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An investigation into the dependence structure of
major cryptocurrencies
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Abstract

This paper attempts to examine the dependence structure of four major cryp-

tocurrencies chosen by current market capitalisation. It is a well known fact

that there is huge volatility in the prices of these cryptocurrencies. The Vine

Copula model is used to get some insights about the dependence structure in

these asset prices. This is done using daily closing price from August 2015 to

May 2018. This information can be used to calculate risk based metrics such

as expected shortfall of a portfolio of these currencies. This analysis becomes

more important as complex financial instruments (e.g. indices) based on these

currencies are being introduced.
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1. Introduction

Cryptocurrencies have attracted a lot of attention about their projected use

as digital currencies not governed by any central authority. Since 2009, when

Bitcoin was invented, much debate has happened to ascertain if these are just

momentary asset bubbles or actual disruptions in the way we know and use

money.
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However, the markets seem to have accepted them. As per data from website

coinmarketcap.com, the total reported market cap of all cryptocurrencies is

more than US$ 340 billion as of June 1, 2018. This is still lower than the all

time high market cap of US$ 835 billion.

There is a lot of financial innovation riding on this wave. There are more than

1600 cryptocurrencies available today. These can be traded via many exchanges

or OTC trading desks. A few exchanges have introduced cryptocurrency based

indices (e.g. CRIX). Several Index funds (e.g., Crypto20, Coinbase Index Fund)

have also been introduced. As more investors and institutions [1] get interested

in adding these assets to their portfolios, the need to measure risk dynamics

increases. This paper makes an attempt to study the dependence structure

among major cryptocurrencies. This can be used in applications like measur-

ing risk estimators such as Expected Shortfall and also to optimise portfolio

performance.

2. Review of Literature

Despite growing interest and use, not much research has been published since

most cryptocurrencies are very new and not much time series price/volume data

is available. Most research on volatility dynamics focuses on the oldest and

biggest cryptocurrency (by market capitalisation), Bitcoin.

Baek et al.[2015][2] examined the relative volatility between Bitcoin and S&P

500 Index daily return data. Fry et al.[2016][3] analysed the Bitcoin and Ripple

cryptocurrency markets for Negative bubbles and shocks.

Urquhart [2017][4] studied the Price clustering behaviour in Bitcoin. Katsiampa[2017][5]

compared various GARCH models for volatility estimation for Bitcoin. Chu et

al. [2017][6] conducted univariate GARCH Modelling of several cryptocurren-

cies. Huynh et al.[2017][7] tested for Contagion Risk using Copula GARCH

between three Cryptocurrencies on a sample period from August 2013 to Au-

gust 2017. Bouoiyour et al.[2017][8] tested for association between Ether and

Bitcoin using Copula GARCH modelling on a sample period from August 2015
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to June 2017.

Osterrieder at al.[2017][9] applied several models including Copula GARCH

model on several cryptocurrencies on a sample period from June 2014 to Septem-

ber 2016. Phillip et al.[2017][10] conducted univariate GARCH modelling on

several cryptocurrencies. Baumohl et al[2018][11] tested for association between

six forex currencies and six cryptocurrencies over a period from September 2015

to December 2017 using the quantile cross-spectral approach recently proposed

by Barunk and Kley (2015)[12]. Gkillas et al.[2018][13] used extreme value

theory to analyse five major cryptocurrencies and calculate tail risk measures.

Feng et al[2018][14] measured tail risk of various cryptocurrencies based on an

extreme value theory based method.

It appears that there are no studies that do a higher dimensional dependence

modelling between cryptocurrencies. Moreover, in the past few months, the

price dynamics of cryptocurrencies have changed completely. Bitcoin prices,

that had reached US$ 20000, have now crashed to less than US$ 8000. Very few

studies have been published since the prices took a downward turn.

This paper attempts to analyse the latest price series data of four major

cryptocurrencies to find new insights and add to the current academic literature

on the subject.

3. Data and Methodology

3.1. Data

This paper uses returns data of the four major cryptocurrencies (as per Mar-

ket cap) namely, Bitcoin(BTC), Ether(ETH), Ripple(XRP) and Litecoin(LTC)

for a sample period from August 2015 to May 2018. This constitutes a total of

1028 data points. The data was sourced from the website coinmarketcap.com

and is publicly available for download. The four cryptocurrencies constitute

about 70% of the total value of cryptocurrencies available. Although Bitcoin

Cash is among the top five cryptocurrencies, it is not used in this analysis since

it was introduced recently (August 2017).
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3.2. Methodology

This paper builds upon the Copula GARCH approach pointed out in Pfaff

(2016)[15]. The Vine Copula theory is employed in this analysis.

