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Abstract 

In this paper we present an exact Solution procedura of the branch-and-bound type for solving 

the muti-mode resource-constrained project scheduling problem. The simplicity of the enumeration 

scheme enables a compact representation of the current state of the search process. This represen-

tation can be employed to formulate and prove search tree reduction schemes which highly increase 

the Performance of the algorithm. Among the benefits of the approach are ease of description, 

ease of Implementation, ease of generalization, and, additionally, superior Performance of the exact 

approach as well as reasonable heuristic capabilities of the truncated method. 

The procedure has been coded in C and implemented on a personal Computer as well as on a Work­

station. In the second part of the paper we present the results of our experimental investigations. 

The experimental results obtained by using the Standard project generator ProGen demonstrate a 

superior Performance of the exact and heuristic approach. The size of the instances that can be 

solved to optimality has been nearly doubled. 

Keywords: Project Scheduling, Resource Constraints, Multiple Modes, Branch-and-Bound, Heu­

ristic, Computational Results. 

1 Introduction 

Whereas the Standard methods of project scheduling, CPM and MPM, base on the assumption of 

unlimited availability of the resources involved, the modern concepts include more realistic aspects. 

In general, the availabilities of the resources involved are limited. 

Consequently, numerous publications have dealt with exact methods for solving the so-called single-

mode resource-constrained project scheduling problem (SRCPSP) (cf. e.g. [4], [5], [6], [17], [27]), 

where each of the activities comprising the project has to be performed in one prescribed way (mode) 

using certain amounts of the resources provided. The objective considered is, as performed by CPM 

and MPM, the minimization of the makespan. Recent advances have incorporated a little more 

of reality. The activities can be executed in one out of several modes. The modes reflect alternative 

combinations of resources and belonging quantities employed to fulfül the tasks related to the activities. 

The activity duration is a discrete function of the employed quantities, that is, using this concept e.g. 

working-off an activity can be accelerated by raising the quantities Coming into operation (time-

resource-tradeoff). Moreover, by raising the quantities of some resources and reducing the quantities 

of others the resource substitution (resource-resource-tradeoff) can be realized. The problem at hand 

is the multi-mode resource constrained project scheduling problem (MRCPSP), which is commonly 

considered with makespan minimization as objective. 
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Using the categorization scheine proposed by Slowinski (cf. [19], [20]) and Weglarz (cf. [31], [32]) we 

distinguish three categories of resources required for the execution of the project. Namely, renewable, 

nonrenewable and doubly constrained resources. 

Renewable resources are available on a period-by-period basis, that is, the quantities available are 

renewed from period to period (hour, day, week, month). The per-period availability may be constant 

or vary from period to period. Manpower, machines, fuelflow and space are renewable resources. 

In contrast to the renewable resources, nonrenewable ones are limited on a total project basis, that is, 

instead of a limited per-period usage of the renewable resources we have a limited overall consumption 

of nonrenewable resources for the entire project. Money, energy and raw material belong to this 

category. 

Resources which are limited on total project basis as well as on per-period basis are called doubly 

constrained. Money represents a resource of this type if beside the total project expenditures the 

per-period cashflow is limited. Manpower can be a doubly constrained resource, too, if for example a 

skilled worker can only spend a limited number of periods on the project. 

Whereas the exact methods for the single-mode problem are well documented in the literatnre the 

multi-mode problem has attracted less attention (cf. [12], [15], [16], [23], [25], [28], and [29]). We 

will present an enumeration scheme for optimaüy solving the multi-mode resource-constrained project 

scheduling problem (MRCPSP) with makespan minimization as objective. The basic scheme is gene-

ralized for dealing with any regulär measure of Performance and enhanced by powerful acceleration 

schemes. The approach considerably extends the precedence tree guided enumeration scheme propo­

sed by Patterson et al. (cf. [15], [16]). The benefits of the approach are (1) ease of description, (2) 

ease of Implementation, (3) ease of generalization, (4) superior Performance of the exact method and 

(5) reasonable heuristic capabilities of the truncated method. 

The paper is organized as follows: Section 2 is devoted to the detailed description of the model under 

consideration. Section 3 addresses the basic branch-and-bound procedure. Section 4 presents search 

tree reduction techniques and Section 5 draws the conclusions. In the second part of the paper we will 

present the results of our thorough computational study. 

2 The Model 

We consider a project which consists of J activities (jobs, tasks). Due to technological requirements 

precedence relations between some of the jobs enforce that a job j, j = 2,..., «7, m ay not be started 

before all its predecessors h, h € Vj, are finished. The structure of the project is depicted by a so-
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called activity-on-node (AON) network where the nodes and the arcs represent the Jobs and precedence 

relations, respectively. The network is acyclic and numerically labelled, that is an activity j has always 

a higher number than all its predecessors. W.oJ.o.g. activity 1 is the only start activity (source) and 

activity J is the only finish activity (sink). 

Each activity j, j = 1,...,/, may be executed in one out of Mj modes. The activities may not be 

preempted and a mode once selected may not change, i.e. a job j once started in mode m has to be 

completed in mode m without Interruption. Performing job j in mode m takes djm periods and is 

supported by a set R of renewable, a set N of nonrenewable and a set D of doubly constrained resources. 

Considering a horizon, that is, an upper bound T on the project's makespan, we have an available 

amount of K^t (K^t) units of renewable (doubly constrained) resource r, r 6 R (r € D), in period t, 

t = 1,.. .,T. The overall capacity of the nonrenewable resource r, r € N, and doubly constrained 

resource r, r € D, is given by K" and Kf, respectively. If job j is scheduled in mode m then kp-mr 

units of renewable resource r, r £ R, are used and kjmr units of doubly constrained resource r, r € D, 

are consumed each period job j is in process. Additionaüy, kjmr units of nonrenewable resource r, 

r e N, are consumed. The parameters are summarized in Table 1 and assumed as integer-valued. The 

objective is to find a makespan minimal schedule that meets the constraints imposed by the precedence 

relations and the limited resource availabilities. Clearly, since the doubly constrained resources can 

easily be taken into account by appropriately enlarging the sets of renewable and nonrenewble resources 

they do not have to be considered explicitly. 

If |JV| > 0 then finding a feasible Solution is an NP-hard problem (cf. [13]). However, presuming 

feasibility and a constant per-period availability of the renewable resources, an upper bound on the 

minimiim makespan is given by the sum of maximum activity durations. 

Given an upper bound T on the project's makespan we can use the precedence relations and the 

modes of shortest duration to derive time windows, i.e. intervals [EFj, LFj], with earliest finish 

time EFj and latest finish time LFj, containing the precedence feasible completion times of activity j, 

j = 1,...,/, by traditional forward and backward recursion as performed in MPM. Analogously, the 

interval [ESj,LSj] bounded from below and above by the earliest start time ESj and the latest start 

time LSj, respectively, can be calculated to reflect the precedence feasible start times. The benefit 

is twofold: First, the number of variables used in the integer (binary) programming formulation is 

reduced substantially. Second, within a branch-and-bound algorithm the bounds can be efficiently 

used to speed up the convergence. 

Note, since different modes may have different durations, starting an activity j within the time window 

[ESj, LSj] does not necessarily mean that the job is completed in the interval [EFj, LFj]. 
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J number of jobs 

Mj number of modes job j can be performed in 

djm duration of job j being performed in mode m 

R{N) set of renewable (nonrenewable) resources 

T upper bound on the project's makespan 

KU> 0 number of units of renewable resource r, r € R, available in period t, t = 1,..., T 

K«> 0 total number of units available of nonrenewable resource r, r £ N 

%mr> 0 number of units of r enewable resource r, r € R, used by job j being performed in 

mode m each period the job is in process 
> 0 number of units of nonrenewable resource r, r € N, consumed by job j being perfor­

med in mode m 

set of immediate predecessors (successors) of job j 
ESJ(EFJ) earliest start time (finish time) of job j, calculated by using minimal job durations 

and neglecting resource usage (consumption) 
LS] (LFj) latest start time (finish time) of job j, calculated by using minimal job durations, 

neglecting resource usage (consumption) and taking into account the upper bound T 

on the project's duration 

Table 1: Symbols and Definitions 

Using the time windows derived we can now State the problem as a linear program. It was similarly 

presented by Talbot (cf. [29]). We use binary decision variables Xjmt, j = 1,..., J, m = 1,..., Mj, 

t = EFj,..., LFj, 

xjmt 
1 , if job j is performed in mode m and completed at the end of period t 

0 , otherwise. 

The model is presented in Table 2 and referred to as the multi-mode resource-constrained project 

scheduling problem (MRCPSP). 

Since there is exactly one finish activity, the objective function (1) realizes the minimization of the 

project's makespan. Constraints (2) ensure that exactly one mode and one completion time is assigned 

to each activity. The precedence relations are taken into account by (3). (4) guarantees, that the per-

period availabilities of the renewable resources are not exceeded. Finally, (5) secures feasibility with 

respect to the consumable (nonrenewable) resources. 

Obviously, the weH-known flow-shop, job-shop-, open-shop and assembly line balancing problem are 

induded in the model outlined above (cf. e.g. [24], pp. 10). Thus, the problem is a member of the 

class of NP-hard problems (cf. [11]). 

4 



Mj LFJ 
Minimize $(«) = £ J2 t • xJmt 

771=1 t=EFj 
s.t. 

