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bstract

In this paper the existence and stability of equilibriums in an evolutionary game theory model of the labour market is studied
y using the Lyapunov method. The model displays multiple equilibriums and it is shown that the Nash equilibriums of the static
ame are evolutionary stable equilibrium in the game theory evolutionary set up. A complete characterization of the dynamics of
n evolutionary model of the labour market is provided.

 2014 National Association of Postgraduate Centers in Economics, ANPEC. Production and hosting by Elsevier B.V.
ll rights reserved.
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esumo

Neste artigo, a existência e a estabilidade dos equilíbrios em um modelo de jogos evolucionários aplicado ao mercado de trabalho
ão analisados por meio do método de Lyapunov. O modelo exibe equilíbrios múltiplos e os equilíbrios de Nash do jogo estático são
quilíbrio estável evolucionária na teoria dos jogos evolutiva. Uma completa caracterização da dinâmica de um modelo evolutivo
o mercado de trabalho é então fornecida.

 2014 National Association of Postgraduate Centers in Economics, ANPEC. Production and hosting by Elsevier B.V.
ll rights reserved.

alavras-chave: Teoria dos jogos evolucionários; Mercado de trabalho; Economia informal; Função de Lyapunov

.  Introduction
In the present paper the dynamics of the labour market is studied by using an evolutionary game theory approach. The
tarting point is the model developed by Araujo and Souza (2010) who departing from a microeconomic point of view
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of agents’ choice making and going through a macroeconomic assessment of formal and informal sectors behaviours
delineate optimal policies that foresee the trade-off between tax collecting and incentive creation to workers and firms
to operate in the formal sector.

In fact there are a number of papers acknowledging a correspondence between the labour market and the stage of
economic development (see Acemoglu (1998, 2002)). Greenwood and Yorukoglu (1997), for instance, maintain that the
adoption of technical change requires equally specific human capital in addition to physical capital, and an increase in
labour skills facilitates the adoption of new technologies. Hendicks (2000) models growth through technology adoption
focusing on the complementariness between technologies and skills. Workers’ skills and technological profile of firms
are therefore complementary: the level of the former limits the profile of technologies that firms can use, while this
latter determines the rate of learning. Benhabib and Spiegel (1994), focusing on the role of human capital in economic
development suggest that the role of the former is to facilitate the adoption of technology from abroad and at the same
time, to create a domestic technology.

Hence, there exists a consensus that the presence of skilled workers implies a better environment for skill-
complementary technologies, and it encourages further upgrading of productivity of skilled workers. On one hand,
firms operating in a labour market thickly populated by high skilled workers may choose a better technological profile
to match those skills. On the other hand, workers in an environment in which firms demand high skilled workers, find
incentives to improve their skills. This view is supported by a number of authors. Snower (1994), for instance, shows
how a country can fall into a “low-skill, bad-job trap,” characterized by a vicious cycle of low productivity, deficient
training, and low-skilled jobs, preventing the economy from competing effectively in the markets for skill-intensive
products. Redding (1996) also points to the existence of a low growth trap in which a large proportion of the workforce
is unskilled, firms have little incentive to provide good jobs (requiring high skills and providing high wages), and if
few good jobs are available, workers have little incentive to acquire skills.

Following this rationale, Lavezzi (2006) has emphasized the role of skill resources as a crucial constraint on the
selection of the technological profile to be implemented in developing economies. This author focuses on the dynamics
of human capital accumulation – framed by a Markov chain – where human capital accumulation and technology
adoption are interrelated processes. For workers the crucial issue is the type of firms they interact with, and likewise
for firms, it is the type of workers they hire. In high-skill equilibrium, for example, workers expect firms to invest
in technology and then invest in human capital. Thus, firms find it optimal to invest, and therefore expectations are
fulfilled in equilibrium.

The connection between skills and formality, which is one of assumptions of the present paper, was addressed by
Rausch (1991) in a model in which agents with highest ability become formal managers. Managers with more ability
would naturally run larger firms and employ more capital; for this reason they choose to join the formal sector, where
they face a lower cost of capital and do not face limits on capital deployment. Hence in this model limited access to
capital goods is not the only constraint that firms and workers face when they decide for the informal sector.

In this paper we intend to provide a characterization of the dynamics of the labour market by studying the sta-
bility of an evolutionary game theory model of the labour market presented by Araujo and Souza (2010) by using
the Lyapunov method. Following this approach our study consider that workers and firms’ decision to engage in
the formal or informal sector2 as the outcome of rational decisions based not only on the expected pay-offs in each
of the sectors but also on the interaction with other agents. In this vein our framework is similar to the search and
matching models but with the advantage of endogenizing the probabilities of matching between firms and work-
ers.

In this vein the model presented here accommodates a varied growth experience of both developed and less developed
economies, in which both technological adoption and labour skills play a crucial role in the determination of the stage
of the labour market in an evolutionary dynamic framework. We conclude that when profits in the formal and informal
sectors are positive, the final outcome of the interplay between skills and technologies is dependent upon the economy’s
initial conditions, akin to path dependence. This paper is structured as follows: in the next section we present the model

with its main properties. In Section 3 we study the local stability. Lyapunov stability is studied in Sections 4 and 5
concludes.

