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Abstract: Public goods games often assume that the effect of the public good is a linear function of the
number of contributions. In many cases, however, especially in biology, public goods have nonlinear
effects, and nonlinear games are known to have dynamics and equilibria that can differ dramatically
from linear games. Here I explain how to analyze nonlinear public goods games using the properties
of Bernstein polynomials, and how to approximate the equilibria. I use mainly examples from the
evolutionary game theory of cancer, but the approach can be used for a wide range of nonlinear
public goods games.

Keywords: game theory; public goods; cooperation; nonlinear games; evolutionary dynamics;
Bernstein polynomials; cancer

1. Introduction

1.1. Public Goods

Fifty years after Garret Hardin’s “Tragedy of the Commons” [1], the problem of collective action
remains one of the most influential concepts in science: free-riding on the contributions of others
enables free-riders to thrive at the expense of cooperators. Examples can be found in almost all
areas of human knowledge, from biology to economics, from selfish genetic elements [2], microbes
secreting diffusible molecules [3] and cancer cells secreting growth factors [4,5] to cooperative hunting
in mammals [6] and, indeed, the exploitation of shared natural resources described by Hardin [1].
The major transitions in evolution are considered solutions to social dilemmas of this kind [7].

The problem of cooperation can be modelled by games with at least one Pareto inefficient
equilibrium: an alternative outcome exists in which at least one player could have a higher payoff
without reducing any other player’s payoff (a Pareto improvement is possible; hence the inefficiency);
no one, however, has an incentive to change their behavior (hence the equilibrium). The Prisoner’s
Dilemma (PD) [8] is the most famous among such games, and it has been used extensively to describe
the problem. The game of Chicken [9] (also known as the Hawk–Dove game [10] or the Snowdrift
game [11]) has also been used to study cooperation.

1.2. Multiplayer Games and Nonlinear Benefits

The social dilemma described by Hardin [1] is essentially a multiplayer version of the PD (NPD [12,13]):
individuals can be cooperators or defectors; only cooperators pay a contribution; all contributions are
summed, the sum is multiplied by a reward factor and redistributed to all individuals. It is well-known
and easy to prove that in this game, if group size is large enough, pure defection is the only stable
outcome. The n-person prisoner’s dilemma (NPD) has become a synonym for social dilemma and
the tragedy of the commons, at least in biology [14] (while in economics it is understood [15] that this
is not necessarily the case). This is unfortunate, because very few cases of public goods in biology can
actually be described as an NPD. The reason is that the NPD assumes linear benefits: the effect of each
contribution is additive. In other words, the public good is a linear function of the number of cooperators.
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In biology, however, almost everything is nonlinear. The effect of biological molecules is
generally a sigmoid function of their concentration (usually described by the Hill equation [16–18]).
A case in point is the production of growth factors by cancer cells: since they are diffusible in
the extracellular matrix, growth factors are public goods that can be exploited by producer and
non-producer cells. In cancer research, game theory was introduced [19,20] using a version of the game
of Chicken. Subsequent papers using game theory in cancer research [21–28] were extensions (with up
to four strategies) of this game, and games with pairwise interactions continue to be used in cancer
research [29,30]. The production of diffusible factors by cells, however, is a clear example of collective
interactions rather than pairwise, because the effect of secreted molecules is not limited to one other cell.
The dynamics of growth factor production therefore should be modelled using games with collective
interactions [31,32]. It is also well known that the effect of growth factors on cell growth is generally a
sigmoid function of its concentration. In order to describe cooperation for the production of growth
factors in cancer biology, therefore, we must use multiplayer games with collective interactions for the
production of nonlinear public goods—in short, nonlinear public goods games.

1.3. Rationale of the Paper

The problem with nonlinear public goods games is that they are hard to analyze. While games
with concave and convex benefits can be studied analytically, and approximate results can be derived
for games with threshold benefits, games with sigmoid benefits have been considered impossible to
study analytically until recently [32]. Recent work on nonlinear public goods [33–36] has been applied
to the production of diffusible molecules in cancer [37–44]. Some other recent models have used linear
benefits [45,46].

