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Abstract

This article investigates the construction of skewness-adjusted confidence in-

tervals and joint confidence bands for impulse response functions from vector

autoregressive models. Three different implementations of the skewness adjust-

ment are investigated. The methods are based on a bootstrap algorithm that

adjusts mean and skewness of the bootstrap distribution of the autoregressive

coefficients before the impulse response functions are computed. Using extens-

ive Monte Carlo simulations, the methods are shown to improve the coverage

accuracy in small and medium sized samples and for unit root processes for

both known and unknown lag orders.
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1. Introduction

Time series with small sample sizes are common in econometrics and reg-

ularly analysed with vector autoregressive (VAR) models. In such cases, con-

fidence intervals for impulse response functions (IRFs) for VAR models have

to be constructed using bootstrapping. Confidence intervals for IRFs based on

asymptotic approximation such as that of Lütkepohl (1990) are known to fall

short of the nominal coverage level in small samples, see e.g. Kilian (1998a).

Kilian proposed a bootstrap algorithm to construct bias corrected small sample

confidence intervals. An extension allowing for an unknown lag order of the

VAR process is given in Kilian (1998b). While the bootstrap intervals achieved

higher coverage frequencies than the asymptotic intervals, they still deviated

from the nominal coverage rate. The deviations in actual coverage from nom-

inal coverage levels are particularly pronounced for small sample sizes. When

the true lag order is no longer assumed to be known, the coverage accuracy

declines further. For processes with unit roots or cointegrated processes the

performance of asymptotic as well as bootstrap confidence intervals was also

found to deteriorate in Kilian (1998a,b). This confirmed the result of Basawa

et al. (1991), who show that the standard bootstrap algorithm is not valid for

cointegrated VAR models in levels. However, unit roots may not always be

detected and estimation of a vector error correction model (VECM) requires

knowledge of the cointegration rank. Thus, misspecification can easily occur,

as discussed in Kilian (1998a, p. 225) and Berkowitz and Kilian (2000, p. 30).

Therefore, using a bootstrap method that maintains a high coverage accuracy

even when the process is non-stationary appears desirable.

Two major issues in obtaining an adequate bootstrap distribution are the

bias and the skewness of the least squares (LS) estimator in autoregressive mod-

els.1 To the best of the authors’ knowledge, there is no method for adjusting

1Berkowitz and Kilian (2000, p. 30) conjecture that the poor performance of the bootstrap
confidence intervals in the presence of unit roots and roots close to unity is due to small sample
bias. The evidence presented in this article suggests that skewness may also play an important
role.
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the skewness that is practical for IRF analyses. The percentile interval as given

in Hall (1992), also called basic interval, can in principle deal with skewness,

but does not perform well for IRF coefficients, as shown in Kilian (1999) and

also reported in this article. We propose an alternative but related route for

constructing skewness-adjusted confidence intervals. The approach is based on

the idea of mirroring the bootstrap distribution of the least squares estimator of

the autoregressive coefficients before computing the non-linear transformation

that yields the impulse response functions. Thereby, the skewness of the boot-

strap distribution is reversed. Three different implementations of this concept

are investigated and compared to the standard approaches of Kilian (1998a,b)

and of Hall (1992). The mirroring procedures are shown to improve coverage

rates for unit-root processes and for stationary processes in small and medium

sized samples.

We also show that the proposed adjustments improve the coverage accuracy

of joint confidence bands. Confidence bands are supposed to contain the true

IRF throughout all considered periods with a given probability. Compared to

confidence intervals, the actual coverage rate of joint confidence bands is more

dependent on the tails of the bootstrap distribution of the VAR coefficients.

Thus, adjusting for the skewness may be especially useful in their construction.

Methods for constructing joint bands have been proposed by, among others,

Sims and Zha (1999), Staszewska (2007), Jordà (2009), Jordà and Marcellino

(2010), Staszewska-Bystrova (2011), Staszewska-Bystrova and Winker (2013),

Inoue and Kilian (2013) and Wolf and Wunderli (2015). The performance of

different methods is compared in Lütkepohl et al. (2015a,b). Therein it was

shown that for samples of size 100 and larger and non-persistent processes,

confidence bands constructed using bootstrapping and a method derived from

the Bonferroni principle achieved good coverage rates. However, the coverage

still falls short of the nominal level. We provide evidence that adjusting the

skewness improves the coverage accuracy of joint confidence bands.

Section 2 discusses the problem with skewness and proposes ways to adjust

the bootstrap distribution. Section 3 presents the bootstrap algorithm in detail

3



and describes the way confidence intervals and bands are obtained. We conjec-

ture that the proposed methods lead to improved coverage rates of confidence

intervals and bands by adjusting the skewness in addition to correcting the bias.

To confirm this, evidence from Monte Carlo simulations is provided in Section

4. We do not derive analytical results regarding the effect on impulse response

functions or the asymptotic validity of the method. Section 5 concludes.

2. Skewness and Mirroring

In this section, we introduce and motivate adjustments to the bootstrap dis-

tribution used to compute confidence intervals and bands for impulse response

functions. For explanatory purposes, consider the simple two-dimensional VAR(1)

process

y1,t = α11y1,t−1 + α12y2,t−1 + ε1,t

y2,t = α21y1,t−1 + α22y2,t−1 + ε2,t, t = 2, ..., T
(1)

for the time series y1,t and y2,t, where ε1,t and ε2,t denote error terms. For

a sample of size T , the parameters αij can be estimated with least squares.

Let α̂ij denote the LS estimators and Fα̂ij their unknown distribution. These

estimators are biased in finite samples and the distribution Fα̂ij is skewed, as

visualized in Figure 1a. Based on a Monte Carlo simulation, the figure shows

an approximation of the distribution Fα̂11
. The data generating process (DGP)

used in the simulation is the one given in (1) with α11=0.5, α12=0, α21=0.5 and

α22=0.5, i.e.

y1,t = 0.5y1,t−1 + ε1,t

y2,t = 0.5y1,t−1 + 0.5y2,t−1 + ε2,t.
(2)

The error terms ε1,t and ε2,t follow a multivariate normal distribution with

means of zero, variances of one, and a covariance of 0.3. The sample size is

set to T=100 observations. For an unbiased estimator, the mean of α̂11 should

be close to 0.5. However, in this example, the mean LS estimate over 2000

simulated DGPs turns out to be 0.4589. Furthermore, the distribution is not

symmetric. The skewness is -0.2344, i.e., Fα̂11
is skewed left. When generating
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Figure 1: a) Distribution of α̂11 and α̂bc11 based on 2000 Monte Carlo simulations

of a DGP given by equation (2). b) Distribution of α̂b,bc11 and α̂b,m11 based on 2000
bootstrap simulations using the mean values of α̂bcij and α̂ij , respectively, from
Figure 1a.

a bootstrap distribution, it is common to correct for the bias, but not for the

skewness. Figure 1a also shows the distribution of the bias corrected estimator

α̂bc11, obtained using the method of Pope (1990). Its mean is 0.4949, so the bias

correction was successful. Unsurprisingly, the skewness remains at -0.2830.