2 It is important to bear in mind that in this paper we do not view informality as the result of exclusion but rather as the outcome of rational
decisions by firms and workers (see Hirschman (1970)).
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.  The  evolutionary  model

The model departs from Araujo and Souza (2010) and corresponds to an asymmetric evolutionary game where
here are two populations of interacting agents (see Gintis (2000)): workers and firms. It is assumed that each identical
orker has two possible strategies that is, supply labour in either formal or informal market at each period of time. Let

 be the number of workers, Nf the number of workers that choose to supply labour in the formal sector – the formal
trategy – and Ni be the number of workers that choose the informal sector – the informal strategy. Hence, N  = Nf + Ni,
here N  is exogenous and fixed. Let nf and ni be the proportions of workers that chooses the formal and informal

trategies respectively, with ni + nf = 1. By choosing a strategy does not mean that the worker will be employed since
o be hired it depends on matching a firm that has chosen the same strategy. Otherwise the worker will be unemployed.
f she chooses the formal strategy then there exists a probability σ, 0 ≤  σ  ≤  1, of finding a job in a formal firm. In this
ein, by considering that u(.) is a concave utility function with strictly positive marginal utility, namely u′(.) >  0, and
(0) =  0, her instantaneous expected utility, Uef , is assumed to be given by:

Uef =  σu[(1 −  τ)wf ] +  (1 −  σ)u(0),  (1)

here wf is the real wage discounted by the income tax τ, 0 <  τ  <  1. Expression (1) shows that if the worker chooses
he formal strategy there is no probability of punishment but she faces uncertainty related to finding or not a firm that
lso chooses the formal strategy to hire her, what happens with probability σ. By assuming that u(0) = 0 expression (1)
educes to:

Uef =  σu[(1 −  τ)wf ].  (1’)

However, if the worker decides to act in the informal sector his expected utility, Uei , is given by3:

Uei =  φu[(1 −  ρ)wi +  ρ(wi −  m)] +  (1 −  φ)u(0),  (2)

here φ, 0 ≤  φ  ≤  1, is the probability of finding a job in the informal sector and wi is the wage paid in the informal
ector. The probability of being caught due to the operation in the informal sector is given by ρ, 0 ≤  ρ  ≤  1. In this case
he worker pays a fine, denoted by m, due to the choice of acting in the informal sector. These variables are assumed to
e exogenous. Expression (2) shows that the worker who chooses the informal strategy faces two kinds of uncertainty:
he first is related to the possibility of not finding a firm that chooses the informal strategy and the second is related to
he possibility of being caught if hired by an informal firm. This expression may be rewritten as:

Uei =  φu[wi −  ρm].  (2’)

In order to model the demand side of the labour market, let us assume following the literature of search and matching
 see e.g. Pissarides (2000) – that the number of firms, denoted by L, is equal to the number of workers,4 that is L  = N.
et Lf be the number of firms that chooses the formal strategy and Li the number of firms that chooses the informal
trategy. Then L  = Lf + Li. Analogous to the case of labour supply, each firm can demand labour in only one of the
arkets in each period of time. Let ηi be the proportion of firms that chooses the informal strategy and ηf, the proportion

f firms that chooses the formal strategy, with ηi + ηf = 1.
Following Pissarides (2000) assume that each firm hires only one worker who produces a fixed amount of product

t a time. The price of the product is normalized to 1 and the amount of production in the formal sector is exogenously
iven by yf. Being θ, 0 ≤  θ  ≤  1 the probability of a firm that chooses the formal sector to find a worker that decides to

upply labour in this sector, the profit of the firm if it decides to operate in the formal sector is given by:

Πe
f =  θ[(1 −  γ)yf −  wf ],  (3)

3 An important difference between this approach and the one developed by Fortin et al. (1997) is that in our model we model explicitly the
ossibility of being caught due to the operation in the informal sector while they consider that the firm in the informal sector faces a cost in order to
void to be caught. The insight is that the higher the production of the firm the higher the cost in order to conceal its production.
4 This is a usual assumption in the search and matching models and here it is adopted for tractability only. For a treatment of the labour market
ynamics by using an evolutionary model in which the processes of vacancy setting is modelled through a process of searching and matching see
agiolo et al. (2004).
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where γ , 0 < γ  < 1, stands for the costs for being in the formal sector. Expression (3) shows that each firm has to pay γyf
as taxes. Both yf and γ  are assumed to be exogenous. If there is no matching between the formal worker and the formal
firm then the profit of the firm is equal to zero, what occurs with a probability 1 −  θ. In the informal sector the firm is
also assumed to hire only one worker, but now it produces a smaller amount of product than in the formal operation
due to limited access to public goods, capital goods, etc. Let yi be the amount of product in informal operation, with
yi < yf. In this vein the profit of the firm in the informal sector is given by:

Πe
i =  λ {(1 −  ψ)[yi −  wi] +  ψ[yi −  wi −  e]} ,  (4)

where λ, 0 ≤  λ ≤  1 is the probability of matching a worker in the informal sector, and ψ, 0 ≤  ψ  ≤  1, is the probability5

that the firm faces of paying a fine, expressed by e, due to the operation in the informal labour market. After some
algebraic manipulations expression (4) yields:

Πe
i =  λ(yi −  wi −  ψe).  (5)

Since it is assumed that each firm hires only one worker the ratio of labour demanded in the formal sector, ηf, and the
ratio of labour demanded in the informal sector, ηi, is proportional to the amount of firms in each sector. It is important
to recall that if a worker who chooses the formal strategy does not match a firm with this strategy – an informal firm –
then the pay-off of both worker and firm will be equal to zero. In this case the firm is assumed to produce zero output
and the worker does not earn wage. This situation can be identified as unemployment from the viewpoint of the worker.
We could assume alternatively that if a worker that chooses the formal sector matches a firm in the informal sector
then both will obtain positive pay-offs but smaller than the pay-offs if both worker and firm choose the formal sector
or informal sector simultaneously. It is easy to see that this game has two pure Nash equilibrium namely {f,f}  and {i,i}
together with a mixed strategy equilibrium, in which both workers and firms randomly choose between being formal
or informal.