Here I show how to characterize analytically the dynamics of nonlinear games and how to find
the equilibria analytically for well-mixed populations. I will also show how the results differ from
linear and pairwise games and why glossing over nonlinearities can lead to crucial errors.

2. How to Analyze Nonlinear Public Goods Games

2.1. The Replicator Dynamics with Two Strategies

In a game with two pure strategies, an individual can be a producer (cooperator) or a non-producer
(defector) of a public good. The diffusion range of the public good defines a number n of individuals
that benefit from its effect (group size is n). We assume a large population and random group formation
at each generation. Thus, one’s probability of having a number i of producers among the other group
members, given that the frequency of producers in the population is x, is given by the probability mass
function of a binomially distributed random variable i with parameters (n − 1, x):

pi,n−1(x) =

(
n− 1

i

)
xi(1− x)n−1−i (1)

The fitnesses of producers and non-producers are given therefore by

WC =
n−1

∑
i = 0

pi,n−1(x)·b(i + 1)− c (2)

WD =
n−1

∑
i = 0

pi,n−1(x)·b(i) (3)

where b(i) is the benefit (payoff) for being in a group with i other cooperators; a producer has one
producer (itself) more in a group, compared to a non-producer in the same group, but it pays a cost c
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(0 < c < 1); if we assume that the maximum benefit is 1 and c is the cost/benefit ratio of cooperation.
The average fitness of a mixed population is

W = x·WC + (1− x)·WD (4)

The replicator dynamics [47] of this system is

.
x = x (1− x) β(x) (5)

where the fitness difference WC −WD is written in the form β(x), and

β(x) = ∑n−1
i = 0 pi,n−1(x)·∆bi (6)

is the gradient of selection, with
∆bi = b(i + 1)− c− b(i) (7)

Beyond the two trivial rest points x = 0 and x = 1, further interior rest points are given by

β(x) = 0 (8)

When b(i) is a linear function, (8) can be easily solved analytically [25]. With non-linear benefits,
however, this is generally not possible.

2.2. Nonlinear Benefits

Many cases of nonlinear benefits can be modelled using the following function. The benefit b(i)
for an individual in a group with a number i of producers and a number (n − i) of non-producers is
described by

b(i) =
[l(i)− l(0)]
[l(n)− l(0)]

(9)

the normalized version of a logistic function l(i) with inflection h and steepness s:

l(i) =
1

1 + es(h−i/n)
(10)

The parameter h defines the position of the inflection point: h→1 gives increasing returns and
h→0 diminishing returns; s defines the steepness of the function at the inflection point (s→∞ models a
threshold public goods game; s→0 models an NPD; the normalization in (9) in prevents the logistic
function (10) from becoming constant for s→0) (Figure 1).

Figure 1. Sigmoid benefits. The benefit b(i) of a public good as a function of the number of producers
(i), described by a normalized logistic function (Equation (9)) with inflection point h; h→1 gives
increasing returns and h→0 diminishing returns. Multiple curves are shown, with increasing steepness
s (increasing opacity).
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When the benefit b(i) is a nonlinear function such as the one in (9) the roots of β in (6) cannot be
found analytically. We can, however, characterize the dynamics exactly, and approximate the equilibria,
by resorting to the properties of Bernstein polynomials.

2.3. Bernstein Polynomials

Bernstein polynomials were introduced 100 years ago by Sergei Natanovich Bernstein [48] in
order to constructively (employing only basic algebra) prove the Weierstrass approximation theorem:
given any continuous function f (x) on an interval [a,b] and a tolerance ε > 0, a polynomial P(x) of
sufficiently high degree exists, such that |f (x)−P(x)|<ε for all x in [a,b]; in other words, polynomials
can uniformly approximate any continuous function over a closed interval. Bernstein polynomials are a
significant advance over Taylor polynomials, as they are applicable to any continuous function, whereas
the Taylor approximation requires the function to be differentiable. Probably because of their slow
convergence, however, Bernstein polynomials were for a long time (and still are) a relatively unknown
tool in mathematics. A review of the history of Bernstein polynomials [49] and a full treatment are
available [50–52]. For our purposes, the following definitions are enough to set the problem.