In applications, Fα̂11 is generally unknown and for constructing confidence

intervals a bootstrap distribution that resembles—or is hoped to resemble—the

true distribution Fα̂11
is used. A bootstrap distribution of the bias corrected

bootstrap coefficients α̂b,bcij is shown in Figure 1b for i, j=1. It approximately

retains the properties of the distribution of α̂bc11. With a mean of 0.4975, the bias

is successfully removed, while the skewness is still -0.2699. Thus, the bootstrap

approximation to the true distribution was successful. Nonetheless, using this

distribution to construct confidence intervals without taking into account the

skewness can be inappropriate.

The problem resulting from the skewness is recognized in the literature (see,

e.g., Hall (1992)), but is briefly restated here. A left-skewed distribution Fα̂ij

implies a relatively higher probability of obtaining an estimate far to the left

of the true parameter value of αij . When conducting inference, we start from

the estimate α̂ij and want to infer from this the position of the true αij . Thus,
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if Fα̂ij has probability mass further to the left, we want confidence intervals

extending further right to cover the true parameter with sufficient frequency.

The standard approach for constructing percentile confidence intervals, used for

example in Efron (1981) and Efron and Tibshirani (1986), does not accomplish

this. Such a 1−a confidence interval for a parameter θ is obtained as

CI = [θ̂ba/2; θ̂b1−a/2], (3)

where θ̂ba/2 and θ̂b1−a/2 are the a
2 and 1−a2 quantiles of the bootstrap distribution

of θ̂. Hall (1992, p. 95) calls this ’looking up the wrong tail [...] of a distribution.’

Hall suggests to compute percentile intervals instead as

CI∗ = [2θ̂ − θ̂b1−a/2; 2θ̂ − θ̂ba/2]. (4)

However, such intervals turned out to not work well if the statistic of interest,

θ, is an impulse response coefficient, as shown in Kilian (1999).

2.1. Mirroring the bootstrap distribution

As an alternative to (3) and (4), we propose to mirror the bootstrap dis-

tribution of the autoregressive coefficients before carrying out the non-linear

transformation to the impulse response coefficients. The mirroring reverses the

skewness of the bootstrap distribution and thus hopefully improves the cover-

age accuracy of confidence intervals. Similarly to the bias correction in Kilian

(1998a), the skewness adjustment is done before computing the IRFs. Correct-

ing for the skewness that is present in the distribution of the autoregressive

coefficients after applying the non-linear IRF-transformation would be infeas-

ible.

The mirroring algorithm is simple. Consider a model such as the VAR(1) in

equation (1). First, we can obtain least squares estimates α̂ij . Next, we generate

B bootstrap time series ybi,t. This can be done by resampling residuals—details

are given in the next section. Based on ybi,t, we obtain bootstrap estimates α̂bij .
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The mirrored bootstrap estimates are then given by

α̂b,mij = α̂ij − (α̂bij − α̂ij) ∀ i, j. (5)

Note that, by flipping the bootstrap around the initial estimates, we automatic-

ally subtract the mean bias of the bootstrap distribution relative to the estim-

ated coefficient two times and thus adjust for the bias that has occurred both

in the initial estimation and in the estimation during the bootstrapping. Based

on the mirrored bootstrap estimates, we can proceed to compute the impulse

responses and subsequently the confidence intervals based on Efron’s percentile

interval given in (3). Details are given in Section 3. Using this approach, we

obtain a distribution of the mirrored bootstrap estimator α̂b,mij that is plotted

in Figure 1b for i, j=1. This achieves a bias correction as good as using the

algorithm of Pope (1990). The mean of αb,m11 is 0.4989. In addition, the sign

of the skewness is now almost exactly reversed (from -0.2344 in the true distri-

bution to 0.2391 in the mirrored bootstrap distribution), so we obtain a right

skewed distribution as desired.

If we are interested in confidence intervals for the AR coefficients, Hall’s

method and the mirroring method result in the same confidence intervals. The

difference between the two comes into play when the quantity of interest is an

impulse response parameter and not an autoregressive parameter. Because the

former is a non-linear transformation of the latter, correcting for the bias and

skewness that is present in the distribution of the AR coefficients after the IRF

transformation is not straightforward. Hence, we intervene at an earlier stage

and mirror the VAR coefficients instead of the IRF coefficients.

Figure 2a shows exemplarily confidence intervals for IRFs obtained using

the ideas of Efron (1981) and Kilian (1998a) (called CI EK). The intervals are

based on the bootstrap distributions shown in Figure 1b. This is compared to

confidence intervals from the mirroring method (labelled M-method). The plot

shows that, due to the right-skewness of the mirrored distribution, the mirroring

confidence intervals collapse less quickly to zero and thus are wider in the later
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Figure 2: a) Example of bias corrected percentile confidence intervals as in
Kilian (1998a) compared to mirroring confidence intervals. b) Example of Hall
percentile confidence intervals compared to mirroring confidence intervals.

periods. Figure 2b compares confidence intervals obtained using the method

based on Hall (1992) (called CI Hall) to the mirroring intervals. Hall’s method

also involves a sort of mirroring, but of the estimated IRF. These intervals

appear to not correctly adjust for the skewness in the bootstrap distribution

of the VAR coefficients. Hall’s method moves the intervals further downwards,

instead of extending them upwards, where we would rather expect the true IRF

if the distribution of the estimators is skewed left.

2.2. Refinements to the mirroring

Mirroring the bootstrap coefficients around the LS estimates as described

above is a relatively crude method, as it can completely change the dynamics of

the VAR model. Because each coefficient is mirrored individually, the percentile

ranks of bootstrap coefficients of the same model change in a non-consistent

way. For example, consider some particular bootstrap values of α̂b11 and α̂b12,

coming from the bth iteration. Let these values constitute the 10th and the

70th empirical percentile of their respective bootstrap distributions. Then, the

values after applying the mirroring, i.e. α̂b,m11 and α̂b,m12 , constitute the 90th and

the 30th percentile of their respective distributions. Therefore, it seems that

the dynamics of the VAR system resulting from the mirroring are possibly quite

disconnected from the originally estimated structure. The least squares estimate
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represents a reasonable estimate because it minimizes a loss function. The

mirrored estimates do nothing of the sort and have no particular justification

in and on themselves, other than leading to a bootstrap distribution that has

desirable properties in terms of mean and skewness.