In order to evaluate the dynamics of entrance and withdrawal of workers in the formal market we use a version
of the dynamic replicator as proposed by Hofbauer and Sigmund (2003) adapted to the study of the labour market
according to Araujo and Souza (2010). The dynamic movement of workers between the two strategies, namely formal
and informal may be conveyed by the following expression6:

Ṅf =  Nf

⌊
Uef − Ūf,i

⌋
,  (6)

where Ūf,i is the average pay-off given by: Ūf,i =  nfU
e
f +  niU

e
i . By inserting expressions (1) and (2) into (6), it is

possible to show after some algebraic manipulation7 that it yields the following equations for the dynamic behaviour
of the ratios of workers in the formal and informal sectors.

ṅf =  nf ni
{
σu[(1 −  τ)wf ] −  φu[wi −  ρm]

}
.  (7)

This expression shows that the government can affect the supply of the labour in each sector by choosing the taxation,
τ, the probability of caught the worker in the informal sector, ρ, and the fine to be paid in the informal sector, m. Until
this point of the analysis the values of σ  and φ  are exogenously considered but a further inquire on this probabilities
by using a Bayesian inference may show that σ  =  ηf and φ  =  1 −  ηf . Remember that firms have only two strategies,
namely formal and informal. Even in the case where there is no matching between a firm choosing the formal strategy

and a worker choosing the informal strategy their strategies are ‘formal’ and ‘informal’ despite the fact that the worker
will be unemployed and the firm will produce nothing in that period of time. Hence all firms can be grouped into one
of these categories: ‘formal’ or ‘informal’. The probability that a worker faces of finding a ‘formal’ firm is given by

5 We assume that this probability is the same of finding a worker in the informal sector. This assumption is made for the sake of convenience only
but it expresses the fact that once a worker in the informal sector is detected then the corresponding firm is also found.

6 Since we assume that N = Nf + Ni where N is exogenous and fixed, we do not need to focus on the dynamics of Ni since it is complementary
to the dynamics of Nf.

7 See Araujo and Souza (2010) for the derivation of expressions (8) from (6).
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 =  Lf /L  =  ηf and the probability of finding a ‘informal’ firm is given by φ  =  Li/L  =  ηi. Hence expression (7) may
e rewritten as:

ṅf =  nf ni
{
ηf u[(1 −  τ)wf ] −  (1 −  ηf )u[wi −  ρm]

}
. (7’)

Following the same approach for the labour demand, the dynamic replicators for the firms are given by8:

L̇f =  Lf

(
Πe
f − Π̄f,i

)
, (8)

here Πe
f stands for the expected profit of the formal extrategy and Πe

i stands for the expected profit of the informal
xtrategy and Π̄f,i represents the average expected profit in the economy which is the average payoff for firms, given
y: Π̄f,i =  ηfΠ

e
f +  ηiΠ

e
i . By replacing expressions (4) and (5) into expression (8), and considering that ηi +  ηf =  1

e obtain the following dynamic replicator in the simplex form:

η̇f =  ηf ηi
{
θ[(1 −  γ)yf −  wf ] −  λ[yi −  wi −  ρm]

}
. (9)

By following the same rationale adopted for the labour supply it is possible to conclude that θ =  nf and λ  =  1 −  nf .
xpression (9) may then be rewritten as:

η̇f =  ηf ηi
{
nf [(1 −  γ)yf −  wf ] −  (1 −  nf )[yi −  wi −  ρm]

}
.  (9’)

In the next section we analyze the steady state equilibrium from the system formed by expressions (8) and (9’). Firstly
n assessment of the local stability is made and then propositions concerning the Lyapunov stability are presented.

.  Local  stability

According to Vega-Redondo (1996, p. 50), a singular point x* of a dynamic system is an asymptotically stable
quilibrium of it if:

(I) There exists some neighbourhood V  of x* such that all trajectories starting in V  satisfy x(t) →  x∗ as t →  ∞.
II) It is Lyapunov stable, i.e. given any neighbourhood U1 of x* there exists another neighbourhood U2 of x* such

that all trajectories with x(0) ∈ U2 satisfy x(t) ∈  U1, ∀t  >  0.

