
5  Estimating the CGE Model Through the Maximum 
Entropy Principle

5.1  Introduction

In their reference work, Arndt et al. (2002) present a new approach to estimating 
parameters of a CGE model through maximum entropy. That approach is pursued 
here. CGE models are frequently criticised for resting on weak empirical foundations 
(e.g., Shoven and Whaley (1992). Whatever class of CGE model is in use, it displays 
consistent drawbacks, such as the lack of efficient methodology for the estimates of 
behavioural parameters (e.g., trade parameters), less realistic economic assump-
tions (e.g., representative agent), less flexibility in implementing the monetary 
sector, imperfect competition, and the impossibility of inferring through interval 
confidence. In Social Accounting Matrix (SAM)-based CGE model estimation, prob-
lems related to calibration to a benchmark period, the often not updated information 
lying in the input-output matrix—the principal part of a SAM—and various other criti-
cisms, appear in the economic literature. Nevertheless, as is often underscored there, 
the problem of estimates of behavioural parameters is common to competing time 
series econometric models unable to predict future agent behaviour (see the Lucas 
critique, 1976). Rational expectation-based models (Muth, 1961 and Kydland et al., 
1977), like the dynamic stochastic general equilibrium models (DSGE) (Kydland et al., 
1982), have tried to overcome the problem. Nevertheless, the DSGE models continue 
to display conceptual drawbacks from different sources, like the limited knowledge 
about the data generating system—and its future evolution—to which parameters are 
related (Evans and G. Ramey (2006), Tovar (2009)). Additionally, Sims (1987) reports 
additional drawbacks to the 'Lucas critique' in the context of rational expectations. 
Most of time, this may suggest that through the model with full information, we will 
deal with an over-parameterized, non-ergodic inverse problem, which traditional 
econometric approaches have failed to handle. 

Next, in most developing countries, the alternative macro econometric models 
display serious weakness owing to scarce statistical data over large periods of time 
leading to technical problems of estimation (the degree of freedom) (Arndt, 2002).

Authors, such as Guerrien (2000) have expressed their scepticism about the 
usefulness of CGE models. Bernard Guerrien vigorously points to the less realistic 
economic assumptions such as the maximizing utility representative agent, perfect 
competition (Arrow-Debreu frame) or even imperfect monopoly markets; all these 
neo-classical concepts are described as fictive reality. The above criticisms have put 
into question the last strength of CGE models, that of being built on microeconomic 
foundations. Technical approaches to respond to most of the above criticisms have 
been attempted over the last two decades. After a thorough comparison between 
CGE and competing macro or microeconomic models (fixed-price models, dynamic 
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optimisation/optimal control models, macro econometric models), authors such as 
Capros (Capros et al., 1990) suggest that all these models are complementary. More 
interestingly, the same authors provide useful insights into a future model that could 
address the cited shortcomings of current models. 

Reconciling opposing models built upon contradictory assumptions would con-
stitute too great a challenge. An acceptable solution should probably consist in setting 
up a model with only limited and realistic assumptions, basically combining common 
advantages of a CGE and a macro econometric equilibrium model. 

This seems to be in line with two groups of authors in their recent works. One 
is by Robinson (Arndt et al., 2001, Delfin Go et al., 2015) who proposed a parameter 
estimation for a CGE using Shannon-Gibbs maximum entropy econometrics. These 
authors list additional qualities in comparison to the classical approach. One may 
cite the incorporation into the model of prior information related to present or past 
periods, thereby introducing dynamic elements into the system; the rationale for 
using entropy econometric formalism is the already cited quality of performing well 
in the absence of copious data. Last, the approach gives quantified information on 
the capacity of the model to reproduce a statistical record and computes statistical 
significance of parameter estimates.

The second work is by Francois (2001) who tries to overcome the problem of cal-
ibration: during the estimation process, the base period values are used to set up 
initial variable levels for the next steps of numerical estimation. However, numeri-
cal, successive approximations at the end can generate important deviations from the 
true values particularly when numerical processes imply multiplicative intermediary 
errors. 

In this chapter, we try to extend the approach of Robinson (Arndt et al., 2002) to 
one of non-extensive entropy to estimate behavioural parameters for a CGE model. 