Mj LFj 
X] Xjmt = 1 

771=1 t—EFj 
Mh LFh Mj LFj 
y ^ y ^ ' xhmt — yi ) ] {t ~ djm)xjmt 

77i=l t=EFh m=l t=EFj 
j Mj mm{t+djm-l,LFj} 

EEC £ < % 
y=l 77i=l g=max{t,EFJ} 
J Mj LFj 

EE'i-E ***£ 
J = 1 771=1 t—EFj 

xjmt G {0,1} 

(1) 

j = 1,..., J (2) 

j = 2,...,J,h€Vj (3) 

r£R,t- (4) 

r € JV (5) 

j — 1,..J,m = 1,..., JMj, (6) 

t = EFj,..., Zrfj 

Table 2: The Model of the MRCPSP 

Moreover, the model presented above can be easily modified to indude time-varying request (cf. [8]) 

and generalized temporal constraints (cf. [2], [24], pp. 19). However, note, if negative minimal time-

lags are incorporated then the objective function has to adapted to reflect the minimization of the 

makespan. Additionally, further objectives can be considered. For the later representation of the 

algorithm it will pay to classify the objectives: We extend the definition of a regulär Performance 

measure given in [1], [10], [17] and [18] to the multi-mode ease (cf. [24], pp. 22): 

Definition 1 

Let M := {l,...,Jlii} x - X {1 and CT\,...,CTj be the completion times of job 1,..., 

job J scheduled in mode respectively. A Performance measure $ is a mapping 

$ : Z>0 x jM —• R>o 

which assigns a Performance value $(CT,M) to each pair of a J-tuple CT = (CT\,.. .,CTj) of 

completion times and M = (mi,...,mj) of modes. If $ is monotonically increasing with respect to 

(the componentwise ordering o/Z>0 of) the first component, that is, 

$((CTi,..., CTj), M) < 
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implies 

CTj < CTj 

for at least one j, j € and additionaly minimization of $ is considered, then we call the 

Performance measure regulär. 

Clearly, we can denote $ as a function of the binary variables introduced, therefore, loosely in Dotation 

we yield the following regulär measures of Performance: Let pj (öj) denote the release date (due date) 

of activity j, and let Cjmt be the cashflow induced by job j being performed in mode m and completed 

in period t, j = 1,..., /, m — 1,..., Mj, t = EFj,..., LFj. 

(a) The minimization of the project's makespan 

Mj LFJ 
9(CT,M) := E E t-*Jmt = CTj 

m=l t=EFj 

(b) The minimization of the weighted delays 

j Mj LFj j 
*(CT,M) := •£ = 

i=l m=1 t=g.+1 J j=1 

(c) The minimization of the total number of taxdy activities 

J Mj LFj 
i(CT,M) := EE E »j«. = IÜ€{l,...,/J;Cr,->«j}| 

j=z 1 m=l t=sj+i 

(d) The minimization of the mean weighted flow time 

1 J Mj LFj j 
*(CT,M) := -•£,*£ E ('-«)••*<-. = 7Y,(CTi-n) 

j=1 m=l t=EFj j=1 

(e) The maximization of the net present value 

J Mj LFj 
*(CT,M) := EE E 'i-tXjM 

j=l t=EFj 

Note, more precisely, the net-present value is a regulär measure of Performance if Cjmt > Cjmtt+i for 

j — 1 , m = 1,..., Mj, t = EFj,..., LFj — 1, holds and the objective function is multiplied by 

-1. 

Additional regulär Performance measures as e.g. the total (weighted) resource consumption and non-

regular Performance measures, as e.g. the smoothness of the resource profile can be found in [21] and 

[22]. 

The generalized problem we obtain by replacing the makespan minimization by any regulär measu­

re of Performance is referred to as the generalized resource-constrained project scheduling problem 

(GRCPSP). 
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3 The Branch-and-Bound Algorithm 

In this section we present and analyze an algorithm for the MRCPSP. The foundation stone of the 

basic algorithm is laid through a search tree reduction proposed by Patterson et al. (cf. [15], [16]). 

By implicitly using dominating start time assignments, they made a major contribution to improve 

earlier versions (cf. [29], [30]) to a precedence tree guided enumeration scheme. The algorithm is 

completely restructured and revised. The revised enumeration scheme bears several benefits: (1) ease 

of description, (2) ease of Implementation, (3) ease of generalization. 

We proceed as follows: In Subsection 3.1 the precedence tree which guides the search for an optimal 

Solution is presented. In Subsection 3.2, the detailed realization of the algorithm for minimizing the 

project's makespan is outlined and subsequently, generalized for dealing with any regulär measure 

of Performance. Moreover, we briefly summarize adaptations for dealing with generalized problem 

settings. 

3.1 The Precedence Tree 

The main problem to solve in development stage of an exact Solution procedure of the branch-and-

bound type is the construction of the enumeration tree. Roughly speaking, its responsibility is to guide 

the search for an optimal Solution by the successive decomposition of the problem into subproblems 

by Splitting the feasible region and fixing variables. Obviously, the inclusion of parts of the constraints 

bears benefits, even if the subproblems are dealt with Standard relaxations, e.g. LP relaxation or 

Lagrange relaxation. The problem at hand allows a design of the control process which explicitly 

takes the precedence constraints into account. 

For ease of notation we focus on the single-mode ease and consider the example given in Figure 1 

(cf. [9], p. 179). Obviously activities 2, 3 and 4 cannot be started before activity 1 is finished. If 

activity 1 is scheduled activity 2, 3 and 4 become eligible. In contrast to e.g. [6], [25], an activity is 

Figure 1: Example Network 

7 



called eligible if all its predecessors are schedtiled but not necessarily finished. Using graph theoretical 

terxninology the activities 2, 3 and 4 will be denoted as descendents (sons) of activity 1 (the father). 

These relationships are depicted by the precendence tree given in Figure 2 (cf. [15], p. 12). 

On each level exactly one activity out of the set of eligible activities is scheduled. On the first level 

only activity 1 is eligible and on the second (after activity 1 is scheduled) the activities 2, 3 and 4 

become eligible. If we now schedule activity 2, then additionally activities 5 and 6 become eligible. 

If we schedule activity 3 or 4 on the second level, then no additional activities become eligible. E.g. 

activity 5 and 6 are not eligible because not all of their predecessors (activity 2) are scheduled. 

level 1 

level 2 

level 3 

level 4 

4 5 6 

4 5 6 4 5 6 

level 5 5 6 

A I 

level 6 6 7 5 

level 7 7 6 7 

level 8 8 8 8 

5 6 

6 7 5 

7 6 7 

8 8 8 

4 2 3 

5 6 

6 7 5 

7 6 7 

8 8 8 

Figure 2: Precedence Tree 

Since we have exactly one start activity, we can successively determine the eligible set (set of eligible 

activities) Yi of level i, i = 1,..., J. Of course, the eligible sets Y{ depend on the "history", i.e. the 

set of abeady scheduled activities. 

We denote with g, the number of the activity scheduled on level i and the set of activities currently 

scheduled up to level t is abbreviated to ACS{. Note, since we have assumed that the network is 
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numericaüy labelled, activity 1 is always the unique activity eligible on level 1. 

Yi == {1} 

ACSi := {^i} = {1} 

Yi+1 := Yi\{9i}^{k£Sgi-,VkCACSi} 

ACSi+i := ACSi U {ff,} 

i = 1,..J — 1 

i — 1» • • * * J 1 

Remark 1 

The essential limit is that not all the successors of the scheduled activity gi become eligible on level i+1. 

In the example given above, if activity 3 is scheduled on level 2 then none of its successors becomes 

eligible (cf. [15], p. 14). 

The problem now ansing is when to start activity </,• on level i. Due to the precedence constraints 

activity gi can only be started after the completion of all its predecessors, but, inspite of this limitation 

several feasible start times can be assigned to the activity currently under consideration (cf. [24], 

pp. 39). Nevertheless, the investigation can be reduced to a Single alternative if a regulär measure of 

Performance is considered as objective. 

We extend our considerations to the multi-mode ease and State the theorem, which, roughly speaking, 

reduces the examination of one path from the root to a leave of the precedence tree to at most one 

start time assignment per activity. 

Let (P) be a scheduling problem ofthe type GRCPSP. If (P) is feasible, then there exists a permutation 

of the activities 1 denoted as ,. ..,gj, and accompanying modes mgi,.. .,mgj, such that the 

schedule with start times STgi,..., STgj fulfilling 

(b) STgi, i = 1,..., J, is the lowest feasible start time of activity gi scheduled in mode mgi with respect 

to the precedence relations and the leftover capacities after scheduling activities g%,.. .,#_i and 

represents an optimal Solution. 

Proof: Since the proof is more technical we will only sketch it out. Due to the feasibility of the problem 

we can choose an optimal Solution with start times ST{,..., ST} and modes mj,. . ., m*j. We then 

order the jobs with respect to nondecreasing start times and define the corresponding permutation. 

If the permutation fulfills the requirements, that is (b), then we are finished. Otherwise we choose 

Theorem 1 

(a) STgi < STgi+1, i 1, . . • ^ (J 1 

(°) 
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the lowest index i of #, i = 1,..., J, which vioalates (b). Let k denote this index. Due to the 

constant per-period request we can shift activity gk to the left, i.e. we can start it earlier, as far as (a) 

holds, and the newly derived start time fulfills (b) for j = 1,..., k. Since the objective fnnction is a 

regulär measure of Performance the objective function value does not increase. Repeatedly applying 

the procedura leads to an optimal Solution which fulfills the requirements. • 

The search space reduction by Theorem 1 is substantial (cf. [24], pp. 39). However, note, the start 

times (of the activities) in conditions (a) and (b) of Theorem 1 cannot be replaced by their completion 

times as suggested in [15] without loosing optimality (cf. [24], pp. 37). 

