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Abstract: It has been empirically shown that structural holes in social networks enable potential large
benefits to those individuals who bridge them (Burt, 2004). The work in Goyal and Vega-Redondo
(2007) shows that the large payoff differentials caused by structural holes can persist even when agents
strategically add and remove ties to smooth those differentials, thereby providing a game-theoretic
rationale for the existence of bridge-agents. The present paper ties back to the initial empirical
literature by explicitly assuming that agents are exogenously linked forming cliques, as in a firm
environment. In this setting, bridge-agents cannot be sustained under the same conditions of Goyal
and Vega-Redondo (2007). Instead, they can be sustained when the deviation possibilities are
restricted and only when they connect small groups of agents to the rest.

Keywords: network formation; structural holes; intermediation; firm organization

1. Introduction

Social networks provide a platform for the flow of information because social connections supply
individuals with novel ideas, trade opportunities or job vacancies. This suggests that individuals’
payoffs are highly dependent on their position in the social network.

An important line of work in social network research analyzes this dependence and argues that
individuals benefit when they serve as intermediaries or “bridges” between otherwise unconnected
groups. The reasons for the success of bridge-individuals have been advanced by Burt’s theory
of structural holes: bridge-agents can control the flow of information between different groups
in the network, adapting it to specific strategic interests. Moreover, they are well-positioned to
synthesize ideas coming from different groups, and this enhances their creative capacity [1]. The works
in [2–4] provide empirical evidence that people who bridge structural holes in social networks have
significantly higher payoffs. From this perspective, there is a natural strategic aspect when selecting
personal and business contacts, especially in settings where brokerage and information access and
control incentives can reasonably be expected to dominate behavior with respect to tie formation, as in
a firm environment.

The analysis in [1] constitutes a basic empirical background of the theoretical analysis developed
here. Burt’s paper focused on data describing 673 managers who ran the supply chain in 2001 for one
of America’s largest electronic companies. The study shows that there are clusters of managers within
business units. To make the clusters more apparent, Burt looked at the top 89 senior people to see the
core of the supply-chain network, and this provided a stark illustration of the fragile contact across
business units. Burt’s results show that compensation, positive performance evaluations, promotions
and good ideas are disproportionately in the hands of managers bridging structural holes.

The work in [5] speculated that this situation could not be sustained in equilibrium if more and
more people strategically add and remove ties to gain intermediation rents and to circumvent others
who are trying to become intermediary. The work in [6] formally confirmed that speculation in a
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setting where agents try to minimize their network constraint, a measure of structural disadvantage
developed in [7]. On the contrary, economic theory has demonstrated that social structures can
equilibrate toward highly asymmetric networks with high differential payoffs, even when all agents
have complete information and perfectly identical preferences and abilities to strategically modify the
network. For example, [8] or [9] identify, as a prominent equilibrium network, the “star”, a structure in
which a unique agent brokers everyone else. The analysis in [10] also shows in a symmetric setting
that individuals can differentiate and receive very different payoffs in equilibrium. All of these papers
provide a game-theoretic rationale to contradict Burt’s speculation about the impossibility to sustain
structural advantages in the long run.

In the model presented here, agents are assumed to be exogenously grouped into clusters,
replicating the departments of an organization; namely a firm, a university, a family or a criminal
group, among others. This connects this paper to [11], in which a network is endogenously built onto
a pre-existing structure, or to [12], where agents are part of a coalition structure apart from being
connected to others through a network. The members of a cluster are assumed to be fully linked
among them, forming a clique, a notion widely used in network theory. These cliques have possibly
different sizes. Agents face the trade-off between the benefits from connecting to other departments’
members and the cost, in the effort, to maintain those links. These benefits are determined by the
payoff function introduced by [9]: every pair of (directly or indirectly) linked agents creates a unit of
surplus that is evenly split across the two involved agents and, possibly, the intermediaries. Thus,
individuals form links with other departments’ members to create surplus, to gain intermediation
rents and to circumvent others who are trying to become intermediary. Unlike [10], links can only be
created by mutual consent of the two involved agents.

The main results of this paper show that, in this framework, bridge-agents cannot be sustained in
equilibrium under the same conditions of [9]. This is because having groups of completely connected
agents multiplies the possibilities of circumventing bridge-agents among different departments. In the
setting of the present paper, allowing the same deviation possibilities of [9] is shown to be incompatible
with the existence of bridge-agents in equilibrium. However, if possible deviations are restricted,
bridge-agents can be sustained, but only if they connect sufficiently small parts of the population to
the rest. In this case, bridge-agents can obtain large payoff differentials in equilibrium as illustrated by
the examples of Section 3. These results formalize Burt’s conjectures about the impossibility to sustain
bridge-agents in a firm environment: they cannot connect two big parts of the firm and cannot exist
under wide deviation possibilities. Results might also be interpreted as a departure from the sharp
results in [9] because they contribute specific conditions to sustain bridge-managers in the equilibrium
network of connections of a population.