For multidimensional data no clear ordering exists that would allow to jointly

mirror the data. Therefore, we are left with adjusting individual coefficients in-

stead of the entire system. However, there is a less disruptive way to adjust

the distribution than simply mirroring the coefficients. We can mirror the dis-

tribution without mirroring the coefficients by adjusting the distance between

the estimates and the percentiles of the bootstrap distribution. This percentile

mirroring, labelled MP, is given by

α̂b,mpij = α̂ij − (α̂bij − α̂ij)100−r(α̂b
ij)
∀ i, j, (6)

where r(α̂bij) is the percentile rank of α̂bij in its distribution and (α̂bij−α̂ij)100−r(α̂b
ij)

is the (100− r(α̂bij))th empirical percentile of the distribution of (α̂bij − α̂ij). To

see the difference more clearly, the mirroring given in (5) can be restated as

α̂b,mij = α̂ij − (α̂bij − α̂ij)r(α̂b
ij)
∀ i, j. (7)

The mean and the skewness resulting from the two mirroring methods are

identical. In fact, the distribution of α̂b,mpij is the same as that of α̂b,mij , but

the positions of individual coefficients are reversed. With MP, the bootstrap

distribution is stretched in one tail and shrunk in the other instead of the coef-

ficients being swapped within the distribution. When using MP, the coefficients

will each retain their rank order in their respective distributions. This difference

matters because the different VAR coefficients jointly determine the dynamics

of the VAR system.

Even though the MP method also corrects for a bias, it only does so after

bootstrapping. Thus, the bootstrap series are generated from a VAR model

that has not been bias-corrected. To address this potential shortcoming, we
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investigate combining the skewness adjustment with a bias correction as a third

option. As in Kilian (1998b) we use the bias correction from Pope (1990) to

adjust the estimates of the VAR coefficients as well as the bootstrap coefficients.

After this, the MP method from (6) is applied to the bias corrected coefficients.

This combined approach is labeled the MPbc method.

Unknown lag orders represent a challenge for MP and MPbc. For their

computation we need percentiles for each bootstrap coefficient. It appears reas-

onable to compute the percentiles using only bootstrap coefficients that come

from a VAR with the same estimated lag order. However, some lag orders might

be estimated only very few times during bootstrapping and thus there are very

few matching bootstrap coefficients available. One could generate additional

bootstrap draws until a satisfactory number of models is available for each lag

length. We do not consider this approach here due to the high computational

cost. Instead, we compute the percentiles based on however many bootstrap

coefficients with the same lag order are available.

3. Bootstrap confidence intervals and bands

3.1. The model

Consider a VAR(p) model, p denoting the lag order, for t=p+1, ..., T , given

by

yt = A0 +A1yt−1 + ...+Apyt−p + εt, (8)

where yt = (y1t, ..., yKt)
′ is the vector of time series, A0 is a K×1 vector of

constants, A1 to Ap are K×K parameter matrices and εt is a K×1 error term.

The errors are assumed to be uncorrelated over time, having zero mean and

covariance matrix Σε. To estimate the VAR model, we first determine the

lag order p. As discussed in Kilian (1998b) and Berkowitz and Kilian (2000),

different information criteria may be used to accomplish this in the context of

bootstrap confidence intervals. The criterion should, however, not be biased to

underestimate the true lag order in small samples. This point is particularly

important in the context of bootstrapping, where the lag order is estimated two
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times and a downward bias would thus be exacerbated. Kilian (1998b) suggests

using the AIC (Akaike, 1974). Our simulations showed that this produces too

wide confidence intervals and bands, in line with the results in Kilian (1998b).2

This is probably due to the overestimation of the true lag order by the AIC and

the subsequently higher estimation uncertainty of models with too many free

parameters. We therefore use the corrected AIC (AICc) introduced by Sugiura

(1978), applied to autoregressions in Hurvich and Tsai (1989) and to vector

autoregressions in Hurvich and Tsai (1993). The AICc is given by

AICc = AIC +
2κ(κ+ 1)

T − κ− 1
(9)

with κ being the number of parameters per VAR equation. For a given lag order

p̂, we can estimate equation (8) using LS. Denote the estimators by Â0 to Âp̂.

When constructing confidence intervals it was found useful to correct for the bias

in the estimated autoregressive coefficients, see e.g. Kilian (1998a) and Berkow-

itz and Kilian (2000). Two commonly used methods are the analytical method

of Pope (1990) and the bootstrap method of Kilian (1998a). For a description

of the method of Pope in a similar context to ours, the reader is referred to

Kim (2004) and Staszewska-Bystrova and Winker (2013). Because of the lower

computational cost we use the method of Pope (1990) to obtain bias corrected

estimates Âbc0 to Âbcp̂ . The bias correction includes the stationarity correction

suggested by Kilian (1998a). This means that the bias correction is not ap-

plied if a system is non-stationary. Further, if the estimates imply stationarity,

but the bias corrected estimates correspond to a non-stationary model, only a

fraction of the estimated bias is subtracted from the estimates. The fraction

is gradually reduced until stationarity of the system is maintained throughout

the bias correction. A process is considered stationary if the modulus of the

2Simulations of DGPs with higher lag orders than considered here or by Kilian (1998b)
indicate that the AICc might provide to low estimated lag orders and the AIC might be
preferable. Research into the optimal information criterion for bootstrap confidence intervals
and bands at different sample sizes may be helpful.
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largest eigenvalue of the companion matrix associated with the autoregressive

coefficients is less than one.