The above authors have emphasized that the maximum entropy approach is 
similar to the econometric approach of Jorgenson (1984, 1998a) in different aspects. 
To a certain extent, the full historical record can be employed and statistical tests for 
estimated parameter values are available. Furthermore, as pointed out in different 
works (e.g., Golan et al., 1996), the ME approach can be applied in the absence of 
copious data. The ME approach allows one to use all available data, take into account 
all relevant constraints, employ prior information about parameter values, and apply 
variable weights to alternative historical targets. Available information does not need 
to be complete or even internally consistent. The philosophy of the ME approach is to 
use all available information while avoiding the use of information not available, for 
example, strong assumptions about the distribution of error terms.
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5.2  Estimation Approach

In line with the preceding section, here the central question is why propose a 
maximum entropy econometrics related approach among many other econometrics 
techniques conceived for modelling large scale macroeconomic phenomena. On this 
point, it is worthwhile to refer, among a vast literature on the subject, to the review 
work of the Nobel laureate C. A. Sims (2007) on Bayesian methods applied in econo-
metrics, in which he explains Why Econometrics Should Always and Everywhere Be 
Bayesian and then rejects frequentist asymptotics-based econometrics techniques. 
However, the above author did not allude to the maximum entropy econometrics 
approach as a competitive approach to Bayesian models52. According to Sims, the 
Bayesian approach uses the “Bayes rule” to incorporate the present beliefs (prior) 
about the phenomenon and to update this information with new facts at hand (data). 
Thus, following this author, unlike the frequentist-related econometrics methods, 
“Bayesian Inference is a way of thinking, not a basket of ‘methods’” (Sims, 2007).53 
It becomes interesting now to compare the Bayesian approach with the maximum 
entropy approach. Both approaches use priors and data to produce model posteriors. 
Nevertheless, beyond this similitude, the approaches are conceptually different. 

Basically, applying Bayesian theorem means (Jaynes, 1988) just computing a 
probability and not a probability distribution. It follows that the Bayes theorem does 
not make any reference to sample space or hypothesis space. In empirical application 
of the Bayesian approach, we need to go beyond the “exploratory phase” to the point 
where a certain structure (the likelihood) of the model can be assessed through addi-
tional model distribution hypotheses. 

On the contrary, the maximum entropy54 approach requires us to define a hypoth-
esis space which sets down the possibilities to be further considered. Thus, in the 
exploratory phase of the problem, one can apply the entropy principle to solve a 
problem. In recent work, Giffin (2009) compared through illustrative computa-

52 Nevertheless, he pointed out that the Shannon mutual information approach has a more limited 
estimating capacity than the Bayesian one.
53 Jaynes [59] underscores the importance of this debate: “The recent literature has many attempts 
to clarify the relation of these principles.” Williams (1980) sees Bayes’s theorem as a special case of 
MAXENT while van Campenhout & Cover (1981) see MAXENT as a special case of Bayes’s theorem. 
In our view, both are correct as far as they go, but they consider only special cases. Zellner (1987) 
generalizes Williams’s results: “Thus Williams considers the case where we have a set of possibilities 
(H1 .. Hn), and some new information E confines us to a subset of them. Such primitive information 
can be digested by either Bayes’ theorem or MAXENT, leading, of course, to the same result; but Bayes’ 
theorem is designed to cover far more general situations. Likewise, van Campenhout & Cover consider 
only the Darwin Fowler scenario; MAXENT is designed to cover more general situations, where it does 
not make sense to speak of ‘trials’”.
54 To be more precise, we have in mind the method of relative Entropy (or cross-entropy) of which 
maximum entropy can be seen as a particular case.
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tions relative entropy, maximum entropy, and the Bayes rule in the environment of 
moments and data. Giffin underscored his finding related to the relationship between 
these three approaches. Only relative entropy can solve a problem by the simulta-
neous processing of data and moments—what Bayes and Maximum entropy alone 
cannot handle. 
An interesting comparison between the Bayesian approach and the generalized 
maximum entropy approach (GME) is presented in Golan et al. (1996). As reported 
in these authors’ work, Casella and Strawdermann (1981) used a simple example of 
recovering a bounded mean from a single observation x = β + e, where e ~ `N(0,1) and 
β ⊂ [–c, c] are unknown to recover an image of β from x. They first specified a discrete 
distribution with equal mass on points –c and c, using the normal likelihood func-
tion and provided the Bayesian posterior mean—under the squared error loss—of the 
form:

