
5  A SAM and Multiplier Analysis: Economic Linkages 
and Multiplier Effects

5.1  What are the Economic Linkages and Multiplier Effects? 

The strongest argument in favour of the Walras equilibrium—as opposed to the Mar-
shall ceteris per ibis approach—will find its momentum once industry linkages and 
multiplier effects are envisaged. This is so because in these circumstances thinking 
about partial equilibrium becomes less sustainable. In fact, the effect of a shock from 
one industry may have direct and indirect impact on the whole system defined by dif-
ferent industries. Let us analyse below a shock generated by the demand side. When 
we talk of “exogenous demand-side shocks” to an economy, we refer to changes to 
final control demand aggregates, i.e., export demand, government spending, or net 
investment demand of stocks. The effects of these shocks are both direct and indirect. 

The direct effects are to those sectors that affront the shock. For example, an 
exogenous increase in demand for Polish manufactured exports has a direct impact 
on the manufacturing industry, which results in increased inputs, production, sales, 
and value-added. However, the positive consequences of such a shock go beyond the 
manufacturing industry. It may also have indirect effects stemming from manufac-
tures’ linkages to other industries inside the economy. These indirect linkages can be 
classified into supply-side and demand-side. When we add up all direct and indirect 
linkages, we get a measure of the shock’s multiplier effect, or how much an initial 
effect is amplified or multiplied by indirect linkage effects. Supply-side linkages are 
determined by industry production technologies, which can be depicted from an 
input-output table. Next, they are differentiated into backward and forward linkages. 
Backward production linkages are the demand for additional inputs used by produc-
ers to supply additional goods or services. For instance, when production (of man-
ufacturers) expands, it requires additional intermediate goods or services like raw 
material, machinery, and transport services. This demand then stimulates produc-
tion of other industries that supply these intermediate goods. Technical coefficients 
supply information on the input intensity of the production technology used. The 
more an industry’s production technology is input intensive, the stronger its back-
ward linkages.

Forward linkages allude to supply inputs to upstream industries. For instance, 
increased manufacturer production should lead to increased supply of goods to the 
construction industry, which, in turn, stimulates, among others, service industries. 
As in the case of backward linkages, the more important an industry is regarding 
upstream industries, the stronger its forward linkages will be and multipliers will 
definitely become larger.
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The conceptual structure of the input-output matrix only allows for deriving mul-
tipliers that measure the effects of supply linkages. Since the input-output table does 
not show secondary income distribution, it is not possible to consider consumption 
linkages, which arise when an expansion of production generates additional incomes 
for factors and households, which are then used to purchase goods and services. 
Continuing the same example as above, when manufacturing production expands, 
it raises households’ incomes, which are used to buy consumer goods. Depending 
on the share of domestically produced, tradable, and imported goods in households’ 
consumption baskets, domestic producers benefit from greater demand for their 
products. The size of consumption linkages depends on various factors, including the 
share of net factor income distributed to households; for an open economy, the level 
of gross domestic product per inhabitant, which exercises an influence on the compo-
sition of the consumption basket; and the relative price between locally produced and 
imported goods which determines in Armington fashion the share of domestically 
supplied goods in consumer demand.

Consequently, SAM multipliers tend to be larger than input-output multipliers 
because they capture both production and consumption/income linkages.

Following Breisinger et al. (2009), “while economic linkages are determined by the 
structural characteristics of an economy (evidenced through technical coefficients and/
or the composition of households’ consumption baskets) and remain thus static, multi-
plier effects capture the combined dynamic effects of economic linkages over a period 
of time through different auto-generated rounds”. 

Three types of multipliers are generally reported in empirical research. First, an 
output multiplier combines all direct and indirect (consumption and production) 
effects across multiple rounds and reports the final increase in gross output of all pro-
duction activities. Second, a GDP multiplier measures the total change value-added 
or factor incomes caused by direct and indirect effects. Finally, the income multiplier 
measures the total change in household incomes.

The dampening path of multipliers is consecutive to the level of leakage inside 
economic circular flows. Ultimately, higher leakages stemming from income allocated 
to imported goods or from government taxes make the round-by-round effects slow 
down more quickly and reduce the total multiplier effect.