Given estimated coefficients, we can compute residuals either as

ε̂t = yt − Â0 − Â1yt−1 − ...− Âpyt−p (10)

or consistent with the bias corrected estimates as

ε̂bct = yt − Âbc0 − Âbc1 yt−1 − ...− Âbcp yt−p. (11)

The residuals of (11) will no longer have a mean of zero, and should be recentered

by subtracting the mean. Furthermore, the residuals of both (10) and (11) are

rescaled by a factor of
√

(T − p̂)/(T − p̂−Kp̂− 1) (see Stine, 1987). Let ε̂∗t

denote the recentered and rescaled residuals. Given ε̂∗t , we compute the least

squares estimator Σ̂ε of the covariance matrix Σε. In a next step, the impulse

response coefficients over H periods are obtained as

Φ̂h =

h∑
i=1

Φ̂h−iÂi, h = 1, ...,H, (12)

with Φ̂0 = IK and Âi = 0 for i > p̂. Orthogonalized impulse response functions

can be obtained as

Θ̂h = Φ̂hP, h = 0, ...,H, (13)

where PP ′ = Σ̂ε is the Cholesky decomposition of Σ̂ε. An element θ̂k,j,h of Θ̂h

can be interpreted as the reaction of variable k to a shock in equation j, after h

periods. In the case of a two dimensional VAR model, i.e. K=2, the recursive

ordering of the Cholesky decomposition implies that the reaction of the first

variable to the second shock is restricted to zero in the initial period h=0.

3.2. Bootstrap Algorithm

Our interest is in constructing confidence intervals and joint confidence bands

for the orthogonalized impulse response functions. This section describes the
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algorithm to obtain bootstrap distributions of IRF coefficients. Based on these,

confidence intervals and bands can be constructed, as detailed in Section 3.3.

The bootstrap algorithm given below includes optional steps for conducting a

bias correction or a skewness adjustment or both. Aside from the mirroring

steps, the bootstrap procedure described here is in large parts similar to that in

Kilian (1998a,b) as well as to that in Lütkepohl et al. (2015a). The bootstrap

procedure is given in Algorithm 1. Based on the ideas of Efron (1981) and

Kilian (1998a,b) we construct confidence intervals and bands, labelled EK, using

Algorithm 1 with the bias correction options (steps 2 and 8). Hall-type intervals

and bands are obtained using the same bootstrap algorithm, also including the

bias correction. The difference between the two is whether we use the percentile

intervals given in (3) or the interval given in (4). The M and the MP methods do

not employ the bias correction options but use the mirroring and the percentile

mirroring given in (5) and (6), respectively (step 13 in Algorithm 1). The MPbc

method utilises the percentile mirroring as well as the bias correction steps of

Algorithm 1.
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Algorithm 1 Bootstrap Procedure

1: Estimate lag order and coefficients of VAR;
2: Optional: Bias-correct VAR coefficients;
3: Obtain, rescale, and re-center residuals;
4: Optional: When a mirroring method is used, estimate and store VAR para-

meters for all lag orders between 1 and pmax
5: for b = 1 to B do
6: Construct bootstrap time series ybt=Â0+Â1y

b
t−1+...+Âp̂y

b
t−p̂+ε

∗b
t ,

t=p̂+1, ..., T , where ε∗bt is a random draw with replacement from the
residuals. The initial values (yb1, ..., y

b
p̂) are set to a randomly chosen se-

quence (yτ , ..., yτ+p̂−1) from the data {yt}, τ∈{1, ..., T−p̂}. If the bias

correction in step 2 is applied, use Âbc0 to Âbcp instead of Â0 to Âp;
7: Estimate bootstrap lag order and bootstrap coefficients;
8: Optional: Bias-correct the bootstrap coefficients;
9: Obtain, rescale, and re-center bootstrap residuals;

10: Calculate the bootstrap covariance matrix;
11: end for
12: for b = 1 to B do
13: Optional: Apply the mirroring or percentile mirroring to the bootstrap

coefficients;
14: Compute orthogonalized IRF coefficients;
15: end for

3.3. Construction of Confidence Intervals and Bands

For the construction of confidence intervals, the percentile interval of Efron

(1981), given by (3), is used for all methods but Hall’s. Hall’s interval is based

on the adjusted percentile interval given in (4). Thus, in contrast to the three

mirroring methods, Hall’s method ’mirrors’ the distribution after computing the

impulse response functions.

Furthermore, we construct five types of joint confidence bands. The bands

are constructed based on the Bonferroni adjusted (Ba) method introduced in

Lütkepohl et al. (2015a). Out of the different possibilities given in the lit-

erature, the Ba method is chosen here because it was shown to work well in

previous studies. The method was successfully applied to VAR forecasting of

corporate bond spreads in Staszewska-Bystrova and Winker (2014), to forecast-

ing with SETAR models in Grabowski et al. (2017), and was shown to compare

favourably for constructing confidence bands for impulse response functions in
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Lütkepohl et al. (2015a,b).

The Bonferroni adjusted bands are constructed as follows. First, select the

a
2(H+1)B smallest and largest bootstrap impulse response coefficients in each

period and eliminate the corresponding impulse response functions from the

set containing all B bootstrapped IRFs (H+1 is the number of periods over

which the IRFs are investigated). This ensures that at most a fraction a of

the bootstrap impulse response paths are eliminated, which is consistent with

the Bonferroni principle. If the contour of the set of remaining IRFs is taken

as confidence bands, it should ensure a coverage rate of at least 1−a. In gen-

eral, this procedure eliminates less than aB paths and can thus be considered

conservative, exhibiting a large width. The Bonferroni adjusted method there-

fore proceeds to eliminate more bootstrap IRF paths. In each step, the path

which contributes the most to the width of the current band is removed. The

width is measured as the sum of the widths of the individual intervals. This

continues until aB bootstrap impulse response functions have been eliminated.

The envelope of the remaining (1−a)B functions represents the Ba band. For a

more detailed discussion of the Ba method see Staszewska-Bystrova and Winker

(2014) and Lütkepohl et al. (2015a).

If the Ba bands are computed based on IRFs obtained with the bias corrected

bootstrap, the bands are labelled Efron-Kilian (EK) bands. Based on bootstrap

IRFs obtained with Algorithm 1 using the mirroring, the percentile mirroring

or the percentile mirroring with bias correction, we obtain M bands, MP bands,

and MPbc bands, respectively. To compute Hall-type bands, the bias corrected

bootstrap is again used. Similarly to the construction of confidence intervals in

(4), Hall bands reverse the Ba bands. For this, the bootstrap IRF coefficients of

each period are mirrored at the estimated IRF coefficients, i.e.

Θ̂b,Hall
h = 2Θ̂h − Θ̂b

h. (14)

Based on the bootstrap distribution of Θ̂b,Hall
h , Hall-type confidence bands are

constructed using the Ba algorithm described above.
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4. Monte Carlo Evaluation

4.1. Simulation Setup

To evaluate the performance of the proposed mirroring procedure, we simu-

late different DGPs that all follow a two-dimensional VAR(p) process as given

in equation (8). Simulations are performed under the assumption that the true

lag order p of the DGP is known and also under the assumption that it is not

known and has to be estimated. If the true lag order is set to p=1 it is not

possible to underestimate the lag length (if an order of zero is not considered).