2. The Model

The basic setting is borrowed from [9], except for the group structure of the population.
Let N = {1, 2, ..., n} be the finite set of individuals. These individuals are exogenously distributed
across different groups or departments. Let M = {1, 2, ..., m} be the finite set of departments of
the population, where m ≥ 3. Each individual is located at exactly one department. Let Mi be the
department of individual i, and let mi = |Mi| denote the size of this department. Let mi ≥ 2, ∀i ∈ N.

Agents are connected by a graph or network g, a collection of direct links that represent pairwise
relations between the respective two individuals, with the particularity that all members of the same
department are fixedly connected to each other, forming a clique. The set of all of these possible
networks in N is G. The subset of N containing two individuals i and j is denoted by ij and is referred
to as the link ij. Individuals i and j are connected if and only if ij ∈ g. Thus, if j ∈ Mi, then ij ∈ g,
by assumption. When i and j belong to different departments, then link ij is said to be external. A path
in g connecting i1 and it is a set of distinct nodes {i1, i2, ..., it} ⊂ N such that {i1i2, i2i3, ..., it−1it} ⊂ g.
All individuals with whom i has a path constitute the component of i in g, which is denoted by Ci(g).
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Two departments M1 and M2 are connected if and only if there is a pair of individuals i ∈ M1 and
j ∈ M2 such that ij ∈ g.

Individuals play a network-formation game where the strategy of a player consists of making an
announcement of intended external links. Let si be the strategy vector of player i, which has n−mi
elements. Let sij ∈ {0, 1} be a particular element of this vector, where sij = 1 means that player i ∈ Mi
intends to form a link with player j ∈ Mj (where Mi 6= Mj), while sij = 0 means the opposite. A link
between two individuals is undirected, can be severed by one of them unilaterally, but can only be
created by mutual consent of the two implied individuals. Formally, a link between i and j is formed if
and only if sijsji = 1. Notice that a strategy profile s = (s1, s2, ..., sn) induces a unique network g(s).

As in [9], the payoff function is such that any pair of connected players (i and j) generates one
unit of surplus. The distribution of this unit depends on the intermediaries between i and j and
on the nature of competition between intermediaries. It is assumed that any two paths between
any two players fully compete away the entire surplus (à la Bertrand competition). Therefore, an
intermediary between i and j (say k) can retain part of the surplus generated by i and j if and only if
this intermediary lies on all paths connecting i and j. In such a case, k is said to be an essential agent
for i and j. For example, in a star network where a unique agent i is connected to any other agent,
whereas others do not hold any additional link, agent i is essential since no pair of players can ever
avoid her/him on any path connecting them. Throughout the paper, essential players will also be
called bridge-agents. Let c be the cost of an external link. Let E(j, k; g) be the set of essential agents
in g between j and k, and let e(j, k; g) = |E(j, k; g)|. Then, for every strategy profile s, net payoffs to
player i are given by:

Πi(s) = ∑
j∈Ci(g)

1
e(i, j; g) + 2

+ ∑
j,k∈N

I{i∈E(j,k)}
e(j, k; g) + 2

− ηi(g)c

where I{i∈E(j,k)} is an indicator function specifying whether i is essential for j and k and ηi(g) ≡ |{j ∈
N : j /∈ Mi, ij ∈ g}| denotes the number of external links of i. The first term represents i’s access
payoffs while the second term represents her/his intermediation payoffs. A network g̃ is efficient if
W(g̃) ≥W(g) for all g ∈ G, where W(g) ≡ ∑i∈N Πi(s) and g = g(s). Finally,

Definition 1. Agent x ∈ Cx(g) is central if and only if:

x ∈ arg max
i∈Cx(g)

∑
j∈Cx(g)

1
e(i, j; g) + 2

.

In other words, x is central if no member of Cx(g) receives more access payoffs than x. For example,
in a star network, the agent connected to all others is the unique central agent of the network. On the
other hand, in a cycle network where all agents are connected to two other agents forming a circle,
all agents are central.

At this point, I present some graph-theoretic notions that will be used repeatedly throughout the
paper. A link is said to be critical if it defines the unique path between the two players involved and
whose deletion increases the number of components. If all individuals belong to the same component,
the population is said to be connected. An isolated department does not have external links. A network
without external links is said to be empty. If a component Ci(g) contains an essential player i, then
the rest of the members of Ci(g) can be distributed among two or more i-groups; j, k ∈ Ci(g) are
members of different i-groups if i is essential for connecting them. A department Mi is essential if
there is a pair of departments Mj and Mk such that every path that links some member of Mj to some
member of Mk contains a member of Mi (not necessarily the same). Notice that essential agents can be
members of both essential and non-essential departments. A non-essential department can be extreme
or not. Department Mi is extreme if it is only connected to another department. Otherwise, Mi is said
to be non-extreme. If a component Ci(g) contains an essential department Mi, then the rest of the
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departments of Ci(g) can be distributed among two or more Mi-groups: j, k ∈ Ci(g) are members of
different Mi-groups if all paths connecting j and k include some member of Mi. Finally, a group of p
departments constitutes a cycle if they can be ordered in a list M1, M2, ..., Mp such that Mp is connected
to M1 and Mi is connected to Mi+1 for i = {1, 2, ..., p− 1} and there are no other external links.

