
Walter, Paul; Weimer, Katja

Working Paper

Estimating poverty and inequality indicators using
interval censored income data from the German
microcensus

Discussion Paper, No. 2018/10

Provided in Cooperation with:
Free University Berlin, School of Business & Economics

Suggested Citation: Walter, Paul; Weimer, Katja (2018) : Estimating poverty and inequality indicators
using interval censored income data from the German microcensus, Discussion Paper, No. 2018/10,
Freie Universität Berlin, School of Business & Economics, Berlin,
https://nbn-resolving.de/urn:nbn:de:kobv:188-refubium-22216-8

This Version is available at:
https://hdl.handle.net/10419/179926

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:kobv:188-refubium-22216-8%0A
https://hdl.handle.net/10419/179926
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 
 
 
 
 
 

 
 
Estimating Poverty and Inequality Indicators using 
Interval Censored Income Data from the German 
Microcensus 
 
 
 
 
Paul Walter 
Katja Weimer 
 
 
 
 
 
 
 
 
 
 
 
 

School of Business & Economics 
Discussion Paper 
 

Economics 
 

2018/10 



Estimating Poverty and Inequality Indicators using Interval
Censored Income Data from the German Microcensus

Paul Walter* and Katja Weimer*

*Institute of Statistics and Econometrics, Freie Universität Berlin, Germany

Abstract

Rising poverty and inequality increases the risk of social instability in countries all around the
world. For measuring poverty and inequality there exists a variety of statistical indicators. Estimat-
ing these indicators is trivial as long as the income variable is measured on a metric scale. However,
estimation is not possible, using standard formulas, when the income variable is interval censored (or
grouped), as in the German Microcensus. This is the case for numerous censuses due to confiden-
tiality constraints or in order to decrease item non-response. To enable the estimation of statistical
indicators in these scenarios, we propose an iterative kernel density algorithm that generates met-
ric pseudo samples from the interval censored income variable. Based on these pseudo samples,
poverty and inequality indicators are estimated. The standard errors of the indicators are estimated
by a non-parametric bootstrap. Simulation results demonstrate that poverty and inequality indicators
from interval censored data can be unbiasedly estimated by the proposed kernel density algorithm.
Also the standard errors are correctly estimated by the non-parametric bootstrap. The kernel density
algorithm is applied in this work to estimate regional poverty and inequality indicators from German
Microcensus data. The results show the regional distribution of poverty and inequality in Germany.

Keywords: direct estimation, interval censored data, grouped data, poverty, inequality, kernel density
estimation, German Microcensus

1 Introduction

In its Global Risks Report 2017, the World Economic Forum proclaims rising income and wealth dis-
parity as the number one trend to determine global developments, governing the risks of, among others,
profound social instability and unemployment (World Economic Forum, 2017). Also Germany has faced
an increase in income inequality since its reunification in 1990 (Fuchs-Schündeln et al., 2010; Bönke
et al., 2014). Yet, the question of how poverty and inequality is defined and can accurately be measured
or diagnosed in a society remains debatable, see for example Lok-Dessallien (1999) and Hagenaars and
Vos (1988). A common way to measure poverty and inequality is the estimation of statistical poverty
and inequality indicators. However, computing them in practice is for several reasons not a trivial task.
Since income information is not easily accessible governments or statistical offices need to conduct sur-
veys or censuses to gain information about personal or household income. A difficulty remains the fact
that income, in most societies, is considered a private topic. In the survey literature, questions about the
aspects of income are referred to as a ”sensitive question”, therefore item non-response is high for these
questions (Moore and Welniak, 2000; Hagenaars and Vos, 1988). To encounter this, many censuses, such
as the German (Statistisches Bundesamt, 2017), the Australian (Australian Bureau of Statistics, 2011),
the Columbian (Departamento Administrativo Nacional De Estadistica, 2005) and the Census from New
Zealand (Statistics New Zealand, 2013), do not ask for the exact income of their citizens. They only ask
for an income interval a person or household belongs to, thereby creating a sense of anonymity. The
so obtained income data is not metric but rather interval censored (or grouped). This makes the use of
standard formulas for the estimation of poverty and inequality indicators impossible because they rely
on metric data.
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To clarify terminology, depending on the author, the term grouped or censored income data can have
different statistical meanings. Some authors such as Minoiu and Reddy (2008) and Milanovic (2003)
use the term grouped data to refer to quantile means and Chotikapanich et al. (2007) consider population
shares and class means. We use the term interval censored (or grouped) data, to refer to data that has the
form of a frequency table, as in Chen (2017) or Hall and Wand (1996). This type of data is obtained by
the aforementioned censuses.

A common parametric approach for density estimation from interval censored data is the use of
the multinomial distribution, see for example Reed and Wu (2008) and Kleiber (2008). From the esti-
mated parametric density any poverty and inequality indicator can be estimated. Chen (2017) proposes a
generalised approach to multinomial maximum likelihood estimation for several types of grouped data,
showing its consistency and supplying complementary simulation results.

With respect to inequality indicators, Kakwani and Podder (2008) argue against the parametric esti-
mation of the income density from grouped data due to its lacking precision and present a method that
can be utilised to estimate the Lorenz curve directly from the interval censored data in order to compute
inequality indicators.

While many authors agree with Kakwani and Podder (2008) critique on the estimation of paramet-
ric distributions, they resolve these issues by using non-parametric estimators to model income instead.
The popularity of these estimators comes from the fact that they do not require any prior assumptions
about the theoretical distribution or its family. Although most authors do not directly address the topic
of interval censored or grouped data, there is much literature about rounded data, which is easily ob-
tained from interval censored data by substituting the intervals with their centres. Hall (1982), Scott and
Sheather (1985), and Hall and Wand (1996) study the effects of rounded and interval censored data on
standard, non-parametric kernel density estimation (KDE). In contrast to uncensored data, they derive
that the mean integrated squared error of the KDE for rounded data depends on the smoothness of the
used kernel function. Moreover, they find that censoring affects rather the bias than the variance of the
estimate. Additionally, Hall and Wand (1996) present minimum grid sizes for KDE which are needed to
achieve a given degree of accuracy. Grid size corresponds to the amount of points and therefore to the
amount of intervals when the interval centres are used on which the density is estimated.

Wang and Wertelecki (2013) point out that standard KDE leads to increasingly spiky density esti-
mates at rounded points with a growing sample size. KDE becomes smoother when larger bandwidths
are used, thus an oversmoothed bandwidth selection has been proposed by Wand and Jones (1995) and
implemented in the R package KernSmooth (Wand, 2015). Nevertheless, Wang and Wertelecki (2013)
argue that this mostly leads to flatter estimates that underestimate the true density. Instead, they propose a
bootstrap type kernel density estimator and show in a simulation study that the estimator provides better
accuracy than standard KDE and over-smoothed KDE.

Groß et al. (2017) melt the principle of stochastic expectation maximization algorithms (Nielsen
et al., 2000) with KDE to create a new density estimation alogrithm for rounded two-dimensional data.
Its superiority compared to standard KDE is made apparent in a simulation study (Groß and Rendtel,
2016). Their algorithm can be seen as a generalisation of Wang and Wertelecki (2013) estimator.

Although a correctly estimated density leads to correctly estimated poverty and inequality indica-
tors Lenau and Münnich (2016) focus their analysis on the impact of different estimation methods on
the direct performance of the estimated statistical indicators. They evaluate three different estimation
methods: Non-parametric splines, estimating the generalised beta distribution of the second kind (GB2)
and linear interpolation. Linear interpolation is the method used by the German statistical offices to esti-
mate indicators from interval censored data. This approach is similar to assuming a uniform distribution
within each interval. They conclude that the performance of the different methods depends highly on the
censoring schemes and none of the methods showed adequate results in terms of bias and variance for
all analysed censoring schemes.