• The Bernstein polynomial basis of degree n on x in [0, 1] is defined, for i = 0, . . . , n, by

pi,n(x) =

(
n
i

)
xi(1− x)n−i (11)

• A polynomial in Bernstein form of degree n associated with any continuous function fi on [0, 1] is
defined for each positive integer n as

F(x)∑n
i = 0 pi,n(x) fi (12)

• fi is called the Bernstein coefficient

The following properties of Bernstein polynomials are sufficient to characterize the dynamics of
our system (see [49] for a complete list of properties, and [50–52] for further discussion):

• End-point values: The initial and final values of f and F are the same: F(0) = f 0; F(1) = fn.
• Shape preservation: F and f have the same shape (monotonicity, convexity, concavity).
• Variation-diminishing property: The number Z of real roots of F in (0,1)is less than the number S of

sign changes of f by an even amount: Z = S − 2j for some integer j greater or equal to 0 and lower
than the integer part of n/2 [53] (each root contributes according to its multiplicity).

2.4. Characterizing the Dynamics

Compare (11) with (1) and (12) with (6); β in (6) is, by definition, a polynomial in Bernstein form
and ∆bi is its Bernstein coefficient. Hence, based on the properties defined above, it is straightforward
to characterize the dynamics of a nonlinear public goods game based on the number of sign changes of
the Bernstein coefficient ∆bi instead of inspecting the gradient of selection of the Bernstein polynomial
β. This Bernstein approach was introduced to study public goods games with sigmoid benefits in the
context of cancer biology [39,40]. Games with concave or convex benefits can be analyzed [54] without
resorting to the properties of Bernstein polynomials, although in that case the proof is unnecessarily
long—the proof is trivial using the Bernstein approach (the results of this exercise have been published
in [55], which also replicated the sigmoid case analyzed in [39]).

For games in which the Bernstein coefficient never changes sign, obviously, there is no interior
equilibrium. An example of this case is the NPD.

Games with concave or convex benefits are cases in which there can be at most one sign change
(Figure 2). If the Bernstein coefficient has one sign change, then there is a unique interior equilibrium
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x* in (0,1): if the initial sign is +, then x* is stable and x = 0 and x = 1 are unstable: an example of
this occurs in games with concave benefits when ∆bn−1 < c < ∆b0; if the initial sign is -, then x* is
unstable and x = 0 and x = 1 are stable: an example of this occurs in games with convex benefits when
∆b0 < c < ∆bn−1. Games with concave or convex benefits can also have no sign change. Hence, with
concave benefits, if c ≥ ∆b0 then x = 0 is the unique stable equilibrium and x = 1 is the unique unstable
equilibrium; if ∆bn−1 < c < ∆b0 then there is a unique interior stable equilibrium and x = 0, x = 1 are
unstable equilibria; if c ≤ ∆bn−1 then x = 1 is the unique stable equilibrium and x = 0 is the unique
unstable equilibrium. With convex benefits, if c ≥ ∆bn−1 then x = 0 is the unique stable equilibrium
and x = 1 is the unique unstable equilibrium; if ∆b0 < c < ∆bn−1 then there is a unique interior unstable
equilibrium and x = 0, x = 1 are stable equilibria; if c ≤ ∆b0 then x = 1 is the unique stable equilibrium
and x = 0 is the unique unstable equilibrium. In summary, games with concave or convex benefits can
have at most one interior equilibrium, either stable or unstable (Figure 2).

Figure 2. The gradient of selection β (bottom panels, continuous blue line) and its Bernstein coefficient
∆bi (bottom panels, dotted line) for different types of benefit functions (top panels): concave (n = 9,
h = 0.1, s = 10, c = 0.1); convex (n = 9, h = 0.9, s = 10, c = 0.1); sigmoid (n = 10, h = 0.4, s = 9, c = 0.1); step
function (n = 9, h = 0.4, s = 1000, c = 0.1). Arrows show the direction of the dynamics (determined by
the sign of the gradient of selection); squares show the equilibria (full: stable; empty: unstable).