In this section we analyze the first requirement which is in fact a test on the local stability of the singular points of
he dynamical system while in the next section we consider the second test which is test on the Lyapunov stability. In
rder to classify the equilibrium points of system formed by expressions (7’) and (9’) let us rewrite the system as:

ṅf =  nf nif  (ηf ),  (7”)

η̇f =  ηf ηig(nf ), (9”)

here

f  (ηf ) =  ηf u[(1 −  τ)wf ] −  (1 −  ηf )u[wi −  ρm],  (10)

g(nf ) =  nf [(1 −  γ)yf −  wf ] −  (1 −  nf )[yi −  wi −  ψe],  (11)

The equilibrium or steady state solution of the model is obtained by considering that: ṅf =  η̇f =  0. From expression
7”) we have three possibilities, namely: nf = 0, nf = 1 or f(ηf) = 0. From expression (9”) we also have three possibilities,
amely: ηf = 0, ηf = 1 or g(nf) = 0. Hence, from the combination of these possibilities we have the following possible
olutions: (i) nf = 0, nf = 0; (ii) nf = 0, nf = 1; (iii) nf = 1, nf = 0; (iv) nf = 1, ηf = 1; (v) f (ηf ) =  0, g(nf ) =  0; (vi) nf =  0,
(n ) =  0; (vii) n = 1, g(n ) =  0; (viii) η =  0, f  (η ) =  0 and (ix) η =  1, f  (η ) =  0. Let us exclude those equilibria
f f f f f f f

n which the profits or utility function has to be equal to 0 to hold. Consider for instance case (vi): if nf =  0 and g(0) =  0
hen the profit of the firm in the informal sector is given by: yi −  wi −  ρm  =  0. Since the variables in this expression

8 The same reasoning of the labour supply applies here. Since we assume that L = Lf + Li where L is exogenous and fixed, we do not need to focus
n the dynamics of Li since it is complementary to the dynamics of Lf.
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are exogenously given there is no reason a priori to assume that this relation holds. The same reasoning applies to cases
(vii), (viii) and (ix).

In order to study the behaviour of the system in a neighbourhood of the points (i), (ii), (iii), (iv) and (v) let us apply
the Hartman–Grobman theorem which states that if x* is a hyperbolic9 fixed point of a non linear dynamical system
then it is topologically equivalent to the fixed point of the linearization of the system (see Gintis (2000)). The Jacobian
of the system formed by expressions (8”) and (9”) is given by:

J  =
[

(1 −  2nf )f  (ηf ) nf (1 −  nf )fηf (ηf )

ηf (1 −  ηf )gnf (nf ) (1 −  2ηf )g(nf )

]
. (12)

The characteristic equation of the Jacobian matrix at each equilibrium points is given by: λ2 −  S1λ  +  S2 =  0. The
following propositions sum up the local behaviour of the system.

Proposition  1.  If  both  profits  in  the  formal  and  informal  sector  are  positive,  namely  yi −  wi >  ψe  and  (1 −  γ)yf >  wf
then:  (i) (0,0) is  a locally  stable  point, (ii) (0,1) is  a  locally  unstable  point, (iii) is  a  locally  unstable  point, (iv) (1,1) is

a locally  stable  point  and  (v)
(

yi−wi−ψe
(1−γ)yf−wf+yi−wi−ψe ,

u[wi−ρm]
u[(1−τ)wf ]+u[wi−ρm]

)
is  a  saddle  point.10

Although the study of the local behaviour of the system around the equilibrium points has provided us important
information in order to proceed to a better characterization of the dynamics of the labour market let us use the Lyapunov
theorem.

4.  Lyapunov  stability

As we have shown in the previous section the behaviour of the dynamical system depends crucially on the assump-
tions made on the magnitudes and signs of the profits both in the formal and informal sector. If the profits are positive
then we have five possible equilibrium, two stable, two instable and a saddle point. One of aims this section is to
prove that points (0,0) and (1,1) are asymptotically stable equilibrium of dynamical system (7”) and (9”). In order to
accomplish this task it is necessary to prove the Lyapunov stability of these points. The method used to prove this is
the Lyapunov who consists in finding a function that satisfies the conditions of the Lyapunov theorem. This theorem
requires the existence of an open neighbourhood of (n̄f , η̄f ), namely �, with the following properties (see Hirsch and
Smale (1974)):

(a) V  (n̄f ,  η̄f ) =  0;
b) V  (nf ,  ηf ) >  0, for all (nf , ηf ) ∈ �, (nf , ηf ) /=  (n̄f , η̄f );

(c) dV
dt

(nf ,  ηf ) <  0, for all (nf , ηf ) ∈  �, (nf ,  ηf ) /=  (n̄f ,  η̄f ).

If these conditions are met the equilibrium is Lyapunov stable in �. According to Takeuchi (1996), the Lyapunov
function for the system formed by (7”) and (9”) around point (1,1) is properly given by:

V  (nf ,  ηf ) =  δ1

(
nf −  n̄f −  n̄f ln

nf

n̄f

)
+  δ2

(
ηf −  η̄f −  η̄f ln

ηf

η̄f

)
,  (13)

where δ1 > 0 and δ2 > 0. Then we can prove the following

Proposition  2.  If  profits  in  formal  and  informal  sectors  are  positive,  namely  yi −  wi >  ψe  and  (1 −  γ)yf >  wf ,  then
the dynamic  system  (7”) and (9”) is  Lyapunov  stable  at  (1,1) in  the  set  �  defined  as:

�  =
{

(nf , ηf ) ∈  [0,  1] ×  [0,  1]; nf >
yi −  wi −  ρm

(1 −  γ)yf −  wf +  yi −  wi −  ρm
,

η >
u[wi −  ρm]

}

f

u[(1 −  τ)wf ] +  u[wi −  ρm]

9 A system is hyperbolic if every eigenvalue of the Jacobian matrix has nonzero real part.
10 See Appendix I for proof of propositions.
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Fig. 1. Phase diagram for case I.