B̂
β = c tanh(cx)

The above authors in Golan et al. (1996) performed the estimation of the same 
model using the generalized maximum entropy estimator and found the following 
GME solution:

B̂
GME = c tanh(–cλ)

where λ is the optimal Lagrange multiplier on the model constraint. 
Authors showed that both estimators are related in mathematical formula-

tion. Their estimates are equal only if λ = –x, which occurs when x = 0. In this basic 
example, we notice that the Bayesian solution is directly influenced by the observa-
tion data x while the GME solution, by the optimal Lagrange multiplier λ. Thus, the 
two formula illustrate not only the mutual consistency of both estimators but also a 
rich source of their confusion in scientific literature. The fact that the GME solution 
is a function of the optimal λ is of high interest as this parameter is a function of 
the whole model, including the moments and the maximum entropy objective func-
tion. In the case of the generalized cross-entropy (GCE) technique, the advantage of 
that parameter for defining the optimal solution of a model is much more evident. 
In such a case, the optimal λ displays a direct relationship with the prior, the data, 
the stochastic random disturbance, and the maximum entropy intrinsic properties. 
This may explain why the GCE approach seems to be preferred for solving stochastic 
ill-behaved inverse (non-ergodic) problems. To be more precise, the more constrain-
ing data are consistent with the model, the greater the value of λ (absolute value), 
and the less uniform the maximum cross-entropy probability distribution. Unlike 
the Bayes approach, the GCE approach does not need any imaginative theoretical 
hypothesis to create a solution space closed-form. Golan (et al.) [61] comparing per-
formances of different classes of econometric estimator in the case of ill-conditioned 
problems underscored the highest solution stability provided by the GCE technique. 
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In fact, unlike other estimators, the penalty for using wrong prior information is 
much smaller relative to competitive estimators, including the Bayesian estimator. 
According to the above explanations, such superiority results from a diversified rela-
tionship between the optimal λ and other constraints (data, stochastic random dis-
turbance, and the maximum entropy objective function): the GCE estimates should 
not go far from the true parameters if only one constraint—in this case the prior—is 
violated. This result points to the GCE as the best estimation approach, at least in the 
case of stochastic ill-behaved inverse problems, as has been confirmed in a recent 
study (Bwanakare, 2014) which estimated parameters of three classes of constant 
elasticity of substitution models. The performance—measured on the parameter error 
variance coefficient—of the Tsallis related non-extensive cross-entropy estimator was 
much higher in comparison with the traditional econometric techniques (LS, ML, 
GMM, and NLS). 

The number of authors who have tried to link CGE models with the cross-entropy 
econometrics approach is still limited (e.g., Arndt et al., 2002, Judge and Mittelham-
mer, 2012, and Delfin Go et al., 2014). In Arndt (2002) and Delfin Go (2015), the authors 
start by viewing a classic, static CGE model in the following form:

F(X,Z,B,δ) = 0	 (5.6)

where: 
F: an I-dimensional vector valued function, 
X: an I-dimensional vector of endogenous variables, usually prices and quantities, 
Z: a vector of exogenous variables such as endowments and tariff rates, 
B: a K-dimensional vector of behavioural parameters such as unknown constant elas-
ticity of substitution parameters, 
δ: a second vector of behavioural parameters whose values are uniquely implied by 
the choice of B, the exact form of F, and data for the base year. 

The elements of F capture production and consumption behaviour which is coherent 
in terms of economics as well as macroeconomic constraints. After parameter cali-
bration and estimation, static CGE analysis proceeds by changing the vector of exog-
enous variables, Z, and examining through simulation the resulting vector of endog-
enous variables, X, which satisfies Equation (5.6).