The Bernstein approach is however essential to characterize the dynamics of games with sigmoid
benefits [39,40]. If b is sigmoid, that is an h (the inflection point) exists such that ∆bi is increasing for
i < h, decreasing for i > h, and satisfies ∆bi 6= 0 ∀i, then ∆bi is single-peaked and can have at most two
sign changes (Figure 3); thus, there are either two interior rest points, or one (if they coincide) or zero,
and the dynamics can be characterized as follows:

• If c ≥ βMAX (the maximum value of β) there is a unique stable equilibrium x = 0 (producers go
extinct) (c1 in Figure 3)

• If Max[∆b0, ∆bn−1] ≤ c < βMAX there are two stable equilibria: a pure equilibrium x = 0 made
of all non-producers and a mixed equilibrium x*; the basins of attraction of these two equilibria
are separated by a mixed unstable equilibrium xˆ; if the initial frequency of producers x < xˆ the
population will evolve to x = 0; if x > xˆ it will evolve to x* (c2 in Figure 3).

• If ∆b0 ≤ c < ∆bn−1 (this case can exist only for h > 0.5) there is a unique interior unstable
equilibrium xˆ separating the basins of attraction of two pure stable equilibria: x = 0 and x = 1;
if x < xˆ the population will evolve to x = 0; if x > xˆ it will evolve to x = 1 (c3 in Figure 3).

• If ∆bn−1 ≤ c < ∆b0 (this case can exist only for h < 0.5) there is a unique interior stable equilibrium
x*, to which the population will converge irrespective of the initial frequencies of the two types
(c3 in Figure 3).
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• If c < Min[∆b0, ∆bn−1] there is a unique stable equilibrium x = 1 (non-producers will go extinct)
(c4 in Figure 3).

Figure 3. Types of dynamics when the benefit is a sigmoid function. The gradient of selection β

(continuous blue line) and its Bernstein coefficient ∆bi (dotted line); squares show the equilibria
(full: stable; empty: unstable) for different values of c (gray lines); arrows show the direction of the
dynamics (determined by the sign of the gradient of selection); s = 5; n = 9, h = 0.4 or 0.6.

In summary, nonlinear games with collective interactions in which the benefit is a sigmoid
function of the frequency of cooperators can have at most two internal equilibria, one of which can be
stable (Figure 3).

The dynamics is the same for any benefit function in which ∆bi increases for i < h and decreases
for i > h. Figure 4 shows two examples of a more complex benefit function, and a case in which the
benefits of the two strategies are different functions.

Figure 4. The gradient of selection β (continuous blue line) and its Bernstein coefficient ∆bi (dotted
line) for more complex functions; squares show the equilibria (full: stable; empty: unstable); arrows
show the direction of the dynamics (determined by the sign of the gradient of selection); A: The double
inverse sigmoid function described in (13) (n = 10, h1 = 0.4, h2 = 0.2, s1 = 10, s2 = 10, c = 0.1, y = 2, d = 0.5).
B: Two different benefit functions described by (16) and (17) (n = 10, h1 = 0.6, h2 = 0.2, s1 = 5, s2 = 20,
c = 0.1).
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Figure 4A shows the dynamics for the upregulation of glycolysis in cancer cells (the “Warburg
effect”)—another example of cooperation for the production of a public good [40] (as it is energetically
inefficient under adequate oxygen supply, glycolysis is costly; the products of glycolysis, however,
induce the acidification of the microenvironment, which is beneficial to all cancer cells, irrespective of
their metabolism). To take into account the possibility that high levels of glycolysis are detrimental to
tumor cells (self-poisoning) we must use a double sigmoid function, monotonically increasing for i < d
and monotonically decreasing for i > d:

b(i) =

 b1(i) = [l1(i)−l1(0)]
[l1(d·n)−l1(0)]

f or i < d·n
b2(i) = 1− [l2(i,y)−l2(d·n,y)]