1. Specify and estimate the GARCH models for each loss factor.

2. Determine the standardised residuals and calculate the pseudo-uniform

variables

3. Estimate the Vine copula model.

4. Use the dependence structure determined by the estimated copula to cre-

ate N sets of random variates (e.g., 100,000) for the pseudo-uniformly

distributed variables.

5. Compute the quantiles for these Monte Carlo draws.

6. Use these quantiles along with the weight vector to calculate the N portfo-

lio return cases. The following weight vector is chosen:
[
0.4 0.2 0.2 0.2

]
.

Any weight vector can be used as long as the weights sum upto one.

7. The simulated portfolio returns are then calculated by assigning the above

weights to the assets.

8. These returns are then sorted and the expected shortfall (CVaR) at the

95% confidence level is reported as the median of the largest 5% losses.

9. This CVaR is compared with the CVaR for a t-copula model and CVaR

based on a historical returns approach to comment on the suitability of

this more complex approach.

Copula GARCH Model [16] was introduced in 2002. Since then, it has been

extensively used to model dependence, especially in the field of empirical finance.

The marginal distributions of jointly distributed random variables along

with inherent dependence structure are contained in their joint distribution

function[17],

F (x1, . . . , xd) = P [X1 ≤ x1, . . . , Xd ≤ xd]

= C(F1(x1), . . . , Fd(xd))
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The above expression shows that a copula is the distribution function in Rd

space of a d-element random vector with standard uniform marginal distribu-

tions U(0, 1).

There are several copula construction methods with each having its own

strengths and weaknesses. Since we have a four dimensional dataset, the vine

copula structure is chosen. Vine Copulas build upon bivariate copulas and pro-

vide more flexibility[18] in high-dimensional dependence modeling. Hence, this

analysis can also be used to scale for higher dimensional datasets. A cryptocur-

rency index may have quite a few currencies incorporated in it.

The concept of Vine Copula [19] was first introduced in 1994. However, the

graphical dependency models called Vines [20] were introduced in 2002. They

are defined [18] as follows:

ν is a regular vine (R-vine) on d elements, with ε(ν) = ε1∪ . . .∪εd−1 being

the edges of ν, if

1. ν = T1, . . . , Td−1 [consists of d− 1 trees];

2. T1 is a connected tree with nodes N1 = 1, . . . , d, and edges ε1; for l =

2, . . . , d − 1, Tl is a tree with nodes Nl = εl−1[edges in a tree become

nodes in the next tree];

3. (proximity) for l = 2, . . . , d− 1, for {n1, n2} ∈ εl,⊕(n1∆n2) = 2, where ∆

denotes symmetric difference and ⊕ denotes cardinality [nodes joined in

an edge differ by two elements].

A regular vine is called a canonical (C-vine) if tree Tl has a unique node of

degree d− l (the maximum degree) for l = 1, ..., d− 2. A regular vine is called

a drawable vine (D-vine) if all nodes in T1 have degree not more than two.

We now move onto the concepts for capturing the dependence between risk

factors.

Kendall’s rank correlation coefficient (ρτ ), is defined as

ρτ = E [sign((X1 −X2)(Y1 − Y2))]

The upper and lower tail dependencies for two random variables (X,Y ) with
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marginal distributions FX and FY are defined as:

λu = lim
q→1

P(Y > F−1Y (q)|X > F−1X (q)) and λl = lim
q→0

P(Y ≤ F−1Y (q)|X ≤ F−1X (q))

The expectation and variance equations for ARMA-GARCH models are as fol-

lows:

Xk,t = µk,t + εk,t

µk,t = µk +

p1,k∑
i=1

φi(Xk,t−i − µk) +

q1,k∑
j=1

θjεk,t−j

εk,t = σk,tZk,t, where Z ∼ Dk,ν(0, 1)

σ2
k,t = α0 +

p2,k∑
i=1

αiε
2
k,t−i +

q2,k∑
j=1

βjσ
2
k,t−j

where Xk is the return/loss of the kth asset in the portfolio, k = 1, . . . ,K

4. Results and Interpretation

4.1. Descriptive Statistics

The raw price series is plotted first, which itself is an indicator of the wild

fluctuations in the prices since 2015. These are plotted separately since the

absolute price differences across the four assets are very high. We can also spot

their tendency to move together.

Figure 1: Price Plots of Cryptocurrencies
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The returns are plotted together and we can see the basic stylised fact of

volatility clustering. This confirms the usefulness of GARCH modeling.

Figure 2: Log Returns Time Series Plot of Cryptocurrencies

Finally, we also look at the descriptive statistics of the four cryptocurrencies.