In empirical research, one must often deal with two kinds of economic hypoth-
eses. First, still in the context of the above example, one can suppose that demand 
shock will encounter no constrained response from the supply side. The second case 
is the one where demand shock is constrained. This can happen when supply is not 
able to completely satisfy increased demand. In this hypothesis, multipliers will 
follow a modified dynamic path towards slowing down. Let us still follow Breisinger 
et al. (2009) and then succinctly analyse both cases.
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5.1.1  A SAM Unconstrained Multiplier

Let us present below a simplified SAM where presented accounts are just those 
required to derive a multiplier matrix. 

Table 16: A simplified SAM for multiplier analysis

  Activities Commodities Factors Households Exogenous 
demand

Total

  A1 A2 C1 C2 F H E  

A1     X1         X1

A2     X2       X2

C1 Z11 Z12     C1 E1 Z1

C2 Z22 Z22       C2 E2 Z2

F V1 V2           V

H         V1 + V2     Y

E     L1 L2   S   E

Total X1 X2 Z1 Z2 V Y E  

Source: own elaboration, based on Breisinger, Thomas, and Thurlow (2009).

We divide columns by their total to derive the coefficient matrix (M-matrix) excluding 
the exogenous components of demand.

Table 17: Transformed Table 16

Activity Commodities Factors Households Exogenous 
demand

A1 A2 C1 C2 F H E

A1 b1=X1/Z1

A2 b2=X2/Z2

C1 a11=Z11/X1 a12=Z12/X2 c1=C1/Y E1

C2 a21=Z21/X1 a22=Z22/X2 c2=C2/Y E2

F v1=V1/X1 v2=V2/X2

H 1=(V1 + V2)/V

E l1=L1/Z1 l2=L2/Z2 s=S/Y

Total 1 1 1 1 1 1 E

Source: own elaboration, based on Breisinger, Thomas, and Thurlow (2009).
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Symbols:

a) Values:
X: Gross output of each activity (i.e., X1 and X2)
Z: Total demand for each commodity (i.e., Z1 and Z2)
V: Total factor income 
Y: Total household income 
E: Exogenous components of demand shares

b) Share:
a: Technical coefficients 
b: Share of domestic output in total demand
v: Share of value-added or factor income in gross output
l: Share of the value of total demand from imports or commodity taxes
c: Household consumption expenditure shares
s: Household savings rate 

To derive equations representing the relationships in the above SAM, we start by 
setting up simple demand equations:

Z1 = a11X1 + a12X2 + c1Y + E1

Z2 = a21X1 + a22X2 + c2Y + E2	 (4.23)

Total demand = intermediate demand + household demand + exogenous demand. 
The next relationships tell us that domestic production X is only part of total 

demand Z.

X1 = b1Z1

X2 = b2Z2

Since household income Y depends on the share each factor earns in each sector, 
then:

Y = v1X1 + v2X2

or,

Y = v1b1Z1 + v2b2Z2

Now replacing all X and Y in Equation (4.23), moving everything except for E onto 
the left-hand side, and grouping Z together, we finally obtain:

(I – M)Z = E,	 (4.24)
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where 
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We note that M is a square matrix, the elements (share values) of which are not nega-
tive. Each column sum (see Table 16) is less or equal to unity. Thus, an inverse matrix 
of (I – M) exists and should display non-negative values, suggesting the non-negativ-
ity of the multiplier matrix.

Formally, from (4.24) we directly get the final multiplier equation of the form:

Z = (I – M)–1E	 (4.25)

Total demand = multiplier matrix × exogenous demand
The above formulation tells us that when exogenous demand E increases, one 

will end up with a final increase in total demand equal to Z, owing to all the direct and 
indirect multiplier effects (I – M)–1. 

5.1.2  Equation System for Constrained SAM Multiplier

Often when factor allocation is not optimal, exogenous demand shocks may encounter 
limited response from producing sectors. Let us analyse below how much a multiplier 
will change if some producing sectors are unable to correctly respond. The expected 
issue is that if we fix one of two sectors Z, for instance Z2. In that case, imports should 
substitute for domestic supply, thus eliminating any growth linkages from this sector.

The next equation is related to the non-constrained case and expresses total 
demand as the sum of its parts.