To overcome the disadvantage of the different estimation methods, we propose a non-parametric
KDE-algorithm that is based on the algorithm of Groß et al. (2017). The KDE-algorithm enables the
estimation of poverty and inequality indicators from interval censored data under different censoring
schemes. In order to obtain representative results, the KDE-algorithm can incorporate survey weights.
The standard errors of the statistical indicators are estimated by a non-parametric bootstrap.
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The paper is structured as follows. In Section 2, the KDE-algorithm and the proposed non-parametric
bootstrap are introduced. In Section 3, the properties of the KDE-algorithm and the bootstrap are eval-
uated using Monte Carlo simulation studies under different interval censoring schemes and different
theoretical distributions. In Section 4, the algorithm is used to estimate regional poverty and inequality
indicators from the German Microcensus. A final discussion of the major results, their implications and
an outlook is given in Section 5.

2 Methodology

In order to estimate poverty and inequality indicators, we propose a novel KDE-algorithm to estimate
metric pseudo samples from the observed interval censored true data. By using the pseudo samples,
poverty and inequality indicators can be estimated applying standard formulas. In the next two subsec-
tions, the novel KDE-algorithm is introduced and a non-parametric bootstrap is proposed for variance
estimation of the statistical indicators.

2.1 Kernel density estimation from interval censored data

Kernel density estimation is one of the most established non-parametric density estimation techniques in
the literature and was first introduced by Rosenblatt (1956) and Parzen (1962). It is applied to estimate
a continuous density from a random variable with density f(x) directly from its independent and identi-
cally distributed observations without making any prior assumptions about its distributional family. Let
X = {X1, X2, . . . , Xn} denote a sample of size n. For i = 1, . . . , n the KDE is defined as

f̂h(x) =
1

nh

n∑
i=1

k

(
x−Xi

h

)
,

where k(·) is a kernel function and the bandwidth is denoted by h > 0. For the shape and per-
formance of the estimator, the choice of the bandwidth h is essential. The larger h, the smoother the
estimated density, but also the more information about details, e.g. local extrema, may be lost (Zambom
and Dias, 2012). Hence, bandwidth selection methods are widely discussed in literature with the two
main categories being plug-in and cross-validation (Henderson and Parmeter, 2015; Jones et al., 1996;
Loader, 1999). The basic idea of the first is to minimise the asymptotic mean integrated squared error
whilst substituting the unknown density in the optimisation with a pilot estimate, whereas the second
method is a more data-driven approach, for example utilising leave-one-out cross-validation.

In the presented Naive KDE, it is assumed that observations are taken directly from the continuous
distribution that is to be estimated. Often, however, collecting continuous data is not possible due to
various restrictions in practice, for example confidentiality concerns. In these situations we are left with
interval cesnsored data, where only the interval information is observed. Thus, only the lower AK−1

and upper AK interval bounds (AK−1, AK) of X is observed and its true value remains unknown. The
continous scale is divided into nK intervals. The variable K (1 ≤ K ≤ nK) indicates in which of
the intervals an observation K = {K1,K2, . . . ,Kn} falls into. Open ended intervals, thus A0 = −∞
or AnK = ∞ have to be replaced by a finite number (see Section 3.4). Applying KDE to the interval
midpoints of the interval censored data falsely allocates too much probability mass to the midpoints and
too little to the true unobserved Xi. This leads to spiky estimates, unless the bandwidth is chosen to be
very large (Wang and Wertelecki, 2013). Increasing the bandwidth cannot be considered as a solution
to this problem because this causes additional loss of information about the underlying true distribution.
Wang and Wertelecki (2013) simulation study further found standard KDE to be very sensitive to sample
size when interval censoring is ignored. Furthermore, Hall (1982) and Hall and Wand (1996) showed that,
in contrast to uncensored data, the asymptotic performance of KDE for interval censored data depends
on the smoothness of the kernel function in use.

These findings underline the necessity of using a more sophisticated non-parametric approach for
density estimation from interval censored data. Wang and Wertelecki (2013) introduce a bootstrap type
KDE based on a measurement error model and confirmed its superiority over the Naive estimator with
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simulations. Groß et al. (2017) then generalised and extended the approach based on Stochastic Ex-
pectation Maximization (SEM) and iterative bootstrapping. Their newly proposed density estimator,
abbreviated as GRSST, outperforms Naive KDE and a measurement error based estimator by Delaigle
(2007), especially for stronger interval censoring. Since the GRSST estimator was formulated for two
dimensional data with equally sized interval censoring, we reformulate the approach. The reformulated
KDE-algorithm enables the density estimation for one dimensional data with unequally sized censoring.
During the algorithm pseudo samples of the unobserved Xi are generated from whom the density and
any statistical indicator can be estimated. Hence, for the estimation of poverty and inequality indicators
the unobserved continuous distribution of the interval censored X is reconstructed. This is done by the
use of the known interval informationK. From Bayes theorem it follows that the conditional distribution
of X given K is:

π(X|K) ∝ π(K|X)π(X),

where π(K|X) is defined by a product of Dirac distributions π(K|X) =
∏n

i=1 π(Ki|Xi) with

π(K|X) =

{
1 if AK−1 ≤ Xi ≤ AK ,

0 otherwise,

for i = 1, . . . , n. By this formulation pseudo samples (imputations) of the unknown Xi are drawn
that enable the estimation of any statistical indicator. Since π(X) =

∏n
i=1 f(Xi) is initially unknown,

an initializing estimate f̂h(x) that is based on the interval midpoints, serves as a proxy. After that, the
pseudo samples drawn from π(X|K) are used to re-estimate π(X). The following section focusses
on the exact implementation of the proposed algorithm and discusses similarities to the popular EM-
algorithm by Dempster et al. (1977) and the SEM-algorithm by Celeux and Dieboldt (1985) and Celeux
et al. (1996).

Estimation and Computational Details

As in Groß et al. (2017) for fitting the model pseudosamples of Xi are drawn from the conditional
distribution

π(Xi|Ki) ∝ I(AK−1 ≤ Xi ≤ AK)f(Xi),

where I(·) denotes the indicator function. The conditional distribution of Xi given Ki is the product
of a uniform distribution and density f(x). As the density f(x) is unknown it is replaced by f̂h(x), an
estimate that is obtained by the prior defined kernel density estimator. Hence, Xi is iteratively drawn
from the known interval (AK−1, AK) with the current density estimate f̂h(x) used as sampling weight.
The steps of the iterative algorithm are described below.

Step 1: Use the midpoints of the intervals as pseudo X̃i for the unknownXi. Obtain a pilot estimate
of f̂h(x), by applying KDE. Choose a sufficiently large bandwidth h, such that no rounding spikes
occur.

Step 2: Evaluate f̂h(x) on an equally spaced fine grid G = {g1, . . . , gj} with j grid points
g1, . . . , gj . The width of the grid is denoted by δg. It is given by:

δg =
|A0 −AnK |

j − 1

The grid is defined as:

G = {g1 = A0, g2 = A0 + δg, g3 = A0 + 2δg, . . . , gj−1 = A0 + (j − 2)δg, gj = AnK}
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Step 3: Sample from π(X|K) by drawing a pseudo sample X̃i randomly from G ∈ (AK−1, AK)
with sampling weights f̂h(X̃i) for k = 1, . . . , nK . The sample size within each interval is given
by the number of observations within each interval.

Step 4: Estimate any statistical indicator of interest Î using the pseudo X̃i.

Step 5: Recompute f̂h(x), using the pseudo samples X̃i obtained in iteration step 3.

Step 6: Repeat steps 2-5, with B(KDE) burn-in and S(KDE) additional iterations.

Step 7: Discard the B(KDE) burn-in iterations and estimate Î by averaging the obtained S(KDE)

estimates.