Equilibrium Concept

Given that link creation requires mutual consent of the two players involved and that agents
can announce any combination of links they wish (multidimensional strategy space), a coordination
problem arises. As such, the game displays a multiplicity of Nash equilibria where mutually-beneficial
links can be left aside.1 This is solved if players are allowed to coordinate bilaterally. For this reason,
refinements on the Nash equilibrium that allow for coalitional moves are usually applied to this kind of
network formation game. One of the most widely-used refinements is the pairwise-Nash equilibrium,
created by [13], which is defined as follows:

Definition 2. A strategy profile sPN is a Pairwise-Nash Equilibrium (PNE) if the following conditions hold:

(i) for any i ∈ N and every si ∈ Si, Πi(sPN) ≥ Πi(si, sPN
−i )

(ii) for any pair of players i, j ∈ N and every strategy pair (si, sj) in which sil = sPN
il , ∀l 6= j and sjk =

sPN
jk , ∀k 6= i,

Πi(si, sj, sPN
−i−j) > Πi(sPN

i , sPN
j , sPN

−i−j)⇒ Πj(si, sj, sPN
−i−j) < Πj(sPN

i , sPN
j , sPN

−i−j).

Networks generated by a PNE strategy profile g(sPN) are robust to deviations of unilateral
multilink severance (that is, the usual Nash Equilibrium requirement) and to deviations of bilateral
commonly-agreed one-link creation. That is, a PNE network is a Nash equilibrium network where,
in addition, no mutually-beneficial link can be formed.

Alternative equilibrium notions include unilateral stability concepts as in [6] or [10] and concepts
that allow for other coalitional moves.2 The Bilateral Equilibrium (BE) concept used in [9] deserves
special attention. The bilateral equilibrium concept is defined as follows:

Definition 3. A strategy profile sB is a Bilateral Equilibrium (BE) if the following conditions hold:

(i) for any i ∈ N and every si ∈ Si , Πi(sB) ≥ Πi(si, sB
−i)

(ii) for any pair of players i, j ∈ N and every strategy pair (si, sj),

Πi(si, sj, sB
−i−j) > Πi(sB

i , sB
j , sB
−i−j)⇒ Πj(si, sj, sB

−i−j) < Πj(sB
i , sB

j , sB
−i−j).

A BE network must be robust to bilateral commonly-agreed one-link creation, to unilateral
multilink severance and to deviations consisting of a simultaneous combination of the previous two
deviations by any given pair of individuals. In particular, Condition (ii) implies that a BE network
should be robust to any possible coalitional deviation that involves two agents. Thus, under the BE
concept, agents can use more complex deviations than under the PNE concept. Proposition 1 shows
that, unlike [9], bridge-agents cannot be sustained in a BE network in the present setting. However,
if the deviation possibilities are restricted, so that either only one individual considers deleting her/his
links or two individuals consider creating a link between them at a time, equilibrium networks can
display bridge-agents enjoying large payoff differentials.

1 For example, a strategy profile in which no player announces a link (resulting in the empty network) is always a Nash
equilibrium.

2 See [14] and [15].
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3. Results

First, the set of efficient networks is characterized. It is trivial to see that a network is efficient
if and only if it is empty or minimally connected, i.e., all departments are grouped into the same
component, and there are m− 1 external links. As a consequence, notice that in the present setting, all
agents with external links in an efficient network are essential. Therefore, efficient networks other than
the empty network display multiple essential agents.

Now, the study turns to the equilibrium analysis. The following two results narrow the set of
PNE networks and, since BE is stricter than PNE, also the set of BE networks. All proofs are relegated
to the Appendix A.

Lemma 1. A PNE network g∗ cannot include more than one multi-department component Ĉi(g∗). Moreover,
an isolated department Mj can coexist with Ĉi(g∗) only if:

(i) non-essential agents do not have external links and
(ii)

c >
1
2
+

mj − 1
3

+ ∑
l∈Ci(g)

1
e(i, l; g) + 3

+ (mj − 1) ∑
l∈Ci(g)

1
e(i, l; g) + 4

,

where i is a central member of Ĉi(g∗).

The proof shows that the marginal access and intermediation payoffs for those who create a
critical link between two multi-department components always exceed the payoffs of (at least) one
member of these components, so if this member does not have incentives to cut all of his/her links off,
then creating a critical link should be a profitable deviation. Similarly, the proof of Part (i) shows that
the marginal gross intermediation and access payoffs obtained by a pair of agents who create a critical
link between them exceed the actual gross payoff of a non-essential agent with some external link, so
if the linking cost is sufficiently low to sustain this non-essential agent in equilibrium, then a pair of
members of different components will have incentives to create a link between them. Finally, Part (ii)
states that in order to sustain two separate components in equilibrium, the linking cost should exceed
the gross marginal payoff of the most profitable creation of a critical link between them. This result
implies that there can be three different equilibria: (a) a connected network; (b) an empty network or
(c) a network with a unique multi-department component and sufficiently small isolated departments.3

The last equilibrium is inefficient, whereas the last two equilibria reflect a coordination problem and
can only be sustained for sufficiently high values of c.4

In order to analyze the conditions under which bridge-agents can be sustained in equilibrium, the
analysis should focus on the unique multi-department component.