In the entropy estimation formulation proposed by the above authors, the static 
model attempts to track the historical record over T (t = 1,2,…,T) time periods. The 
Z vector is partitioned into exogenous variables observable from historical data, Zt

0, 
and exogenous variables not observable from historical data, Zt

u. The vector Zt
0 would 

typically contain historical data on elements such as tax rates, endowments, world 
prices, and government spending. The vector Zt

u might contain rates of technical 
change, implicit or unknown tax or subsidy rates. These variables and other items are 
not available from the historical record and must be estimated. Due to calibration to 
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the base year and the restrictions imposed on the function, F, a unique relationship 
between δ and B exists which permits the model in Equation (5.6) to reproduce the 
base year, conditional on the choice of behavioural parameters B,

δ = Φ(Zt', B)	 (5.7)

Note that the full vector Zt′ is assumed observable in the base year, labelled 
year t′. Estimation occurs in the context of the CGE model, and then we have the next 
relationship:

F(Xt, Zt
0, Zt

u, B, δ) =0, ∀t∈T	 (5.8)

having to hold for estimated values B and Zt
u, imposed values Zt

0, and calibrated 
values δ. The outputs from such a solved problem lead to a predicted historical time 
path for variables of interest. These time series outputs can be compared with actual 
historic time paths in the following way:

Yt = G(Xt, Zt
0, Zt

u, B, δ) + et	 (5.9)

where:
Yt : is an N-dimensional vector of historical targets defined inside the social account-
ing matrices, 
G: is a functional producing the vector of model predicted values for the targets, 
et: is an N-dimensional vector representing the discrepancy between historical targets 
representing the unknown data generating system F and predicted values evaluated 
by the functional G, using sample information. Calibration to the base year implies 
that et′ = 0.

After reparametrization of parameters B, et, Zt
u, on defined support spaces according 

to the methodology explained earlier, the authors propose to set up a Gibbs-related 
cross-entropy (CE) model to be minimized under restrictions presented above. Since 
we specify prior distributions on parameters, the objective contains the two terms, 
precision and prediction (Golan et al., 1996), and each term can be given a weighting 
factor, α1 and α2. This CE formulation may be written as follows:

 rpMin , 


















    tnj

tnj
T

t

N

n

J

j
tnj

K

k

M

m km

km
km s

r
r

q
pp loglog

1 1 1
2

1 1
1   	 (5.10)

Subject to:

F(Xt, Zt
0, Zt

u, B, δ) =0,    ∀t∈T

Yt = G(Xt, Zt
0, Zt

u, B, δ) + et     ∀t∈T

δ = Φ(Zt', B)
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Once again, the CE formulation in Equation (2.22) corresponds to the Kullback-Liebler 
measure of deviation of the estimated weights from the prior. The constrained opti-
mization problem in Equations (2.23–2.24) chooses distributions for parameters and 
error terms that are closest to the prior distributions, using an entropy metric, and 
satisfies the full set of conditions required by a CGE model. In addition, the model 
endogenously calibrates itself to the base year. 

The cited authors (Arndt et al., 2002) provide a case study on Mozambique.
Now, to extend the above approach to non-ergodic systems, we replace the objec-

tive function in (2.22) by the previously introduced criterion function of the form55:
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subject to the same restrictions as above in (5.10).
In this case, we have then assumed a higher complexity of statistical data-gener-

ating system, and/or other kinds of systematic errors to which collected data might be 
prone. This case recalls characteristics of power law discussed in previous chapters. 
The value of the Tsallis parameter q will inform us about the complexity of the system, 
as we already know.

The CGE outputs presented at the end of this chapter only limit entropy applica-
tion to functions related to estimating behavioural parameters of constant elasticity 
of substitution. Further research on the methodology presented by the above authors 
could be of high interest. In particular, testing the proposed non-extensive relative 
entropy above, under the hypothesis of power law characteristics of macroeconomics 
remains urgent. In fact, in a recent publication, Bwanakare [62] has shown that trade 
functions used in CGE models may belong to the class of power law (Levy’s process) 

55  Note that there are two forms of Tsallis-Kullback-Leibler relative entropy. The one presented here 
comes from Bregman. Thus, it does not require escort distribution in the constraining block.
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distribution. The implication is that not taking this into account by the Shannon-
based entropy could lead to significant estimation errors. To prove this, we are going 
to provide below an example showing that only estimation of trade parameters of a 
CGE model under power law hypothesis leads to adequate outputs. 