The KDE-algorithm estimates the distribution of an interval censored variable by only using the
interval information. An algorithm that is widely used for models that depend on latent variables (in
our case the unobserved interval censored X) is the EM-algorithm (Dempster et al., 1977). In the EM-
algorithm the expectation of X|K is obtained analytically. However, in the context of kernel density
estimation this does not work because all values inside an interval would be concentrated at one point, the
expectation. In a SEM-algorithm, the analytical E-step from the EM-algorithm is replaced by the drawing
of pseudo samples (Celeux and Dieboldt, 1985; Celeux et al., 1996). In case of the KDE-algorithm, it
is drawn from the distribution of π(X|K). Hence, the proposed KDE-algorithm has similarities to a
SEM-algorithm. In its common form, the EM- and SEM-algorithm are used for maximum likelihood
(ML) estimation with unobserved data. McLachlan and Krishnan (2008) proposed a generalisation of
the SEM-algorithm that can be used with surrogates for the ML estimation. In the KDE-algorithm
the maximization of the asymptotic mean integrated squared error is used as such a surrogate. More
information on the similarities between the KDE-algorithm, the EM-, SEM- algorithm and the GRSST
estimator -on which the KDE-algorithm is based on- are given in (Groß et al., 2017).

2.2 Variance estimation

This section introduces a method for variance estimation of the statistical indicators that are estimated by
the KDE-algorithm. A common way to estimate the variance, if X is observed on a continuous scale is
linearisation. Taylor linearisation (Tepping, 1968; Woodruff, 1971; Wolter, 1985; Tille, 2001) is a well
known and commonly applied method for the estimation of variance for non-linear indicators, such as
ratios or correlations. However, the method cannot be applied for variance estimation of all non-linear
indicators. For variance estimation of mathematically more complex indicators, e.g. the Gini, Deville
(1999) introduced the generalised linearisation method. The generalised linearisation method is also used
by Eurostat for the variance estimation of complex indicators (Osier, 2009). Nevertheless, linearisation
cannot be applied when the variable of interest is observed as interval censored variable (Lenau and
Münnich, 2016). To still produce variance estimates, resampling methods, such as bootstrapping can be
applied (Münnich, 2008). Bootstrapping methods approximate the variance of an estimated indicator,
in cases where the variance cannot be stated as closed form solution (Bruch et al., 2011). Therefore,
the bootstrap introduced by Efron (1979), Shao and Tu (1995) is used for the variance estimation of the
indicators estimated by the KDE-algorithm. Also any confidence interval can be estimated by using the
quantiles from the bootstrap results (Pretson, 2008; Rao and Wu, 1988; Rao et al., 1992). The use of
the bootstrapping permits to avoid theoretical calculations. However, the potential disadvantage is a long
computational time. The non-parametric bootstrap is based on the assumption that the drawn sample is
representative for the population. Therefore, the empirical distribution function F̂ is a non-parametric
estimate of the population distribution F . The desired poverty indicator of interest Î , is the empirical
estimate of the true parameter. The bootstrap standard errors are calculated in the following way:

Step 1: Draw with replacement a bootstrap sample of the interval censored X(b)
i of size n from the

sample dataset.

Step 2: Apply the KDE-algorithm to the bootstrap sample X(b)
i for the estimation of any indicator

Î(b) of interest.
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Iterate steps 1-2, b = 1, . . . , B times and estimate the standard error s(Î) =

√∑B
b=1(Î

(b)−I
(b)

)2

B with

I = 1
B

∑B
b=1 Î

(b)

3 Simulation Results

This section presents extensive model-based simulation results in order to evaluate the performance of
the KDE-algorithm in the context of estimating poverty and inequality from interval censored income
data. The simulation study is set up with the following specifications. From a theoretical distribution
M = 500 samples of simulated income data are drawn. The drawn samples are censored to specific
intervals. The sample size for each sample is n = 10000. The KDE-algorithm is evaluated for large
samples because interval censored income data is common for censuses which, in general, have very
large sample sizes. For instance, in the application in Section 4, German Microcensus data is used
which has a sample size of n = 454852. From the simulated interval censored income data different
poverty and inequality indicators are estimated. The formulas are presented for metric data because the
KDE-algorithm generates metric data from interval censored data that is used to estimate the statistical
indicators. Consider X = (X1, . . . , Xn) with X1 ≤ . . . ≤ Xn and let w = (w1, . . . , wn) be the
corresponding sampling weights. The weighted mean and the weighted quantiles (10%, 25%, 50%,
75%, 90%) are given by

ÎMean =

∑n
i=1wiXi∑n
i=1wi

, (1)

ÎQ(p)
=

{
1
2 (Xi +Xi+1) if

∑i
j=1wj = p

∑n
j=1wj ;

Xi+1 if
∑i

j=1wj ≤ p
∑n

j=1wj ≤
∑i+1

j=1wj ,
(2)

where p denotes the quantile p ∈ (0, 1). In the simulation study sampling weights are not included,
because they are not needed to evaluate the performance of the KDE-algorithm. Therefore, wi = 1∀i
in the simulation study. However, in the application in Section 4 weights are included for representative
inference. The weighted poverty measures Headcount Ratio (HCR) and Poverty Gap (PGap) (Foster
et al., 1984) are given by

ÎHCR =
1∑n

i=1wi

n∑
i=1

wiI(Xi ≤ z), (3)

ÎPGap =
1∑n

i=1wi

n∑
i=1

wi

(
z −Xi

z

)
I(Xi ≤ z), (4)

where I(·) denotes the indicator function. The HCR and PGap include a threshold z that is known as
the poverty line. For the simulation a relative poverty line, defined as 60% of the median of the simulated
income variable is chosen. This corresponds to the EU definition (eurostat, 2014). The HCR is a measure
for the percentage of observations (individuals or households) below the poverty line, whereas the PGap
measures the average distance of those observations from the poverty line. Inequality is commonly
measured by the Gini coefficient (Gini, 1912) and the quintile share ratio (QSR). The weighted indicators
are estimated by

ÎGini =

2∑n
i=1

(
wixi

∑i
j=1wj

)
−
∑n

i=1w
2
iXi∑n

i=1wi
∑n

i=1wiXi
− 1

 , (5)

ÎQSR =

∑n
i=1 I(Xi ≥ Q̂0.8)wiXi∑n
i=1 I(Xi ≤ Q̂0.2)wiXi

. (6)
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The range of the Gini coefficient lies between 0 and 1. The higher its value, the higher the inequal-
ity. If the Gini is equal to 0 there is perfect equality in the data, whereas a Gini of 1 indicates perfect
inequality. The QSR is the ratio of observations richer than 20% of the richest observations to the 20%
of the poorest observations. Higher values of the QSR indicate higher inequality.

The indicators are estimated by the proposed KDE-algorithm (KDE). The number of burn-in iter-
ations of the algorithm is set to B(KDE) = 80, the number of additional iterations S(KDE) = 400.
Our experiences running several simulations show that 480 iterations are usually enough to ensure con-
vergence. Nevertheless, we assure that the indicators in the presented simulations have converged by
visually checking the convergence plots. The issue of convergence is discussed in more detail in Section
4. The number of grid points is set to j = 4000. In general, a higher number of grid points leads to more
precise estimation results, because the number of grid points determines how many unique values the
pseudo samples of the interval censored variable can consist of. However, the estimation time increases
with increasing number of grid points. In the simulation, the number of grid points is chosen such that
a further increase of the number of grid points does not lead to better estimation results. The presented
poverty and inequality indicators are not only estimated by the KDE-algorithm (KDE). For comparison,
the indicators are also estimated by linear interpolation. This method is used by the Federal Office of
Statistics in Germany for the estimation of poverty and inequality indicators from the interval censored
income variable of the German Microcensus (Information und Technik (NRW), 2009). This approach
gives the same results as assuming a uniform distribution within the income classes (Uni). Furthermore,
the statistical indicators are estimated by using the midpoints (Mid) of the intervals as proxy for the un-
observed values within the income interval. Finally, the statistical indicators are also estimated with the
true uncensored data (True). The results of the point estimates are evaluated by the relative bias (rB)

rB
(
Î
)
=

1

M

M∑
m=1

(
Îm − I
I

)
× 100,

and the empirical standard errors (se.emp)

se.emp(Î) =

√√√√ 1

M

M∑
m=1

(Îm − I)2,

with

I =
1

M

M∑
m=1

Îm.

The proposed non-parametric bootstrap for the estimation of the standard errors is evaluated by
comparing the estimated standard errors to the empirical standard errors. The bootstrap is run with
B = 100. This number shows to be sufficient to obtain valid approximations of the standard errors.