(1 – a11b1 – c1v1b1)Z1 + (– a12b2 – c1v2b2)Z2 = E1

(– a21b1 – c2v1b1)Z1 + (1 – a22b2 – c2v2b2)Z2 = E2

Grouping exogenous terms on the right-hand side (i.e., E1 and Z2) and rearrang-
ing42, we finally obtain:
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42  For derivation details, see Breisinger, Thomas, and Thurlow (2009).
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and 
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Interpretation of the above equation is the following: an exogenous increase in 
demand for the unconstrained sectors [E1] leads to final increase in total demand 
for these sectors [Z1], including all of the forward and backward linkages (I – M*)–1. 
For the sectors with constrained supply (in our case sector Z2), it is net exports that 
decline. This means that the current trade balance must worsen if we have to amor-
tize demand shock in the case of constrained supply. If exports remained unchanged, 
then the alternative of reducing exports would be increasing imports so as to meet 
additional exogenous demand in the context of this constrained supply.

5.1.3  On Modelling Multiplier Impact for an Ill-Behaved SAM

Let us now return back to the central problem of this presentation and suppose that 
the matrix is unbalanced, which implies that multiplier values are not reliable. The 
way to avoid this should consist of only estimating parameters of the model without 
taking into account the obligation that the whole SAM be internally consistent. Thus, 
we should maximize (or minimize) entropy for probabilities related to the multiplier 
matrix under traditional restrictions, plus an additional constraint declaring values 
of an already balanced SAM to be taken as a prior.

Remembering about the interpretation of estimated parameters through the 
maximum entropy principle, it would be easy to make a link between the multiplier 
effect and maximum entropy modelling. In fact, in a linear model, parameters esti-
mated by entropy formalism are interpreted as the long-run (equilibrium) impact of 
one unit change of regressor x on regresand y. Thus, long-run impact means that direct 
and indirect effects of the multiplier are accounted for with respect to the shock.

Annex C. Proof of Economy Power Law Properties 

1. Definition of Power Law Distribution
Since we already know existing relationships between power law function and non-
extensive entropy from Part II of this work, let us now present the main properties of 
the former in the context of a SAM. 

Using a simplified formulation, a power law is the relation of the form f(x) = Kxα 
where x  .00  qq   0 and K and α are constants. While power laws can appear in many dif-
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ferent contexts, the most common are those where f(x) describes a distribution of 
random variables or the autocorrelation function of a random process. 

The formulation above has the advantage of being intuitive. However, it does not 
show the real attributes of that distribution, which displays asymptotical character-
istics.

Thus, the notion of a power law as it is used in extreme value theory is an asymp-
totic scaling relation. Let us first explain what we understand by equivalent scaling. 
Two functions f and g have equivalent scaling, f(x) ~ g(x) in the limit x → ∞43 if:
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x → ∞

with L(x) is a slowly varying function, thus satisfying the relation:
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for any finite constant t > 0. Slowly varying functions are, for example, L(x) = C and 
L(x) = ln(x), that is, a constant and a logarithmic function, respectively.

A power law is defined as any function satisfying f(x) ~ xα. This definition then 
implies that a power law is not a single function but an asymptotical composite func-
tion. The slowly varying function L(x) can be thought of as the deviation from a pure 
power law for finite x. 

For f(x) = L(x)xα, taking logarithms of both sides and dividing by log(x) gives 

log f(x)/log (x) = –α + log L(x)/log (x)	 (4.28)

Remembering that L(x) is a slowly varying function, in the limit, the second term 
on the right vanishes to zero as x → ∞, and thus we have:

log f(x)/log (x) = –α,

or equivalently,

f(x) = x–α, for x → ∞.

This means that the empirical form of the function becomes:

f(x) ~ x–α 	 (4.29)

and in terms of probabilities, a the cumulative function P(S > x) = kx–α corresponds to 
a probability density function: f(x) = kαx–(α+1).

43  Note that this limit is not the one possible, but remains a realistic device, e.g., in finance.
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2. Main Properties
We list below only properties directly related to two theorems proposed in this annex.
a)	 The property that most interests us and that generally makes power laws special 

is that they describe scale free phenomena. A variable undergoes a scale transfor-
mation of the form x → Cx. If x is transformed, we then obtain:

f(x) = kCαxα = Cαf(x) 						                      (4.30)

provided that given initial power law function is f(x) = kxα. Changing the scale of 
the independent variable thus preserves the functional form of the solution but 
with a change in its scale. This is an important property in our case. Scale-free 
behaviour strongly suggests that the same mechanism is at work across differ-
ent sectors of the economy, the industrial structure of which remains constant 
over a relatively long period of time, measured with any time measurement (i.e., 
seconds, minutes, hours, days, years). A useful example that should be appealing 
for economists is price. We say that price is a homogenous function of degree zero 
with respect to income. 