5.3  Application: Non-Extensive Entropy and Constant Elasticity of 
Substitution-Based Models 

The example below shows the possibility of carrying out robust estimation of a sto-
chastic constant elasticity of substitution (CES)-based model through the Tsallis 
entropy econometrics technique. The estimator properties for Tsallis entropic form 
have been suggested in Part II of this book, in the section devoted to the parameter 
confidence interval area-based statistical inference.

The technique presented below has been suggested by Bwanakare (2014) or more 
recently in Bwanakare (2016). This extended the results through the case study of 
eight CES production (CESP) models of seven countries. While the proposed approach 
could be generalized to a large class of nonlinear models, the example focuses on CGE 
trade models, the parameters of which are usually obtained through a calibration 
technique. The CES-based models remain intractable while trying to analytically esti-
mate their parameters. In empirical research, various nonlinear approximation tech-
niques, like the k-th order Taylor polynomial technique, are applied and completed by 
approaches that use least square methods. As will be shown below, such approaches 
do not conceptually fit this type of non-ergodic model and estimated parameters 
should remain biased and inefficient. In this document, we suggest a power law (PL)-
driven estimation approach, thus moving away from a Gaussian ergodic hypothesis to 
more general Levy, unstable time (or space) processes, characterized by tail queues, 
long memory, complex correlation, and plausible convergence to the Gaussian central 
theorem limit. Once again, as in the case of a labour demand model presented at 
the end of Part II, the estimation procedure presented could be seen as a generaliza-
tion to non-ergodic systems from the work of Kullback-Leibler on information diver-
gence (Kullback, 1951 and Golan et al., 1996) on entropy econometrics. Technically, 
we minimize the Tsallis non-extensive relative entropy criterion function under con-
sistency moment-constraints—incorporating the reparameterized CES function—and 
regular normality conditions. As such, the approach then encompasses the Bayesian 
information processing rule while remaining, however, fundamentally based on the 
second law of thermodynamics56.

56  For those interested, a vast literature on the subject can be found at: http://polymer.bu.edu/~hes/
econophysics/
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5.3.1  Power Law and the Constant Elasticity of Substitution (CES) Function

A half century ago, Arrow, Chenery, Minhas, and Solow (1961) proposed a new math-
ematical function which simultaneously displays the property of homogeneity, con-
stant elasticity of substitution (CES) between factors of production. Additionally, this 
function presents the possibility of differentiating elasticity of substitution for differ-
ent industries, sectors, or countries (Klump and Papageorgiou, 2008), thereby gener-
alizing the Cobb-Douglas model. The model was later expanded to other case studies 
where the system optimally aggregates its components according to some parameters 
to be specified below. Following Bwanakare (2014), we develop the proposed entropy 
formalism using a classical CESP explaining the gross domestic product (VAt) by two 
classical factors: labour (Lt) and capital (Kt). 

The next two cases of the CGE trade model class have been presented in Bwanak-
are (2014). Let us recall below a CESP mathematical form:
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where:

𝜌𝜌 =  1−𝜏𝜏𝑒𝑒

𝜏𝜏𝑒𝑒   −1 ≺ 𝜌𝜌 ≺ +∞   0 ≺ 𝜏𝜏𝑒𝑒 ≺ +∞  with 𝜌𝜌 =  1−𝜏𝜏𝑒𝑒

𝜏𝜏𝑒𝑒   −1 ≺ 𝜌𝜌 ≺ +∞   0 ≺ 𝜏𝜏𝑒𝑒 ≺ +∞  and 𝜌𝜌 =  1−𝜏𝜏𝑒𝑒

𝜏𝜏𝑒𝑒   −1 ≺ 𝜌𝜌 ≺ +∞   0 ≺ 𝜏𝜏𝑒𝑒 ≺ +∞ 	 (5.14)

and

τe constant elasticity of substitution between factors, εt stands for the random dis-
turbance with unknown distribution. In (5.12), α stands for the shift parameter; the 
parameter δ belongs to the zero-one interval and represents the share (distribution) 
of the sold quantities of both distributed factors. Parameter v reflects the degree of 
changing returns of VAt to scale. The higher the value of ρ, the higher the degree of 
substitution between factors. The case of τe converging to 0 suggests perfectly substi-
tutable factors. The generalized form (5.13) suggests a case of more than two inputs 
Xi, i = 1,2,...,n.