3.2 The Enumeration Scheine 

Using the preliminaries presented in the previous subsection we can concisely State the algorithm: 

The algorithm schedules one activity per node of the branch-and-bound tree. An activity is firstly 

considered for scheduling in its first mode when all of its predecessors are scheduled. The start time 

of the activity under consideration is the lowest feasible start time which (a) is not less than the 

start time of the activity most recently scheduled and (b) does not violate the precedence or resource 

constraints. If scheduling in the current mode is infeasible then the next mode is tested. If there is no 

untested mode left then the next eligible activity is selected. If there is no untested eligible activity left 

then backtracking to the previous level is performed. At this level the next mode or eligible activity 

is chosen. 

The summary of the algorithm turns out a degree of freedom conceming the selection of the activity, 

more precisely the activity/mode combination, to be considered for scheduling on the current level 

first, second and so forth. Using priority values (cf. e.g. [3], [24], pp. 51) we can define a sequence 

on the job/mode combinations \j, m], j G 1», m = 1,..., Mj. Note, in the description given above the 

modes of an activity are examined consecutively. Avoiding notational overhead we are leaving priority 

rules for later discussion and only refer to if there is the necessity for doing so. 

We will now give a more formal description which will enable us to elaborate the kernel of the enume-

ration scheme. Especially the representation of the bounding rules to be presented in Section 4 will 

be substantially simplified. The notation used to describe the algorithm is displayed in Table 3. 

The algorithm for the minimization of the makespan is presented in Table 4. In Step 1 we initiaüze 

the variables used. We avoid the ease distinetion whether any activity is already scheduled or not 

by defining go := 0, 5Tfl0 := 0, CTgo := 0 and Vi := {0}. The set of eligible activities on the first 

level (t = 1) is defined as Ii := {1} with corresponding number of eligible activities within the first 

level Ni := |!j| = 1. The first and only activity to be tested is the unique start activity, thus we 
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i : level index 

i* : lowest index which produces a time window violation after the recalculation 

Yi : set of eligible activities on level i 

Ni : cardinality of the set Yi 

Ni : index of the element from the eligible set Vi w hich is currently ander consideration 

Yitii : the N( 'th element of the set of eligible activities on level i 

ACS (ACSi) : set of activities currently scheduled (up to level») 

gi : activity currently scheduled or under consideration on level i 

m3i : number of the mode activity g, is currently scheduled in or considered to be scheduled in 
on level i 

STgi (CTgi) : start (completion) time of activity g, scheduled on level i 

tp : lowest feasible start time of activity with respect to the precedence relation 

tj : lowest feasib le start time of activity with respect to condition (a) of Theorem 1 

$* : objective function value of the currently best known Solution 

$(-) : function, which assigns each partial schedule a lower bound on the objective function value 
of a completion; the bound is equal to the objective function value, if a complete schedule 
is considered. 

Table 3: Notation Used in the B&B-Algorithm 

have gi = Yn = 1. In general, we denote with Yjjv,. the JV, 'th element of the eligible set Yi where the 

activities in Yi, except where stated otherwise, are arranged with respect to increasing job number. 

In Step 2 a job/mode combination is selected for assignment. Two cases have to be distinguished. 

First, if there are further modes for the activity (descendant) currently examined, that is, mgi < Mgi, 

then the next mode is selected, i.e. mai := m3i + 1. Second, if for the current descendant the last 

mode has been tested, that is, m3i = Mai, then the next descendant is chosen and the first mode is 

selected for assignment, i.e. Ni := Ni + 1, gi := Y^,, and m3i := 1. If no more untested modes and 

descendants are available, then one-level backtracking (Step 3) has to be performed, otherwise we goto 

Step 4. 

In Step 4 we first calculate the lowest feasible start time tp with respect to the currently scheduled 

activities and the precedence relations, that is, tp := max{CTk', k € Vgi}. Subsequently we calculate 

the minimal feasible start time tj due to condition (a) of Theorem 1 and define t* := max{tp,t[}. We 

then scan the interval [t*,LFai - daimg.] for the earliest contiguous interval dgimgi periods long where 

activity g, can be scheduled in mode mgi without violating the renewable resource constraints. That is, 

we search t,t* <t < LFgi —daimg., such that the leftover capacities of the renewable resources r, r € Ä, 
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Step 1: (Initialization) 
ACS := 0; g0 := 0; STgo := 0; CTgo := 0; Vi := {0}; i := 1; Yi := {1}; JVi := 1; := 1; 

gi := 1; mj := 0; 

Step 2: (Select next untested mode or descendant) 

If mgi < Mgi then m3i := mgi + 1 and goto Step 4; 

K N, < Ni then Ni := N{ + 1; gi := mgi := 1 and goto Step 4; 

Step 3: (One-level backtracking) 

i := i — 1; if i = 0 then STOP, eise remove job # from partial schedule; ACS := v4&S\{#}; 

readjiist resource arrays and goto Step 2; 

Step 4: (Find feasible start time) 

tp := max{C2]fc;k G Vgi}\ tj := STg^rf* := max{*j>,</}; d etermine the earliest resource 

feasible start time t,t* <t < LFSi — d3img., of job % in mode mgi; if scheduling is impossible 

goto Step 2, eise set STgi := F; CT gi :—t + dgimg.; ACS := ACS U {#} and adjust resource 

arrays; 

Step 5: If i=J then goto Step 7; 

Step 6: (Update the eligible set) 

i := i + 1; calculate the new descendant set % := U {Är £ S3i_1 ,Vk C ACS}; set 

Ni := |li|; Ni := 1; g, := Yn; mgi := 0 and goto Step 2; 

Step 7: (Store Solution and adjust time bounds) 

Store Solution g,, mgj, STgj, j = 1,..., J; 

Set LS, := LSj - (LFj - CTj + 1), j = 1,..., J; 

and LFj := LFj — (LFj — CTj + 1), j = 1,..., J; 

Step 8: (Calculate lowest indexed level violating the time window) 

i* := min{k E J};CTgk > LFgk}; 

Step 9: (Variable-level backtracking) 

Readjust resources used (consumed) by jobs in mode mgk ,k = J,...,i*; 

ACS := ACS\{gj,#.}; i := i* an d goto Step 2. 

Table 4: Minimizing the Project's Makespan 

in the periods t,t = t+1,... ,t+dgimg., are at least equal to the per-period requirements kpg.mg T. Note, 

as previously mentioned, since different modes may have different durations, searching the interval 

[f, LSgi] for a start time is not equivalent to searching the interval [f, LFgi —dgimg.]. In the former ease 

it might happen that the bounds exposed by the latest finish times are violated without detecting it on 

12 



the current level, and thus producing computational overhead. Additionally, feasibility with respect to 

nonrenewable resources has to be checked, i.e. the leftover capacities of the nonrenewable resources r, 

r E N, are compared with the consumption kg.ms r of the activity currently considered. Obviously, 

since determimng a feasible start time with respect to renewable resources usually consumes more 

time than comparing consumptions and the remaining availabilities of the nonrenewable resources, it 

is sensible to check the latter ones first. 

If feasibility can be assured, we set the start time STgi of activity gi equal to t and the completion time 

CTgi equal to STgi + dgimg.. Furthermore, the set of activities currently scheduled ACS, is updated, 

i.e. ACS := ACS U {</,}, and the leftover capacities are adjusted. If feasibility cannot be assured, we 

return to Step 2 and determine the next job/mode combination. Successfully scheduling of activity gi 

leads to Step 5. 

In Step 5 we check if all the activities are scheduled. If this holds true, we have found the first feasible 

Solution or an improved Solution and we can skip to Step 7, where the new Solution is stored and the 

critical path bounds LSj, LFj, j = 1,..., J, are recalculated. Since our goal is the improvement of 

the currently best known Solution LSj and LFj are reduced by the improvement of the former best 

known Solution incremented by one, that is LFj — CTj + 1. 

If not all the activities are scheduled, we step over to the next level, i := i + 1, and calculate the 

new descendants, i.e. set of eligible activities Yi, the number of descendants Ni := |Y||, select the first 

descendant Ni := 1, gi := Iii, initialize the mode selector variable mgi := 0 and goto Step 2. 

After the adaptation of the critical path bounds in Step 7 we determine the lowest level index i*, 

where the newly derived critical path bounds are violated by the current schedule. Variable-level 

backtracking is then performed in Step 9, that is, all the activities gi, which have been scheduled on a 

level i, i > i*, are removed from the schedule, the resource availabilities are readjusted and the current 

level index is set equal to i*. 

The algorithm terminates if in Step 2 no more job/mode assignment is possible and decrementing the 

level index in Step 3 leads to i = 0. Otherwise, if the level index is greater than zero after decrementing 

it in Step 3, then g, is removed from the partial schedule and resource availabilities are readjusted. 

A thorough study of the enumeration scheme shows that its current State is entirely described by 

(a) the currently best known Solution and bound on the objective function, (b) the sequences of 

the job/mode combinations the eligible activities have to be examined in, and (c) the job/mode 

combinations \gj,m9j], j = 1,..scheduled up to the current level i. The latter Information and 

its implications are summarized in the following definitions. 
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Definition 2 (cf. [24], PP- 42) 

(a) An i-partial schedule VSi is an 4 x i-tnatrix with columns (j, gj, mgj, STgj), j = 1, — ,i, defining 

that job gj is scheduled on level j in mode mgj with start time STSj. 