Underestimating the true lag order generally leads to substantial coverage er-

rors of confidence intervals and bands. To critically evaluate the methods, we

therefore consider the cases p=1 as well as p=2.

For the DGP with one lag we use a design common in the literature (e.g.

Kilian (1998a)),

A0 =

0

0

 , A1 =

α11 0

0.5 0.5

 . (15)

For the parameter α11 values in {-1, -0.8, -0.5, -0.3, 0, 0.1, 0.3, 0.5, 0.7, 0.9,

0.95, 0.99, 1} are used. Alternative values of α11 imply different persistences

of the process. For α11= ± 1 the process is non-stationary. In such a setting,

estimation of a vector error correction model may be preferable—provided the

unit root and the cointegration rank are both correctly tested for (Kilian, 1998a;

Berkowitz and Kilian, 2000). Thus, it makes sense to distinguish the results for

different cases. In what follows, we aggregate the results in two ways: over all

values of α11 and separately over only the less persistent cases. As less persistent

DGPs we consider the models with α11∈{-0.8, -0.5, -0.3, 0, 0.1, 0.3, 0.5, 0.7,

0.9}.

For the DGP with two lags we use

A0 =

0

0

 , A1 =

α11 0

0.4 0.4

 , A2 =

 0.3 0

−0.2 −0.1

 . (16)
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This setting uses α11∈{-0.7 -0.6, -0.5, -0.3, 0, 0.1, 0.3, 0.5, 0.6, 0.65, 0.69, 0.7}.

For α11= ± 0.7 the process has a unit root. Hence, summary statistics for

processes with α11∈{-0.6, -0.5, -0.3, 0, 0.1, 0.3, 0.5, 0.6} are again reported

separately.

The error term is assumed to follow a multivariate normal distribution with

mean zero and covariance matrix

Σε =

 1 0.3

0.3 1

 . (17)

The impulse responses are evaluated for horizons h=0,...,10. For a given

DGP we simulate 2000 time series of size T . The sample size takes on values in

{30, 50, 100, 200, 1000}. The bootstrap algorithm uses B=2000 iterations. The

confidence level is set to 1−a=95%. We present results for confidence intervals

in section 4.2 and for joint confidence bands in section 4.3.

4.2. Results for Confidence Intervals

This section compares the performance of different confidence intervals for

IRFs. We summarize results by averaging over the performances for all the

different parameter choices for α11, over horizons h = 0, ..., 10, and over the

four IRFs (y1→y1, y1→y2, y2→y1, y2→y2). When p=1, each summary statistic

is therefore based on 572 individual coverage frequencies when evaluating the

entire range of α11, and 396 values when looking only at the less persistent pro-

cesses. For p=2, averages are obtained over 528 and 352 individual performance

results. Table 1 shows the mean coverage frequencies for the different methods

under investigation. Except for Hall’s method in small samples, mean coverage

rates approximate 95%. They tend to be larger when only less persistent pro-

cesses are considered, when the lag order is endogenous, and when the sample

size increases. Because the results of Table 1 are means that are computed

across different periods, different settings for α11 and four impulse response

functions, they are not very informative with regard to the coverage accuracy.

For some individual settings of α11, horizon h, and IRF, we obtain coverage
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Across all α11 α11 ∈ {−0.8, ..., 0.9}
T M MP MPbc EK Hall M MP MPbc EK Hall

Lag order p=1 known
30 95.04 95.34 95.15 95.01 89.24 95.35 95.80 95.33 96.76 90.36
50 95.02 95.38 95.28 94.95 90.36 95.05 95.59 95.49 96.25 90.68
100 95.28 95.60 95.44 95.09 91.81 95.32 95.74 95.67 95.98 91.59
200 94.99 95.30 95.05 94.84 92.62 94.99 95.32 95.26 95.47 92.26
1000 95.14 95.23 95.09 95.05 93.66 95.20 95.32 95.29 95.33 93.18

Lag order p=2 known
30 96.88 96.08 96.31 96.15 92.93 97.31 96.78 96.77 97.39 94.32
50 96.38 95.92 95.84 95.70 92.91 96.76 96.52 96.47 96.84 93.90
100 96.32 96.10 95.87 95.67 94.07 96.47 96.47 96.35 96.51 94.57
200 95.73 95.79 95.52 95.37 94.98 95.75 96.01 95.89 95.94 95.32
1000 95.38 95.43 95.26 95.15 95.47 95.36 95.40 95.36 95.35 95.70

Lag order p=1 unknown
30 96.27 96.47 96.38 95.61 90.45 96.60 96.91 96.54 97.32 91.79
50 96.84 97.05 97.03 96.11 92.27 97.00 97.30 97.21 97.40 93.00
100 97.28 97.49 97.40 96.66 93.81 97.49 97.75 97.69 97.67 93.94
200 97.23 97.50 97.35 96.75 94.55 97.39 97.63 97.57 97.56 94.46
1000 97.34 97.57 97.47 97.27 96.14 97.49 97.65 97.59 97.74 96.22

Lag order p=2 unknown
30 94.64 94.33 95.06 93.32 85.48 94.75 94.34 94.95 93.60 86.00
50 96.31 96.15 96.28 93.67 88.17 96.45 96.21 96.33 93.87 88.52
100 97.29 97.21 97.09 95.61 93.42 97.45 97.42 97.36 96.20 93.89
200 97.16 97.27 97.12 96.50 95.55 97.25 97.47 97.41 97.13 95.94
1000 97.04 97.20 97.11 96.71 96.29 97.15 97.23 97.20 97.05 96.48

Table 1: Mean coverage frequencies (in percent) for nominal 95% confidence
intervals. Means of estimated coverage frequencies of intervals are computed
over different parameter settings for α11, over periods h=0, ..., 10 and over the
four impulse responses in a two-dimensional VAR.

rates of around 99% while for others values drop below 80%. This might still

result in mean coverages close to 95%, but cannot be considered accurate.