The simulation study is divided into four subsections. In Section 3.1, the influence of different
numbers of intervals on the performance of the KDE-algorithm is evaluated. In Section 3.2, different
true distributions are evaluated and, in Section 3.3, the effect of equal vs. ascending interval width is
studied. Section 3.4 summarizes the final results and discusses the issue of how to handle open ended
intervals.

3.1 Different interval censoring scenarios

In this Section, the influence of the number of intervals on the performance of the KDE-algorithm is
studied. As theoretical distribution the four parameter GB2 distributions that is often used to model
income is specified such that the GB2 distribution well approximates the empirical German income dis-
tribution (Graf and Nedyalkova, 2014). The chosen parameter are given in Table 3. The drawn samples
are interval censored using three different censoring scenarios. In scenario 1, the data is censored to 24
intervals as in the German Microcensus (Statistisches Bundesamt, 2017) that is used in the application in
Section 4. The interval widths are chosen such that the interval censored theoretical distribution follows
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the empirical distribution of the household income in the German Microcensus. This is visualized in Fig-
ure 1 in the upper two panels. The lower two panels show the GB2 distribution censored to 16 intervals
(scenario 2) and 8 intervals (scenario 3). The performance of the algorithm with lower number of classes
is studied because censuses from other countries censor the income variable to fewer than 24 intervals.
For example, in the census from New Zealand the income variable is censored to 16 intervals (Statistics
New Zealand, 2013), in the Australian census the data is censored to 12 intervals (Australian Bureau
of Statistics, 2011) and in the Columbian census the income variable is censored to only 9 intervals
(Departamento Administrativo Nacional De Estadistica, 2005).
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Figure 1: Interval censored income distribution of the German Microcensus (upper left) and theoretical
GB2 distribution. The GB2 distribution is censored to 24 (upper right), 16 (lower left) and 8 intervals
(lower right).

The results of the point estimates are given in Table 1. Using the true uncensored data for the
estimation of the poverty and inequality indicators leads to unbiased results. This is not surprising,
because the sample size (n = 10000) is very large. Using only the interval information, the KDE-
algorithm outperforms the other approaches (Mid and Uni) in all three scenarios. The out-performance
is especially stronger for indicators that rely on the whole shape of the distribution (Gini, Mean), for the
more extreme quantiles (10% Quantile and 90 % Quantile) and for indicators that rely on more extreme
quantiles (QSR). As the number of intervals decreases, the performance of the KDE-algorithm worsens.
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Nevertheless, the bias is still under 1% for all indicators, except for the PGap and the Gini. The PGap
shows a bias of 2.3% and the Gini a bias of -1.9% in the 8 interval scenario.

The estimated indicators using the other approaches (Mid and Uni) exhibit far larger biases as the
number of intervals decreases. For example, in the 8 interval scenario the PGap has a bias of 22% and
20% and the Gini of 14% and 24% for the estimation approaches Uni and Mid, respectively. This shows
the superiority of the KDE-algorithm.

The precision of the KDE-algorithm, measured by the empirical standard error (se.emp), is for all
three scenarios close to the estimation results using the true data. This is the case, because the estimated
indicators rely on the metric pseudo samples from the KDE-algorithm. However, the pseudo samples
can -in rare circumstances- include very extreme values that lead to a higher variance when statistical
indicators are estimated that rely on the whole distribution. This is for example the case for the mean in
the 24 interval scenario. The KDE-algorithm almost looses no precision for a lower number of intervals.
The methods Uni and Mid lead to less precise estimation results, especially with fewer intervals. For
some of the estimated quantiles the empirical standard error of the Mid approach is 0. This is due to the
fact, that the Mid approach estimates the indicators on the midpoints of the intervals. This leads to only
24, 16 or 8 unique values, respectively. With a sample size of (n = 10000) the estimated quantiles are
likely to fall on the same midpoint for each of the 500 Monte-Carlo iterations. If the estimated quantile
is constant over all Monte-Carlo iterations, the empirical standard error is 0.

Q0.1 Q0.25 Median Q0.75 Q0.9 Mean HCR QSR PGap Gini
Quality Estimation

Measure Method GB2: 24 intervals
rB True 0.053 0.036 0.008 -0.003 0.017 0.023 -0.087 -0.005 -0.163 -0.005

KDE -0.102 -0.059 -0.033 -0.045 0.121 0.002 -0.141 0.720 0.181 -0.036
Uni -0.366 -0.086 0.065 0.080 0.171 1.104 1.087 3.751 2.628 3.374
Mid -4.654 0.003 -0.313 1.501 1.848 2.218 -11.962 35.517 1.529 6.161

se.emp True 87.600 72.172 71.259 109.180 222.019 95.973 0.003 0.049 0.001 0.003
KDE 84.944 68.284 69.756 112.048 227.883 121.231 0.003 0.067 0.001 0.004

Uni 96.181 69.987 70.633 119.183 240.357 111.912 0.003 0.060 0.001 0.003
Mid 83.717 0.000 0.000 738.583 1092.148 137.517 0.003 0.351 0.001 0.005

GB2: 16 intervals
rB True -0.007 0.012 0.022 0.021 0.014 -0.020 -0.030 -0.077 0.109 -0.102

KDE 0.323 -0.021 0.260 0.190 -0.051 -0.018 0.478 0.699 0.034 -0.401
Uni -0.991 -1.832 0.823 3.492 3.543 1.154 4.522 5.113 7.699 3.691
Mid -14.210 -8.097 -1.200 3.499 3.098 1.536 -12.619 92.185 6.194 0.835

se.emp True 90.029 72.505 78.428 113.178 232.863 101.242 0.003 0.048 0.001 0.003
KDE 88.476 72.731 73.944 119.657 229.199 101.652 0.003 0.049 0.001 0.003

Uni 120.142 84.036 81.005 131.425 248.381 110.794 0.003 0.055 0.001 0.003
Mid 221.137 0.000 0.000 0.000 0.000 121.311 0.003 0.321 0.001 0.004

GB2: 8 intervals
rB True 0.076 0.006 -0.016 0.021 0.017 -0.006 -0.103 -0.051 -0.131 -0.037

KDE 0.106 -0.173 0.252 0.145 -0.141 -0.685 0.119 -1.151 2.329 -1.871
Uni -0.980 -1.850 0.820 3.519 3.587 4.190 4.323 17.586 21.758 13.522
Mid -13.972 -8.012 -1.155 3.582 3.092 10.187 -12.555 164.261 20.273 24.256

se.emp True 92.276 75.720 71.976 111.044 240.443 100.286 0.003 0.050 0.001 0.003
KDE 88.373 74.822 70.126 113.115 231.700 126.809 0.003 0.071 0.001 0.004

Uni 120.998 86.888 73.876 128.360 253.586 132.150 0.003 0.075 0.001 0.004
Mid 220.916 0.000 0.000 0.000 0.000 183.278 0.003 0.481 0.001 0.005

Table 1: Relative bias (rB) and the empirical standard error (se.emp) for the different estimation methods
estimated for a selection of statistical indicators.

In Table 2, the proposed bootstrap for the estimation of the standard errors is evaluated for the 3
different censoring scenarios. The standard errors estimated by the non-parametric bootstrap (se.est)
offer a good approximation of the empirical standard errors (se.emp). This underlines the reliability of
the proposed bootstrap method.