[l2(n,1)−l2(d·n,1)] f or i ≥ d·n
(13)

where
l1(i) =

1
1 + es1(h1−i/nd)

(14)

l2(i, y) =
y

1 + es2[h2−( i/n−d
1−d )]

(15)

The parameter d describes the value of i at which the benefits of acidity are overcome by the
deleterious effects of self-poisoning; for i < dn, the function is monotonically increasing and has an
inflection point at h1 and steepness s1; for i > dn, the function is monotonically decreasing and has
an inflection point at h2 and steepness s2 (with 0 < h1, h2 ≤ 1 and s1,s2 > 0); the additional parameter
y measures the maximum damage of self-poisoning. While analyzing the gradient of selection with
benefits given by (13) appears hopeless, the Bernstein approach enables us to characterize the dynamics
simply by looking at the number and type of sign changes of the Bernstein coefficient, as shown in
Figure 4A.

Figure 4B shows another class of games that appear analytically unsolvable but that are easily
characterized using the Bernstein approach. In tumor-stroma interactions, the fitness of cancer cells is
an increasing function of the fraction of stromal cells, while the fitness of stromal cells is an increasing
function of the fraction of cancer cells (because of stroma and tumor exchange growth factors that are
mutually beneficial). Figure 4B shows the simplest model of this scenario with benefit functions for
the tumor and stroma increasing in opposite directions, that is, given by:

g1(i) =
1

1 + es1(h1−i/n)
(16)

g2(i) = 1− 1
1 + es2(h2−i/n)

(17)

2.5. Comparison with Pairwise and Linear Games

Let us consider again the case of sigmoid benefits. Note how the steepness of the benefit function
affects the dynamics (Figure 5): as we have seen, games with linear benefits (s→0) have no interior
equilibria; as steepness increases interior equilibria, stable and (or) unstable, arise; also note that the
approximation of the gradient of selection to its Bernstein coefficient is less accurate as s increases,
and becomes inaccurate when the sigmoid function approaches a step function (s→∞).

Figure 5 also shows an example of the difference between games with pairwise interactions and
collective interactions. Two-player games are a special case of collective games with n = 2 and thus
there are only one or zero sign changes; not surprisingly, therefore, there are only four possible types
of sign change (always +; always −; from + to −; from − to +) and therefore four possible types of
dynamics and four types of equilibria in games with two strategies with pairwise interactions (the
same types we saw for concave and convex benefits).
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Figure 5. Effect of s and n. The gradient of selection β (continuous blue line) and its Bernstein coefficient
∆bi (dotted line) in public goods games with sigmoid benefits, for different values of s (n = 10, h = 0.4,
c = 0.05) or for different values of n (s = 10, h = 0.4, c = 0.05); squares show the equilibria (full: stable;
empty: unstable); arrows show the direction of the dynamics (determined by the sign of the gradient of
selection).

2.6. Finding the Equilibria

We can find the internal equilibria analytically by setting to zero, instead of the gradient
of selection, its Bernstein coefficient ∆bi, resorting to an additional property of Bernstein
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polynomials–Bernstein theorem: A Bernstein polynomial F(x) converges uniformly to its coefficient f (x)
in [0, 1], that is, lim

n→∞
F(x) = f (x). The approximation is rather slow. By Voronovskaya’s theorem [56],

for functions that are twice differentiable:

lim
n→∞

n[ f (x)− F(x)] = x(1− x) f ′′(x)/2 (18)

In our case, let us call the benefit for having a fraction x of producers b(x) = 1/[1 + es(h−x)],
the extension of b(i) in (9) to all x [0, 1], with x = i/n. Let us first consider the non-normalized version
in (10), that is, let us assume that b(i) = l(i);