Variable BTC ETH XRP LTC

Count of Observations 1028 1028 1028 1028

Mean 0.32% 0.52% 0.42% 0.32%

Standard Deviation 4.11% 8.24% 7.91% 5.94%

Minimum -20.75% -130.21% -61.63% -39.52%

Maximum 22.51% 41.23% 102.74% 51.03%

Skewness -0.2526 -3.5223 3.0630 1.3764

Kurtosis 4.8310 63.2822 38.6743 13.0949

Table 1: Descriptive Statistics of Daily Returns

We see that the cryptocurrencies vary greatly in their Skewness. Moreover,

all are very highly leptokurtic.

4.2. GARCH Estimation

It was observed that the best fit is provided by ARFIMA(0, d, 0)-GJR-

GARCH(1,1) model[21]. GJR-GARCH also captures the leverage effect and

hence, is a richer model. The model is fitted using Skewed Generalized Error

Distribution (SGED). The final specification of the fGARCH-gjrGARCH model

is as follows :

σ2
t = α0 +

q∑
j=1

αjσ
2
t−j(|zt−j | − η1jzt−j)2 +

p∑
j=1

βjσ
2
t−j
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Diagnostics are run to ensure that relevant coefficients are significantly different

from zero and the stability requirement for GARCH(1,1) models is not violated,

i.e., α1 + β1 < 1. Further, we can see significant deviation from normality from

the estimate of the degrees of freedom parameter ν.

Weighted Ljung-Box Test on the standardised residuals and the squared

standardised residuals show no serial correlation. Table 2 shows the fitted

GARCH model. Table 3 provides the main diagnostics results.

More diagnostics tests were run but are not included with an intention to

keep the paper brief. More results can be provided on request.

An ARFIMA(0, d, 0) is used for the ETH series to ensure that the stability

requirement is met. For the other series, the ARFIMA(0, d, 0) was estimated to

be zero.

Fitted ARFIMA(0,d,0) + fGARCH-gjrGARCH(1,1) Model with sged

Bitcoin Ripple

Parameter Estimate SE t-stat P(> |t|) Parameter Estimate SE t-stat P(> |t|)

µ -0.1836 0.0252 -7.2958 0 µ 0.1705 0.0118 14.3608 0

ω 0.10391 0.0494 2.1027 0.0354 ω 1.1670 0.1022 11.4107 0

α1 0.1367 0.0189 7.2198 0 α1 0.2443 0.0122 20.0044 0

β1 0.8598 0.0181 47.3589 0 β1 0.7526 0.0131 57.4006 0

η11 0.1725 0.0607 2.8426 0.0044 η11 0.0320 0.0125 2.5556 0.0106

skew 1.0338 0.0265 39.0166 0 skew 0.9186 0.0107 85.7099 0

shape 0.7556 0.0271 27.8102 0 shape 0.7476 0.0278 26.9122 0

arfima 0.0000 0.0009 0.0003 0.9997 arfima 0.0000 0.0008 0.0000 0.9999

Ether Litecoin

Parameter Estimate SE t-stat P(> |t|) Parameter Estimate SE t-stat P(> |t|)

µ -0.1857 0.0417 -4.4553 0.0000 µ -0.1732 0.0120 -14.3615 0.0000

ω 2.8616 0.6508 4.3968 0.0000 ω 0.1531 0.0298 5.1265 0.0000

α1 0.2922 0.0298 9.7937 0 α1 0.0568 0.0080 7.0481 0.0028

β1 0.7055 0.0213 33.0516 0 β1 0.9222 0.0084 108.8548 0

η11 -0.0382 0.0190 -2.0067 0.0447 η11 0.5148 0.1178 4.3695 0.0000

skew 0.9106 0.0134 67.9057 0 skew 0.9832 0.0114 85.7576 0

shape 0.9144 0.0447 20.4700 0 shape 0.7664 0.0332 23.0839 0

arfima 0.0090 0.0004 23.8800 0 arfima 0.0000 0.0004 0.0000 0.9999

Table 2: Fitted GARCH estimates
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Weighted Ljung-Box Test on Standardised Residuals (H0: No serial correlation)

d.o.f=0

Bitcoin Ether Ripple Litecoin

statistic p-value statistic p-value statistic p-value statistic p-value

Lag[1] 4.5420 0.0331 4.8250 0.0280 4.1890 0.0407 0.0031 0.9557

Lag[2*(p+q)+(p+q)-1][2] 4.6310 0.0510 5.3430 0.0329 4.2090 0.0663 0.0297 0.9725

Lag[4*(p+q)+(p+q)-1][5] 5.6930 0.1061 6.8920 0.0551 5.8560 0.0972 0.1261 0.9970

Weighted Ljung-Box Test on Squared Standardised Residuals (H0: No serial correlation)

d.o.f=2

Bitcoin Ether Ripple Litecoin

statistic p-value statistic p-value statistic p-value statistic p-value

Lag[1] 1.1630 0.2809 0.0109 0.9166 0.0011 0.9730 0.0309 0.8603

Lag[2*(p+q)+(p+q)-1][5] 2.1090 0.5929 0.0369 0.9997 0.3024 0.9835 0.1142 0.9975

Lag[4*(p+q)+(p+q)-1][9] 2.7260 0.8032 0.0639 1.0000 0.5072 0.9984 0.1862 0.9999

Table 3: GARCH Diagnostics

4.3. Copula Estimation

The residuals from the GARCH model are used to complete the Copula

modeling exercise. First, the estimated Kendall’s τ are estimated.

