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Abstract: Different constraints must be taken into account in school 
timetabling. Part I of this paper provides three major contributions: First, we 
show that several types of important constraints may be modelled using the 
unifying framework of partially renewable resources. Among these constraints 
are: No class, subject, room, and teacher overlaps; class, subject, room, and 
teacher unavailabilities; compactness constraints; preassignment constraints; 
lectures to be given simultaneously; Iunch breaks, etc. Note that compactness 
constraints typically require no free time (other than lunch breaks or time to 
move from one building to another) between lessons for the pupils. Second, 
distribution requirements for lessons of different lengths are modelled in a 
novel way by the use of the so-called multiple mode concept with mode 
identity constraints. Third, we contribute to the distinction of school 
timetabling and course scheduling for universities. In part II of this paper 
parallel greedy randomized methods and genetic algorithms will be presented. 

Keywords: Timetabling, distribution requirements, compactness constraints, 
partially renewable resources, multiple modes, mode identity 

1. Introduction 

The school timetabling problem requires to schedule a set of meetings between teachers and 

pupils over a set of time periods, where some resources must be available and several addi-

tional constraints have to be met. The timetabling problem includes a large variety of 

Problems on different levels of an education system. 

Among the constraints which have to be taken into account are: No class, subject, room, 

and teacher overlaps are allowed; one has to take care of class, subject, room, and teacher 

availabilities; compactness constraints have to be regarded; preassignment of lectures must be 

possible; some lectures have to be given simultaneously; lunch breaks have to be observed, 

etc. Note that compactness constraints typically require no free time (other than lunch breaks 

or time to move from one building to another) between lessons for the pupils. Most of the 

constraints mentioned will be modelled using the unifying framework of partially renewable 

resources. Moreover, it is necessary to distribute lessons of different lengths. These 

requirements are modelled by the use of the so-called multiple mode concept with mode 

identity constraints. 

Timetabling models and methods known so far are closely related to one of the following 

concepts: (i) In graph colouring adjacent vertices must have different colours (cp. e.g. Canga-

lovic and Schreuder 1991, 1992, Kubale and Jackowski 1985); unfortunately, here it is difficult 

or even impossible to incorporate most of the constraints already mentioned. (ii) Multi-index 

transportation problems generalize two-dimensional assignment models in order to make more 

than two items such as classes and teachers tractable (cp. e.g. Junginger 1993). (iii) The 

impact of logic programming approaches is to express constraints via Prolog predicates (cp. 

e.g. Fahrion and Dollansky 1992, Kang and White 1992). (iv) Local search methods such as 

simulated annealing (cp. e.g. Abramson 1991, Dige, Lund, and Raun 1993) or tabu search (cp. 

e.g. Hertz 1991, 1992, Costa 1994) try to escape from local optima. Note that these 

approaches incorporate different constraints in different ways. The focus of this paper is to 

provide a unique framework for modelling different constraints via partially renewable 

resources. 
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The paper is organized as follows: Section 2 provides the problem setting. A mathematical 

Programming formulation is introduced in Section 3 and explained by the use of examples. In 

Section 4 the differences between timetabling for schools and course scheduling for universities 

are analyzed. In addition, our framework is related to that of other authors. Finally, Section 5 

gives a summary and an outline of future work. 

2. Problem Setting 

The outline of this section is as follows: First, we give some motivation and background. 

Second, we introduce the assumptions and the notation in such a way that all parameters are 

directly interpretable w.r.t the problem at hand. Third, we provide transformations such that 

some parameters vanish and others are simpler to State. Subsequently, the model can be 

formulated in Section 3 in a compact way. 

Basically, we assume that teachers have already been assigned to subjects. Obviously, if 

this has to be done by an algorithm, an approach based on the generalized assignment problem 

would be appropriate (cp. e.g. Fisher, Jaikumar, and Van Wassenhove 1986, Cattrysse and 

Van Wassenhove 1992). 

2.1 Background and Motivation 

Before introducing the parameters which are necessary to derive the model subsequently, we 

first present the Situation under consideration in an informal way in order to facilitate 

understanding of the technical details provided below. 

School timetabling models must accommodate the characteristics and regulations of 

specific education systems. Therefore the problem under consideration varies from country to 

country. Consequently we find models and algorithms for schools in Australia (cf. Abramson 

1991), Great Britain (cf. Lawrie 1969, Aust 1976, and Papoulias 1980), Denmark (cf. Dige, 

Lund, and Raun 1993), Germany (cf. Junginger 1986), Japan (cf. Kitagawa and Ikeda 1988), 

the Netherlands (cf. de Gans 1981), Spain (cf. Alvarez-Valdes, Martin, and Tamarit 1994), 

and Switzerland (cf. Osterman and de Werra 1982, Chahal and de Werra 1989), respectively. 

In addition, school timetabling problems are quite different in one country as well as 

depending on the level of the education system addressed. 

More precisely, in Germany in primary schools we have classes in the traditional sense 

(classes 1 to 4), i.e groups of pupils at the same grading level with essentially the same 

teaching program. In secondary schools, we have classes in this sense (classes 5 to 10) and we 

have "classes" which do not have the same curriculum ("classes" 11 and 13). Thus, for secon­

dary schools a model has to be developed which Covers this issue as well. Moreover, we have 

to tackle the problem how to split large teaching units (e.g. six hours math per week) in 



3 

smaller ones and how to schedule them. In fact, the Situation we are confronted with in secon-

dary schools in Germany (and which is the topic of this paper) seems to be the most general 

one which has ever been addressed in the open literature. 