Table 2 presents root mean squared coverage errors (RMSCEs) to measure

the percentage point deviations from the desired 95% coverage level. This num-

ber gives a good indication of how well each method is maintaining the nominal

level across all settings for a given sample size.3 The table shows that all three

variations of the mirroring approach (M, MP, MPbc) substantially reduce the

coverage errors in all four scenarios (known and unknown lag orders of p=1, 2)

3This supposes that we equally dislike positive and negative deviations from the nominal
coverage level. Arguably, too low coverages are a more severe violation of the idea underlying
the construction of confidence intervals.
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Across all α11 α11 ∈ {−0.5, ..., 0.6}
T M MP MPbc EK Hall M MP MPbc EK Hall

Lag order p=1 known
30 2.78 2.62 2.40 5.33 11.81 2.84 2.71 2.54 3.35 10.70
50 2.13 1.92 1.79 3.94 10.45 2.18 2.02 1.86 2.35 10.69
100 1.60 1.55 1.44 2.79 8.78 1.67 1.62 1.54 1.73 9.71
200 1.25 1.21 1.05 2.09 7.29 1.24 1.17 1.09 1.20 8.53
1000 0.92 0.95 0.89 1.13 3.56 0.95 0.97 0.95 0.98 4.26

Lag order p=2 known
30 3.64 3.46 3.02 4.47 9.05 3.87 3.61 3.27 3.75 8.01
50 2.84 2.64 2.47 3.69 8.01 3.11 2.87 2.74 3.00 8.76
100 2.27 2.07 2.06 2.79 6.74 2.48 2.35 2.31 2.39 6.76
200 1.81 1.60 1.50 1.95 4.45 1.97 1.84 1.78 1.79 4.77
1000 1.00 1.03 0.90 1.19 2.22 1.04 1.08 1.05 1.03 2.69

Lag order p=1 unknown
30 3.11 3.08 2.75 5.42 10.76 3.27 3.28 2.90 3.77 9.29
50 2.78 2.83 2.72 4.32 8.35 2.95 3.06 2.90 3.41 7.97
100 2.89 2.96 2.88 3.67 6.50 3.12 3.21 3.15 3.36 6.89
200 2.73 2.86 2.73 3.16 5.36 2.93 3.01 2.95 3.16 6.21
1000 2.71 2.90 2.80 2.94 2.85 2.90 3.00 2.94 3.29 3.29

Lag order p=2 unknown
30 4.27 4.49 3.96 6.21 19.75 4.51 4.70 4.35 5.89 20.14
50 2.92 2.90 2.90 5.29 14.50 3.10 3.05 3.12 5.05 15.40
100 2.97 2.86 2.73 3.18 6.65 3.17 3.08 3.00 2.93 6.90
200 2.80 2.77 2.64 2.69 3.93 2.98 3.00 2.95 2.83 4.14
1000 2.49 2.61 2.52 2.44 2.38 2.66 2.68 2.66 2.71 2.77

Table 2: Root mean squared coverage errors (RMSCEs) (in percentage points)
for nominal 95% confidence intervals. Root means of the squared deviations of
estimated coverage frequencies from the desired 95% nominal rate are computed
over different parameter settings for α11, over periods h=0, ..., 10 and over the
four impulse responses in a two-dimensional VAR.

when highly persistent and non-stationary time series are allowed for. When

only less persistent series are considered, the mirroring methods dominate the

EK and Hall method in very small samples (T=30, 50). For medium and large

sample sizes (T=100, 200), the performance of EK and the mirroring methods

becomes comparable. Hall’s method exhibits the largest deviations from the

nominal coverage rate throughout all settings, but draws level with the other

methods for T=1000. MPbc offers the smallest RMSCE out of the three newly

proposed methods. Comparing the left and right side of Table 2 reveals an

interesting difference between the mirroring methods and the two benchmark

methods. The left blocks report summary statistics that include non-stationary

processes while on the right only less persistent DGPs are considered. The
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Across all α11 α11 ∈ {−0.8, ..., 0.9}
T M MP MPbc EK Hall M MP MPbc EK Hall

Lag order p=1 known
30 1.64 1.24 1.32 0.63 0.63 1.09 0.84 0.96 0.54 0.54
50 0.81 0.68 0.66 0.46 0.46 0.54 0.45 0.47 0.37 0.37
100 0.40 0.37 0.35 0.31 0.31 0.27 0.25 0.25 0.23 0.23
200 0.23 0.23 0.22 0.21 0.21 0.16 0.16 0.16 0.15 0.15
1000 0.09 0.09 0.09 0.09 0.09 0.07 0.06 0.06 0.06 0.06

Lag order p=2 known
30 1.84 1.06 1.12 0.69 0.69 1.48 0.85 0.97 0.66 0.66
50 0.83 0.59 0.58 0.47 0.47 0.66 0.48 0.49 0.43 0.43
100 0.39 0.33 0.31 0.30 0.30 0.31 0.27 0.27 0.26 0.26
200 0.22 0.21 0.20 0.20 0.20 0.18 0.17 0.17 0.17 0.17
1000 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07

Lag order p=1 unknown
30 1.78 1.38 1.53 0.66 0.66 1.20 0.93 1.12 0.57 0.57
50 0.92 0.81 0.82 0.50 0.50 0.63 0.55 0.59 0.40 0.40
100 0.47 0.45 0.45 0.34 0.34 0.33 0.32 0.32 0.26 0.26
200 0.28 0.29 0.28 0.23 0.23 0.21 0.20 0.20 0.17 0.17
1000 0.11 0.12 0.11 0.10 0.10 0.08 0.09 0.08 0.07 0.07

Lag order p=2 unknown
30 1.46 1.16 1.46 0.56 0.56 1.01 0.80 1.09 0.49 0.50
50 0.84 0.70 0.73 0.45 0.45 0.63 0.52 0.57 0.39 0.39
100 0.44 0.39 0.39 0.32 0.32 0.35 0.31 0.32 0.27 0.27
200 0.26 0.25 0.25 0.21 0.21 0.22 0.21 0.21 0.18 0.18
1000 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.09 0.08 0.08

Table 3: Mean widths for nominal 95% confidence intervals. The mean distance
between the upper and lower bound of an interval is computed over different
parameter settings for α11, over periods h=0, ..., 10 and over the four impulse
responses in a two-dimensional VAR.

mirroring methods generally do better for highly persistent and non-stationary

processes than for less persistent processes. This is in contrast to the EK and

Hall method, whose coverage properties are generally worse when highly per-

sistent processes are allowed for. In conclusion, MPbc provides better or similar

coverage accuracy as compared to the simpler mirroring schemes as well as to

the EK and Hall intervals.

Besides the coverage frequencies, the size of confidence intervals is a relevant

measure of how informative the intervals are. Table 3 gives the mean widths of

the intervals. The EK and Hall’s intervals have the lowest widths throughout

all settings.4 Out of the three mirroring methods, MP offers the smallest width.

4By construction, the EK and Hall’s intervals have the same width.
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For small samples the mirroring methods produce particularly wide intervals.