(b) An i-partial schedule VSi, where all the activities are scheduled, i.e. i = J, is called schedule. 

(c) Let VSi be a n i-partial schedule. A j-partial schedule VSj, j > i, with first i columns coinciding 

with the ones ofVSi is called a continuation of the i-partial schedule VSi. If j - J then the 

continuation is called a completion ofVSi. 

(d) A completion VSj of an i-partial schedule VSi is called optimal completion if no completion of 

VSi has an objective function value better than the one ofVSj. 

Definition 3 

Let T denote an upper bound on the project's makespan and VSi be an i-partial schedule with corre-

sponding set of currently scheduled activities ACS (VSi) := U)=i{(%}. 

(a) VSi is called precedence feasible, if the precedence constraints are met, that is, STgh + dghmgh < 

STgk, gh,gk e ACS(VSi) and gh e Vgk. 

(b) VSi is called feasible with respect to the nonrenewable resources, ifthe cumulated consumption of 

the currently scheduled job/mode combinations does not exceed the availability ofany nonrenewable 

resource. The remaining capacity K"(VS{) = K" — I r called leftover capacity of the 

nonrenewable resource r, r € N, with respect to i-partial schedule VSi. 

(c) VSi is called feasible with respect to the renewable resources, ifthe cumulated usage of the currently 

scheduled job/mode combinations does not exceed the availabilty ofany resource in any period. The 

remaining capacity K^VSi) = K?t- fc£.m r is called leftover capacity of the 
j-i 1 

STgj +l<t<STgj +dg^mg-
renewable resource r, r € R, in period t, t = 1 ,...,T, with respect to i-partial schedule VSi. 

(d) VSi is called feasible, if it is precedence feasible and feasible with respect to the nonrenewable and 

the renewable resources. 

Clearly, in accordance with Theorem 1 and Step 4 of the algorithm it is not necessary to keep the 

start time of the activities. However, the enhanced representation will simplify the later discussion 

and the Implementation of acceteration schemes. 

Using the de&nitions we can describe the constraction of partial schedules as follows: On each level 

(i + 1) of the branch-and-bound tree a feasible i-partial schedule VSi is extended to a feasible (i + 1)-

partial schedule by scheduling an eligible activity #+i, $rt+1 € YJ+i, in a mode m3t+1, 1 < mgi+1 < 
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Mgi+1- In accordance with Theorem 1, conditions (a) and (b), the start time STgi+1 obtained in 

Step 4 is uniquely. determined. Thus we can denote the continuation of an i-partial schedule VSi to 

an (i + l)-partial schedule P«S,+i by scheduling a job/mode combination [sn+i,mgi+1] at the earliest 

precedence and resource feasible start time STgi+1 fulfilling STgi+1 > STgi by using the operator ©: 

VSi+\ VS{ © J7l^i+1] 

We will adapt the algorithm presented for optimizing any regulär measure of Performance. Due to 

Theorem 1 only minor changes are necessary in order to attack scheduling problems of the type 

GRCPSP. That is, the enumeration is again guided by the precedence tree and only the evaluation 

of bounds on the objective function value has to be adapted and explicitly incorporated (Step 4 and 

Steps 7-9), respectively. 

Performing Step 4 as described above follows two intensions. On the one hand, if an activity 

(in mode mgi) is assigned a start time t ,t < LFgi - dgiTrig., then the partial schedule VSi is at 

least completable with respect to the precedence relations. On the other hand, since the latest finish 

times are adjusted after the improvement of the current best Solution, the adapted latest start and 

finish times (Step 7) offer a new bound on the objective function value (makespan) obtainable from a 

completion of the current partial schedule. That is, if we would assign a start time t,t > LFgi — dgimg., 

to an activity </,• the n the partial schedule is not completable with a makespan T,T < LFj. 

For notational convenience, we denote the objective function with $ and let $* denote the objective 

function value of the current best Solution. Furthermore, $(-) denotes a function which determines a 

lower bound on the objective function of the completion for a given partial schedule VSi. The bound 

matches with the objective function value of VSi if a complete schedule is the argument, i.e. i = J. 

With this in mind, we rearrange Step 4 and Steps 7-9 to Step 4' and Step 7' (cf. Table 5), respectively. 

Remark 2 

In contrast to [15], pp. 13, we included lower bound evaluation explicitly and prevent computational 

overhead by restarting the procedure after determining an impwved best Solution. 

Although, the (modified) enumeration scheme can deal with a wide variety of scheduling problems, 

further modifications are necessary if e.g. (maximum) time-lags between the activities or time varying 

resource requests for renewable resources have to be taken into acoount (cf. [24], pp. 67). Both 

extensions of the model require beside the job/mode combination [#, mJt ] currently considered a third 

dimension which saves the start time STgi presently evaluated. That is, before switching to another 
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Step 4': (Find feasible start time) 
tP := max{CT*;ifc G V gi}\ ti := STgi_^, t* := max{tP,f/}; determine the earliest resource 

feasible start time t,t* <t< LFgi - dgim,t, of job g{ in mode mgi; if scheduling is impossible 

or &(VSi) > then goto Step 2, eise set STgi := t; CTgi :—t + dgimg.; ACS := ACS U {^} 

and adjust resource arrays; 

Step 7': (Store Solution and adjust the bounds) 

Store Solution gj, mgj, STgj, j = 1,..., J, $*; i = J — 1; 

remove job gj from partial schedule; ACS := .4C<S\{fifj}; readjust resource arrays and goto 

Step 2; 

Table 5: Optimizing a Regulär Measure of Performance 

job/mode combination the remaining feasible start times have to be examined. Another job/mode 

combination for the current job/mode combination is chosen if no further feasible start times are 

left. However, doing so, only minor changes are necessary to optimize any objective and taking into 

account time-varying requests as well as time-lags. In contrast, job specific constraints on the start 

and finish times imposed by a release date and a deadline can be implemented by simple time window 

adaptations. 

4 Search Ttee Reduction 

By the exdusion of partial schedules from further continuation we can reduce the enumeration tree 

guiding the search for an optimal Solution. Clearly, for optimizing the given objective we have to 

assure that the reduction does not make worse the (optimal) solutions obtainable. That is, we have 

to elaborate conditions on which a partial schedule need not be extended without loosing optimality. 

These conditions build the bounding rules we will present, they will be stated as theorems. Clearly, 

using the bounding rules is not beneficial if checking the assumptions requires more time than the 

truncation of the branches saves. Therefore, if necessary, additional hints for the Implementation of 

the rules will be given. 

In this section, if not otherwise mentioned, we consider regulär measures of Performance. Moreover, we 

use the notion of an t-paxtial schedule to refer to a feasible i-partial schedule derived by the algorithm 

presented in Tables 4 and 5, respectively. That is, the start time assigned to an activity is the lowest 

start time fulfilling conditions (a) and (b) of Theorem 1. 
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We distinguish two types of bounding rules, the static and the dynamic ones. Static rules can be 

implemented by the adaptation of the input data. The enumeration scheme remains unchanged and 

the rules can be employed by any algorithm solving the problem at hand. In contrast, the dynamic 

rules are incorporated into the algorithm. As a rule their sensible application depends on the algorithm 

employed. 

4.1 Static Search Tree Reduction Techniques 

The first static rule excludes modes and/or nonrenewable resources from the input data. That is, 

the number of (partial) schedules and/or constraints to be considered are reduced before the Solution 

procedure is started. Although the rule is quite simple it might help increasing the algorithm's 

Performance, especially when a large project with a number of activities, haxdly to manage manually, 

is dealt with. Moreover, we believe, that working with the related definitions will bring out more 

useful conditions to reduce the computational time needed. We define: 

Definition 4 (cf. [25]) Let mj, 1 <m,j< Mj, be a mode of an activity j, 1 < j < J. 

(a) Mode m,j is called non-executable if in a feasible schedule activity j cannot be performed in mo­

de mj. 

(b) Mode mj is called inefficient with respect to objective $, if there is another mode m'j, 1 < m'j < Mj, 

of activity j, such that any feasible schedule VSj with actimty j being performed in mode mj has 

a corresponding feasible schedule VSj with activity j being performed in mode m'j and $(VSj) < 

(c) A resource r, r £ NUR, is called redundant, if the constraints related to resource r can be neglected 

without influence on the set of feasible schedules. 

As a consequence of Definition 4 we can now offer criteria identifying non-executable or inefficient 

modes and redundant resources: 

Lemma 1 Let mj, 1 < mj < Mj, be a mode of activity j, 1 < j < J. 

(a) Mode mj is non-executable w.r.t. renewable resource r, r € R, if for each start time STj, ESj < 

STj < LFj - djm, there is a period t, STj + l<t< STj + djm, with k"jm.r > KpTt. 

(b) Mode mj is non-executable w.r.t. nonrenewable resource r, r £ N, if 
J Mi 

tfmr +Ej^{Cr} > Kr • 

(c) Mode mj is inefficient with respect to objectives (a) through (d) given in Section 2, if there is 

another mode m'j of activity j with duration and requests at most equal to the ones of mode mj. 
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Step 1: Remove all non-executable modes from the project data. 