This result shows that the equilibrium (1,1) is not only locally stable in the region defined by the set �  but it is
lso Lyapunov stable. Then following the classification of Vega-Redondo (1996) it is possible to say that (1,1) is
n asymptotically stable equilibrium of the dynamic system (7”) and (9”). In order to prove that the system is also
symptotically stable at (0,0) let us consider the following Lyapunov function suggested by Nani and Freedman (2000):

V  (nf ,  ηf ) = 1

2
δ1(nf −  n̄f )2 + 1

2
δ2(ηf −  η̄f )2,  (14)

here δ1 > 0 and δ2 > 0. Then we can prove the following:

roposition  3.  If  yi −  wi >  ψe  and  (1 −  γ)yf >  wf then  the  dynamic  system  (7”) and  (9”) is  Lyapunov  stable  at
0,0) in  the  set  �′ defined  by:

�′ =
{

(nf ,  ηf ) ∈  [0,  1] ×  [0,  1]; nf <
yi −  wi −  ρm

(1 −  γ)yf −  wf +  yi −  wi −  ρm
,

ηf <
u[wi −  ρm]

u[(1 −  τ)wf ] +  u[wi −  ρm]

}

Then it was also proven that the point (0,0) is an asymptotically stable equilibrium of the dynamical system (8”)
nd (9”). Note that these results – Propositions 2 and 3 – depend crucially on the assumptions made in relation to
he profits of firms in the formal and informal sector. In this vein the dynamics of model is best suited to explain the
rowth experience of the labour market when it is assumed that profits are positive and in this case by proving the local
tability and the Lyapunov stability it was possible to prove that the equilibrium in which firms and workers choose
he formal sector or the informal sector are asymptotically stable equilibrium of the dynamical system derived from
n evolutionary game theory model of the labour market. Figs. 1 and 2 show that the choice of the parameters of the
odel determines the size of the basin of attractions.11

As these figures shown, the model allows us to conclude for the existence of path dependence, namely the initial
onditions play a decisive role in the determination of the final equilibrium in the labour market. According to Wirl

nd Feichtinger (2005, p. 391) path dependence in a one dimensional model means that there exists a threshold value
uch that the steady state outcome depends on whether one starts by historical incidence either to the left or the right

11 See Appendix II for the choice of parameters.
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Fig. 2. Phase diagram for case II.

of this threshold. In the present treatment as we are dealing in the plane it is possible to identify not a threshold point
but a threshold curve or set that defines sets that give rise to poverty traps. In the literature such a threshold set become
known as Skiba threshold – or points or sets – in honour of the pioneering work of Skiba (1978) (see Deissenberg et al.
(2003)).

If for instance, (nf (0),  ηf (0)) ∈  �′ then the final outcome of the model is the low level equilibrium (0,0) and the
government can do nothing to change this situation. But the basin of attraction is affected by the choice of tax, fine
and the probabilities of catching firms and workers in the informal sector. This means that the government is able to
determine the size of the set �′ and consequently of set �  – defined in the propositions 1 and 2, respectively – by
choosing properly these variables as policy tools. But once they are chosen the model presents path dependency. A
similar result in terms of phase diagrams was obtained by Hiller (2010) by studying workers’ behaviour and labour
contracts in an evolutionary set up. He has found multiple equilibrium with a saddle path interior solution and two
unstable, namely (0,1) and (1,0), and two stable, namely (0,0) and (1,1) points. Besides the size of basin of attraction
is affected by one of the parameters of the model and the final outcome of the model depends on the initial conditions
which is evidence of path dependence.

Another example is Vega-Redondo (1996, p. 109) who considers an evolutionary model that exhibits trading com-
plementariness similar to the one we consider here: populations of two separated islands may decide to be ‘employed’
or ‘unemployed’ and then they are matched in pairs. If occurs the matching of two employed individuals, they exchange
their goods and they both have a positive utility. If two ‘unemployed’ individuals are matched they have zero utility
but if an ‘employed’ individual of one island matches an unemployed individual of the other island the ‘employed’
individual receives a negative pay-off since she has worked to produce the good but can neither consume nor exchange
its good while the ‘unemployed’ worker has zero utility since it did not made any effort. The final outcome of this evo-
lutionary game is that equilibrium (0,0) and (1,1) in which populations of both islands chooses (employed, employed)
or (unemployed, unemployed) are asymptotically evolutionary stable.

5.  Conclusion

In order to modelling labour market evolution, in this paper we have adopted an evolutionary methodology, in which
agents choices are evaluated, may it be workers or firms, considering the payoffs associated to each strategy: be formal
or informal; and the mean payoff of the other agents. This methodology has yielded a system of differential equation
which has multiple equilibriums.

We then have studied the local and Lyapunov stability of the differential system to show that both the equilibrium
in each all labour force and all firms operate in the formal sector and the case in which all the labour force and all firms

operate in the informal sector are asymptotically stable. The former case is probably the situation that best describe
developed economies in which the underground economy is negligible. The latter case may describe the case of some
underdeveloped countries.



w
t
c
p
p

A

t

r

I

w

r

t

0

<

a

R.A. Araujo, H.N. Moreira / EconomiA 15 (2014) 41–53 49

The economic meaning of these results go beyond the findings that informality arises as the optimal response of
orkers and firms in response of rigid labour legislation, high taxes and deficient enforcement frameworks, results

hat are well established in the literature. The existence of multiple equilibriums in the labour market points to a
orrespondence between the labour market and the stage of economic development. It is also shown that the government
lays a central role in the determination of mixed equilibrium but the final position of a country depends on the initial
osition, that is, on the fraction of workers and firms that are skilled and operate in the formality, respectively.

ppendix  I.