This might be justified as they also substantially improve coverage frequencies.

As discussed in Section 2, MP and MPbc are based on percentiles of a boot-

strap distribution using only models with the same estimated lag length. This

means that for scenarios where the true lag order is unknown, some percentiles

may be based upon very few realizations. This might explain why MP and

MPbc dominate the EK and Hall’s intervals when the lag order is known, but

cannot keep up their superiority when the lag order is endogenous. Nonetheless,

both methods turn out to be relatively successful even for unknown lag orders.

In summary, mirroring the bootstrap distribution of the VAR coefficients

seems to offer a path to achieving better coverage accuracy for confidence inter-

vals in small samples, especially when unit roots may be present. However, the

mirroring intervals are less informative due to their larger width.

4.3. Results for Joint Confidence Bands

A joint confidence band is considered to cover the true IRF only if the IRF

is contained in the band at every horizon h. In presenting results for bands,

we thus compute mean coverages and RMSCEs as averages across different

settings of α11 and across the four impulse response functions. The width is

still computed as the average width per period, however. Table 4 presents

mean coverage frequencies for confidence bands. The results match those of

Section 4.2. M, MP, MPbc, and EK bands all yield coverage rates around 95%.

Coverage frequencies are lower for small samples and for known lag orders,

while for larger samples and endogenous lag orders coverage rates are above

95%. Hall’s bands again fall substantially short of the nominal level in samples

of size 30, 50 and sometimes also 100. To measure the deviations of actual from

nominal coverage rates for the different settings, we again turn to the RMSCEs

presented in Table 5. The results show that the mirroring methods also work

well for the construction of confidence bands. Coverage errors of M, MP, and

MPbc bands are substantially lower than those of EK and Hall’s bands when

highly persistent and non-stationary processes are included in the evaluation.
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Across all α11 α11 ∈ {−0.8, ..., 0.9}
T M MP MPbc EK Hall M MP MPbc EK Hall

Lag order p=1 known
30 93.20 93.31 93.67 92.48 82.99 93.31 93.62 93.85 94.22 85.20
50 94.35 94.40 94.55 93.47 84.13 94.28 94.63 94.78 94.85 85.12
100 94.93 94.97 94.85 94.19 86.32 94.82 95.09 95.16 95.08 85.89
200 94.80 94.86 94.63 94.26 87.53 94.78 94.90 94.92 94.94 86.32
1000 94.83 94.62 94.50 94.58 90.29 94.82 94.67 94.68 94.78 89.10

Lag order p=2 known
30 94.75 93.63 94.60 94.10 88.63 95.14 94.31 95.10 95.33 89.28
50 95.38 94.31 94.59 94.35 87.96 95.82 94.87 95.22 95.43 89.64
100 95.69 94.99 94.88 94.65 89.58 95.82 95.34 95.33 95.44 90.66
200 95.15 94.83 94.58 94.49 91.04 95.05 94.99 94.92 95.01 90.72
1000 94.41 94.35 94.14 94.12 92.91 94.33 94.29 94.23 94.25 92.10

Lag order p=1 unknown
30 94.67 94.64 95.31 93.45 86.34 94.82 94.93 95.47 94.98 88.95
50 96.33 96.37 96.65 94.94 89.67 96.40 96.57 96.84 96.19 91.90
100 97.18 97.30 97.30 96.12 93.08 97.27 97.53 97.57 97.05 94.37
200 97.30 97.57 97.50 96.59 94.19 97.37 97.69 97.67 97.41 94.63
1000 97.63 97.87 97.80 97.32 95.85 97.77 97.95 97.89 97.71 96.03

Lag order p=2 unknown
30 93.54 92.57 94.10 91.58 77.16 93.64 92.55 94.11 92.18 78.45
50 95.90 95.52 96.00 91.97 80.82 96.06 95.81 96.15 92.43 81.82
100 97.12 96.83 96.87 94.60 89.43 97.18 97.06 97.15 95.16 90.25
200 97.02 96.95 96.88 96.15 93.52 97.03 97.09 97.11 96.73 94.04
1000 96.95 97.11 97.07 96.54 95.19 96.92 97.11 97.12 96.76 95.22

Table 4: Mean coverage frequencies (in percent) for nominal 95% joint con-
fidence bands. Means of estimated joint coverage frequencies of bands are
computed over different parameter settings for α11 and over the four impulse
responses in a two-dimensional VAR.

When looking only at the less persistent processes in the right columns of Table

5, the mirroring methods still outperform the benchmarks when the sample

sizes are very small (T=30, 50). For medium (T=100, 200) and large samples

(T=1000) the performance of the mirroring bands and the EK bands converge.

The method providing the smallest RMSCE varies depending on sample size,

lag length and between known and unknown lag orders.

We notice that again the comparatively strong performance of the percentile

mirroring approaches (MP and MPbc) for known lag lengths appears to vanish

for endogenous lag orders. Note also that the increases of the RMSCEs when

the sample size grows, which occur for all mirroring methods and also the EK

method, are due to a shift from coverage rates being mostly below the nominal
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Across all α11 α11 ∈ {−0.5, ..., 0.6}
T M MP MPbc EK Hall M MP MPbc EK Hall

Lag order p=1 known
30 3.80 3.55 3.00 6.23 17.11 3.61 3.24 2.94 3.27 14.81
50 2.67 2.26 1.97 4.69 15.76 2.73 2.14 1.89 2.32 15.23
100 1.96 1.61 1.69 3.23 13.40 2.05 1.57 1.57 1.87 14.43
200 1.69 1.20 1.43 2.52 11.77 1.77 1.24 1.25 1.41 13.64
1000 1.38 1.14 1.29 1.63 6.97 1.40 1.12 1.16 1.37 8.26

Lag order p=2 known
30 2.84 3.32 2.22 3.81 11.95 2.91 2.73 1.98 2.16 9.74
50 2.09 2.36 1.89 3.44 12.86 2.11 2.00 1.61 1.93 11.06
100 1.77 1.68 1.68 2.63 10.24 1.67 1.60 1.58 1.80 7.85
200 1.23 0.97 1.17 1.70 7.02 1.41 0.93 0.97 1.04 6.48
1000 0.99 1.00 1.18 1.30 3.28 1.21 0.98 1.02 1.04 3.84