b)	 A power law is just a linear relationship between logarithms (Breisinger et al., 
2009) of the form:

log f(x) = –α log (x) + log k.	                  (4.31)

c)	 Power law also has excellent aggregation properties44. The property of being dis-
tributed according to a power law is conserved under addition, multiplication, 
polynomial transformation, min, and max. The general rule is that when combin-
ing two power law variables, the fattest power law (i.e., the one with the smallest 
exponent) dominates. This property could be helpful for empiricist researchers 
using this form of function.

Let X1,...,Xn be independent random variables, and k, a positive constant. Let 
αx be also the power law exponent of variable X. Following Gabaix (2008), Jessen 
and Mikosch (2006), we have the so-called inheritance mechanism for power law:
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44 The interested reader is recommended to see the works of Jessen & Mikosch (Jessen & Mikosch, 
2006) or Gabaix (Gabaix , 2008). As an example of relative facilities of proofs, if xkxxXP  )( kkk
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Thus, if we have two variables X and Y with different exponents, this property 
holds when Y is normal, lognormal, or exponential, in which case αY = ∞. Hence, 
multiplying by normal variables, adding non-fat tail noise, or summing over 
independent and identically distributed (i.i.d.) variables preserves the exponent.

This is a reason for hope for empiricists, that power law exponents can be mea-
sured even if the data are noisy. Although noise affects statistics (moments), it will 
not affect the PL exponent. The problem of missing data may not affect informa-
tion contained inside data, either.

3. Statistical Complexity of a SAM
A social accounting matrix represents an economic table aggregating information 
about complex interchanges within different sectors and/or institutions. These inter-
changes have been described in Figure1 where a general scheme of income flow in the 
economy was described. In economics, the main purpose of human activity is increas-
ing income, the principal source of well-being. Changes in that income are usually 
assessed through gross domestic product growth (GDPG). However, this GDPG is itself 
an aggregate accounting of income growth from different sectors and institutions. 
Since a SAM is built under the principle of double entry bookkeeping, income, and 
expense totals should balance. This aspect has been previously alluded to. Remain-
ing within the Walrasian economy45 which rules out that expenses growth are abso-
lutely co-integrated, in the context of Granger time series analysis, with incomes or 
wealth, over any time period.

As earlier suggested, the economic system described is defined by different inter-
active subsystems, each represented by respective actors and characterized by opti-
mizing behaviour. Households, which tend to maximize a certain utility function, 
remain the owner of factors of production and are the final consumer of produced 
commodities; firms maximize profits by optimal renting of these factors from house-
holds for the production of goods and services. In this model, government has the 
passive role of collecting and disbursing taxes. Furthermore, the economy analysed 

45 However, according to recent research, power law consistency with equilibrium theory has, so 
far, failed to address this. Nevertheless, such consistency is expected for both theories (Doyne, & 
Geanakoplos, 2009)
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is small and open, and entirely prone to world fluctuations, owing to, among other 
things, the country’s status of ‘price taker’ from the international market. 

Furthermore, as already noted, due to different and sometimes contradictory 
sources of collected statistical information, SAM cannot be balanced. Such statistical 
data may display, as partially coming from statistical surveys, systematic and stochas-
tic errors, thus missing some normal Gaussian properties. 

A Proof of SAM Power Law Distribution Properties. 
For the next step, we provide propositions evidenced by the above properties of power 
law functions and by other recent works in econophysics (e.g., Stanley et al., 1998). 

Proposition 1. Under general Walrasian conditions,46 the present level of secto-
rial (or institutional) income or expense total is a linear function of cumulated past 
and present sectorial or institutional wealth (income) or expenses growth rates of the 
global economy.

Proposition 2. Income (profit) growth rate follows exponential law within sectors 
or institutions with similar activity scale while this distribution becomes a power law 
among firms with different activity scales.

The first proposition simply explains a cumulative character of wealth from addi-
tional net incomes over time, in this case, sectorial industry or an institution. The 
property (4.32) guarantees plausibility of this proposition provided the independence 
of growth rates.