Lemma 2. Given a sufficiently large multi-department component,5 a PNE network cannot display more than
one essential agent for any c.

If two agents create a link circumventing (at least) one essential agent, then each of them will
eliminate (at least) one intermediary to access a specific part of the population. Thus, only when the
size of some of these two parts is lower than an upper bound (that depends on c), this link will not
be formed. The proof shows that if there are two or more essential agents in the same component,

3 Condition (ii) of Lemma 1 specifies the upper-bound of the size of isolated departments as a function of c.
4 For example, the empty network is a PNE if c > 1

2 + 1
3 (mj − 1) + 1

3 (mi − 1) + 1
4 (mj − 1)(mi − 1) for any pair of isolated

departments Mi and Mj.
5 In the spirit of Goyal and Vega-Redondo (2007) (see their Footnote 10), this requirement can be stated more precisely by

saying that there is a function F(c) such that if the size of the multi-department component exceeds F(c), this result is
obtained. This is the interpretation of most of the results in this paper. The particular form of the lower-bound F would
depend on the result under consideration, and its specification is beyond the scope of that paper.
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then this upper bound will be exceeded for some pair of agents; so, there always exist two individuals
who can profitably circumvent some essential agent. Furthermore, a unique essential agent can be
sustained in a large multi-department component and only if he/she connects sufficiently small parts
of the component to the rest.

Since a multi-department component with (at most) one essential agent cannot be minimally
connected, the previous result implies that if the population is large, then PNE (and also BE) networks
will not be efficient.6 Moreover, the previous lemma implies that some non-essential agent will hold
external links in this multi-department component. Thus, from Lemma 1, the next directly follows:

Corollary 1. Given a sufficiently large multi-department component, a PNE network should be connected for
any c.

As commented above, this list of necessary conditions stated by Lemmas 1 and 2 restricts both
the set of potential PNE and BE networks. Based on these results, the next proposition follows:

Proposition 1. Given a sufficiently large multi-department component, a BE network cannot include any
essential agent.

From Lemma 2, a PNE network cannot have more than one essential agent. This will also be
true for BE networks. The proof focuses on this unique essential agent to show that, under the BE
concept, agents have the deviation possibilities they need to circumvent it. In particular, a pair of
deviators is allowed to coordinate the replacement of a set of their links with a new link between
them. In our setting, this allows deviators to circumvent essential agents without any extra cost.
Consequently, bridge-agents cannot be sustained in BE networks.

This result contrasts with [9] where the unique (strict) BE network displays one essential agent.
The existence of multi-personal nodes, as the departments of our setting, has a double effect: on the
one hand, this potentially increases the benefits from holding links to other nodes, but on the other
hand, this may also smooth payoff differentials because there are more possibilities to circumvent
bridge-agents. For this reason, only when these possibilities are restricted with respect to [9], by using
a weaker equilibrium concept as is done next, large payoff differentials can be sustained in equilibrium.

In spite of the list of necessary conditions stated by Lemmas 1 and 2, the set on PNE networks
is large. However, the next result shows that under certain network structures, bridge-agents must
necessarily exist in equilibrium.

Proposition 2. Given a sufficiently large multi-department component with an essential department Mj and
an Mj-group containing t agents, there exists a c̃(t) ≥ 3t−1

12 such that, for any c > c̃(t), a PNE network must
display a unique essential agent j ∈ Mj who connects those t agents to the rest of the component.

In other words, if an essential department Mj has an Mj-group relatively small with respect to c in
a sufficiently large component, then a unique agent j will be essential for connecting the members of
this Mj-group to the rest of the component. The proof shows that j must have two external links to this
Mj-group, say jk and jh, and that there is no other way to connect this Mj-group to Mj. Intuitively, there
are several factors that explain this result. First, agent k (or h) does not have incentives to cut jk (or jh)
off because this would involve an additional essential agent to access the rest of the component, which
is sufficiently large to make this deviation nonprofitable. Similarly, agent j does not have incentives
to cut some of her/his external links off because this would imply a loss of intermediation payoffs
that exceeds the cost saving. Finally, no other agent has incentives to circumvent agent j to access this
Mj-group because this group is too small to compensate the cost of a new link. Thus, the smaller the

6 This contrasts with [9], where the unique equilibrium network is efficient.
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Mj-group, the smaller will be c̃(t), so the essential department Mj will have to include one essential
agent for a wider range of c.

In general, a multi-department component without essential agents can present multiple
structures in equilibrium. However, the previous result narrows the possibilities: a multi-department
component without essential agents can be sustained when (1) it does not include essential departments,
i.e., this component is a cycle or a group of cycles; or (2) all Mi-groups are sufficiently large, for any
essential department Mi in the component.

The next result follows from Proposition 2 and Lemma 2.

Corollary 2. Given a sufficiently large multi-department component, a PNE network can only include one
essential department Mj with some Mj-group sufficiently small.7 Moreover, if there are multiple Mj-groups
sufficiently small, then they must be connected to Mj through the same essential agent, j ∈ Mj.