To start with the informal description, we consider timetabling problems where we have 

two types of pupils: 

• typ I pupils (pupils of one class having the same curriculum; class in the traditional sense; 

choose one pupil as the " representative") 

• typ II pupils (pupils of one "class", i.e. with the same grading level, which do not have 

the same curriculum; each pupil is dealt with separately) 

Consider the following instance: As typ I pupils we have the pupils of classes 5a, 5b, 6a, 

6b. As typ II pupils we have pupils 1 and 2 of "class" 12 and pupil 1 of "class" 13, respec-

tively. By relabeling we get the pupils 1 to 7. 

Moreover, we have two types of subjects, too, i.e. there are main (e.g. german, math) and 

subsidiary (e.g. biology) subjects. Once more, by relabeling we get the subjects 1 to 3. Note 

that it is necessary to differentiate between main and subsidiary subjects, because timetables 

with e.g. six hours of (different) main subjects on half a day will not be acceptable. We have 

to formulate constraints on the amount of main subjects to be visited on a whole day or on 

half a day by the pupils (and to be given by the teachers). 

In addition, there are Basic Teaching Units (BTUs). Consider the instance given in 

Table 1. Two pupils have to attend lectures in german, math, and biology, labeled as BTUs 1 

to 4. Note that each BTU is characterized by the attributes length, required teacher, and 

requested typ of room (see below), respectively. 

Table 1: Basic Teaching Units 

pupil | subject BTU 

1 german 1 
1 math 2 
2 german 3 
2 biology 4 

BTUs in general are large teaching units (e.g. six hours math per week) where we have to 

decide how to split them into smaller ones (called blocks) and how to schedule them. This 

Splitting and scheduling will be called " distributing". For the distribution of BTUs we 

introduce modes, blocks, and jobs as in the example of Table 2. 
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Table 2: Distribution of BTUs 

BTU length block job mode costs 

1 2 <f> $ 1 2 Od big 
00 (j) 1 0 
0 0 2 0 

2 3 <t> $ <P 3 4 5 Od big 
000 (j> <p 1 5 
00 0 ^ 2 0 
0 0 0 3 1 

For BTU 1 with a length of 2 hours we have two possible modes of distribution: First, 

two consecutive hours (• ~ 1 hour, <j> ~ 0 hours), i.e. one block of a two-hour lecture and one 

dummy block (i.e. no distribution), and two blocks with a duration of one hour each. 

Analogously, for BTU 2 with the length of 3 hours three modes of distribution are provided. 

Note that an artificial dummy mode 0 (cp. the superscript d) is introduced for technical 

reasons. Moreover, notice that blocks will be denoted as jobs and that costs are associated 

with each mode of processing the jobs of a specific BTU. Finally, it is noteworthy to mention 

that the definition of the dummy blocks secures an identical number of blocks for each BTU 

irrespective of the modes introduced. The details will be explained below. 

Each BTU requires a specific Type Of Room (TOR) as indicated by the following 

example. In Table 3 three TORs are given, # denotes the number of rooms available; the 

rooms are relabeled as indicated. In Table 4 the set of TORs required by each BTU is 

provided. I.e. BTU 2 may either be given in one of the three available classrooms of size 1 or 

in one of the two available classrooms of size 2. BTU 1 must be given in the language 

labaratory. 

Table 3: Labeling of Rooms 

TOR # label 

1 (classroom, size 1) 3 1, 2, 3 
2 (classroom, size 2) 2 4, 5 
3 (lang, lab.) 1 6 

Table 4: Room Requirements 

BTU set of TOR required 

1 1 rW 2 | {1.2} 
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Pupils (types I and II), subjects, teachers, and rooms will be treated as resources. Relabe­

ling the resources then allows to formulate capacity constraints for subsets of periods as out-

lined in the following. Consider the simple instance given in Table 5 where we have two days 

with four a.m.-hours and two p.m.-hours as periods: 

Table 5: Days, Hours, and Periods 

Mon 12 3 4 5 6 

Tue 7 8 9 10 11 12 

Now, we define, e.g., ?1 = {1} ?n = {12}, ?n = {1,...,12}, ?u = {1,2,3,4}, ?lg = 

{5,6}, 7*16 = {7,8,9,10}, and ?17 = {11,12} as Subsets Of Periods (SOPs). Clearly, the period 

subsets ?l to ?12 facilitate to model renewable resources constraints, while ?13 will do this for 

nonrenewable resources. Moreover, ?u to ?17 allow to formulate so-called partially renewable 

resource constraints. Noteworthy to mention, that the period subsets must not be pairwise 

disjoint and that the partially renewable case covers the renewable and the nonrenewable one 

as special cases (cp. Böttcher, Drexl, Kolisch, and Salewski 1996). 

2.2 Assumptions and Notation 

In this subsection, the parameters which are necessary to formulate the model will be 

introduced. Let denote 

T : the number of periods (hours) per week (T e IN) in dexed by t, 1 < t < T. 

II : the number of subsets of periods (II E IN) i ndexed by 7r, 1 < TT< II. 

: a specific subset of periods (!<%-< II); contains periods for which certain 

constraints have to be observed. 

3" : a set of period subsets; in & we have subsets of periods where minimal time lags 

have to be observed; consider in the example of Subsection 2.1 the Situation, that 

?14 and ?15 are elements of ^ (i.e. & = {14,15}), then for some lectures to be 

given on Monday a.m. and p.m. minimal time lags may be regarded. 