Let us now focus on a useful connection between the CES class of functions and a 
power law (PL). In fact, to better display that relation, let us aggregate components of 
model (5.12) into one variable. Then, we get a generic case of a PL of the form:
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where, in this case, the endogenous variable vat is the product per capita. Parameter 
β represents a general level of technology. The variable kt stands for a capital coef-
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ficient. The exponent η belongs within the interval (–1, +∞) and defines a per head 
product elasticity with respect to the capital coefficient. It is evident that the above 
relation (5.15) can be compared with the relation (2.30) or the achieved tail—queue 
related Tsallis non-extensive entropy relation (2.31). The random term ε1, itself, is 
assumed to follow PL structure. Index t means time period. Thus, such PL relation-
ships with the class of CES function seem to engender potential implications on eco-
nomic grounds, including extensions to the real demand side of the economy. A PL 
displays interesting properties which may explain its ubiquity at different complexity 
levels in natural and human organizations. For a survey on the inheritance mecha-
nism and other properties of a PL (Gabaix (2008). Once again, for the direct relation-
ships between a PL and non-extensive Tsallis entropy (Tsallis, 2009). The proposed 
model generalizes the statistical theory of information approach to non-ergodic 
systems where q is different to unity. Let us underscore the fact that many findings 
of recent decades seem to confirm a domination of such systems in the physical real 
world. Even if we do not intend to set up a philosophical discussion here, a large 
number of econo-physical contributions of recent years seem to confirm the ubiquity 
of non-ergodic law in social sciences (e.g., Bottazi et al., 2007, Ikeda et al., 2008, Man-
tagna et al., 1999). Under such a hypothesis, this could constitute a serious drawback 
for other competing entropy or econometrics techniques when trying to efficiently 
model a certain class of phenomena. 

The model estimation. We follow the same procedure as in previous examples 
when we searched to minimize the cross-entropy criterion function under a priori 
moments, including the one concerning the economic model in question. Below, we 
directly present the model under the reparameterized form of parameters. Then, if we 
additionally use an escort distribution in moments, the Tsallis cross-entropy econo-
metric model can be stated as:
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For reasons of formal presentation, the criterion function (Equation 5.16) does not 
include probabilities wh, explaining degree of economy changing to scale and bi, the 
parameter of distribution between factors.

In order to improve the estimated parameter quality—in the Bayesian sense—
additional constraining data can be added to (5.17–5.20). In the case of a CES model, 
some economic theory exists. For instance, we can predict sign value domain varia-
tion for each parameter. Then we get:

0 ≤ α = Ga < ∞	 (5.21)

–1 ≤ ρ = Zp ≤ ∞	 (5.22)

0 ≤ δ = Tb ≤ 1	 (5.23)

Where α, ρ, δ,in Equation 1a stand for the original, “before-reparameterization,” 
parameters. The set G, Z, T stand for the above original parameter support space 
with the corresponding weight-probabilities a, p, b defining output posteriors. G, Z, 
T support spaces are defined at the same way as e.g. the equation 2.45–2.46. Here we 
just present how we have specified this particular model and not a general rule of 
specification. Note that depending on error distribution, the weights α, β introduced 
in the above dual objective function may exercise a significant impact on the model 
optimal outputs, respectively, as precision and prediction weight. Indeed, the entropy 
model encompasses statistical losses in the parameter solution space (precision) and 
in the sample solution space (prediction). As can be easily shown, Lagrange multipli-
ers stand for implicit nonlinear function of the weights (α, β) imposed in the gener-
alized cross-entropy criterion function. Changes in weights alter the corresponding 
optimal solution value. In general, as in most constrained optimization problems, 
smaller Lagrange multipliers for a q cross-entropy formulation imply smaller impact 
of constraints on the objective, in particular for the Tsallis q around unity, i.e., the 
Gaussian case.