Moreover, a sufficiently small Mj-group cannot include an essential department itself because,
by Proposition 2, this would imply a new essential agent, which contradicts Lemma 2.

The following example illustrates a PNE network with one essential department.

Example 1. Consider a connected network with a unique essential player i who has two external links to every
other department. Moreover, there are no additional links. Let m be the number of departments. For simplicity, it
is assumed that all departments have the same size s. I claim that such a network is a PNE if m is sufficiently
large and:

c ∈
(

s
6

,
s

12

[
s(m− 2) + 2(s− 1) + 3

sm− 1
s(m− 1)

])
,

so that c is sufficiently high to avoid an additional link and sufficiently low to avoid the deletion of an external link.
In this case, player i’s payoffs are positive and equal to:

s2(m− 1)(m− 2)
6

+
sm− 1

2
+

(s− 1)s(m− 1)
3

− 2(m− 1)c

Player i’s marginal payoff from cutting one link off is:

c− s− 1
6
− (sm− s + 2)(s− 1)

12

which is negative for a sufficiently high m. Likewise, it can be concluded that i’s marginal payoff for cutting
two links to a department is also negative. On the other hand, if a player in a peripheral department deletes one
external link, then she/he obtains a marginal payoff equal to:

c− 1
6
− sm− s− 1

12

which is negative for sufficiently large m. The creation of an additional link generates the following marginal
payoff for one of the deviators:

s
6
− c

which is negative given the conditions stated in this example. Therefore, it can be concluded that this network is
PNE under those conditions of m and c.

Moreover, by Proposition 2, this is the unique form of connecting all of the peripheral departments to the
essential one when c > 3s−1

12 .

7 An Mj-group with t agents is sufficiently small if c > c̃(t).
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Notice that for moderate values of c, agent i will enjoy large payoff differentials with respect to others
because of the large intermediation payoffs she/he receives.

The previous example illustrates that bridge-agents not only can be sustained in PNE networks,
but also that they must exist, under certain configurations of the network. Moreover, the example
shows that these agents can enjoy much larger payoffs than others in equilibrium.

Essential agents can also be members of non-essential departments if the following necessary
conditions hold.

Proposition 3. An extreme department Mj can contain an essential agent only if mj ∈ {2, 3}. A PNE network
can display an essential agent in a non-essential department Mi only if c > mi−1

6 .

Therefore, an essential agent can monopolize the intermediation between a group of agents and
the rest of the component only if this group is sufficiently small. The previous result establishes specific
size upper-bounds for non-essential departments. Below these upper-bounds, no other agent has
incentives to circumvent the essential agent to access such a small group because the additional access
payoffs do not compensate the cost of the new link. Nevertheless, the essential agent enjoys large
payoff differentials with respect to the rest of the agents, as the next example illustrates.

Example 2. Consider a network consisting of a cycle of m departments. Only one of them, say Mi, has a single
player i with external links. All other departments have at least two players with external links. In that case,
agent i is essential for connecting the rest of the members of her/his department to the rest of the component.
This network is a PNE if m is sufficiently large and mi < 6c + 1.

For any given c, it is easy to see that the marginal payoff for deleting one external link will be negative for a
sufficiently large m. On the other hand, the most profitable possibility for creating a new link, i.e., adding a link
circumventing the essential player i, generates a marginal payoff to one of the deviators equal to:

mi − 1
6
− c

which is negative under the initial conditions stated above. Thus, the network is a PNE. Notice that the payoff of
i is:

Πi =
n− 1

2
+

(n−mi)(mi − 1)
3

− 2c

whereas the payoff of any agent not in Mi without external links, say j, is:

Πj =
n−mi

2
+

mi − 1
3

.

Therefore, for moderate values of c, the payoff differential between these two players is high.

4. Conclusions

Empirical evidence shows that structural holes in social networks generate potentially large
benefits for those individuals who succeed in bridging them and, consequently, large payoff differences
among agents. The persistence of such payoff differentials in strategic settings where self-interested
agents can alter the network structure could be interpreted as an odd and counterintuitive empirical
fact: when brokerage incentives dominate behavior with respect to link formation, one would expect
that disfavored agents would strategically add and remove ties to smooth those differentials, as Ronald
Burt speculated.

This paper focuses on a setting that can be interpreted as a firm environment, where the
aforementioned agents’ incentives can reasonably be expected to play a predominant role, to demonstrate
that structural advantages cannot be sustained in equilibrium unless the coordination possibilities among
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potential deviators are restricted with respect to [9], which used the (strict) BE concept. This is because
the specific configuration of the population (agents are distributed forming exogenously fixed cliques)
increases the possibilities of circumventing essential players. Nevertheless, the present paper shows that
large payoff differentials can be sustained in PNE networks, that is when agents are not allowed to add
and remove links simultaneously; however, only when they broker the connections of a sufficiently small
group of agents to the rest. This does not prevent individuals bridging structural holes from enjoying
large payoff differentials.