τ BTC ETH XRP LTC

BTC 1 0.1884 0.2157 0.5057

ETH 0.1884 1 0.2181 0.2296

XRP 0.2157 0.2181 1 0.2860

LTC 0.5057 0.2296 0.2860 1

Table 4: Estimated Kendall’s τ

With higher dimensional data, the number of possible R-vines increases dra-

matically. There are n!/2×2(n+1
2 ) possible regular vines [22] on n nodes. Among

these, there are n!/2 distinct C-vine trees [23] and n!/2 distinct D-vine trees.

It can be seen that enumeration and selection of the best possible Vine Cop-

ula construction can get computationally difficult quickly. Hence, a method

based on kendall’s Tau proposed by Dissmann et al[2013][24] is used. Bayesian

Information Criterion is used for choosing the individual pair copula construc-

tions. Moreover, the model chosen is more frugal than the one indicated by

Akaike information criterion.
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The Vine copula relationships are estimated[25] and reported as follows:

Tree Edge Copula Parameter 1 Parameter 2 τ Upper Tail

Dependence

Lower Tail

Dependence

1 4,1 Gumbel 2.03 0 0.51 0.59 -

4,2 Gumbel 1.31 0 0.24 0.30 -

4,3 Gumbel 1.41 0 0.29 0.37 -

2 2,1;4 Frank 0.61 0 0.07 - -

3,2;4 Gumbel 1.16 0 0.14 0.18 -

3 3,1;2,4 Independence - - 0.00 - -

Type: C-vine Log Likelihood: 627.76 AIC: -1245.51 BIC: -1220.84

1 = Bitcoin 2 = Ether 3 = Ripple 4 = Litecoin

Table 5: Estimated Vine Copula Structure

A goodness of fit test[26] is used to check if the fitted t-Copula is indeed not

satisfactory. The null hypothesis, H0 : C ∈ C0 where C0 is specified as t-Copula

is rejected at 1% significance level. For the chosen Vine Copula, the above null

hypothesis could not be rejected even at 10% significance level.

Hence, it can be concluded that a t-Copula is indeed a mis-specification for

our dataset. More importantly, our Vine Copula construction appears to be a

good fit for the given dataset.

4.4. Application

Now that we have a copula structure at hand, we need to see how useful it

is for a real world application.

Calculating Estimated Shortfall (also known as Conditional Value at Risk)

is an important aspect of portfolio management.

Estimated Shortfall (at a specified α) is the mean/median of the lowest (1−α)%

of returns. For instance, if ES(95) is estimated to be 8%, this would suggest

that in the worst 5% of the returns, the average loss would be 8%.

The Expected Shortfall calculation is repeated for a mis-specified Copula

to check the difference in Estimated Shortfall. A t-copula is fitted[27] to the

residuals. Further, Estimated Shortfall is also calculated using historical returns.

The results are compared.
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Estimated Shortfall (CVaR)

Method Aug 2015 - May 2018

Vine Copula 16.12%

t-copula 5.06%

Historical 3.82%

Table 6: Comparison of Estimated Shortfall calculated using various methods

We can see that there is quite a bit of difference between the CVaR values

for the different models chosen. Given the high kurtosis values seen earlier,

we already know the return distributions will have fat tails. Now, the above

calculated CVaR agrees with that observation.

Hence, we can say that a Vine Copula construction is useful in measuring

the risk of our chosen portfolio.

5. Conclusion

This paper uses Vine Copula modeling on a basket of cryptocurrencies to

analyse the dependence structure. We see that the Vine Copula based model

provides the highest Estimated Shortfall.

Given the high volatility in all the cryptocurrencies along with the positive

association between the cryptocurrencies, investors should be careful about their

investment decisions in any cryptocurrency. Moreover, from the point of view

of a portfolio manager or an investment analyst, this paper shows that risk

estimates vary greatly depending on the model chosen.

An argument can be made that risk measures based on naive methods or mis-

specified models underestimate the inherent risk in a portfolio. As mentioned

earlier, this analysis becomes more important as new financial instruments based

on cryptocurrencies are being introduced.

Apart from the cryptocurrency assets, the use of Vine Copula modeling has

attracted much attention due to the inherent flexibility which is useful to provide

a better fit to real life data. Further research using other multivariate models
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to compare and contrast model performance will help us draw more definitive

conclusions.
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