3.2 Different true distributions

While the previous Section evaluates the performance of the KDE-algorithm using different censoring
schemes, this Section focuses on the evaluation of the performance using different theoretical distribu-
tions. A large number of theoretical distributions are suggested in the literature for modelling income
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Q0.1 Q0.25 Median Q0.75 Q0.9 Mean HCR QSR PGap Gini
Measure Estimation

Method GB2: 24 intervals
se.emp KDE 84.944 68.284 69.756 112.048 227.883 121.231 0.003 0.067 0.001 0.004

se.est 84.945 71.525 72.437 110.804 234.200 120.855 0.003 0.067 0.001 0.004

GB2: 16 intervals
se.emp KDE 88.476 72.731 73.944 119.657 229.199 101.652 0.003 0.049 0.001 0.003

se.est 87.972 70.564 68.708 110.969 224.122 96.000 0.003 0.050 0.001 0.003

GB2: 8 intervals
se.emp KDE 88.373 74.822 70.126 113.115 231.700 126.809 0.003 0.071 0.001 0.004

se.est 85.036 71.131 68.217 109.751 229.160 132.415 0.003 0.076 0.001 0.005

Table 2: Empirical and estimated standard error for the selected statistical indicators.

distributions (McDonald and Ransom, 1979; McDonald, 1984; McDonald and Xu, 1995; Bandourian
et al., 2003; Kleiber and Kotz, 2003). According to McDonald (1984), McDonald and Xu (1995), Bord-
ley et al. (1997), McDonald and Ransom (2008) the GB2 distribution is well suited for modelling income
and it is superior to other parametric distributions (Kleiber and Kotz, 2003; Dastrup et al., 2007; Jenk-
ins, 2009). Nevertheless, two special cases of the GB2 distribution are used for evaluations in order to
illustrate the flexibility of the KDE-algorithm: the Dagum (Dagum, 1977) distribution and the Singh-
Maddala (Singh and Maddala, 1976) distribution. The choice of parameters follows Bandourian et al.
(2002) (see Table 3) in order to approximate empirical income distributions. The data is censored to 8
intervals and the interval width is chosen such that the relative frequency within each interval is simi-
lar to the 8 interval GB2 scenario from the previous section (Figure 2 and 1). The 8 interval scenario
is chosen to evaluate the KDE-algorithm under extreme scenarios. By keeping the relative frequencies
equal within each interval the effect of different distributions (GB2, Dagum and Singh-Maddala) on the
estimation results is isolatedly evaluated.

Distribution Parameter
GB2 7.481 16351 0.4 0.468
Dagum 4.413 94075 0.337
Singh-Maddala 1.771 500000 25.12

Table 3: Distributions for the Model-based simulation
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Figure 2: Dagum and Singh-Maddala distribution censored to 8 intervals.

The estimation results of the point estimates are given in Table 4 (Dagum and Singh-Maddala) and
Table 1 (GB2). As expected, using the true data leads to unbiased estimation results. Also, the KDE-
algorithm that only uses the interval information yields unbiased results for all indicators under the
different scenarios. Hence, the performance of the KDE-algorithm is not impaired by the underlying
theoretical distribution. The benchmark methods (Uni and Mid) give heavily biased estimation results,
especially for indicators that depend on the whole distribution. For example, the QSR has a bias of
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16.5% (Uni) and 209% (Mid) for the Dagum scenario and 18.5% (Uni) and 199% (Mid) for the Singh-
Maddala scenario. These simulation results disqualify both estimation methods for the use in practical
applications. Regarding the precision, the conclusions from the previous Section are transferable.

Q0.1 Q0.25 Median Q0.75 Q0.9 Mean HCR QSR PGap Gini
Quality Estimation

Measure Method Dagum: 8 intervals
rB True 0.041 -0.014 0.020 0.003 0.005 0.015 0.032 0.072 0.036 0.028

KDE 0.192 0.088 -0.146 0.225 0.038 -0.396 -0.126 -0.770 -0.084 -0.851
Uni -0.977 -1.719 0.675 3.150 2.883 5.454 2.579 16.532 4.163 9.840
Mid -23.304 -12.787 -2.552 3.227 2.420 12.042 29.230 209.641 -2.171 16.251

se.emp True 399.449 437.440 455.249 584.052 988.153 442.182 0.004 0.128 0.002 0.003
KDE 382.632 422.677 440.771 567.565 964.208 479.943 0.004 0.135 0.002 0.003

Uni 459.406 461.163 456.904 645.016 1052.903 613.491 0.004 0.171 0.002 0.004
Mid 0.000 0.000 0.000 0.000 0.000 826.842 0.005 1.024 0.002 0.005

Singh-Maddala: 8 intervals
rB True -0.070 0.001 0.035 0.014 -0.015 0.003 0.023 0.017 0.041 -0.006

KDE 0.270 0.014 0.042 -0.039 -0.031 0.093 -0.039 0.714 0.085 0.213
Uni -1.031 -1.210 1.652 2.963 2.039 6.269 1.800 18.504 4.321 11.024
Mid -21.083 -11.797 -1.789 3.039 1.636 12.618 27.516 199.584 -1.651 17.009

se.emp True 416.957 486.609 555.653 731.369 1049.186 443.818 0.004 0.099 0.002 0.002
KDE 389.926 447.684 546.007 698.835 998.289 462.384 0.004 0.106 0.002 0.002

Uni 467.696 502.097 547.127 784.601 1072.791 598.248 0.004 0.145 0.002 0.003
Mid 784.213 0.000 0.000 0.000 0.000 784.707 0.005 0.930 0.002 0.004

Table 4: Relative bias (rB) and the empirical standard error (se.emp) for the different estimation methods
estimated for a selection of statistical indicators.

As given in Table 5, the estimated standard errors offer a good approximation of the empirical stan-
dard errors for the different scenarios.

Q0.1 Q0.25 Median Q0.75 Q0.9 Mean HCR QSR PGap Gini
Measure Estimation

Method Dagum: 8 intervals
se.emp KDE 382.632 422.677 440.771 567.565 964.208 479.943 0.004 0.135 0.002 0.003

se.est 385.340 420.523 445.765 573.573 953.225 468.896 0.004 0.134 0.002 0.003

Singh-Maddala: 8 intervals
se.emp KDE 389.926 447.684 546.007 698.835 998.289 462.384 0.004 0.106 0.002 0.002

se.est 386.539 430.594 523.137 691.090 983.671 460.726 0.004 0.110 0.002 0.002

Table 5: Empirical and estimated standard error for the selected statistical indicators.

3.3 Equal and ascending interval width

While the German (Statistisches Bundesamt, 2017), the Australian (Australian Bureau of Statistics,
2011), the Columbian (Departamento Administrativo Nacional De Estadistica, 2005) and the Census
from New Zealand (Statistics New Zealand, 2013) use ascending class width, previous research shows
that the performance of alternative estimation methods depends on the interval width (Lenau and Münnich,
2016). More precisely, performance depends on whether the data is censored to intervals of equal width
or ascending width. Therefore, the GB2 distribution from Table 3 is now censored to 8 intervals with
equal class width (except the last interval, which has an open ended upper interval bound). In all previ-
ous simulation scenarios ascending interval width is used. Figure 3 shows the censored GB2 distribution.
The theoretical distribution is kept fixed in order to evaluate the influence of the censoring on the perfor-
mance.

The results of the point estimates are given in Table 6. As before, using the true data leads to
unbiased estimates. The estimates obtained by the KDE-algorithm are unbiased except for the QSR,
PGap and Gini. These estimates exhibit a very small bias of -1.7%, 1.4% and -2.2%. However, the
results are comparable to the estimation results from the GB2 scenario with 8 intervals with ascending
interval width. Hence, the KDE-algorithm does not seem to be effected by the censoring scheme. The
benchmark indicators Uni and Mid show, as before, large biases especially for indicators that rely on the
whole shape of the distribution. With regard to precision, results and interpretation is the same as before.
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Figure 3: GB2 distribution censored to equally sized intervals (except the last -open ended- interval)

Q0.1 Q0.25 Median Q0.75 Q0.9 Mean HCR QSR PGap Gini
Quality Estimation

Measure Method GB2: 8 intervals (equally sized)
rB True 0.079 0.035 0.013 -0.026 -0.092 -0.024 -0.127 -0.144 -0.248 -0.110

KDE -0.005 -0.422 0.238 -0.066 0.050 -0.840 0.290 -1.706 1.370 -2.181
Uni -7.074 -2.388 0.909 0.560 1.704 4.648 7.351 21.365 30.052 16.251
Mid -14.151 4.640 11.598 10.730 3.174 12.498 19.720 73.226 28.594 30.467

se.emp True 88.841 75.061 72.038 111.139 233.943 95.398 0.003 0.051 0.001 0.003
KDE 86.255 70.621 76.142 109.506 223.898 128.012 0.003 0.076 0.001 0.005

Uni 116.469 70.955 88.391 156.503 260.393 130.810 0.003 0.076 0.001 0.004
Mid 0.000 0.000 0.000 544.426 0.000 180.793 0.004 0.281 0.001 0.005

Table 6: Relative bias (rB) and the empirical standard error (se.emp) for the different estimation methods
estimated for a selection of statistical indicators.