Step 2: Delete all redundant nonrenewable resources. 

Step 3: F,liminat.fi all inefficient modes. 

Step 4: If any mode has been erased within Step 3, go to Step 2. 

Table 6: Implementation of Theorem 2 

(d) A nonrenewable resource r, r € N, is redundant ifthe sum of the maximum consumptions of the 

activities, i.e. J2j=imaxmLi{kjmr}> not exceed the availability K?. 

Although a similar criterion for the exclusion of redundant renewable resources can be easily formulated 

we have omitted its lenghty Statement and concentrated on the exclusion of nonrenewable resources. 

For a clear reference point when reporting our computational experience we summarize the statements 

in the following thereom: 

Theorem 2 (Bounding Rule 1, Input Data Reduction) 

(a) Redundant nonrenewable resources and non-executable modes can be e liminated without effect on 

the set of feasible solutions. 

(b) Inefficient modes can be deleted without effect on the optimal objective function value obtainable. 

That is, for any objective under consideration redundant resources and non-executable modes can be 

eliminated without changing the set of feasible schedules. In contrast, removing modes inefficient with 

respect to objective $ may reduce the set of feasible schedules but does not effect the value of the 

optimal Solution. 

However, the example given in [25] shows that deleting a mode which is non-executable w. r. t. a rene­

wable resource may force a mode of another activity to become non-executable w. r. t. a nonrenewable 

resource. Moreover, removing a non-executable mode from the project data may cause redundancy of 

a nonrenewable resource. Finally, erasing a redundant nonrenewable resource may lead to inefficiency 

of a mode, while eliminating an inefficient mode may cause redundancy of a nonrenewable resource. 

Therefore, the project's input data should be prepared by the steps described in Table 6 (cf. [25]). 

The next bounding rule to be presented is designed for instances with nonrenewable resources, that is, 

\N\ > 0. It checks completability of the partial schedule currently considered. The dynamic variant, 

as given in Theorem 3, has been proposed by Drexl (cf. [7]) for a less general model. Sprecher (cf. [24]) 
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adapted the rule to the GRCPSP and substantially increased its efficiency by reformulating it as a 

preprocessing, i.e. static, rule. 

Theorem 3 (Bounding Rule 2, Input Data Adjustment) 

Let VSi be a feasible i-partial schedule with left-over capacities of nonrenewable resources K"(VSi), 

r € N. Let ACS = {!,..., J}\{gi, be the set of currently unscheduled activities. If there is a 

resource r, r € N, with 

Kr(VSi) < E = 
jzÄcs 

then the schedule is not completable. 

Since the rule checks completability of the current partial schedule it is applicable to any (regulär) 

objective. Including the following remark the dynamic formulation can be transferred to a static one. 

Remark 3 

The bounding rule of Theorem 3 can be e asily implemented via preprocessing by calculating: 

kminjr := min{kjmr-,m= 1,. j = 1,...,«/,r € N, 

and adjusting the input data as follows: 

k jmr •— kjjnj. kminjT, j — 1 ,...,</,ni — 1,..., JWj 5r G 

and 
J 

K\ := KVT - £ hmin)T, r € N. 
j=l 

Applying Theorem 3 and Remark 3 causes that for each pair of a nonrenewable resource r, r £ N, 

and an activity j, j = 1,...,/, there is at least one mode m with an adapted consumption of zero 

units, that is, the resource factor (cf. Part II, Section 2) of the instance is reduced. 

Obviously, the effect of commonly employing Bounding Rules 1 and 2 is the strengest, if, first, the 

input data is reduced in accordance with Theorem 2 and, second, then adjusted with respect to 

Theorem 3. 

4.2 Dynamic Search Tree Reduction Techniques 

Now we will present the dynamic search tree reduction schemes. For illustrational purpose, we en-

hance the instance given in Figure 1 by the data given in Table 7 and consider the related makespan 
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J T \R\ K{ KP2 \N\ 

8 35 2 2 3 0 

Job 1 2 3 4 5 6 7 8 

LFj 19 23 27 35 27 35 35 35 

Mode 1 1 2 1 2 1 2 1 2 1 2 1 1 

Duration 0 4 4 6 6 5 6 4 7 3 4 8 0 

kjml 0 0 1 0 1 2 1 1 1 1 0 1 0 

0 3 0 2 0 1 1 2 1 2 2 3 0 

Table 7: Problem Instance 

minimization problem. The eligible sets are assumed to be ordered with respect to increasing job 

number. 

Since the availabilities of the renewable resources are constant, we obtain an upper bound on the 

project's optimal makespan T by adding the maximal durations of the activities, that is, T = 35. 

Note, in general, if only renewable resources have to be taken into account, the bound can be improved 

to the sum of the minimum activity durations related to executable modes, that is, T = 30. However, 

using the first brauch [1,1], [2,1], [3,1], [4,1], [5,1], [6,1], [7,1] and [8,1] we determine the start times 

STi = 0, ST2 = 0, ST3 = 4, ST4 = 4, STs = 10, ST6 = 14, ST7 = 17 and STs = 25. The first 

feasible Solution is found. It is displayed in Figure 3, where the brackets in the Gannt-chart denote 

[fft , m9i l ̂ kgim g. 1 , kPg.mg. 2] . 

[4,1|2,1] 

[2,1|0,3] 
1 1 1 

[3,1|0,2] 
—1 1 1 1 1 

[5,111,2] 
III 

[6,1(1,2] | 
1 1 1 1 

[7,1|1,3] | 
1 1 1 1 1 1 1 1 II 

0 5 10 15 20 25 

Figure 3: Feasible Solution 1 

Using the new bound on the makespan, we can recalculate the time windows in accordance with Step 7 

of the algorithm given in Table 4. We obtain LF1 = 8, LF2 = 12, LF3 = 16, LFA — 2 4, LF$ = 16, 

LFe = 24, LFj = 24, and LFs = 24. 

Proceeding the enumeration process the second Solution, displayed in Figure 4, with a makespan of 24 

periods is determined. The latest finish times are adapted to LF\ = 7, LF2 = 11, LF3 = 15, LF4 = 23, 

LF$ = 15, LF& = 23, LFj — 23, and LFs — 23. 

We continue the enumeration and examine the path of the precedence tree determined by successively 
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[4,1|2,1] [5,2|1,1] 

[2,1|0,3] 
1 i 1 I 

[3,1(0,2] | [6,1(1,2] 
• 1 • 1 1 1 1 1 

[7,1(1,3] 
' 1 1 1 1 1 1 1 1 ——1 T 1 I 

0 5 10 15 20 25 

Figure 4: Feasible Solution 2 

scheduling [1,1], [2,1], [3,1], [5,1], [7,1], and [4,1] or [4,2]. The related schedules are displayed in 

Figure 5. Since [4,1] and [4,2] cannot be scheduled without violating the resource and time window 

[4,2(1,1] "1 
[2,1(0,3] —, | , [3,1(0,2] 

T T 1 1 1 
[5,1(1,2] [7,1(1,3] 

, , 1 I —I 1 1— 
[4,1(2,1] 

1 1 1 1 1 1 
0 5 10 15 20 LFi = 23 25 

Figure 5: Non-Delayability Rule 

constraints, i.e. the bound imposed by LF4 = 23, activity 4 cannot be delayed to a higher level 

by scheduling activity 6 on the current level (i = 6). Intermediately scheduling of an activity/mode 

combination on level 6 would tighten the time bounds activity 4 can be scheduled in and, furthermore, 

would reduce the resources avallable for the execution of activity 4. Thus after recognizing that an 

activity is not schedulable backtracking should occur in order to free resources for its completion. 

That is, an activity that cannot be scheduled on the current level is not delayable for scheduling on a 

higher one. The result is summarized in the following Theorem 4. 

Theorem 4 (Bounding Rule 3, Non-Delayability Rule) 

If a job gi+i is not schedulable (w.r.t. precedence-, time window- or resource-constraints) on level 

(i+1) with feasible i-partial schedule VSi then it is not schedulable on level (i+k+l) with (i+k)-partial 

schedule VSi+k where the first i columns ofVSi+k match with those ofVSi. 

Proof: Obvious a 

Surely, the underlying idea is adaptable to a Single job/mode combination, that is, if a job gi+i is 

not schedulable in mode m3i+1 on level (i + 1), with i-partial schedule VSi, then [g;+i,m3i+l] is not 

schedulable on a level (i + fc +1) with (»+ fc)-partial schedule VSi+lc- ünfortunately, the effect of this 

adaptation is completely consumed by the additional effort to be performed (cf. Part II, Section 3). 

We carry on the enumeration and return via single level backtracking to level 4, where activity 5 

is rescheduled in mode 2 as a result of which the partial schedule in Figure 6 is derived. Recall, 

the partial schedule is obtained by scheduling [1,1], [2,1], [3,1] and then [5,2]. However, successively 

scheduling [1,1], [2,1], [5,2] and [3,1] would result in the same partial schedule. That is, since the same 

21 



[5,2| 1,1] 

[2,1(0,3] [3,1(0,2] 
—i—i—i—i—i—i—i—i i i i i i i i i i i 

0 5 10 15 20 25 

Figure 6: Single Enumeration Rule 

completions are obtained from the latter sequence it should be excluded from further continuation. 

The fact itself is simply stated in Theorem 5 and needs no further explanation. 