Proof  of  Proposition  1:
(i) Evaluating the Jacobian matrix in equilibrium nf = nf = 0, it yields:

J  =
[−u[wi −  ρm] 0

0 −(yi −  wi −  ψe)

]
.  (12’)

In this case S1 =  trJ  =  −u[wi −  ρm] −  (yi −  wi −  ψe). Since we have assumed that u′(.) >  0, if yi −  wi −  ψe  >  0
hen S1 =  trJ  <  0. In this case S2 =  det J  =  u[wi −  ρm](yi −  wi −  ρm) >  0 and we have an attractor.

(ii) Evaluating the Jacobian matrix at nf = 0 and nf = 1 it yields:

J  =
[
u[(1 −  τ)wf ] 0

0 yi −  wi −  ψe

]
. (12”)

Hence trJ  =  u[(1 −  γ)wf ] +  [yi −  wi −  ψe] >  0 and det J  =  u[(1 −  γ)wf ][yi −  wi −  ψe] >  0 and we have a
epulsor. �

(iii) In the third equilibrium (iii) nf = 1 and nf = 0 the Jacobian matrix is given by:

J  =
[
u[wi −  ρm] 0

0 (1 −  γ)yf −  wf

]
.  (12”’)

In this case, S1 =  trJ  =  u[wi −  ρm] +  (1 −  γ)yf −  wf >  0 and S2 =  det J =  (wi −  ρm)[yf −  (1 +  γ)wf ] >  0.
n this case we also have a repulsor. �

(iv) The fourth case is given by: (iv) nf = 1, nf = 1; the Jacobian in this case is given by:

J  =
[−u[(1 −  τ)wf ] 0

0 −[(1 −  γ)yf −  wf ]

]
.  (12””)

In this case S1 =  trJ  =  −u[(1 −  τ)wf ] −  [(1 −  γ)yf −  wf ] <  0 and S2 =  det J  =  u[(1 −  τ)wf ][(1 −  γ)yf −
f ] >  0, which gives rise to an attractor.
(v) The fifth case is given by: f(ηf) = 0 and g(nf = 0). In this case it is possible to obtain the values of ηf and nf,

espectively as: nf = yi−wi−ψe
(1−γ)yf−wf+yi−wi−ψe and ηf = u[wi−ρm]

u[(1−τ)wf ]+u[wi−ρm] . Note that on the assumptions made on

he utility function, and on the parameters it is possible to guarantee that: 0 <  nf = yi−wi−ψe
(1−γ)yf−wf+yi−wi−ψe <  1 and

 <  ηf = u[wi−ρm]
u[(1−τ)wf ]+u[wi−ρm] <  1. The Jacobian in this case is given by:

J  =
[

0 (1 −  nf )u[wi −  ρm]

nf (1 −  nf )(yi −  wi −  ρm) 0

]
.  (12””’)

2
In this case we have a saddle point since S1 =  trJ  =  0 and S2 =  −nf (1 −  nf ) (yi −  wi −  ψe)u[wi −  ρm]
 0. �
Proof  of  Proposition  2: By considering function (13), the requirement (a) of the Lyapunov theorem is easily satisfied

t (n̄f ,  η̄f ) =  (1,  1), namely V(1,1) = 0. In order to prove condition (b) it is sufficient to show that: nf −  ln nf >  1 and
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ηf −  ln ηf >  1 for all (nf, ηf) in a neighbourhood �  of (n̄f ,  η̄f ) =  (1,  1) since δ1 > 0 and δ2 > 0. But this result holds
for every 0 < nf < 1 and 0 < ηf < 1. In order to prove (c) let us take the time derivative of expression (13) which yields:

V ′ =  δ1
(nf −  n̄f )

nf
ṅf +  δ2

(ηf −  η̄f )

ηf
η̇f . (15)

Substituting expressions (7”) and (9”) into the expression above we obtain:

V ′ =  δ1
(nf −  n̄f )

nf
nf (1 −  nf )f  (ηf ) +  δ2

(ηf −  η̄f )

ηf
ηf (1 −  ηf )g(nf ). (15’)

After some algebraic manipulation and considering that (n̄f ,  η̄f ) =  (1,  1) it is possible to show that the expression
above may be written as:

V ′ =  −δ1(1 −  nf )2f  (ηf ) −  δ2(1 −  ηf )2g(nf ). (15”)

In order to show that V ′(nf , ηf ) <  0, for all (nf ,  ηf ) ∈  �, (nf ,  ηf ) /=  (n̄f ,  η̄f ) it is sufficient to show that f  (ηf ) >  0
and g(ηf ) >  0. But f  (ηf ) >  0 if nf >

u[wi−ρm]
u[(1−τ)wf ]+u[wi−ρm] . Analogously we can prove that g(ηf ) >  0 by showing

that ηf >
yi−wi−ψe

(1−γ)yf−wf+yi−wi−ψe . Hence, requirement (c) allow us to define the region in which the Lyapunov function

(13) holds for point (1,1), namely:

�  =
{

(nf , ηf ) ∈  [0,  1] ×  [0,  1]; nf >
yi −  wi −  ρm

(1 −  γ)yf −  wf +  yi −  wi −  ρm
,

ηf >
u[wi −  ρm]

u[(1 −  τ)wf ] +  u[wi −  ρm]