L : the number of teachers available (L 6 IN) i ndexed by X, 1 < /< L. 

V : the number of different TORs (V e IN) in dexed by v, 1 < v < V. 

W the number of sets of TORs (W 6 IN) in dexed by w, 1 < w < W. 



a set of TORs; clearly, each Zw, 1 < w< W, must contain at least one room type, 

i.e. Z t <p. W 

the number of grading levels having the same curricuhim (Q GWQ) indexed by q, 

0 < q < Q. 

the number of grading levels which do not have the same curricuhim (Q e WQ) 

indexed by q, 0 < q < Q. 

(1< q<Q) the number of classes with the same grading level q having the same 

curriculum, indexed by g, 1 < g < G-. 

the total number of classes, i.e. with and without the same curriculum (HeIN) 

indexed by h, 1 < h < H; clearly we have 

H = 5$ G- +Q. q=l q 

(1< q<Q) the number of type II pupils (S~ e IN) indexd by s, 1 < s < S~. 

(1 < h < H) the number of main subjects of class h (Fh e INQ) in dexd by f, 0 < f < Fh. 

(l<h<H) the number of subsidiary subjects of class h (F^6WQ) indexd by f, 

0<f<Fh. 

(1 < h < H) the total number of subjects (F^ e IN) in dexed by f, 1 < f < Ffa; clearly, we 

have Fh = F^ + Fh. Notice, that (h,f) denotes a BTU introduced above. 

(l<h<H, l<f<Fh) the number of blocks of BTU (h,f) (BhfelN) indexed by b, 

1 < b < Bhf; note that Bhf must not be equal to the length of BTU (h,f). 

(l<h<H, 1 <f<Fh) the number of modes of BTU (h,f) (MhfelN) indexed by m, 

0 < m < Mhf, i.e. including the dummy mode 0. 

(1 < h < H, 1 < f < Fh, 1 < b < Bhf, 0 < m < Mhf) the length of block b of BTU (h,f) in 

m0(tem(<WV-

(l<h<H, 1 <f<Fh, 0<m<Mhf) the costs of processing BTU (h,f) in mode m 

(l<h<H, l<f<Ffa, l<b<Bhf, 0< m<Mhf) the set of periods in which block b of 

BTU (h,f) to be processed in mode m must not be finished. 
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: (l<h<H, l<f<Fh) the set of BTUs (0,() which must be processed in parallel 

with BTU (h,f); more precisely: 

öh{ := { (6,0 I 1< 0<H, 1< C<F0 A all blocks of BTU (6,0 must be processed 

in parallel with all blocks of BTU (h,f)} 

Clearly, this definition requires, that all the BTUs (6,0 must have equal length 

and that they have to be processed in the same mode. 

: (1 < h < H, 1 < f < Fh) the set of BTUs (6, Q to which a minimum time lag must be 

regarded; more precisely: 

^hf := { (ö'0 I 1< ß<H, 1< (<Fg A for all blocks ß of BTU (ß,() it holds: 

block ß of BTU (9,() can only be scheduled after block b of BTU (h,f) in 

the SOP (nE 5?) if a minimum time lag is regarded} 

Clearly, if the minimal time lag has to be regarded in both " directions" then 

must contain BTU (h,f) as well. In addition, if there is no time lag to any of the 

of the BTUs (ß,() # (h,f) then we have £faf = 0. 

ah.f0( ' ß<H, l<f, (<F^) minimal time lag between BTU (0,0 E £hf and BTU 

(h,f) in periods (^hf0C 6 «0). 

For the purpose of a compact formulation of the model some of the parameters introduced 

so far will be considered as resources in the sequel. This is done for the (real) resources 

teacher, type I and II pupils, and rooms, respectively. In addition, subjects will be considered 

as (abstract) resources as well. 

Resource usages will be defined for block b of BTU (h,f) processed in mode m (l<h<H, 

1 <f< Fh, l<b<Bfaf, 0<m<Mhf), resource usage is defined in units per period. For the sake of 

shortness, (h,f,b) will denote block b of BTU (h,f). Note that "k" is used as denotator for 

resource usage, while "K" will denote resource availability. 

kLhfbmi : usage of resource teacher l(l<l< L); more precisely: 

kLhfbmZ := (h,f,b) is given by teacher l in mode m # 0 (kLhfbmi := 0, 

otherwise) 

usage of resource class (q,g) (l<q<Q, l<g< G-); more precisely: 

kKjjfbmqg := (h,f,b) is given for class (q,g) in mode m # 0 (kKhfbm-g : = 0, 

otherwise) 

kShfbmqs : resource pupil (q,s) (l<q<Q, l<s< S~); more precisely: 

kShfbmqs := (h'f'b) is 8iven for pupil (q>s) in mode m # 0 (kShfbm-B := 0, 

otherwise) 

^hfbmqg" 
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kRL^ : usage of resource TOR w (1 < w < W); more precisely: hfbmw ° 
kRhfbmw :=1, if (h,f,b) is given in room type w m mode m # 0 (kRhfbmw := 0, 

otherwise) 

kFhfbinöC : usage of resource BTU (0,0 (1<0<H, !<(<Fg); more precisely: 

:= VW "h = f A f = ( A m# 0 (kF^^ := 0, otherwise) 

kUhfbmqg: m2LSe of resource class (%g) (l<q<Ö, l<g< Gß); more precisely: 

kU, _ - : = 1, if (h,f,b) of the main subject (h,f) is given for class (q,g) in mode 
hfbmqg 

(kUhfbm^g : = 0, otherwise) 

kOhfbm~s = usage of resource pupil (q,s) (1 < q< Q, 1 < s < S~); more precisely: 

kO, _ ~ : = 1, if (h,f,b) of the main subject (h,f) is given for class (q,g) in mode niDQlQS 
m^°(kOhfbmq3:=°'0therWiSe) 

Resource availabilities will be defined for SOPs (1 < 7r< II). They are given in resource 

units (hours, rooms, etc.) 6 WQ. 