Model outputs. Outputs presented below constitute an important component 
of the findings in this book. They underscore, more than in previous applications 
where, generally, outputs from Tsallis entropy fit with those of Shannon entropy, 
i.e. an illustration of convergence case to Gaussian model. Here, things will change 
and power law will point out its form. Because of its importance, many details of the 
model outputs already presented by Bwanakare (2014) will be reported in this section 
plus new outputs from two additional country case studies. Thus, based on the data 
source of table 22, let us present outputs of the three CGE trade models: the produc-
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tion function CESP (already developed through the above sections), the CECS (con-
stant elasticity of commercial substitution function, known as the Armington model), 
and the CET (constant elasticity of technical transformation). The reasons for present-
ing these three models of the same class of function are the following: the CES model 
displays causality relationships; the CECS remains a quasi-identity equation since it 
is just missing a quasi-constant variable (the indirect taxes) to constitute an identity; 
and the CET model remains an identity equation, the covariate values of which sum 
up to the explained value of the model. Statistical data in Table 21 illustrate that situ-
ation. Due to a low level of precision, the traditional regression techniques may not 
be relevant in separating the three cases presented above. We compare the outputs 
from non-extensive cross-entropy (NCEE) with those from the traditional estimation 
techniques: the nonlinear least squares (NLS), the generalized methods of moments 
(GMM), and the maximum likelihood approaches (Green, 2003). Model data first have 
been dimensioned at logarithmical scale for computational purposes. The computa-
tions of the NCEE model were carried out with the GAMS code (General Algebraic 
Modelling System). Those with the NLS technique were done with Microsoft Excel. 
Computations by the GMM and ML approaches were executed with a special code 
from the open source GRETL. Let us first recall the mathematical formulation of the 
next two CES model classes. A CECS function aggregating interior economic absorp-
tion with two business components (locally produced commodities demand (DO) and 
imports (M) has the following analytical form:

   
1

1
  ttt MDOC  	 (5.24)

where:

𝜌𝜌 =  1−𝜏𝜏𝑒𝑒

𝜏𝜏𝑒𝑒   −1 ≺ 𝜌𝜌 ≺ +∞   0 ≺ 𝜏𝜏𝑒𝑒 ≺ +∞ with 𝜌𝜌 =  1−𝜏𝜏𝑒𝑒

𝜏𝜏𝑒𝑒   −1 ≺ 𝜌𝜌 ≺ +∞   0 ≺ 𝜏𝜏𝑒𝑒 ≺ +∞  and 𝜌𝜌 =  1−𝜏𝜏𝑒𝑒

𝜏𝜏𝑒𝑒   −1 ≺ 𝜌𝜌 ≺ +∞   0 ≺ 𝜏𝜏𝑒𝑒 ≺ +∞ 

and
τe constant elasticity of substitution, εt stands for random disturbances with unknown 
distribution.

The last model CET is analytically formulated in the following way:

   
1

1
  ttt DMOexMO  	 (5.25)

where:

𝜌𝜌 =  1−𝜏𝜏𝑒𝑒

𝜏𝜏𝑒𝑒   −1 ≺ 𝜌𝜌 ≺ +∞   0 ≺ 𝜏𝜏𝑒𝑒 ≺ +∞  with –∞ 𝜌𝜌 =  1−𝜏𝜏𝑒𝑒

𝜏𝜏𝑒𝑒   −1 ≺ 𝜌𝜌 ≺ +∞   0 ≺ 𝜏𝜏𝑒𝑒 ≺ +∞  –1and –∞𝜌𝜌 =  1−𝜏𝜏𝑒𝑒

𝜏𝜏𝑒𝑒   −1 ≺ 𝜌𝜌 ≺ +∞   0 ≺ 𝜏𝜏𝑒𝑒 ≺ +∞ 0	 (5.26)