β∗(x) = ∑n−1
i = 0 pi,n−1(x)·∆b (19)

is a Bernstein polynomial of the coefficient ∆b = b((i + 1)/n) − b(i/n), and by Bernstein theorem we
know that it converges uniformly to ∆b in [0, 1]. Furthermore, because ∆b is the forward difference of
the benefit function with spacing 1/n, for large enough n we can approximate ∆b using the derivative
of the benefit function, that is ∆b ∼= (1/n)b’(i/n). For any given x, i/n converges in probability to x as
n→∞, therefore by Bernstein theorem β∗(x) converges to (1/n)b’(x), and we can find the equilibria by
setting β∗(x) = c, which yields:

b’(x) = cn (20)

Using this approach [39], the equilibrium frequencies can be found by

xstable = h− 1
s

Log

[
−1 +

s−
√

s(s− 4c·n)
2c·n

]
(21)

xunstable = h− 1
s

Log

[
−1 +

s +
√

s(s− 4c·n)
2c·n

]
(22)

provided that c > Min[∆b0, ∆bn−1] (otherwise x = 1 is the only stable equilibrium) and c < s/4n
(otherwise x = 0 is the only stable equilibrium). A qualitatively equivalent result holds for the
normalized version in (9), because b(i) differs from l(i) only by the inclusion of the normalizing term.
For the normalized version, the equilibria are given by

xstable = h− 1
s

Log

[
−1 +

s−
√

s(s− 4c·n·B)
2c·n·B

]
(23)

xunstable = h− 1
s

Log

[
−1 +

s +
√

s(s− 4c·n·B)
2c·n·B

]
(24)

where B = b(1) − b(0).

2.7. Goodness of the Approximation

The error of the approximation ∆b − β∗(x) is shown in Figure 6: convergence is slower as
nonlinearity (s) increases (as we know from Voronovskaya’s theorem); it improves with n (an obvious
consequence of Bernstein theorem) and as the equilibrium gets close to 1 or 0 (from the end-point
values property of the Bernstein polynomials).
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Figure 6. Error [∆b − β∗(x)] at the stable equilibrium, as a function of s, for different values of n;
c = 0.01, h = 0.5.

2.8. Approaches to Calculate the Equilibria

In practice the best approach to calculate the equilibria depends mainly on n and s:

• Using the exact formula from (8), by setting β(x) = 0. This is a reasonable approach for n not too
large (the “Reduce” command in Mathematica 11, on a laptop with a 2.9 GHz processor and 16 GB
of memory, enables this for n up to about 50) but the results become inaccurate as n grows and it
is hopeless for very large n, when numerical methods become necessary.

• The equilibrium can also be approximated by setting ∆b = 0, but similar computational
problems arise.

• Using the Bernstein approximation outlined above, the equilibrium can be easily calculated
for any n from Equations (21)–(24). The accuracy of this approach, as we have seen (Figure 6),
improves with n and declines with s.

• For large n and large s, an alternative method is to find the equilibria of a Heaviside step function
with the same inflection h using the following equation (25) (where k = hn):(

n− 1
k− 1

)
xk−1(1− x)n−k = c (25)

For large n the equilibria can be found approximately from [35]:

xstable =
k− 1
n− 1

+

√√√√√2 k−1
n−1

(
1− k−1

n−1

)
n− 1

1− c√
1

2π ·
n−1

(n−k)(k−1)

 (26)

xunstable =
k− 1
n− 1

−

√√√√√2 k−1
n−1

(
1− k−1

n−1

)
n− 1

1− c√
1

2π ·
n−1

(n−k)(k−1)

 (27)

For steep sigmoid functions, the approximation to a step function is more precise than the
Bernstein approximation (Figure 7) (It is perhaps of some mathematical interest to note that the
envelope of the Bernstein polynomial basis of degree n is

√
2πnx(1− x) [57], which coincides with

the Stirling approximation of the ith Bernstein polynomial basis of degree n on i/n at equilibrium for
threshold public goods games [35]).
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Figure 7. Comparison between the values of the stable equilibria (as a function of n) calculated using
different methods, with c = 0.04, h = 0.5 and different values of s.