KLj^ : availability of resource teacher 1(1<1<L); more precisely: 

KL^: = maximum number of hours given by teacher l in SOP ? 

KK-gT : availability of resource class (q,g) (1 < q < Q, 1 < g < G-); more precisely: 

KK«gT : = maximum number of hours given for class (q,g) in SOP 

KS~s5r : availability of resource pupil (q,s) (1 < q < Q, 1 < s < S~); more precisely: 

KSqSir: = maximum number of hours given for pupil (q,s) in SOP 

KR^^ : availabilit y of resource TOR w (1 < w < W); more precisely: 

KR : = maximum number of hours TOR w is available in SOP ? 

•' availability of BTU (h,f) (1 < h < H, 1 < f < F^); more precisely: 

KFhfT: = maximum number of blocks of BTU (h,f) in SOP 

KUqgx : availability of the main subjects of class (q,g) (l<q<Q, 1 <g<GJ; more 

precisely: KU^ : = maximum number of hours of the main subjects for class 

(q,g) in SOP ?r 
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KO~S7r = availability of the main subjects of pupil (q,s) (l<q<Q, 1 <s<S~); more 

precisely: : = maximum number of hours of the main subjects for pupils 

(q,s) in SOP 

Note that kUhfbm-g in addition to is necessary in order to model constraints for 

the number of main subject hours to be given within specific SOPs (especially for half days as 

outlined in Subsection 2.1). The same is true for kO, _ - / kS, _ - , for KU- / KK- , ' hfbmqg ' hfbmqg qgir ' qgir' 
and for KO- / KS- , respectively. qsir ' qsT r J 

Based on these parameters now a mathematical programming model could be stated. But, 

on account of the large number of parameters and indices it would be difficult to get insight 

into the structure of the model. Moreover, simple transformations cut down the large set of 

parameters and allow then to State a quite compact model. 

2.3 Transformations 

In the following we describe how to transform the parameters introduced in the previous 

subsection. Although the basic idea of these transformations is simple, their formal description 

is burdensome. Therefore, we refrain from the tedious task of describing the transformations 

precisely. Here we only give a flavour of what to do. (For the example of Subsection 3.2 the 

transformations are given in the Appendix.) We use the operator V" in order to point to a 

specific transformation. 

U <- (1< h<H, 1 <f<F^) the number of BTUs indexed by u, l<u<U; then, (h,f) is 

replaced by u any time it occurs. 

Now, BTUs u and 6 with 0e<?u which have to scheduled in parallel are unified; 

consequently, e.g. ^ubm, £u, c^, and the resource usages have to be adjusted. 

J «- (l<u<U, l<b<B)the number of jobs indexed by j, 1 < j < J; then, (u,b) is replaced 

by j any time it occurs. 

Now, the parameters a^ and eu have to be introduced; au (eu) points to the first 

(last) job of BTU u. 

R «- (1</<L, l<b<Bu,l<q<Q, l<g<G-, l<q<Q, l<s<S-, l<w<W) the number of 

resources indexed by r, 1 < r < R. 

kjmr t^3e number of units of resource r used by job j being processed in mode m (1 < j < J, 

0<m<M.,l<r<R); clearly, without citing the indices completely, k^ Substitutes 

kL, kK, kS, kR, kF, kU, and kO appropriately. 
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K f the availability level of resource r in SOP TT ( l<r<R, 1< w<U); clearly, without 

citing the indices completely, Krjr Substitutes KL, KK, KS, KR, KF, KU, and KO 

appropriately. 

Now, having defined all the parameters in a convenient way, the mathematical program-

ming model can be stated easily. 

3. Model 

The outline of this section is as follows: First, we provide the mathematical programming 

formulation. Second, we show by examples what we are able to model with the formulation 

provided. 

3.1 Mathematical Programming Formulation 

In the following the model is stated for two reasons: (i) First of all it precisely describes what 

we want to do in terms of optimization under constraints. (ii) Second and even more impor-

tant, the model will be used in part II of this paper to provide benchmark solutions for small 

instances in order to evaluate the Performance of heuristics. 

The model is formulated in terms of binary optimization. The decision variables couple 

jobs, modes, and periods, respectively; they are defined as follows: x^ = 1, if job j is 

assigned to mode m and ßnished in period t (x^ = 0, otherwise). 