The proposed bootstrap also gives valid results with equally sized intervals (see Table 7).

Q0.1 Q0.25 Median Q0.75 Q0.9 Mean HCR QSR PGap Gini
Measure Estimation

Method GB2: 8 intervals (equally sized)
se.emp KDE 86.255 70.621 76.142 109.506 223.898 128.012 0.003 0.076 0.001 0.005

se.est 84.456 67.507 75.134 108.778 224.587 138.326 0.003 0.079 0.001 0.005

Table 7: Empirical and estimated standard error for the selected statistical indicators.

3.4 Conclusion and final remarks

The simulation results show that the KDE-algorithm outperforms other approaches (Uni and Mid) in
terms of bias in all scenarios. The KDE method gives unbiased results under different censoring schemes
and for different underlying theoretical distributions. The relative bias increases slightly whenever the
number of intervals decreases. However, also in very extreme censoring scenarios (with only 8 intervals),
the results are very precise. The relative bias is under 1% for almost all indicators. The KDE method
shows comparable results in terms of precision to the direct estimation of the indicators from the true un-
censored data. Additionally, it is superior to other approaches (Mid and Uni) that show worse precision
for most indicators. Due to its easy usage, its ability to adapt to different underlying theoretical distribu-
tions and different censoring schemes and its precision practitioners should prefer the KDE-algorithm to
other approaches.

The KDE-algorithm cannot handle open ended intervals. As mentioned before, lower bounds equal
to −∞ or upper bounds equal to ∞ have to be replaced by a finite number. The chosen value effects
the performance of the KDE-algorithm. However, not all poverty and inequality indicators depend on
the outer intervals. Indicators that depend on the outer intervals are indicators that depend, by their
definition, on the whole distribution e.g., the mean or the Gini. These indicators are always influenced
by the way how open ended intervals are handled, whereas other indicators, e.g. the median, are only
affected if they fall into one of the open ended outer intervals. The replacement value used for open
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ended upper and lower intervals has also an impact on the performance of the methods Uni and Mid. To
make simulation results from the different estimation methods comparable to each other, we replace∞
of the upper interval with a value of 3 times the value of the lower bound. For instance if the interval is
(4000,∞) we replace the upper bound with 4000 ∗ 3 = 12000, resulting in the interval (4000, 12000]
which is used by the KDE-algorithm. In an application the practitioner should choose the interval bounds
for open ended intervals with caution, with regard to content and to the censoring scheme. However, our
experiences running several simulations indicate that a value of 3 times the value of the lower bound
serves as good approximation when working with interval censored income data.

4 Estimating poverty and inequality indicators from the German Micro-
Census

In this Section, the KDE-algorithm is applied to the problem of estimating poverty and inequality in-
dicators from interval censored German Microcensus data. The relevance of poverty and inequality
estimation becomes apparent when considering the rich amount of literature available on this topic.
Germany’s increasing inequality has sparked the interest of many scholars as well as governmental insti-
tutions. Known for stable wages in the 70s and 80s (Abraham and Houseman, 1995), Germany has faced
growing income inequality since its reunification in 1990 (Fuchs-Schündeln et al., 2010; Bönke et al.,
2014).

Most of these studies consider or focus on survey data such as the Socio-Economic Panel (SOEP) or
the Income, Receipts, Expenditure survey (in German: Einkommens- und Verbrauchsstichprobe) (EVS).
In contrast to the Microcensus, the participation is voluntary and participants are asked for their ex-
act income (not interval censored), which enables the estimation of poverty and inequality indicators
using standard formulas. However, since the German Microcensus is by far the biggest survey in Ger-
many it would be favourable to use its data for the estimation of poverty and inequality. The proposed
KDE-algorithm makes the valid and precise estimation of complex poverty and inequality indicator from
interval censored data possible. This allows researchers and practitioners to use the German Microcensus
for the further and more in depth investigation of the increasing income inequality in Germany. The fol-
lowing application presents estimation results from cross-sectional data for the year 2012. To investigate
the spatial distribution of inequality, the different indicators are estimated for the 16 federal states.

4.1 Data and preparation

The German Microcensus is a representative household survey conducted by the Federal Statistical Of-
fice of Germany. About 1% of the German population is chosen randomly by a specified survey design
and is asked about the living conditions. The Microcensus was first conducted in 1957 and provides
data regarding the structure as well as the economic and social status of the population. Over the years
the Microcensus has become one of the most important data sources regarding aspects such as part-
nership, family, labour market and eduction. For the estimation of poverty and inequality the variable
household net income is used. For the analysis the Scientific-Use-File (SUF), a 70% sample of the Mi-
crocensus is used (Statistisches Bundesamt, 2017). After data cleaning, we are left with a sample size
of nGermany = 454852. Since interests also lie in the spatial distribution of poverty and inequality
the statistical indicators are estimated for each federal state separately and for Germany. The sample
size for each federal state and its location is given in Table 8 and Figure 7 in the Appendix. The sam-
ple sizes are very large for each federal state even for Bremen, the state with the smallest sample size
nBremen = 3356. Thus, there are enough observations to directly (without covariates) estimate the sta-
tistical indicators with small standard errors. As previously mentioned, the variable household income
is interval censored to 24 intervals. The distribution is visualized in Figure 1 in the upper left panel. To
make the household income comparable between households of different sizes, the OECD household
weights are used to estimate equivalised household income. Each households interval bound is divided
by its corresponding OECD weight. For instance a household within interval (1300, 1500] and with an
OECD weight of 1.5 has equivalence interval bounds of (867, 1000].
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4.2 Estimation and results

In order to estimate the poverty and inequality indicators, the KDE-algorithm is applied to the equiv-
alenced interval bounds. The open ended interval is handled as described in Section 3.4. Further,
for representative results the extrapolation factors of the Microcensus are used for the estimation of
the weighted statistical indicators (formulas are given in Equation 1-6). Therefore, the KDE-algorithm
draws iteratively new metric pseudo samples plus the corresponding extrapolation weight from the equiv-
alenced interval censored household income. As in the simulations, the number of burn-in iterations is
B(KDE) = 80, the number of additional iterations is S(KDE) = 400 and the number of grid points
j = 4000. The number of B(KDE) and S(KDE) is sufficiently large as it is seen in the convergence plot
in Figure 4. Both indicators have converged after 480 iterations. While indicators that dependent on the
whole distribution converge slower (e.g. Gini), indicators that do not depend on the whole distribution
(e.g. HCR) converge faster. Also all other indicators are checked for convergence, but only two plots
are shown exemplarily. The standard errors of the weighted indicators are estimated by the described
non-parametric bootstrap as proposed by Alfons and Templ (2013). The number of bootstrap samples is
set to B = 100 as in the simulation study.
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Figure 4: Convergence of the KDE-algorithm for the Gini and the HCR

The estimated indicators are presented in Figure 5 and 6 and the exact values and the estimated
standard errors are given in the Appendix in Table 9. The estimated HCR = 0.15, the Gini = 0.29 and the
QSR = 4.31. These results are comparable to the results from the EVS. The EVS reports the following
values: HCR = 0.16, the Gini = 0.27 and the QSR = 4.1 (Statistisches Bundesamt, 2018). Because
of the large sample size, valid estimates for smaller geographical areas can be estimated to evaluate the
regional distribution of poverty and inequality in Germany. The quantiles and the mean indicate that the
east (formerly German Democratic Republic DDR) is poorer than the west. This result is commonly
known in Germany and not very surprising. Nevertheless, Brandenburg and Berlin have higher incomes
than the rest of east Germany (Mecklenburg-Vorpommern, Saxony, Saxony-Anhalt and Thuringia). Also
Bremen, a federal state in the west, shows low income for the 10% and 25%-Quantile in comparison
to the rest of west Germany, while for the higher quantiles Bremen shows similar results as the rest
of Germany. The poorest states with a median of 1211.29 Euro and 1247.05 Euro are Mecklenburg-
Vorpommern and Saxony-Anhalt and the richest ones with a median of 1580.43 Euro and 1580.35 Euro
are Baden-Württemberg and Bavaria. For the estimation of the HCR and PGap, a regional poverty line
(60% of the median) is used. The HCR indicates that in the east fewer people live under the regional
poverty line than in the west. Also the people living under the poverty line live closer to it in the east,
as shown by the PGap. When looking at the QSR and the Gini, the east-west trend is less striving.
Nevertheless, the states in the east have lesser income inequality. The most unequal states with a Gini of
0.32 and 0.31 are Hamburg and Bremen and the most equal ones with a Gini of 0.25 and 0.25 are Saxony
and Thuringia. The estimated standard errors of the indicators on state area are quite small. Therefore,
estimating precise indicators for smaller geographical areas would probably also be possible, to get an
even closer look at the geographical distribution of poverty and inequality.