These results contribute some new insights to the sharp results of [9]. Under the interpretation of
a firm environment, the relative location of a department in the network of connections might play an
important role to explain whether this department can contain essential agents or not; in this respect,
an essential agent bridging two big parts of the firm might represent too tempting deviation possibilities
for a pair of agents that can circumvent this essential. Likewise, the coordination capabilities of
potential deviators are determinant to sustain bridge-agents; in our setting, those capabilities need to
be restricted with respect to [9] in order to sustain essential agents. Further empirical research could
aim at testing the relevance of these conditions for real social networks to display bridge-agents in the
long run.
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Appendix A. Proofs

First, two preliminary lemmas are introduced. Their proof is omitted here because they are
immediate applications of two analogous lemmas set forth by [9]. Lemma A1 refers to the marginal
payoff of critical links. Notice that critical links can only connect players from different departments;
therefore, critical links are not just the unique path between two players, but they are also the unique
path between departments.

Lemma A1. Consider any network g. If ij ∈ g and the link is critical, then the marginal payoff of this link for
both players (i and j) is exactly the same.

Lemma A2. In a network g, any component has at least two non-essential departments.

Let N r
i (g) = {l ∈ Ci(g) : e(i, l) = r} be the set of agents whom i accesses via r essential players

and ηr
i (g) = |N r

i (g)|. Let Ri(g) be the maximal number of essential players between i and any other
member of her component.

Proof of Lemma 1. Let g be a PNE network, and let Ci(g) be a multi-department component. Consider
that g includes an additional component Cj(g). By contradiction with Part (i), assume that i ∈ Ci(g) is
a non-essential agent with at least one external link. In a PNE network, agent i’s payoff should hold:

Πi ≥
Ri(g)

∑
r=0

ηr
i (g)

r + 2
− c ≥ 0 (*)

Let j ∈ Mj be a member of Cj(g). Consider the deviation consisting of forming the critical link ij.
Agent j’s marginal payoff holds:
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∆Πj ≥
1
2
+

Ri(g)

∑
r=0

1
r + 3

+ (mj − 1)

[
1
3
+

Ri(g)

∑
r=0

1
r + 4

]
− c

=
1
2
+

mj − 1
3

+
Ri(g)

∑
r=0

ηr
i (g)

(
1

r + 3
+

mj − 1
r + 4

)
− c

>
1
2
+

Ri(g)

∑
r=0

ηr
i (g)

(
1

r + 3
+

1
r + 4

)
− c

≥ 1
2
+

Ri(g)

∑
r=0

ηr
i (g)

(
1

r + 3
+

1
r + 4

− 1
r + 2

)

where the last inequality follows from condition (*). Since 1
T + 1

T+1 −
1

T−1 > 0, ∀T ≥ 3, it can be
concluded that ∆Πj > 0. By Lemma A1, player i will also have incentives to deviate. Thus, g is not a
PNE network, contradicting the initial statement and concluding the proof of Part (i).

Next, it is shown that two multi-department components, Ci(g) and Cj(g), cannot coexist in a
PNE network g. By Lemma A2, any multi-department component includes two or more non-essential
departments. As a consequence, the following two cases exhaust all of the possible configurations
of Ci(g):

(a) Some non-essential department in Ci(g) (say Mi) is extreme.

Part (i) of Lemma 1 implies that Mi can only have one external link (say ik) in a PNE network.
This link should be profitable for both i and k. Therefore, creating a new critical link jk bridging
Ci(g) and Cj(g) would be (weakly) profitable for both j and k whenever mj ≥ mi. Thus, Mj
should be smaller than the extreme department Mi in any PNE network.

(b) All non-essential departments in Ci(g) are non-extreme.

Let Mi be a non-essential department in Ci(g). Notice that Part (i) of Lemma 1 implies that only
one agent (say i) in Mi can have external links. Since Mi is non-extreme, player i has two or more
external links, i.e., ηi(g) ≥ 2. Player i’s payoff can be written as:

Πi =
Ri(g)

∑
r=0

ηr
i (g)

r + 2
+ (mi − 1)

(
η0

i (g)− (mi − 1)
3

+
Ri(g)

∑
r=1

ηr
i (g)

r + 3

)
− ηi(g)c

Since g is a PNE network, it follows that:

1
ηi(g)

[
Ri(g)

∑
r=0

ηr
i (g)

r + 2
+ (mi − 1)

(
η0

i (g)− (mi − 1)
3

+
Ri(g)

∑
r=1

ηr
i (g)

r + 3

)]
≥ c (**)

Agent j’s marginal payoff for forming a new critical link ij between Ci(g) and Cj(g) is:

∆Πj >
1
2
+

Ri(g)

∑
r=0

ηr
i (g)

r + 3
+ (mj − 1)

(
1
3
+

Ri(g)

∑
r=0

ηr
i (g)

r + 4

)
− c

>
Ri(g)

∑
r=0

ηr
i (g)

2r + 4
+ (mj − 1)

(
Ri(g)

∑
r=0

ηr
i (g)

2r + 6

)
− c

≥ 1
ηi(g)

[
Ri(g)

∑
r=0

ηr
i (g)

r + 2
+ (mj − 1)

Ri(g)

∑
r=0

ηr
i (g)

r + 3

]
− c
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The first and second inequalities are immediate, while I use ηi(g) ≥ 2 in deriving the third
inequality. The last expression can be compared with (**) to conclude that ∆Πj > 0 when mj ≥ mi.
Thus, Mj should be smaller than the non-extreme department Mi in a PNE network.