Now, the equations (l)-(7) represent the model. 

u Mu T 
min E S E c x (1) 

u=l m=0 t=l Um aumt 

Mu 
St- Joj* = ° (l<u<U;au<j<eu) (2) 

jm 

Mu T 
E. A \.m« " 1 (1 < U < U) (3) 

m=0 t=l aymt 

T T 
tlx xaumt ~ Vt (l<u<U;au + l< j<eu;0<m<Mu) (4) 

U Mu t+djm-l 
2 

u=i m=o j=au J"" te? p=t 
S. A kjm, S l VPSK.. (1 < r < R ; 1 < T < ri) (5) 
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Mu My t+<TUy+dhm"l 

n=1 p=t 
pe?T 

(1 < u < U ; au < j < eu; V y e £u; ay < h < ey; V r e 9\ V t 6 (6) 

xjmt e (l<u<U;au< j<eu;0<m<Mu; 1 < t < T) (7) 

Some explanations shall be given as follows: Equation (1) minimizes the sum of costs of 

processing the first block of each BTU in the chosen mode m. To take the first job w.l.o.g. is 

valid in conjunction with the mode identity-constraints (4). Equations (2) take care of the set 

of forbidden periods. Equations (3) force the first block of each BTU to be chosen in one of 

the available modes. (3) and (4) together secure that all blocks of each BTU are processed 

exactly once in the same mode. Resource constraints are covered by (5). Constraints (6) have 

a look on the minimal time lags; clearly, it is sufficient to disregard mode m = 0. 

While many details of the model so far have not been discussed thoroughly, we refer the 

reader to Subsection 3.2 where the modelling capabilities will be illustrated to some extent by 

examples. 

We finish Subsection 3.1 with two remarks: (i) The model (l)-(7) closely relates to multi-

mode resource-constrained project scheduling. More specific, it generalizes the multi-mode 

concept by the introduction of the mode identity-constraints. In addition, the constraints (2) 

and (6) are entirely new, because usually they are not covered by project scheduling models. 

(ii) Disregarding the mode m = 0 the feasibility variant of the model (l)-(7) is NP-complete 

while the optimization problem is NP-hard (cf. the complexity results given in Salewski, 

Schirmer, and Drexl 1996 as well as the related work provided in Even, Itai, and Shamir 1976, 

Garey and Johnson 1979). In fact, the only reason for introducing the dummy mode m = 0 is 

to penalize infeasibility which clearly cannot be excluded a priori. 

3.2 Examples and Dlustrations 

Clearly, one large instance could serve to illustrate all the relationships covered by the model 

(l)-(7). We prefer, however, to provide insight into local mechanisms by giving some pieces of 

data. 

To start with, first we will show that constraints (5) for resources r with 0 < k. < 1 do 

not cover the case where only a subset of jobs is scheduled in one SOP. Consider the five 

period instance given in Figure 1. Assume that (blocks) jobs 1 and 2 with klmr = 1^ = 1/2 

belong to BTU 1. Moreover, assume that at most one of the two blocks must be processed in 

SOP ?l = {2,3,4}. Clearly, then constraints (5) only take into account one of the two hours 

per job and thus the schedule depicted in Figure 1 would become feasible. 

jmi 
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Figure 1: Illustration of Constraints (5) 

Job l 

Job 2 

This case could be covered by constraints (5)1. The operator fa] denotes the smallest 

integer greater than or equal a. Awfully this operator makes the constraints (5)1 nonlinear 

and this would prevent to solve instances by the use of commercial MlP-solvers. 

u Mu eu 
E E E 

u=l m=0 j=au 

t+djm-1 
k. E E 
JmrtP=t jmp 

< K 
rir 

(1 < r < R ; 1 < 7r < II) (5)' 

Therefore, we proceed as follows: The instance generator described in part II of this paper 

only generates instances in which the Situation described in Figure 1 might not occur. Then, 

the instances remain tractable with MlP-solvers. Moreover, the approximation methods pre-

sented in part II of this paper cover constraints (5)' as well. 

Note that compactness constraints may be taken into account by constraints (5)' also. 

One has to define unavailabilities for the resources teacher, class, and pupil on SOPs 

appropriately. Suppose e.g. one class with a total of 28 hours of lessons per week. Now, 

compactness can be enforced by allowing lessons for this class only in the first six periods of 

each day from Monday to Friday. 

Let us illustrate now constraints (6). Consider the example given in Figure 2. Assume 

?1 = {1,2,3,4,5}, ?2 = {6,7,8,9,10}, 9 = {1,2}, BTU 1 and BTU 3 with three jobs each, i.e. 

=1, ßj = 3, a3 = 6, e_ = 8, respectively. Moreover, assume that the minimal time lag 

= 2 between jobs of BTU 1 and jobs of BTU 3 has to be regarded. Now, although the 

distance between jobs 2 and 8 is 0 periods only, constraints (6) are preserved, because 

9 = {1,2} restricts the application of the distance constraints to SOPs belonging to different 

days. 

Figure 2: Illustration of Constraints (6) 
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We now consider a small but nontrivial instance which Covers some of the constraints 

simultaneously. A timetable for two days, say Monday and Tuesday, each with four periods, 

has to be constructed. The following Situation arises: 

• First, there is one class having the same curriculum with two BTUs, i.e. the three hour 

main subject German given by teacher 2 in a classroom and the two hour subsidiary sub­

ject Biology given by teacher 1 either in a classroom or in a biology room. If both 

Biology and German will be given on one day and Biology preceedes German then at least 

an one hour break must be scheduled. Preferably German should be split into a two hour 

and an one hour block (mode 1), but three one hour blocks (mode 2) would be acceptable 

also. Biology should be split into two one hour blocks (mode 2), but one two hour block 

(mode 1) would be acceptable also. 

• Second, there is one class without the same curriculum consisting of four pupils. Pupils 1 

and 2 have two hours English given by teacher 1 in a classroom, while pupils 3 and 4 

have two hours Mathematics given by teacher 2 in a classroom also. Both English and 

Matheraatics are subsidiary courses and have to be scheduled in parallel. Both English 

and Mathematics should be split into two one hour blocks (mode 2), but one two hour 

block (mode 1) would be acceptable also. 