Theorem 5 (Bounding Rule 4, Single Enumeration Rule) 

Let VS{+2 and VSi+2, i > 1, be two feasible (i 4- 2)-partial schedules with 

VSi+2 = VSi ® \Si ™\ © [h, n] , VSi+2 = VSi 0 [h, n] ® [ff, TO] 

where [ff, TO], [h,n] have start times STg, STh in VSi+2 and STk, STg in VSi+2, respectively. If 

STg = STh = STh = STg then the completions of VSi+2 vre dominated by the completions ofVSi+2-

Proof: Obvious • 

For a less general model, the rule has already been mentioned in the literature (cf. [7]). Obviously, 

it is extendable: We consider an i-partial schedule VSi and unscheduled activities ff;+i,... ,ff,-+&, 

with accompanying modes mgi+1,...,mgi+k. If the start times STgi+1,...,STgi+k of ff,+i,.. 

scheduled on levels i + 1,..., i + k, in modes mgi+1,..., mgi+k, do not depend on the permutation of 

fft+i,• • -,9i+k, i e. STgi+1 = ... = STgi+k, then only one permutation has to be examined, i.e. (kl — 1) 

continuations can be saved. 

The crudal problem to solve is the efficient verification of the assumptions of Theorem 5. We will 

introduce a very efficient test. Although the concept bases on two interchangeable activities a later 

example will illustrate that the generalized dominance concept is realized. 

We modify the algorithm's Step 4' to Step 4" (cf. Table 8). The three-dimensional integer-array 

PT[i][ff][m] is initialized with -1. 

Using the modification of the algorithm we can now present a criterion for efficiently checking the 

assumptions of Theorem 5. 

Theorem 6 

Assume djm > 0, j = 2,..., J - 1, m = 1,..., Mj. Let VSi+2, i > 1, VSi+2 = VSi 0 [A, n) © [g, TO], 

be a feasible (i + 2)-partial schedule derived by the modified algorithm. Moreover, let 5T& and STg 

denote the start time of[h,n] and [ff,m] inVSi+2, respectively. Then STh = ~STg, Ni+1 > Ni+2 and 
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Step 4": tp max{CT*; k € Tgi}; </ ST3i_l; t* := max{tp,tj}; determine the earliest resource 

feasible start time t,t*<t< LFgi — dgimg., of job g, in mode mSi; if scheduling is impossible 
then goto Step 2; 

PT[i + lMmJ := i, if ¥(P5,+1) > $* then goto 2, eise set STgi := f; CT,, := < + 

v4C<S := ACS ö{gt} and adjust resource axrays; 

Table 8: Extension of the Algorithm by Bounding Rule 4 

PT[i + 2][<?][rn] = STg implies the assumptions of Theorem 5, that is, the completions ofVSi+2 are 

dominated by previously evaluated completions ofVSi+2, VSi+2 = VSi ® [g, m] © [A,»]. 

Proof: Since we assumed djm > 0, j = 2,..., J - 1, m = 1,..., Mj, the equality STh = ~STg implies 

h,g € l»+i. 

Since activity g is schedulable on level (i + 2) in mode m with (i + l)-partial schedule VSi+i = 

VSi © [h, n] and start time STg, it is also schedulable on level (i + 1) with i-partial schedule VSi. 

Let Yi+i = {/i,. be the (ordered) eligible set of level (i + 1) corresponding to the i-partial 

schedule VSi with r = i.e. lr = h. 

Since the network is assumed to be numerically labeled and, furthermore, the eligible set is ordered 

with respect to increasing job numbers we now have %+g = {/i,...,Zr_i,jr,• • with g = ls, 

i.e. s = Ni+2 < r — 1 < r = iVt+1. Thus PT[i + 2][g][m] is the start time STg of g scheduled in 

mode m on level (i + 1) with i-partial schedule VSi. Using STg = STh — P T[i + 2][ff][m] = STg we 

conclude STg = STh in the (i + 2)-partial schedule VSi+2 = VSi ® [g, m] © [h, n], Since Ni+i > jVt+2 

the completions of VSi+2 bave been previously examined and the theorem is proven. • 

Remark 4 

We assume the eligible set Yi+i = {/i,.. ordered with respect to non-decreasing priority 

values II(Z), i.e. n(Z„) < n(/„+1), t? = 1,..., JVi+1 - 1. IfYi+2 = {h,---,lNi+1}\{lr}U{keSiT-,VkC 

ACS} can be ordered by priority rule II, such that ü(/v) < H(u;) for all w G {h 6 Sjr] V\ C ACS} and 

v < r then Theorem 6 is also applicable when using priority rule II(-) instead of the job number rule. 

Obviously, the assumptions of Remark 4 are fulfilled if the eligible activities are selected in accordance 

with the minimnm late finish time or minimum precedence feasible start time (cf. [24], pp. 51). 

We illustrate the effect of the rule if more than two jobs have the same start time by using the 

activity /mode combinations [1,1], [2,2], [3,1], [4,2] and disregarding the modes of the remaining 

activities. Since any sequence of the activities/mode combinations [2,2], [3,1] &nd [4,2] produces the 
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same start times ST2 = ST3 = ST4 = 0 only one sequence has to be pondered. That is, applying 

Bounding Rule 4 prunes the precedence tree as depicted in Figure 7, where ( ) denotes the pruning 

of a brauch. Note, using pairwise comparisons of start times the generalized concept is realized, that 

is, if the conditions hold only one sequence is continued. 

level 1 

level 2 

level 3 

level 4 

level 5 

level 6 6 7 5 

level 7 7 6 7 

level 8 8 8 8 

6 7 5 

7 6 7 

8 8 8 

6 7 5 

7 6 7 

8 8 8 

Figure 7: Precedence Tree pruned by Bounding Rule 4 

The following bounding rule makes use of the fact that the set of semi-active schedules is a dominant 

set with respect to any regulär measure of Performance (cf. [26]). That is, for any regulär measure of 

perfomance there is an optimal semi-active schedule. The bounding rule is the so called local left-shift 

rule. 

Stepping forward with the enumeration we come to the partial schedule related to the sequence [1,1], 

[2,1], [3,1], [5,2], [4,1], [6,2], the related Gannt-chart of which is given in Figure 8. Due to Theorem 1 

condition (a) it is STgi < STgi+1, i.e. STQ = 11 < STgi+1, thus the completions derived by continuing 

the current partial schedule cannot be semi-active. Moreover, the left over capacities in periods t, 

t = Sie + 1,.. •, T are at most equal to the ones belonging to the sequence [1,1], [2,1], [3,1], [5,2], 
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Figure 8: Local Left-Shift Rule 

[6,2], [4,1], 

The rule has already been mentioned and successfully implemented for the single-mode ease (cf. e.g. 

[6], [27]). It is stated in the following theorem and the proof is given for the sake of completeness. 

Theorem 7 (Bounding Rule 5, Local Left-Shift Rule) 

Let VSi+i = VSi © [ffi+i, m5i+1] be a feasible (i + 1 )-partial schedule and let STgi+1 denote the start 

time of activity </,+1 s cheduled in mode mSi+1 in VSi+\. If, by ignoring condition (a) of Theorem 1, 

activity gt+i is additionally schedulable in mode mgi+1 with start time ~STSt+1, 5TSi+1 = STgi - 1, 

without violating the precedence- and (renewable) resource-constraints, then the (i + l)-partial schedule 

VSi+1 is dominated. 

Proof: Let k := min{/ < i;STgt = STgi}. Since VSi+i is feasible the (i + l)-partial schedule VSi+i, 

VSi+i = VSk-i © [?»+I , mgi+J © [gk, m9k] © • • • © [gi, mgi] is a feasible (i+l)-partial schedule, too. Due 

to the constant per-period usage of the renewable resources we have 

The local left-shift rule can be used when optimizing any regulär measure of Performance. It reduces 

the enumeration to the set of semi-active schedules (cf. [26]). In contrast, to the best of our knowledge, 

Demeulemeester and Herroelen's Implementation (cf. [6]) might additonally generate schedules that 

are not semi-active. 

Note, Bounding Rule 5 does not imply that the schedules VSi+k+i with VSi+k+i — VSi(&[gi+1, mjt+1]® 

••• © [ffi+i,mgi+k] © b«+i,mgi+i] can be excluded from further consideration. The strenger impli-

cation is only vaüd if [#+i,n%+J can be locally left-shifted to start at a time STgi+1, STgi+1 = 

STgi - • However, we can extend the considerations to global left-shifts (with and without 

mode changes) to reduce the enumeration to active schedules (cf. [26]). 

The enumeration process is continued and then stopped for studying the brauch [1,1], [2,1], [3,1], 

[6,1], [4,1] with its Illustration presented in Figure 9. Since [4,1] can be started at ST4 = 4 without 

violating the constraints, we can free resources in periods t, t = ST4 + 1 = 14,...,18, as a result of 

Kprt(VSi+x) < Kprt{VSi+1) reR,t = STgi+1 + 1 ,...,T 

and use STgi+1 < STgi+2 for completing the proof. • 
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Figure 9: Global Left-Shift Rule 

which the availability of the resources for scheduling the remaitiing activities is increased. We include 

mode changes and summarize as follows: 

Theorem 8 (Bounding Rule 6, Global and Multi-Mode Left-Shift Rule) 

Let VSi+l = VSi © [<7,'+i,m3i+1] be a feasible (i + 1 )-partial schedule and let STgi+1 denote the start 

time of activity <7,-+i scheduled in mode m9i+1 in VSi+i and CTgi+1 the corresponding completion 

time. If, by ignoring condition (a) of Theorem 1, the i-partial schedule VSi can be feasibly extended 

by scheduling a job/mode combination mSi+1] with a minimal start time STgi+1 and related 

completion time CTgi+1 such that 

(a) CTgt+1 < STgi 

(k) *Wi,m9i+1,r ^ ,r' r £ N 

then VSi+i is dominated. 