Both cases imply that in a PNE network, any non-essential department of Ci(g), say Mi,
should be larger than any department of Cj(g). Conversely, if Cj(g) is a multi-department component,
a non-essential department of Cj(g) should be larger than any department of Ci(g). These two
conditions cannot hold simultaneously, so two multi-department components cannot coexist in a
PNE network.

Consequently, only isolated departments can coexist with one multi-department component,
Ci(g). Let Mj be an isolated department. The most profitable critical link between Mj and Ci(g) would
connect j ∈ Mj to a central member of Ci(g), say i. Agent j’s marginal payoff for the creation of that
link would be:

∆Πj =
1
2
+

mj − 1
3

+ ∑
l∈Ci(g)

1
e(i, l; g) + 3

+ (mj − 1) ∑
l∈Ci(g)

1
e(i, l; g) + 4

− c

Condition (ii) of Lemma 1 trivially follows from here.

Proof of Lemma 2. By contradiction, let us assume that there are at least two essential players i and j
in a PNE network g. Notice that these two players must be located in a multi-department component
(say Ci(g)). This component can be divided into three parts: (1) one i-group that does not contain j,
(2) one j-group that does not contain i and (3) the rest of the component. Let k and l be two agents
contained in Parts (1) and (2), respectively.

The creation of the link kl will be profitable for a sufficiently large size of Part (3) because k and l
will circumvent an essential player (i and j, respectively) to reach this part of the component. On the
other hand, if l and i form a link between them, then i increases her/his payoffs obtained from the
intermediation between Parts (1) and (2), and l circumvents an essential player from reaching Part (1).
This deviation is profitable for a sufficiently large Part (1) because both marginal payoffs are increasing
in the size of this part. Similarly, the creation of the link kj will be profitable for a sufficiently large
Part (2). By construction, one of these three parts should be sufficiently large in a sufficiently large
component, so there always exists a profitable deviation for a sufficiently large Ci(g), contradicting the
initial statement.

Proof of Proposition 1. By contradiction, it is assumed that a BE network g contains an essential agent i.
Since BE is stricter than PNE, Lemmas 1 and 2 also hold under the BE concept. Thus, the multi-department
component cannot include more than one essential agent i. At this point, two different cases need to be
distinguished:

(a) Agent i is contained in an essential department Mi.

Let Mj and Mk be two departments, such that the essential player i is part of all paths between
the members of Mj and Mk. Since there does not exist any additional essential agent, individual
i must have two or more links to at least one of the Mi-groups containing Mj or Mk. Take two
agents from Mj and Mk linked to the essential department Mi. Notice that at least one of them is
linked to i. Then, consider the deviation consisting of deleting their links to Mi and forming a
link between them.8 Without increasing their costs, they will circumvent the essential player i to
access the other Mi-group. Therefore, they will strictly increase their access payoff. Therefore,
they have incentives to deviate, contradicting the initial statement.

8 Notice that such a deviation is not allowed under the PNE concept.
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(b) Player i is contained in a non-essential department Mi.

There are two types of non-essential departments. Next, I develop them in turn:

(i) Mi is an extreme department. Let i be an essential agent in Mi. Since i is the unique essential
agent in Mi, she/he must have at least two links, say ik, ij ∈ g, where k, j ∈ Mj. Consider
the deviation in which j severs the link ij and forms a new link jl where l ∈ Mi and l 6= i.
The marginal payoff for agent j will be positive, given that without increasing her/his
linking costs, the essential agent i will be avoided in order to reach the members of Mi.
On the other hand, by forming such a link, agent l would eliminate the essential agent i
to reach the rest of the component at the cost of one additional link (c). For a sufficiently
large component, agent l would also have incentives to deviate. Consequently, an extreme
department cannot include essential agents in a BE network.

(ii) Mi is a non-extreme and non-essential department. Notice that i ∈ Mi can be essential if
and only if she/he is the unique agent in Mi with external links. Let ij ∈ g where j /∈ Mi.
Consider that j severs the link ij and simultaneously forms a link jk where k ∈ Mi and
k 6= i. With this deviation, j will have two different paths to communicate with any member
of Mi without any additional cost. Then, the marginal payoff of agent j will be positive
since she/he avoids one essential agent. On the other hand, agent k will circumvent the
essential agent i to access the rest of the component with an additional cost of c. Thus, for
a sufficiently large component, k will also deviate. Consequently, this kind of department
cannot contain essential agents either.

Proof of Proposition 2. First, let us assume that g is a PNE network that displays a multi-department
component with an essential department Mj. By Lemma 2, in a sufficiently large component,
department Mj cannot be connected to any Mj-group through one critical link because this network
would display two essential agents. On the other hand, whenever there are more than two links
between some Mj-group and Mj, some agent will have incentives to deviate by deleting one external
link; the deviator will save c without affecting access and intermediation payoffs. Let us analyze the
remaining cases in turn.