• The following constraints have to be regarded: Only one block of each BTU is allowed to 

be scheduled per day, disregarding the length of the block. For the class at most two 

hours of main subjects are allowed per day, on Tuesday at most three hours in total. For 

the pupils, at most three main hours are allowed per day, but neither on Monday nor on 

Tuesday the fourth hour is available, i.e. periods 4 and 8 are excluded. Teacher 1 (2) is 

not available for the first Tuesday (Monday) period, i.e. in period 5 (1). There are two 

classrooms and one biology room. 

W.r.t. the notation introduced in Section 2, this timetabling Situation can be expressed by 

the following parameter instantiations: 

• Periods 
T =8, n =11, ?i={l}, ..., ?g = {8}, ?9 = {1,...,8}, ?10 = {1,...,4}, ?n = {5,...,8}, 

9 = {10,11}. 

• Teachers, classes and subjects 
L = 2, Q = 1, Gj = 1, Q = 1, Sj =4, H =2; 

P1 = 1' V !' Fl Bl,l =3- Ml,l =% Bl,2=2'Ml,2 =2; 

^2 = ^2 = 2' F2 = 2' B2,l = B2,2 = 2' M2,l = M2,2 = 2' 

• Types of rooms 

V = 2 (classroom and biology room), W = 2, Z1 = {1} (i.e. classroom), Z2 ={1,2} (i.e. 

classroom and biology room). 



Forbidden periods, minimal time lags, and parallel BTUs 

'I.w-'IAV-Vw-W-*1,5*- ev-«W»' £M=£2,1 = 

£2,2 = S2,l = S2,2 ' 51,1 - Sl,2 - * 

Duration of blocks (jobs) and costs (cf. Table 6) 

Table 6: Durations 

dl, i,b>m 
b dl,2,bim 

dzilibiim 
d2,2ib>m 

b 
dl, i,b>m 

1 2 3 

dl,2,bim 
dzilibiim 
d2,2ib>m 1 2 

0 0 0 0 0 0 0 
m 1 2 1 0 m 1 2 0 

2 1 1 1 2 1 1 

For the costs we assume (100,1,3), c^ = c^= c^= (100,3,1), 

m = 0,1,2. 

Resource usages (cf. Table 7; modes m = 0 and entries equal 0 are omitted) 

Table 7: Resource Usages 

h 1 2 

f 1 2 1 2 

b 1 2 3 1 2 1 2 1 2 

m 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 

kL 1 1 1 1 1 1 1 
2 1 1 1 1 1 1 1 1 

kK (1.1) 1 1 1 1 1 1 1 1 

kS (1.1) 
(1.2) 
(1.3) 
(1.4) 

1 1 
1 1 

1 
1 

1 1 
1 1 

1 
1 

kR 1 1 1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

kF (1.1) 
(1.2) 
(2.1) 
(2.2) 

i 1 1 1 1 
i i 1 

1 1 1 
* 1 1 

kU (1.1) 1 1 1 1 1 

kO (1.1) 
(1.2) 
(1.3) 
(1.4) 
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kR equals 1 whenever a block uses a TOR. Tims, each block of BTUs German, English 

and Mathematics to be given in a classroom requests TOR 1 as well as TOR 2. While the 

usage of TOR 1 lowers the number of classrooms available in a period, the consideration of 

TOR 2 guarantees that the total number of biology rooms and classrooms is corrected as well. 

Note that kF equals j if the duration of the block in the corresponding mode is 2. Neither 

English nor Mathematics are main subjects and thus there is no request for the resource kO. 

* Resource availabilities (cf. Table 8) 

Table 8: Resource Availabilities 

1^1 = 1 £
 

II oo
 II 

TT 1 2 3 4 5 6 7 8 9 10 11 

KL 1 
2 

0 
0 

KK (1,1) 3 

KS (1.1) 
(1.2) 
(1.3) 
(1.4) 

0 0 
0 0 
0 0 
0 0 

KR 1 
2 

22222222 
33333333 

16 
24 

8 8 
12 12 

KF (1.1) 
(1.2) 
(2.1) 
(2.2) 

1 1 
1 1 
1 1 
1 1 

KU (1,1) 2 2 

KO (1.1) 
(1.2) 
(1.3) 
(1.4) 

3 3 
3 3 
3 3 
3 3 

Note that in Table 8 only those entries are reproduced which are unequal |?J. Each 

subject may be given at most once per day; thus KF = 1 in the SOPs 10 and 11. The entries 

for KO are redundant since pupils 1 to 4 have no main subjects (cp. kO in Table 7). 

Now, all the parameters of the example are instantiated. Clearly, in the following the 

transformations outlined in Subsection 2.3 have to be performed. For the sake of completeness 

the transformations are reproduced in the Appendix. 

Figure 3 presents a feasible and optimal timetable for the example. The small numbers 

denote the periods 1,...,4 (Monday) and 5 8 (Tuesday). The abbreviations in the boxes 
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represent the blocks to be given. Obviously, there is no need for explaining the abbreviations 

used. 

Biology is processed in mode 2, English and Mathematics are processed in mode 2 as 

well, and Germany is processed in mode 1. It is easy to verify that all the constraints are 

satisfied. Note that the jobs scheduled in the "left column" of each day require teacher 1, 

wbile the "right" ones require teacher 2, respectively. The subsidiary subjects English and 

Mathematics are scheduled in parallel and given by both teachers simultaneously. Biology is 

scheduled to be given in a classroom, because on Tuesday no other room is available. 