The application impressively demonstrates how the KDE-algorithm enables the estimation of poverty
and inequality indicators from interval censored data. The precise estimations obtained by the KDE-
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Figure 5: Regional distribution of different statistical indicators in Germany

algorithm enable statisticians and statistical offices to report a variety of poverty and inequality indicators
using the German Microcensus. The regional estimates will help to identify regions with lower income
and higher inequality to target political activities more accurately for those in need.
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Figure 6: Regional distribution of different statistical indicators in Germany
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5 Discussion and Outlook

In numerous censuses e.g., the German Microcensus or the Australian Census, the variable household
or personal income is not observed on a continuous scale, but rather censored to specific intervals. This
is due to confidentiality constraints or to reduce item non-response. Estimating poverty and inequal-
ity indicators from these kind of data requires more sophisticated statistical methods. As an estimation
method we propose an iterative KDE-algorithm that enables the precise estimation of statistical indi-
cators from interval censored data. The proposed KDE-algorithm has similarities to SEM-algorithms
that are commonly used for the estimation of models that depend on latent unobserved variables (in our
case the interval censored income). However, instead of maximizing the likelihood as it is common for
SEM-algorithms, the asymptotic mean integrated squared error of the KDE is maximized. For the es-
timation of the standard errors of the statistical indicators a non-parametric bootstrap is proposed. The
KDE-algorithm and the bootstrap work for different censoring scenarios and different underlying true
distributions. The methodology is available in the R-Package smicd from the Comprehensive R Archive
Network (Walter, 2018). Our simulation results demonstrate that the estimated poverty and inequality
indicators outperform other estimation techniques (linear interpolation or the use of the midpoints of the
intervals) in terms of bias. Also the standard errors of the estimates are close to the standard errors from
the estimates that were obtained with the uncensored data, supporting the precision of the algorithm.
Furthermore, the KDE-algorithm has the advantage of adapting to different interval censored theoretical
distributions. Therefore, it is universally applicable for the estimation of poverty and inequality indica-
tors from interval censored income data. We demonstrate the usefulness by estimating regional poverty
and inequality indicators from the German Microcensus. To get representative results the algorithm is
extended to take OECD equivalence weights and survey weights into account. The estimated regional
indicators are plotted on maps that visualize the magnitude of poverty and inequality in Germany. With
help of the KDE-algorithm statistical indicators can precisely be estimated from interval censored data
in order to tackle the increasing problem of rising poverty and inequality in societies all over the world.

Further research should focus on convergence criteria that make the manual choice of the number of
iteration obsolete.
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6 Appendix A

State Sample size Number in Map
Germany 454852

Schleswig-Holstein 15302 1
Hamburg 8630 2

Lower Saxony 45828 3
Bremen 3356 4

North Rhine-Westphalia 90778 5
Hesse 35730 6

Rhineland-Palatinate 21229 7
Baden-Württemberg 58685 8

Bavaria 75244 9
Saarland 5688 10

Berlin 19311 11
Brandenburg 15400 12

Mecklenburg-Vorpommern 8706 13
Saxony 24609 14

Saxony-Anhalt 13495 15
Thuringia 12861 16

Table 8: Sample size for Germany and each of the 16 federal states.

German Federal States

Figure 7: German Federal States, the names of the corresponding numbers are given in Table 8.
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Quant0.1 Quant0.25 Median Quant0.75 Quant0.9 Mean HCR QSR PGap Gini
Germany 770.16 1040.23 1445.53 1998.96 2714.63 1675.88 0.15 4.31 0.03 0.29

(0.00) (3.28) (4.93) (2.59) (3.69) (1.85) (0.00) (0.01) (0.00) (0.00)
Schleswig-Holstein 794.21 1092.99 1512.96 2071.11 2743.79 1736.25 0.15 4.33 0.04 0.29

(6.04) (5.83) (7.39) (7.80) (20.01) (9.35) (0.00) (0.05) (0.00) (0.00)
Hamburg 765.68 1069.24 1540.20 2166.83 3002.79 1815.45 0.17 4.92 0.04 0.32

(7.16) (9.21) (10.47) (13.44) (29.75) (14.14) (0.00) (0.09) (0.00) (0.00)
Lower Saxony 770.08 1040.25 1445.04 1970.84 2603.04 1636.36 0.16 4.16 0.03 0.28

(4.10) (2.53) (5.44) (7.11) (13.00) (5.79) (0.00) (0.04) (0.00) (0.00)
Bremen 665.44 876.91 1328.23 1879.66 2564.10 1540.03 0.18 4.72 0.04 0.31

(10.82) (9.93) (16.76) (25.28) (47.95) (19.19) (0.01) (0.12) (0.00) (0.01)
North Rhine-Westphalia 756.85 1013.41 1418.50 1985.64 2674.27 1649.22 0.15 4.29 0.03 0.29

(0.72) (0.01) (3.01) (4.70) (9.05) (3.69) (0.00) (0.02) (0.00) (0.00)
Hesse 798.23 1094.75 1540.36 2149.61 2997.03 1825.06 0.16 4.66 0.03 0.31

(4.56) (4.88) (6.03) (7.49) (14.23) (7.54) (0.00) (0.04) (0.00) (0.00)
Rhineland-Palatinate 770.65 1067.23 1485.95 2052.43 2810.09 1720.30 0.15 4.49 0.04 0.30

(5.39) (5.36) (6.36) (8.97) (17.17) (8.40) (0.00) (0.06) (0.00) (0.00)
Baden-Württemberg 837.76 1148.33 1580.43 2160.84 2900.98 1806.40 0.15 4.24 0.04 0.29

(2.23) (4.10) (4.08) (6.62) (10.50) (5.52) (0.00) (0.03) (0.00) (0.00)
Bavaria 841.94 1148.28 1580.35 2147.52 2944.04 1826.62 0.14 4.33 0.03 0.29

(5.37) (4.62) (4.99) (5.19) (8.81) (4.75) (0.00) (0.03) (0.00) (0.00)
Saarland 784.70 1035.41 1434.20 1938.86 2559.91 1615.95 0.14 3.98 0.03 0.27

(8.77) (9.73) (10.55) (14.70) (32.54) (13.40) (0.01) (0.07) (0.00) (0.00)
Berlin 730.96 912.14 1328.50 1867.05 2552.45 1547.47 0.15 4.15 0.02 0.29

(5.38) (5.19) (8.41) (11.20) (15.87) (8.77) (0.01) (0.05) (0.00) (0.00)
Brandenburg 716.80 979.24 1351.02 1823.73 2446.72 1528.25 0.14 4.10 0.03 0.28

(5.93) (6.78) (6.43) (10.03) (17.36) (8.08) (0.00) (0.05) (0.00) (0.00)
Mecklenburg-Vorpommern 671.30 895.52 1211.29 1629.61 2120.56 1355.61 0.13 3.74 0.03 0.26

(4.92) (5.77) (7.51) (9.78) (20.77) (11.96) (0.00) (0.08) (0.00) (0.01)
Saxony 709.57 945.88 1247.40 1622.64 2155.08 1383.20 0.12 3.52 0.02 0.25

(4.62) (4.00) (4.31) (5.48) (10.93) (5.09) (0.00) (0.03) (0.00) (0.00)
Saxony-Anhalt 675.70 928.47 1247.05 1643.78 2161.33 1382.23 0.14 3.78 0.03 0.26

(5.25) (5.85) (5.90) (7.68) (17.09) (6.24) (0.00) (0.05) (0.00) (0.00)
Thuringia 755.17 973.23 1283.80 1683.44 2226.40 1435.52 0.11 3.50 0.02 0.25

(5.32) (4.23) (5.50) (7.11) (16.00) (7.45) (0.00) (0.04) (0.00) (0.00)

Table 9: Estimated statistical indicators for Germany and the 16 federal states. Standard errors are given
in parentheses.
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Lenau, S. and Münnich, R. (2016). Estimating income poverty and inequality from income classes. In
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Münnich, R. (2008). Varianzschätzung in komplexen Erhebungen. Austrian Journal of Statistics, 37(3
& 4):319–334.