Lag order p=1 unknown
30 2.98 2.93 2.41 5.46 14.54 2.85 2.71 2.42 2.98 11.54
50 2.35 2.93 2.32 4.26 11.13 2.38 2.37 2.42 2.53 8.94
100 2.60 2.66 2.67 3.35 6.58 2.67 2.78 2.81 2.68 5.14
200 2.62 2.74 2.68 2.94 3.70 2.70 2.83 2.82 2.75 3.63
1000 2.83 2.97 2.90 2.76 1.82 2.96 3.05 3.00 2.98 2.07

Lag order p=2 unknown
30 4.35 5.31 3.54 6.92 27.67 4.30 5.34 3.58 6.07 26.53
50 2.52 2.56 2.31 6.34 21.46 2.57 2.48 2.40 5.59 21.06
100 2.49 2.38 2.33 3.21 9.85 2.57 2.46 2.49 2.65 9.43
200 2.25 2.14 2.12 2.04 4.44 2.28 2.21 2.25 2.03 4.00
1000 2.08 2.18 2.15 1.80 1.41 2.09 2.19 2.20 1.95 1.67

Table 5: Root mean squared coverage errors (RMSCEs) (in percentage points)
for nominal 95% joint confidence bands. Root means of the squared deviations
of estimated joint coverage frequencies from the desired 95% nominal rate are
computed over different parameter settings for α11 and over the four impulse
responses in a two-dimensional VAR.

level in smaller samples to coverage rates mostly above the nominal level in

larger samples.

Table 6 shows the mean widths per period for the different kinds of confidence

bands. Again, EK’s and Hall’s method offer the lowest widths in all settings.

Out of the three mirroring methods, MP has the lowest width while M bands

might be considered excessively wide in small samples.

5. Conclusions

We investigate modifications of the bootstrap algorithm for the construction

of confidence intervals and confidence bands for impulse response functions in

vector autoregressive models. The simple mirroring method adjusts for bias
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Across all α11 α11 ∈ {−0.8, ..., 0.9}
T M MP MPbc EK Hall M MP MPbc EK Hall

Lag order p=1 known
30 1.70 1.32 1.38 0.74 0.74 1.17 0.92 1.03 0.64 0.64
50 0.87 0.75 0.73 0.53 0.53 0.60 0.52 0.53 0.44 0.44
100 0.44 0.42 0.40 0.35 0.35 0.31 0.29 0.29 0.27 0.27
200 0.26 0.26 0.25 0.24 0.24 0.19 0.19 0.18 0.18 0.18
1000 0.10 0.10 0.10 0.10 0.10 0.08 0.08 0.08 0.08 0.08

Lag order p=2 known
30 2.13 1.26 1.33 0.88 0.88 1.09 1.05 1.18 0.84 0.84
50 0.97 0.71 0.71 0.58 0.58 0.91 0.59 0.61 0.54 0.54
100 0.46 0.40 0.39 0.36 0.36 0.44 0.33 0.33 0.32 0.32
200 0.27 0.25 0.24 0.24 0.24 0.26 0.21 0.21 0.21 0.21
1000 0.10 0.10 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.09

Lag order p=1 unknown
30 2.00 1.54 1.67 0.80 0.80 1.42 1.09 1.27 0.70 0.70
50 1.10 0.96 0.97 0.61 0.61 0.81 0.69 0.74 0.51 0.51
100 0.58 0.56 0.55 0.42 0.42 0.44 0.41 0.42 0.33 0.33
200 0.35 0.35 0.35 0.29 0.29 0.27 0.26 0.27 0.23 0.23
1000 0.14 0.14 0.14 0.12 0.12 0.11 0.11 0.11 0.10 0.10

Lag order p=2 unknown
30 1.65 1.28 1.53 0.70 0.70 1.21 0.93 1.18 0.63 0.63
50 1.02 0.84 0.87 0.56 0.56 0.81 0.66 0.72 0.51 0.51
100 0.56 0.50 0.50 0.41 0.41 0.47 0.42 0.43 0.36 0.36
200 0.34 0.32 0.32 0.28 0.28 0.29 0.28 0.28 0.25 0.25
1000 0.13 0.13 0.13 0.12 0.12 0.11 0.11 0.11 0.10 0.10

Table 6: Mean widths for nominal 95% joint confidence bands. The mean
distance between the upper and lower bound of a confidence band in one period
is computed over different parameter settings for α11, over the four impulse
responses in a two-dimensional VAR and also over periods h=0, ..., 10.

and skewness of the bootstrap distribution of the coefficient estimators. This

is achieved by mirroring the distribution of the bootstrap coefficients at the es-

timates, similarly to the percentile intervals suggested in Hall (1992). Mirroring

individual coefficients moves them a considerable distance within the parameter

space and does so for each coefficient individually. Because this might distort

the dynamics of the estimated VAR systems, we explore a related but altered

approach. The percentile mirroring equally mirrors the bootstrap distribution,

but does so by squeezing and stretching the distribution rather than swapping

coefficients. While both methods adjust the bias in the bootstrap distribution,

they do so only after the bootstrapping. To address this problem, we suggest

as a third approach to combine the percentile mirroring with a bias correction
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of the LS estimator. These three methods are compared to standard methods

from the literature.

Monte Carlo evidence suggests that in samples with 50 or fewer observations,

all three mirroring methods improve the coverage accuracy of confidence inter-

vals and bands as compared to the benchmark methods. For samples of size 100

and larger, the different methods start to converge in terms of coverage rates.

The best suited method might depend on the lag length of the true DGP and

the kind of lag order selection. For unit root processes, the coverage rates of the

mirroring methods clearly dominate the benchmarks. The mirroring methods

maintain almost the same coverage accuracies whether or not non-stationary

and highly persistent processes are allowed for.

The MPbc method offered the lowest squared coverage errors when the lag

order was assumed to be known. The performance was less dominant for en-

dogenously estimated lag lengths. As discussed in Sections 2 and 4, the imple-

mentation of MP and MPbc in this article can result in MP and MPbc intervals

and bands that are based on very few bootstrap draws of VAR models for some

lag orders. This might negatively affect their performance when the lag order

has to be estimated. Finding a better implementation of this method is left to

future research.

The article presents results for coverage frequencies as summary statistics

due to the large number of simulation settings. When inspecting individual

results for coverage rates, these reveal that coverage frequencies are usually

below the nominal level in the initial period of a shock to the VAR system.

At later horizons, the coverage rates are higher and usually above the nominal

level. This indicates that the uncertainty about the covariance matrix of the

VAR system might be underestimated in the resampling procedure, while the

bootstrap VAR coefficients exhibit too much variation. Future research might

aim to reduce the variation of the bootstrap autoregressive coefficients while

increasing the variation of the bootstrap covariance matrices.
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