Figure 3: Timetable for the Instance 

Bio 

Eng Hat 

Ger 

Bio 

Eng Hat 

Ger 

4. Couise Scheduling vs. Timetabling 

In literature, usually no clear distinction is made between timetabling and course scheduling. 

There seems to be confusion (or at least ambiguity) on the different topics of the former and 

the latter. Clearly, it is really not sufficient to define the borderline between both categories 

as a function of the problem size (as some authors do). This section aims in pointing out the 

differences between three important problem categories, i.e. school timetabling, academic 

course scheduling, and other closely related timetabling problems, respectively (cf. Figure 4). 

Figure 4: Three Important Problem Categories 
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To start with, we compile the issues which are a "must" for any of the three problem 

categories, at least from our point of view. Then, we give a list of issues, which are optional. 

Note, that it is sufficient to use quite general terms like "job" (for teaching units, courses, 

etc.) and item (for classes, teachers, rooms, etc.) at this level of abstraction. Moreover, it 

does not matter whether the respective issue is dealt with as part of the constraints or as part 

of the objective function in a penalty approach, because this is usually done w.r.t. a specific 

methodology. 

• Necessary Issues 

Job completion, no overlaps of items, item availability, preassignments. 

• Optional Issues 

Room categories, parallelism of jobs, precedence constraints between jobs, changeover or 

setup times, workload constraints, room preparing constraints, breaks, preferences for 

rooms and/or hours, distribution requirements, compactness constraints, etc. 

Now, by definition the distinction between the problem categories mentioned above must 

be done w.r.t. the presence/absence of the optional issues only. In addition to the (small) list 

of necessary issues our experience requires a few optional issues only as a prerequisite for the 

clustering of a specific approach. To wit: 

• School timetabling 

The timetable must satisfy compactness constraints (rigorously) for pupils and (modestly) 

for teachers. In addition, the large teaching units have to be distributed over the week in 

order to get acceptable timetables. Other optional issues might be accommodated in 

specific situations. 

• Academic course scheduling 

In contrast, at universities there do not exist compactness constraints, neither for 

students nor for professors. In addition, the teaching units per week are not that large 

that they have to be split into smaller peaces of work. But, a timetable for universities 

will only be acceptable if and only if it takes care of the professors' preferences for rooms 

and/or hours (at least in Germany). 

• Other timetabling problems 

No general guideline can be established. It depends on the specific timetabling problem 

under consideration which optional issues become necessary. 
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Clearly, this distinction is not the same which has been provided by other authors. It is 

stated e.g. by de Werra 1985 that we are confronted with academic course scheduling when 

there is no fixed curriculum for the students. The problem setting provided in this paper 

definitely shows that there must be other issues which allow to discriminate between school 

timetabling and academic course scheduling. 

Based on this Classification and in addition to the references already cited in Section 1, a 

short survey of related work will be given as follows (cp. the bibliography provided by 

Schmidt and Ströhlein 1980): 

• School timetabling 

Aubin and Ferland 1989 deal with a "large scale" timetabling problem. Abramson 1991 

considers pupils, teachers, subjects, and rooms as relevant items, yet in a more restricted 

form than we do. For the Solution of the model he suggests a simulated annealing 

procedure. Cangalovic and Schreuder 1991 consider the case that lectures of different 

lenghts have to be scheduled and they provide an exact graph colouring algorithm. 

• Academic course scheduling 

Tripathy 1980 considers a course scheduling problem, which does not allow to take care of 

rooms of different sizes, but which considers the professors' preferences for periods. 

Ferland and Roy 1985 consider two subproblems; roughly speaking, one coordinates the 

temporal requirements, whereas the other looks at the requirements for rooms. An 

interactive man-machine approach is described in Mulvey 1982. Dyer and Mulvey 1976 

and McClure and Wells 1984 consider the problem of assigning professors to subjects, 

wheras Shih and Sullivan 1977 and Dinkel, Mote and Venkataramanan 1989 in addition 

compute a timetable, yet in a rather restricted way. A general model is described in 

Heinrich 1984 and Bettin 1986. Approaches based on graph colouring may be found in de 

Werra 1985, Hertz 1991, 1992, and Kiaer and Vellen 1992. Dowsland 1990 models and 

solves a problem where the disappointments of the students have to be minimized. 

• Other timetabling models 

In this category the farmost relevant problem is the examination scheduling problem 

which has been dealt with in, e.g., White and Chan 1979, Mehta 1981, Carter 1986, and 

Balaknshnan, Lucena, and Wong 1992, respectively. A College timetabling problem is 

considerd in Tripathy 1980. 
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5. Summary and Outline of Future Work 

In this paper we propose a new model for timetabling which addresses most of the items which 

are relevant for applications: No class, subject, room, and teacher overlaps, are allowed; one 

has to take care of class, subject, room, and teacher availability; compactness constraints have 

to be regarded; preassignment of lectures must be possible; some lectures have to be given 

simultaneously; lunch breaks have to be observed, etc. Most of the constraints mentioned 

have been modelled using the unifying framework of partially renewable resources. Lessens of 

different lengths are distributed by the use of the so-called multiple mode concept with mode 
identity constraints. 

Figure 5: Systems Survey and Synthesis 

User Interface 

Figure 5 gives an overview of the system built so far, i.e. it shows what we already did 

and what we still have to do. The instance generator reads the assumptions firom an input file. 