2.9. More Than Two Strategies

The analysis remains problematic for games with more than two strategies. Nonlinearities,
however, are clearly still important. Let us examine a game with three strategies with the following
payoffs (another case of tumor-stroma interactions, similar to the example described above, but with
an additional type with constant fitness γ):

ωA = γ (28)

ωB(j) = r[LB(j) − LB(0)]/[LB(n) − LB(0)] (29)

ωC(j) = 1 − [LC(j) − LC(0)]/[LC(n) − LC(0)] (30)

where j is the number of players of type C in the group (of size n) and

LB(j) =
1

1 + es1(h1−j/n)
(31)

LC(j) =
1

1 + es2(h2−j/n)
(32)

where the parameters h1 and h2 are analogous to h and the parameters s1 and s2 are analogous to s,
thus (32) and (33) are sigmoid functions that can range from linear to step functions. In an infinite
well-mixed population, if xC is the frequency of cells of type C, the fitness of the three types are:

WA = γ (33)

WB =
N

∑
i = 0

pi,n−1(xC)ωB(i) (34)

WC =
N

∑
i = 0

pi,n−1(xC)ωC(i) (35)

that is, type A has constant fitness; the fitness of type B increases with the number of players of type C;
the fitness of type C increases with the number of players of type B. Figure 8 shows an example of the
differences between pairwise, linear, and nonlinear models.



Games 2018, 9, 17 12 of 15

Figure 8. Three-strategy game. The dynamics of the three strategies A, B, and C with fitness given by
Equations (33)–(35) with n = 20, h1 = 0.2, h2 = 0.4, r = 0.5 with pairwise interactions, linear benefits (s1 =
s2 = 0.01) or nonlinear benefits (s1 = 50, s2 = 20).

3. Conclusions

Pairwise games and games with collective interactions can have different dynamics and
equilibria [31,32]. As we have seen here, nonlinearities also have profound effects; the main difference
is that pairwise and linear games usually lack the internal equilibria that are often observed in nonlinear
games. This means that if benefits are nonlinear, a stable coexistence of cooperators and free-riders
is often possible without positive assortment or incentives. This is in direct contradiction with most
of the theoretical models that have been developed in biology—which are based on the assumption
of linear benefits or pairwise games, and therefore require positive assortment between cooperators
(brought about by genetic relatedness [58,59], spatial structure [60] or repeated interactions [61]) to
maintain cooperation. As we have seen, with nonlinear benefits cooperation can persist as a mixture of
producers and non-producers because of the nonlinear effects of the interactions.

In models of game theory of cancer with two strategies, nonlinear effects help explain seemingly
puzzling empirical observations such as the persistence of intra-tumor heterogeneity and the Warburg
effect [37–44]. Three-strategy games have been used to model tumor-stroma interactions in multiple
myeloma and have also shown that assuming pairwise interactions [27] leads to results that differ
significantly from a model with collective interactions [46], with implications for disease progression
and treatment. Extending the same model to a game with nonlinear benefits reveals further differences
[Sartakhti, et al., this issue].

Neglecting collective interactions and nonlinearities can also lead to other more subtle but equally
misleading errors. For instance, invertase production in yeast, a clear example of diffusible public
good, has been modelled as a game with pairwise interactions, initially as a PD [62] and eventually as
a game of Chicken [63] leading to an incorrect prediction that still persist in microbiology: maximum
growth in experimental populations of microbes is often observed at intermediate frequencies of
cooperators—a fact that is often highlighted as puzzling [64] because it is based on predictions for
pairwise game or linear benefits, which predicts maximum cooperation when the cooperators go to
fixation; in multiplayer nonlinear games, however, it is not surprising that maximum fitness occurs for
intermediate frequencies of cooperators [32].

Neglecting nonlinearities in public goods games can lead to crucial mistakes in the basic results
and fundamental misunderstanding. The approach described here offers a relatively simple way
to study games with payoffs that are seemingly impossible to analyze. Even for more complex
cases in which the Bernstein approach fails, we should nonetheless insist on using nonlinear public
goods games.
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