The second proposition, follows results found in the case of the U.S. economy 
(Stanley et al., 2001), where firms with the same level of activity display an expo-
nential distribution of income (profit) growth rate while that distribution becomes 
a power law when we confront firms with different levels of activity. Furthermore, 
in this last case, the above authors have noted seven different fractals within that 
distribution.

Assumption 1 (structural stability): We will adopt an economy where factors of 
production are mobile among sectors of production and different scales of sectors are 
not affected by structural differences in factor productivities. To make this assump-
tion more realistic, this means that the level of productivity and of factors within dif-
ferent sectors of the economy are identical enough so that there are no observed factor 
movements towards a given sector over a long period T → ∞. 

Assumption 2 (convergence). A cumulated economic growth rate trend is posi-
tive. This means that if we assume g⋅jt to be any growth rate in the economic or insti-
tutional sector j for period t, we have:




1t
jtg  	 (4.38)

46 Here, we have particularly the principles of market clearance and of income balance in mind. 
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In other terms, positive growth rates always mark an advantage on negative ones 
and economic progress in the long run is guaranteed. This assumption is a stylized 
version of human economic development through history, owing to their natural 
capacity to innovate. 

Theorem 1. For a given non-centralized economy, disaggregated subaccounts of a 
vector (matrix) additively defining micro-elements of an entire system account by row 
or by column (being a cumulative income growth over finite lengths, periods n) display 
by row (expenses) or column (incomes) a power law distribution.

Proof 47: Let us first provide the demonstration on the income generating side 
of an accounts table and thus consider a non-centralized economy (system) made 
of M sectors and institutions (micro-elements) j (j = 1..M) generating each income 
wijt where i (i = 1...M) means one of the M sectors receiving incomes from one of the j 
sectors during the period tn. Aggregative sectorial income is

.
..1

•
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•  Ww
Mj

j  .

Let us consider two free periods of time 0 and t. We have then w.j0 and w.jt , two succes-
sive incomes during two periods, and we defined wealth growth g.j as g.j = w.jt / w.j0, 
meaning a relative growth of wealth at period t. Equivalently, we have the growth rate 
ln(g.). In probabilistic terms, we will assume there is some collection g.j of possible 
wealth growth in a fixed sector i by a finite number of sectors j that each can generate 
with associated probabilities {p.j }. For a fixed sector i, we have 

1
..1

 •


• Pp
Mj

j  	 (4.39)

Let us now introduce maximum entropy formalism to the problem.
Let us consider a continuous case where we have wealth growth g.j and its density 

of probability to be found, f(g.j). We maximize the entropy (Carter, 2011). 
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47 It will suffice to demonstrate the case of, for example, wealth growth and to deduct the case of expen-
diture growth, thanks to Walrasian aspects of our economy or by referring to the co-integrating character of 
both variables on a longer interval of time. 
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where constant k is the average number of inter-sectorial transactions per time step. 
The next step consists of applying the calculus of variations to maximize over a class 
of functions. Thus, solving an external problem of the functional:
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We define the Lagrange of the form:
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Finally, we get from conditions of first order:
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where λ0 = 1 + μ.

One can use the normalization (4.41) condition to solve for   00 )ln()(  
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after assuming λ  .00  qq   1.

Rearranging the above terms, we get the density probability functional form:

f(g⋅j) = (λ – 1)(g⋅j)–λ	 (4.44)

This is the sought density probabilities of wealth growth rate of economic sectors 
and institutions. It displays a power law distribution form. 

Next, Theorem 1 above and properties (4.32– 4.36) guarantee that the cumulated 
by the past growth sectorial incomes should continue to display a power law distri-
bution irrespective of which form of transition economy evolves from period t to the 
next period t + 1. In particular, we note that property (4.33) ensures that multiplica-
tive transitory combinations of different growth rates continue to keep the power law 
property of economic sectorial movements unmodified. Assumptions 1 and 2 guaran-
tee that cumulated income growth rates are an increasing function of time, guaran-
teeing increasing sectorial wealth over generations.

The demonstration is proven.
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Theorem 2. Economic growth rate movements of any open economy display power 
law function properties.

Proof: Its proof results from the demonstration of Theorem 1 and the additive 
property (4.32) since the global economic growth rate is derived as a weighted linear 
combination of sectorial growth rates. This ends the demonstration. 
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