The raw data generator which is part of the instance generator creates an Output file in terms 

of Subsection 2.2 which is directly interpretable by the user. Then, the raw data are 

transformed into the model data. They are used as input for methods, i.e. a modelling 

language which creates the MPS-file for a general purpose MlP-solver, as well as for special 

purpose methods. Besides the model data file, the model data generator creates an 

Information file (for backward transformation). This file and the model Solution file allow to 

calculate a timetable which presents all the Information not in terms of the (internal) model, 
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but in terms of the specific application under consideration. So far, we did not code the user 

interface, although this clearly is a dominating prerequisite for the systems use. 

In part II of this paper, we present greedy randomized and genetic algorithms. We 

provide an instance generator for the generation of a representative set of instances. The 

generator along with a Statistical model is used for a thorough experimental evaluation of the 

methods. 

Appendix: Transformations for the Example of Subsection 3.2 

First, we relabel the BTUs {(h,f)} = {(1,1),(1,2),(2,1),(2,2)} to the U =4 BTUs 1, 2, 3, and 4, 

respectively. Thus, we get Qz = {4} and = {3}. BTUs 3 and 4, which have to be processed 

in parallel, establish the new BTU 3 with c3m = (200,6,2) for m = 0,1,2. Table A.1 reproduces 

part of the resource usages after the transformations (new entries are underlined). 

Table A.1: Resource Usages with Parallel BTUs 

u 1 2 3 

b 1 2 3 1 2 1 2 

m 1 2 1 2 1 2 1 2 1 2 1 2 1 2 

kL 1 

2 
1 1 1 

1 1 1 1 1 
I 1 

I 
1 

• 

kR 1 
2 

1 1 
1 1 

1 1 
1 1 

1 
1 1 1 1 

2 2 
2 2 

2 
2 

kF 1 
2 
3 

i i 1 1 1 
i i 1 

i1 1 

• 

Now, the blocks of the BTUs are transformed to seven jobs. Finally, the resources are 

transformed to R = 17 resources. (Note, that we now have 3 instead of 4 resources KF.) For 

the sake of completeness in the following all transformed parameters are reproduced. 

T = 8 number of periods 

II = 11 number of period subsets 

period subsets 

= {1} Ts = {8}, Tw ={1 4}, ?u = {5,...8} 



21 

9= {10,11} set of SOPs 

U = 3 number of BTUs 

J = 7 number of jobs 

a , e first, last job of BTU u U U J 

a1 = 1 a2 = 4 a3 = 6 (first job) 

ex =3 e2 = 5 eg =7 (last job) 

R = 17 number of resources 

number of modes of BTU u 

= 3, Mg = 2, Mg = 2 

djm duration of job j in mode m (cf. Table A.2) 

Table A.2: Mode Dependent Job Durations d. jm 

"jm i l 2 3 4 5 6 7 

0 , 0 0 0 0 0 0 0 
m 1 2 1 0 2 0 2 0 

2 1 1 1 1 1 1 1 

c costs of BTU u in mode m um 
clm = (100,1,3), c2m = (100,3,1), c3m - (200,6,2) 

M. set of forbidden periods jm 
i-w={l,5},y41={l,5},Jf61 = {l,5} 

£ set of BTUs with minimum time lags 

V« 

a minimum time lags UV ° 

"2,1 = 1 

The BTUs, jobs, modes, and requested resources are collected in Table A.3. Note that the 

mode 0 has been omitted, because no resource is required at all. 

Table A.3: BTUs u, Jobs j, Modes m, and Requested Resources r 

U l 2 3 

j l 2 3 4 5 6 7 

m 1,2 1,2 1,2 1,2 1,2 1,2 1,2 

r 2,3,8, 2,3,8, 2,3,8, 1,3,9, 1,3,9, 1,2,4, 1,2,4, 
9,10,13 9,10,13 9,10,13 11 11 5,6,7, 5,6,7, 

8,9,12 8,9,12 
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The transformed resource usages are presented in Table A.4, while Table A.5 

provides the transformed resource availabilities. 

Table A.4: Resource Usages k.^ after Transformations 

j 1 2 3 4 5 6 7 

m 1 2 1 2 1 2 1 2 1 2 1 2 1 2 

i 1 1 1 1 1 1 
2 1 1 1 1 1 1 1 1 
3 1 1 1 1 1 1 1 1 
4 1 1 1 
5 1 1 1 
6 1 1 1 
7 1 1 1 

r 8 1 1 1 1 1 2 2 2 
9 1 1 1 1 1 1 1 1 2 2 2 
10 i 1 1 1 1 
11 i 1 1 
12 i 1 1 
13 1 1 1 1 1 
14 
15 
16 
17 

Table A.5: Resource Availabilities K after Transformations r* 

| IM -1 

00 II II 

TT 12345678 9 10 11 

1 0 
2 0 
3 3 
4 0 0 
5 0 0 
6 0 0 
7 0 0 

r 8 22222222 16 8 8 
9 33333333 24 12 12 
10 1 1 
11 1 1 
12 1 1 
13 * 2 2 
14 3 3 
15 3 3 
16 3 3 
17 3 3 

Table A.6 provides a feasible Solution in terms of the binary variables x. .. For 
jmt 

the sake of readibility variables x. =0 are omitted. 
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Table A.6: Feasible Solution x.mt (V j, V m, V t) 

j 1 2 3 4 5 6 7 

m 0 12 0 1 2 0 1 2 0 12 0 12 0 12 0 1 2 

l 1 1 
2 1 
3 

t 4 1 
5 
6 1 
7 1 
8 1 
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