Proof: Similar to the one of Theorem 7. • 

Note, by commonly applying the local left-shift rule and the global left-shift rule (with or without 

mode change) only active schedules are generated. However, since the binding effect may or may 

not be produced by scheduling the last activity tightness (cf. [12], [23]) of the schedules cannot be 

guaxanteed. Moreover, if a regulär measure of Performance, other than (a) through (d) of Section 2, 

has to be optimized, then a mode change is generaüy not allowed. Nevertheless, the assumptions of 

Theorem 8 can be strenghtened in order to allow a mode change. 

For notational convenience, we subsequently State rules for the minimization of the project's makespan. 

By enlarging the assumptions they can be used for dealing with any regulär measure of Performance. 

[3,2|1,0] [5,111,2] 

[2,1|0,3] 
IIII 

[4,2|1,1] 
~—\ 1—1 ) 1 

[6,1(1,2] | [7,1|1,3] 
—i—i—1—i—i—i—i—i—i—i— 

0 5 10 15 20 25 

Figure 10: Feasible Solution 3 

We now skip some larger portion of the branch-and-bound process. Stepping over the determination 

of the third feasible Solution (cf. Figure 10) and the optimal Solution (cf. Figure 11) we halt the enu-
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Figure 11: Feasible Solution 4 and Optimum 
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meration for analyzing the scheduling sequence [1,1], [2,1], [5,2], [6,2], [4,2] as displayed in Figure 12. 

nMMr _[4,2|lLlj_ ] 

[6,2)0,2] | [4,2 1,1] | 

[2,1|0,3] 
" 1 ' 1' 1 

[5,2|1,1] 
1 1 1 1 1 1 

0 5 10 15 

Figure 12: Multi-Mode Rule 

Comparing the schedules related to the branches [1,1], [2,1], [5,2], [6,1], [4,2] and [1,1], [2,1], [5,2], 

[6,2], [4,2] of the precendence tree we see that in the latter partial schedule [4,2] starts at ST4 = 8, 

that is, after the completion CTQ = 7 of [6,1] in the former one. Therefore, the same start time (or a 

lower one) has been feasible when scheduling [4,2] in the former partial schedule. Consequently, the 

left-over capacities in periods t, t = ST4 +1,..., T, of the latter schedule are at most equal to the ones 

of the former schedule. Using condition (a) of Theorem 1 we can summarize the results in Theorem 9 

for the MRCPSP. Obviously, taking into account the partial sums of the objectives, the statement can 

be generalized to hold for objectives (a) through (d) of Section 2. 

Theorem 9 (Bounding Rule 7, Multi-Mode Rule) 

Let VSi+2 = VSi © [ff;+i,m5t+1] © [ffi+2,mJi+2] be a feasible (i + 2)-partial schedule. If there is a 

mode mgi+1, m5t+1 < mgi+1, of activity gi+i, such that the completion time CTgi+1 of activity ff,+i 

scheduled in mode mgi+1 in VSi+1 = VSi © [?t+i, 7%+1] is less than or equal to the start time STgi+2 

of activity gi+2 scheduled in mode mgi+1 in VSi+2 and *gl+1,mJ>+1 ,r ^ K,+i,mgi+1 ,r, r € N, then VSi+2 

is dominated by previously evaluated continuations of VSi+2 = VSi © [ff«+i, m$,+i] © [ff«+2, mgi+2\-

Proof: Let rngi+1 be the mode of activity ff,+i fuUUling the assumption of Theorem 9. Moreover, let 

STgi+1 be the start time of [*+i,m*+J in VSi+i = VSi © fo«+i, %,+J and CTSi+1 the corresponding 

completion time. We compare the left-over capacities of the (i + 2)-partial schedule VSi+2, VSi+2 = 
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VSi ® [gi+1,mgi+1\ © [&+2, mgi+2] with the left-over capacities of the schedule VSi+2, VSi+2 = VSi ® 

Since STgi+2 > CTgi+1, STgi+2 is a feasible start time of activity gi+2 

in mode mgi+2 on level («+ 2) with (i + l)-partial schedule VSi+i- Therefore, ST gt+2 < 5Tgi+2, 

which leads to Kpt(VSi+2) < Kprt(PSi+2) for each period t, t = STgi+2 + 1,...,T, and each renewable 

resource r, r £ R, and the theorem is proven. D 

The next rule we present is the multi-mode cut-set rule I. It extends in some ways earlier, only 

single-mode suitable, versions (cf. [6], [30]) to the multi-mode ease. 

Definition 5 

Let VSi an i-partial schedule. The cut-set CS(VSi) belonging to VSi is defined as the set of 

activities currently scheduled up to stage i, that is 

CS(VSi) := UW 
j=l 

and the maximum related completion time CTmax(VSi) of the activities scheduled in VSi is defined 

by 

CTmax(VSi) := mix{STg]+d3}mg]}. 

Using the definition we can now illustrate, by two examples, a multi-mode version of the cut-set 

rule. We study the schedules VS$ and VSs induced by the sequence [1,1], [2,1], [3,2], [5,1], [6,1] 

and [1,1], [2,1], [3,2], [6,1], [5,1] (cf. Figure 13), respectivley. From the Illustration we learn that 

interchanging of [5,1] and [6,1] does not effect (a) the set of activities currently scheduled up to level 5, 

i.e. CS(VS5) = CS(VSs), (b) the maximum completion time of the activities currently scheduled, i.e. 

CTmax(VSs) = CTmax(VSs), and (c) the start time of activity/mode combination [4,1] scheduled 

on level 6, i.e. ST± = ST4 =11. We consider the left over capacities of VSe, VS& = VS5 © [4,1] and 

VSe, VS6 = VS5 © [4,1] Using Kpt(VS6) > Kpt(VS6), r £ R,t = ST± + 1,..., T, and condition (a) 

of Theorem 1, we know that the completions of VSe are dominated by the completions of VS&. 

A second example is presented in Figure 14. The partial schedules VS3 and VSz result from the 

sequences [1,1], [2,1], [3,2] and [1,1], [2,2], [3,1], respectively. Again the start time ST5 of the activi­

ty/mode combination [5,1] currently considered for continuing the latter schedule, i.e. VS3, is not less 

than the maximum completion time of the activities 1, 2, 3 in the former schedule. Therefore, using 

the argumentation given above, the continuations of VS4 = VS3 © [5,1] dominate the continuations 

of VS4 = VSZ © [5,1]. 

The strueture of the examples, the "serial" strueture of the former one and the "block" strueture of 

the latter one, illustrate that this dominance concept can be successfully used when the renewable 
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Figure 13: Multi-Mode Cut-Set Rule I - Example 1 
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Figure 14: Multi-Mode Cut-Set Rule I - Example 2 
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resources are scarce or ample. We summarize the results: 

Theorem 10 (Bounding Rule 8, Multi-Mode Cut-Set Rule I, Dominated Heads) 

Let VSi be the i-partial schedule currently under consideration to be extended to an (i + 1 )-partial 

schedule byfeasibly scheduling [ffi+i, mft+1]. Let VSi be an i-partial schedule with CS(VS{) = CS(VSi) 

which has been stored when examing previous assignments, that is, VSi ^ VSi. Then the continuations 

of VSi+i = VSi © [#+i,?%*+i] are dominated by previously evaluated continuations of VSi+i = 

VSi © if 

(a) %+, > CTmax(VSi) 

(b) K»(VSi) < K?(VSi), r e N. 

Proof: By conditions (a) and (b) we know that VSi can be feasibly continued to VSi+1 = VSi © 

[&•+!, ma<+1] with {gi+i,mgi+1] having a start time STgi+1 lower or equal to the start time STgi+1 of 

[Si+i,mgi+1] in VSi+i. From (b) and condition (a) of Theorem 1 we deduce 

K (VSi © [gi+1, mg,+1)) < K" {VSi © bi+i, m„+,]), r€N 
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Kprt(VSi ® [9i+1, rngi+1]) < K&PSi © roÄ+1]), r€R,t = STai+1 + 1,..., T 

and the proof is complete. D 

Note, although there is a certain similarity between the multi-mode rule (Bounding Rule 7) and the 

cut-set rule I (Bounding Rule 8), Figures 12 through 14 show examples where the former rule can be 

applied and the latter one not, and vice versa. 

Moreover, only minor modifications for dealing with the Performance measures (a) through (e), given 

in Section 2, are necessary. That is, additionally taking into account the partial schedule related 

partial sums the rule can be extended. 