}

Another possible way of proving requirement (c) is to show that (1,1) is a local maximum of the function V′. Note
that V′(1,1) = 0 and if we prove that V′ is definite negative then V′ < 0 for all points in a neighbourhood �  of (1,1). In
order to show this let us rewrite expression (15) as:

V ′ =  −δ1(1 −  nf )2{(ηf −  1 +  1)u[(1 −  τ)wf ] +  (1 −  ηf )u[wi −  ρm]}
− δ2(1 −  ηf )2{(nf −  1 +  1)[(1 −  γ)yf −  wf ] +  (1 −  nf )[yi −  wi −  ψe]},  (15’)

where we add and subtract 1 to nf and ηf in order to evaluate the expression around the point (1,1). After some algebraic
manipulation this expression reduces to:

L(nf ,  ηf ) =  δ1(1 −  nf )2(1 −  ηf ){u[(1 −  τ)wf ] +  u[wi −  ρm]}  −  δ1(1 −  nf )2u[(1 −  τ)wf ]

+δ2(1 −  ηf )2(1 −  nf ){[(1 −  γ)yf −  wf ] +  [yi −  wi −  ψe]}  −  δ2(1 −  ηf )2[yi −  wi −  ψe]

(15”)

where L(nf ,  ηf ) =  V ′. By taking the partial derivatives of the above expression in relation to nf and ηf we obtain:

Lnf (nf ,  ηf ) =  −2δ1(1 −  nf )(1 −  ηf ){u[(1 −  τ)wf ] +  u[wi −  ρm]}  +  2δ1(1 −  nf )u[(1 −  τ)wf ]

− δ2(1 −  ηf )2{[(1 −  γ)yf −  wf ] +  [yi −  wi −  ψe]},  (16)

Lηf (nf , ηf ) =  −δ1(1 −  nf )2{u[(1 −  τ)wf ] +  u[wi −  ρm]}  −  2δ2(1 −  ηf )(1 −  nf ){[(1 −  γ)yf −  wf ]

+ [yi −  wi −  ψe]}  +  2δ2(1 −  ηf )[yi −  wi −  ψe].  (17)
It is important to note that (1,1) is a critical point of the function L(nf ,  ηf ) since Lnf (1,  1) =  Lηf (1,  1) =  0. Besides,
taking the second partial derivatives of L(nf , ηf ) it is possible to conclude that:

Lnf nf (nf , ηf ) =  2δ1(1 −  ηf ){u[(1 −  τ)wf ] +  u[wi −  ρm]}  −  2δ1u[(1 −  τ)wf ],  (18)
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Lηf ηf (nf ,  ηf ) =  2δ2(1 −  nf ){[(1 −  γ)yf −  wf ] +  [yi −  wi −  ψe]}  −  2δ2[yi −  wi −  ψe],  (19)

Lnf ηf (nf ,  ηf ) =  Lηf nf (nf ,  ηf ) =  2δ1(1 −  nf ){u[(1 −  τ)wf ] +  u[wi −  ρm]}
− 2δ2(1 −  ηf )2{[(1 −  γ)yf −  wf ] +  [yi −  wi −  ψe]},  (20)

Evaluating the matrix Hessian at the point (1,1) it yields:

H(1,  1) =
[−2δ1u[(1 −  τ)wf ] 0

0 −2δ2[yi −  wi −  ψe]

]
,  (21)

Thus det H1(1,  1) =  −2δ1u[(1 −  τ)wf ] <  0 and det H(1,  1) =  4δ1u[(1 −  τ)wf ]δ2[yi −  wi −  ψe] >  0 provided
hat yi −  wi −  ψe  >  0, which is our assumption. The Hessian matrix is then shown to be definite negative at (1,1).
hen it is possible to conclude that (1,1) is a local maximum of the function L(nf ,  ηf ) =  V ′(nf ,  ηf ) and since
(1, 1) =  V ′(1,  1) =  0 then: V ′(nf ,  ηf ) <  0 in a neighbourhood � of (1,1) as we wanted to prove. �

Proof of  Proposition  3:
Note that V  (0,  0) =  0, which proves the requirement (a) of the Lyapunov theorem. The requirement (b) is easily

atisfied since δ1 > 0 and δ2 > 0. Hence V  (nf , ηf ) >  0 for all (nf , ηf ) ∈  [0,  1] ×  [0,  1] and (nf ,  ηf ) /=  (0,  0). In other
o prove requirement (c), it is necessary to prove that: V ′ =  δ1n

2
f (1 −  nf )f  (ηf ) +  δ2η

2
f (1 −  ηf )g(nf ) <  0 for all

nf , ηf ) ∈  �, (nf ,  ηf ) ∈  �. But if f  (ηf ) <  0 and g(nf ) <  0 then V ′ <  0. But f  (ηf ) <  0 if ηf <
u[wi−ρm]

u[(1−τ)wf ]+u[wi−ρm] .

nalogously we can prove that g(ηf ) >  0 by showing that nf <
yi−wi−ψe

(1−γ)yf−wf+yi−wi−ψe . But these results hold true due

o the assumptions made on the utility function, and on other parameters. Besides, requirement (c) allow us to define
he region in which the Lyapunov function holds for point (0,0), namely:

�′ =
{

(nf , ηf ) ∈  [0,  1] ×  [0,  1]; nf <
yi−wi−ρm

(1−γ)yf−wf+yi−wi−ρm, ηf <
u[wi−ρm]

u[(1−τ)wf ]+u[wi−ρm]

}
Another possible way of proving requirement (c) is to show that (0,0) is a local maximum of the function V′. Note

hat V′(0,0) = 0 and if we prove that V′ is definite negative then V′ < 0 for all points in a neighbourhood �  of (0,0).
aking the derivative of the Lyapunov function we conclude that:

V ′ =  δ1(nf −  n̄f )ṅf +  δ2(ηf −  η̄f )η̇f , (22)

Hence by substituting (7”) and (9”) into the expression above we obtain:

V ′ =  δ1(nf −  n̄f )nf (1 −  nf )f  (ηf ) +  δ2(ηf −  η̄f )ηf (1 −  ηf )g(nf ),  (23)

By considering that (n̄f ,  η̄f ) =  (0,  0) expression (23) reduces to:

L(nf , ηf ) =  δ1n
2
f (1 −  nf ){ηf u[(1 −  τ)wf ] +  (1 −  ηf )u[wi −  ρm]}

+ δ2η
2
f (1 −  ηf ){nf [yf −  (1 +  γ)wf ] +  (1 −  nf )[yi −  wi −  ψe]},  (23’)

here L(nf ,  ηf ) =  V ′. By taking the partial derivatives of the above expression in relation to nf and ηf we obtain:

Lnf (nf ,  ηf ) =  δ1nf (2 −  3nf ){ηf u[(1 −  τ)wf ] +  (1 −  ηf )u[wi −  ρm]}
+ δ2η

2
f (1 −  ηf ){[yf −  (1 +  γ)wf ] −  [yi −  wi −  ψe]},  (24)

Lηf (nf , ηf ) =  +δ1n
2
f (1 −  nf ){u[(1 −  τ)wf ] −  u[wi −  ρm]}

+δ2ηf (2 −  3ηf ){nf [yf −  (1 +  γ)wf ] +  (1 −  nf )[yi −  wi −  ψe]}.  (25)

Note that (0,0) is a critical point of the function L. By taking the second partial derivatives of L  one obtains:
Lnf nf (nf ,  ηf ) =  δ1(2 −  6nf ){ηf {u[(1 −  τ)wf ] +  (1 −  ηf )u[wi −  ρm]},  (26)

Lηf ηf (nf ,  ηf ) =  δ2(2 −  6ηf ){nf [yf −  (1 +  γ)wf ] +  (1 −  nf )[yi −  wi −  ψe]},  (27)
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Table 1
Initial Conditions for Cases I and II.

Initial condition
nf (0) = 0.4
ηf (0) = 0.4

orange
nf (0) = 0.5
ηf (0) = 0.8

black
nf (0) = 0.7
ηf (0) = 0.7

red
nf (0) = 0.25
ηf (0) = 0.25

green
nf (0) = 0.6
ηf (0) = 0.125

brown
nf (0) = 0.56
ηf (0) = 0.3

maroon
nf (0) = 0.7
ηf (0) = 0.7

blue

Case I (1,1) (1,1) (1,1) (0,0) (0,0) (1,1) (1,1)
Case II (0,0) (1,1) (1,1) (0,0) (0,0) (0,0) (1,1)
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Lnf ηf (nf ,  ηf ) =  δ1nf (2 −  3nf ){u[(1 −  τ)wf ] −  u[wi −  ρm]}
− δ2ηf (2 −  3ηf ){[yf −  (1 +  γ)wf ] −  [yi −  wi −  ψe]}, (28)

Evaluating the matrix Hessian at the point (0,0) it yields:

H(0,  0) =
[−2δ1u[wi −  ρm] 0

0 −2δ2[yi −  wi −  ψe]

]
,  (29)

Thus det H1(0,  0) =  −2δ1u[wi −  ρm] <  0 and det H(0,  0) =  4δ1u[wi −  ρm]δ2[yi −  wi −  ψe] >  0 provided that
i −  wi −  ψe  >  0, which is our assumption. The Hessian matrix is then shown to be negative definite at (0,0). �

ppendix  II.

In order to draw the graphics, analysis let us consider linear utility functions such as: uf =  (1 −  τ)wf and ui =
i −  ρm. The instantaneous profit functions are given by: πf =  (1 −  γ)yf −  wf and πi =  yi −  wi −  ψe. By choosing

 =  0.2; wf = 0.625; wi = 0.6; m  = 3; ρ  = 0.1; yf = 1.25; yi = 1; wi = 0.3; ψ  = 0.2; e = 0.2 and γ  = 0.18 we obtain: uf =
.5; ui =  0.3; πf =  0.8 and πi =  0.5. In the second case let us change the values of taxations of wages and profits to

 = 0.52 and γ  = 0.18. This yields the following values for the utility and profit functions: uf =  0.3; ui =  0.3; πf =
.4 and πi =  0.5. In order to illustrate the path dependence issue let us consider the following initial conditions in
able 1. The second and third lines of the table show the final position of each initial condition. Note that in the first
ase the number of equilibrium (1,1) is larger than (0,0). This case is related to smaller taxation of the formal sector.
n case II equilibrium (0,0) is ubiquitous as the final outcome indicating that a higher taxation may induce to the low
ncome equilibrium.
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