Nielsen, S. F. et al. (2000). The stochastic EM algorithm: estimation and asymptotic results. Bernoulli,
6(3):457–489.

Osier, G. (2009). Variance estimation for complex indicators of poverty and inequality using linearization
techniques. Survey Research Methods, 3(3):167–195.

Parzen, E. (1962). On estimation of a probability density function and mode. The Annals of Mathematical
Statistics, 33(3):1065–1076.

Pretson, J. (2008). Rescaled bootstrap for stratified multistage sampling. Survey Methodology,
35(2):227–234.

Rao, J., Wu, C., and Yue, K. (1992). Some recent work on resampling methods for complex surveys.
Survey Methodology, 18(2):209–217.

Rao, J. N. K. and Wu, C. F. J. (1988). Resampling inference with complex survey data. Journal of the
American Statistical Association, 83(401):231–241.

Reed, W. J. and Wu, F. (2008). New four- and five-parameter models for income distributions. In Chotika-
panich, D., editor, Modeling Income Distributions and Lorenz Curves, pages 211–224. Springer.

Rosenblatt, M. e. a. (1956). Remarks on some nonparametric estimates of a density function. The Annals
of Mathematical Statistics, 27(3):832–837.

Scott, D. W. and Sheather, S. J. (1985). Kernel density estimation with binned data. Communications in
Statistics - Theory and Methods, 14(6):1353–1359.

22



Shao, J. and Tu, D. (1995). The Jackknife and Bootstrap. Springer Series in Statistics, New York.

Singh, S. and Maddala, G. (1976). A function for the size distribution of incomes. Econometrica,
44(5):963–970.

Statistics New Zealand (2013). New Zealand census of population and dwellings. https:
//unstats.un.org/unsd/demographic/sources/census/quest/NZL2013enIn.
pdf. Accessed: 2018-05-13.

Statistisches Bundesamt (2017). Datenhandbuch zum Mikrozensus scientific use file 2012.
http://www.forschungsdatenzentrum.de/bestand/mikrozensus/suf/2012/
fdz_mz_suf_2012_schluesselverzeichnis.pdf. Accessed: 2017-07-22.

Statistisches Bundesamt (2018). Wirtschaftsrechnungen: Einkommens- und Verbrauchsstichsprobe
Einkommensverteilung in Deutschland. https://www.destatis.de/DE/Publikationen/
Thematisch/EinkommenKonsumLebensbedingungen/EinkommenVerbrauch/
Einkommensverteilung2152606139004.pdf?__blob=publicationFile. Ac-
cessed: 2018-05-22.

Tepping, B. (1968). Variance estimation in complex surveys. Proceedings of the American Statistical
Association, Social Statistics Section, pages 11–18.

Tille, Y. (2001). Theorie des sondages: Echantillonnage et estimation en populations finies. Dunod,
Paris.

Walter, P. (2018). smicd: Statistical Methods for Interval Censored Data. R package version 1.0.0.

Wand, M. (2015). KernSmooth: Functions for Kernel Smoothing. R package version 2.23-15.

Wand, M. and Jones, M. (1995). Kernel smoothing. Chapman & Hall, London.

Wang, B. and Wertelecki, M. (2013). Density estimation for data with rounding errors. Computational
Statistics & Data Analysis, 65:4–12.

Wolter, K. (1985). Introduction to Variance Estimation. Springer, New York.

Woodruff, R. S. (1971). A simple method for approximating the variance of a complicated estimate.
Journal of the American Statistical Association, 66(334):411–414.

World Economic Forum (2017). Global risks 2017. http://reports.weforum.org/
global-risks-2017/part-1-global-risks-2017/. Accessed: 2017-09-28.

Zambom, A. Z. and Dias, R. (2012). A review of kernel density estimation with applications to econo-
metrics. International Econometric Review, 5(1):20–42.

23

https://unstats.un.org/unsd/demographic/sources/census/quest/NZL2013enIn.pdf
https://unstats.un.org/unsd/demographic/sources/census/quest/NZL2013enIn.pdf
https://unstats.un.org/unsd/demographic/sources/census/quest/NZL2013enIn.pdf
http://www.forschungsdatenzentrum.de/bestand/mikrozensus/suf/2012/fdz_mz_suf_2012_schluesselverzeichnis.pdf
http://www.forschungsdatenzentrum.de/bestand/mikrozensus/suf/2012/fdz_mz_suf_2012_schluesselverzeichnis.pdf
https://www.destatis.de/DE/Publikationen/Thematisch/EinkommenKonsumLebensbedingungen/EinkommenVerbrauch/Einkommensverteilung2152606139004.pdf?__blob=publicationFile
https://www.destatis.de/DE/Publikationen/Thematisch/EinkommenKonsumLebensbedingungen/EinkommenVerbrauch/Einkommensverteilung2152606139004.pdf?__blob=publicationFile
https://www.destatis.de/DE/Publikationen/Thematisch/EinkommenKonsumLebensbedingungen/EinkommenVerbrauch/Einkommensverteilung2152606139004.pdf?__blob=publicationFile
http://reports.weforum.org/global-risks-2017/part-1-global-risks-2017/
http://reports.weforum.org/global-risks-2017/part-1-global-risks-2017/


Diskussionsbeiträge - Fachbereich Wirtschaftswissenschaft - Freie Universität Berlin 
Discussion Paper - School of Business and Economics - Freie Universität Berlin 
 
2018 erschienen: 
 
2018/1  BESTER, Helmut und Ouyang YAOFU 
  Optimal Procurement of a Credence Good under Limited Liability 
  Economics 
 
2018/2  GROß, Markus, Ulrich RENDTEL, Timo SCHMID und Nikos TZAVIDIS 

Switching between different area systems via simulated geo-coordinates: a 
case study for student residents in Berlin 
Economics 

 
2018/3 GROß, Markus, Ulrich RENDTEL, Timo SCHMID, Hartmut BÖMERMANN 

und Kerstin ERFURTH 
 Simulated geo-coordinates as a tool for map-based regional analysis 
 Economics 
 
2018/4 KONYUKHOVSKIY, Pavel V. und Theocharis GRIGORIADIS 
 Proxy Wars 
 Economics 
 
2018/5 FOX, Jonathan F. und Theocharis GRIGORIADIS 
 A Rural Health Supplement to the Hookworm Intervention in the American 

South 
 Economics 
 
2018/6 VITOLAS,Alise und Theocharis GRIGORIADIS 
 Diversity & Emipre: Baltic Germans & Comparative Development 
 Economics 
 
2018/7 GAENTZSCH, Anja 
 The distributional impact of social spending in Peru 
 Economics 
 
2018/8 SCHREIBER, Sven 
 Are bootstrapped conintegration test findings unreliable? 
 Economics 
 
2018/8 SCHREIBER, Sven 
 Are bootstrapped conintegration test findings unreliable? 
 Economics 
 
2018/9  GRIGORIADIS, Theocharis 
  Aristotle vs. Plato: The Distributive Origins of the Cold War 
  Economics 
 