Roughly speaking, the cut-set rule I compares the quality of the current (i + l)-partial schedule with 

the quality of an (i + l)-partial schedule previously evaluated. To distinguish it form the following 

cut-set based rule we call it dominated heads. In contrast, the last rule we are going to present 

bounds the enumeration process by estimating the time necessary to complete the partial schedule 

under consideration. That is, it offers a criterion for incompletable tails. We assume the resource 

avajlability of the renewable resources as constant and the minimization of the makespan as objective. 

i l l 
[4,1|2,1] [7,111,3] 

-i 1—i 
x+5 x+10 x+15 x+20 x+25 

[3,1|0,2] [6,1|1,2] [4,2|1,1] ~] 

[2,2|1,0] 
1 l "1 ' 

[5,2|1,1] 

10 15 20 

Figure 15: Multi-Mode Cut-Set Rule II 
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We observe the partial schedule given in Figure 15, where activties 1, 2, 3, 5, and 6, i.e. CS(VSs) = 

{1,2,3,5,6} are scheduled. Activities 4, 7, and 8 are unscheduled. We are now trying to schedule 

activity 4 in mode 1 (2) and determine the start time 5T4 = 9. The upper part of the graphic shows, 

that, if no activity is processed in the periods activities 4, 7, 8 have to be scheduled in, that is, 

no activity uses resources in the periods considered, then it takes (at least) 13 periods to finish the 

unscheduled activities. Since ST4 +13 > LFj = 19, the partial schedule cannot be completed with a 

makespan less than or equal to LFj and the related brauch can be truncated. The following rule says 

how to get the minimal necessary Prolongation for the completion of the partial schedule. The data 
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required is obtained as a byproduct of cut-set rule I. 

Theorem 11 (Bounding Rule 9, Multi-Mode Cut-Set Rule II, Incompletable Tails) 

We consider a problem of type MRCPSP with constant availabilities of the renewable resources. Mo-

reover, let VS'k be any k-partial schedule. By LFj(VS'k) we denote the latest finish time of activity 

J valid after all the continuations of VS'k have been evaluated by the enumeration scheme given in 

Table 4. That is, the bounds on the finish times have been adjusted after finding an improved Solution. 

Let VSi be the i-partial schedule currently under consideration to be continued to an (i + 1 )-partial 

schedule byfeasibly scheduling [g;+i, mgi+1], Let VSi be an i-partial schedule with CS(VSi) = CS(VSi) 

which has been stored when examining previous assignments, that is, VSi VSi. If 

(a) jwa.) < r e JV, 

(b) STgt+1 + LFj(VSi) - CTmax{VSi) + 1 > LFj, 

then VSi+i = VSi © 7%t+1] cannot be c ompleted with a makespan at most equal to the currently 

valid late finish time LFj of activity J. 

Proof: We suppose the Statement is wrong, that is, although the assumptions hold, there is a conti-

nuation VSj of VSi+1 with 

VSj = VSi © [<7i+l, 'M'gi+i ] © • • * © [gj, mgj\ (?) 

and CTmax(VSj) < LFj < LFj(VSi). Due to assumption (a) the modes selected in (7) can be chosen 

to continue VSi without violating the nonrenewable resource constraints. None of the activities schedu­

led in VSi is in process after CTmax(VSi), that is, we can use the sequence [ffi+i, \SJ,mgj\ 

to complete VSi to a schedule VSj, VSj = VSi © [fft+i* mgi+i\© * *' © \SJi mgj] CTmax(VSj) < 

LFj (VSi). This contradicts the definition of LFj(VSi). a 

4.3 Commonly Applying the Dynamic Rules 

We close this section with some comments on commonly using the dynamic search tree reduction 

techniques presented above. Recall, Bounding Rule 3 identifi.es non-delayable activities, Bounding 

Rule 4 enforces single enumeration, Bounding Rule 5 excludes non-semi-active schedules, Bounding 

Rule 6 detects feasible global and multi-mode left-shifts, Bounding Rule 7 considers mode reductions, 

Bounding Rule 8 excludes dominated heads (multi-mode cut-set rule I), and Bounding Rule 9 prevents 

from continuing incompletable tails (multi-mode cut-set rule H). We assume the cut-sets related to an 

i-partial schedule to be stored when tracking back from level (i + 1) to level i. 
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Bounding Rule 3 (non-delayability): Clearly, when combining the non-delayability rule with 

the single enumeration, the local left-shift rule, the multi-mode rule, the multi-mode cut-set rule I 

or the multi-mode cut-set rule II the job/mode combinations exduded from consideration on the 

current level by one of the latter rules cannot be considered as not schedulable. The delay of these 

activity/mode combinations might produce an optimal Solution. In contrast job/mode combinations, 

that are exduded with respect to the global and multi-mode left-shift rule need not be delayed to 

a higher level. The same left-shifts could be applied to a continuation using that specific job/mode 

combination. 

Bounding Rule 4 (single enumeration): Combining the Bounding Rule 4 with any other rule, 

except of the non-delayability rule, is not critical, since the rule does not really exclude schedules 

from enumeration. It only prevents duplicate consideration of the same schedules related to different 

sequences. 

Bounding Rule 5 and 6 (shift rules): Ignoring the non-delaybility rule and the multi-mode cut-

set rule II, the local, global and multi-mode left-shifts can be applied together with any other rule. 

They only exclude partial schedules from continuation that are dominated by semi-active or active 

schedules. Worth mentioning, by applying the shift rules the cut-sets of the related i-partial schedules 

differ from the one of the current i-partial schedule. That is, the cut-set storing policy prevents that 

an (i + l)-partial schedule exduded from continuation due to a shift-rule can be used within the cut-

set rule to exclude the (i + l)-partial schedule derived by the shift. However, it might happen that 

the current schedule is optimally continued by scheduling a left-shiftable job/mode combination on 

the current level and continuing the (i + l)-partial schedule obtained. That is, by cut-set rule II an 

estimation of the minimum time necessary to complete an i-partial schedule with same cut-set and 

left-over capadties of nonrenewable resources at most equal to the ones of the currently considered 

schedule cannot be obtained if activities are left-shiftable. 

Bounding Rule 7 (mode reduction): When combining the shift-rules, the multi-mode and the 

cut-set rule I one has to take into account that backtracking induced cut-set storing may produce 

an error. That is, if m3i+1] schedulable with completion time CTgi+1 and left-shiftable and, 

moreover, the current combination, m5t+1 > mgi+1, consumes at most the same amounts 

of the nonrenewable resources as [<%+i, mgi+1] does and, moreover, the start time of an activity/mode 

combination m3i+2] is equal to or higher than CTgi+1 then the truncation of the current brauch 

may cause suboptimality of the Solution obtained. To overcome the problem, one simply has to exclude 

bounding by the multi-mode rule using the completion time of a left-shiftable job/mode combination. 
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Bounding Rule 8 (multi-mode cut-set rule I) and 9 (multi-mode cut-set rule II): As 

already mentioned above combining the shift-rules with the cut-set-rule II may produce subobtimality 

if the above named facts are not considered. However, although, we can handle the problem by 

storing the minimum time necessary to complete VSi, as given in Theorem 11 (b), only if none of 

the activity/mode combinations gi+1 e Y-+1, 1 < mgi+1 < M3i+1, can be left-shifted, 

the additional use of cut-set rule I may cause suboptimaJity. For illustrating, that the proof of 

Theorem 11 cannot be adapted, though the extended assumptions hold, we consider the project given 

in Figure 16. Obviously, the problem has an optimal Solution with a makespan equal to the MPM-

2/0 1/0 
0/1 

2/1 2/0 

(L> 

kjl2 

kj22 

Figure 16: Example Project - ATf = 2, K% = 1 

duartion of 17 periods. It is obtained by the sequence [1,1], [3,1], [2,1], [4,1] ([4,2]), [5,1], [6,1], 

[7,1], [8,1]. We start the enumeration process with T = 27. Using the brauch [1,1], [2,1], [3,1], [4,1], 

we see that it is not completed, if the shift rules are employed. On the other hand we obtain the 

cut-set CS (PS4) = {1,2,3,4} with CTmax(VS4) = 12. It serves for truncating the continuations of 

VS4 = [1,1] 0 [2,1] © [3,1] © [4,2]. Note, none of the activity/mode combinations eligible on level 5 can 

be left-shifted. The minimum time neccessary to complete a partial schedule with same cut-set as VS4 

would be determind as LFJ(VS4) - CTmax(VS4) + 1 = (27-12 + 1)= 16. The first feasible Solution 

is derived by the sequence [1,1], [2,1], [3,1], [7,1], [4,1], [5,1], [6,1], [8,1] leading to a makespan of 22 

periods, that is LF$ = 21. Continuing the sequence [1,1], [3,1], [2,1], [4,1], we determine start times 

ST5 = ST7 = 7 on level 5. Using the (wrong) bouud the continuations of the sequence are excluded 

by cut-set rule II. Subsequently, the continuations of the sequence [1,1], [3,1], [2,1], [4,2] are excluded 

by cut-set rule I. 

Therefore, although the theoretical consideration is of interest, in our Implementation we combine the 

multi-mode cut-set rule II only with the cut-set rule I. Otherwise we prefer the beneficial combination 

of the cut-set rule I and the shift rules. 
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5 Conclusions 

We have discussed an enumeration scheine for solving the multi-mode resource-constrained project 

scheduling problem. The basic scheme can be easily generalized for additionally handling constraints 

induced by time varying requests as well as minimal and maximal time lags. Moreover, any objective 

considered can be dealt with a slightly modified Version. Using i-partial schedules the enumeration 

scheme and the current state of the enumeration process can be easily described and extended by 

search tree reduction schemes. 

In the second part of the paper we present the results of our thorough computational experiments. 

Although, for dealing with resource-constrained project scheduling problems, the (slightly modified 

version of the) algorithm is the most general one, the exact method shows surperior Performance when 

solving the multi-mode resource-constrained project scheduling problem. In addition, the truncated 

exact method turns out to be a reasonable heuristic Solution strategy. 
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