Let us assume that there are two links involving four different players, say jk and ih, where
j, i ∈ Mj and k, h are members of the Mj-group. Let t be the number of members of this Mj-group.
By deleting the link jk, agent j obtains ∆Πj = c− c̃(t). Specifically, c̃(t) = 3t−1

12 when the deletion of
the link jk creates two new essential agents, i and h. If this deviation creates additional essential agents
because of the structure of the Mj-group, then c̃(t) > 3t−1

12 . In any case, the deviation is profitable
whenever c > c̃(t).

Let us assume that there are two links between Mj and the Mj-group, say jk and ik, where j, i ∈ Mj
and k is an essential agent in the Mj-group. Trivially, when c > c̃(t), agent j (or i) will have incentives
to cut her/his external link off.

Consequently, the unique remaining possibility of connection between Mj and the Mj-group
involves two external links jk and jh, where j ∈ Mj is essential and k and h are two members of the
Mj-group. Next, it is shown that for any c, this structure can be sustained in a PNE network if the
component is sufficiently large. First, notice that j gains intermediation rents from connecting the
Mj-group to the rest of the component. The deletion of jk (or jh) implies that this intermediation rent
would have to be shared with another agent. Thus, for any c, there always exists a sufficiently large
size of the component that makes the deletion of jk (or jh) non-profitable. Second, if agent k (or h)
cuts the link jk (or jh) off, then a new essential agent will intermediate the connection of the deviator
with the rest of the component. Therefore, for any c, there always exists a sufficiently large size of
the component that makes this deviation non-profitable. Finally, it is easy to see that j does not have
incentives to create a new link to this Mj-group, and no other member of Mj will create a new link to
the Mj-group whenever c > c̃(t).
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Therefore, if c > c̃(t) and the multi-department component is sufficiently large, then one essential
member of the essential department Mj should connect the Mj-group to the rest of the component.

Proof of Proposition 3. Let us assume that there is an essential agent i in an extreme department, Mi.
By Lemma 2, this department should have two links to another department, Mj, say ij and ik. Agent j’s
marginal payoff for cutting her/his link off is ∆Πj = c− mi+1

12 , whereas agent j’s marginal payoff for
creating an additional link to Mi is ∆Πj =

mi−1
6 − c. These two marginal payoffs can be both negative

only if mi ≤ 3.
On the other hand, let us assume that there is an essential agent i in a non-extreme and

non-essential department, Mi. The marginal payoff of a player j for creating a new link that circumvents
player i to access the rest of members of Mi is ∆Πj =

mi−1
6 − c.

References

1. Burt, R.S. Structural Holes and Good Ideas. Am. J. Soc. 2004, 110, 349–399.
2. Mehra, A.; Kilduff, M.; Bass, D. The Social Networks of High and Low Self-Monitors: Implications for

Workplace Performance. Adm. Sci. Q. 2003, 26, 121–146.
3. Podolny, J.; Baron, J. Resources and Relationships, Social Networks and Mobility in the Work Place.

Am. Soc. Rev. 1997, 62, 673–693.
4. Ahuja, G. Collaboration Networks, Structural Holes, and Innovation: A Longitudinal Study. Adm. Sci. Q.

2000, 45, 425–455.
5. Burt, R.S. Brokerage and Closure: An Introduction to Social Capital; Oxford University Press: Oxford, UK, 2005.
6. Buskens, V.; van de Rijt, A. Dynamics of Networks if Everyone Strives for Structural Holes. Am. J. Soc. 2008,

114, 371–407.
7. Burt, R.S. Structural Holes: The Social Structure of Competition; Harvard Universtity Press:

Cambridge, UK, 1992.
8. Bala, V.; Goyal, S. A Noncooperative Model of Network Formation. Econometrica 2000, 68, 1181–1230.
9. Goyal, S.; Vega-Redondo, F. Structural Holes in Social Networks. J. Econ. Theory 2007, 137, 460–492.
10. Kleinberg, J.; Suri, S.; Tardos, E.; Wexler, T. Strategic Network Formation with Structural Holes.

In Proceedings of the 9th ACM Conference on Electronic Commerce, Chicago, IL, USA, 8–12 July 2008.
11. Haller, H. Network extension. Math. Soc. Sci. 2012, 64, 166–172.
12. Caulier, J.-F.; Mauleon, A.; Vannetelbosch, V. Contractually stable networks. Int. J. Game Theory 2013, 42,

483–499.
13. Jackson, M.O.; Wolinsky, A. A strategic model of social and economic networks. J. Econ. Theory 1996, 71,

44–74.
14. Dutta, B.; Mutuswami, S. Stable networks. J. Econ. Theory 1997, 76, 322–344.
15. Jackson, M.O.; van den Nouweland, A. Strongly stable networks. Games Econ. Behav. 2005, 51, 420–444.

c© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Model
	Results
	Conclusions
	Proofs 

