UK).

Willis, J., and Yule, G. (1922). Some statistics of evolution and geographical distribution in plants
and animals, and their significance. Nature, 109(2728): 177–179.

Yule, G. (1925). A mathematical theory of evolution, based on the conclusions of Dr. J.C. Willis,
F.R.S. Philosophical Transactions of the Royal Society of London B, 213: 21–87.

Zipf, G. K. (1949). Human behavior and the principle of least effort: An introduction to human
ecology. Addison–Wesley, Reading (MA).

www.economics-ejournal.org 17



 

 

 

 
 
 

Please note:  

You are most sincerely encouraged to participate in the open assessment of this article. You can do so by 
either recommending the article or by posting your comments.  

Please go to:  
http://dx.doi.org/10.5018/economics-ejournal.ja.2018-31                
 
 
 

The Editor  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© Author(s) 2018. Licensed under the Creative Commons License - Attribution 4.0 International (CC BY 4.0) 

 

 
  
 

http://dx.doi.org/10.5018/economics-ejournal.ja.2018-31
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Learning from Kac's caricature of a Boltzmann gas
	The case of wealth distribution
	Distribution of knowledge exhibits tails
	The size of towns and cities
	Conclusions
	last page article_2018.pdf
	The Editor