and
ext, DMOt stand for exports and domestically marketed outputs, respectively. The rest 
of the symbols have the same meaning as in the previous models. The higher the value 
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of ρ, the higher the degree of transformation. When that parameter converges to –∞ 
we are dealing with a case of perfectly complementary products, which refers to Leon-
tief technology. The case of ρ converging to –1 suggests perfectly substitutable prod-
ucts. In this study, priors were initiated from NLLS outputs. As known, such priors are 
not deterministically fixed. They are updated according to the Bayesian information 
processing rule. For simulation purposes, different q-Tsallis parameter values were 
computed from unity to its admissible57 highest values minimizing the criterion func-
tion. In all models, an a priori parameter support space for reparameterization varies 
between –5.0 and +5.0. The same prior space has been retained for the error distur-
bance with amplitude varying between –3 and +3, so it conforms to the three sigma 
rule owing to Chebychev’s inequality (Pukelsheim , The Three Sigma Rule, 1994). 
Both spaces are symmetric around zero. This prevents the estimated parameters from 
a bias. All the recent works on these subjects (Bwanakare, 2016) seem to confirm that 
besides the NCEE approach, the NLS remains much better than the remaining econo-
metric methodologies (GMM and ML techniques) for solving this kind of nonlinear 
inverse problem. Then, in the next model we limit ourselves to the presentation of 
the model outputs from the NCEE and NLS techniques. Tables 18 and 19 compara-
tively display the outputs from NCEE and NLS, respectively, for the three models. The 
NCEE estimator super-consistency for all three models can be noticed despite the 
small sample. The NLS approach seems better than the GMM procedure as shown in, 
e.g., Bwanakare (2016). The ML has produced, as theoretically expected, much poorer 
outputs. Output performance is displayed through error curves in Figures 4 to 9.

5.3.2  Parameter Outputs of the Tsallis Relative Entropy Model

Nonlinear LS estimation outputs. Using traditional nonlinear least square methods, 
we have linearized the Equations (1a, 1c, and 1d) before applying the Taylor develop-
ment and the LS approaches.

The NCEE outputs are accurate for all estimated models, and performances of 
the rest of the econometric approaches seem to be much less competitive. Having 
used a twelve-year sample in this model, the power law clearly seems to constitute the 
data generating system. Let us thus comment on these NCEE outputs on the empiri-
cal side. The estimated parameters reflect long-run optimal equilibrium values of 
the system. Since we are dealing with the aggregated accounts of 27 EU countries, 
the values of estimated parameters seem to reflect our expectations. In particular, in 
the case of the CESP production model, the estimated parameter p with an estimate 

57 In fact, its interval covers Gaussian (1 𝜌𝜌 =  1−𝜏𝜏𝑒𝑒

𝜏𝜏𝑒𝑒   −1 ≺ 𝜌𝜌 ≺ +∞   0 ≺ 𝜏𝜏𝑒𝑒 ≺ +∞  q 𝜌𝜌 =  1−𝜏𝜏𝑒𝑒

𝜏𝜏𝑒𝑒   −1 ≺ 𝜌𝜌 ≺ +∞   0 ≺ 𝜏𝜏𝑒𝑒 ≺ +∞  5/3) and stable laws (e.g., Levy’s) attractors for 
(5/3 𝜌𝜌 =  1−𝜏𝜏𝑒𝑒

𝜏𝜏𝑒𝑒   −1 ≺ 𝜌𝜌 ≺ +∞   0 ≺ 𝜏𝜏𝑒𝑒 ≺ +∞  q 𝜌𝜌 =  1−𝜏𝜏𝑒𝑒

𝜏𝜏𝑒𝑒   −1 ≺ 𝜌𝜌 ≺ +∞   0 ≺ 𝜏𝜏𝑒𝑒 ≺ +∞  3).
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around zero suggests a convergence of the analysed function to the classical Cobb-
Douglas function, displaying in the present case constant returns to scale. A long-run 
optimal equilibrium share parameter δ between factors shows a lower proportion of 
labour of around 16.3% with respect to capital share (83.7%). In 2010, this proportion 
was around 57% for labour. Thus, according to these outputs, long-run optimal pro-
duction will require much less labour demand, around 16%. For the models CET and 
CECS, the estimated parameters show, in the long-run, a quasi-perfect substitutability 
and a balanced share between local and foreign commodities. Expected free trade 

Table 18: Outputs from the NCEE: dependent var: C(t), MO(t), VA(t).

Exogenous var:  A  δ  p  v I(Pr) CV

CESP(L(t), K(t))  1.866  0.163  0.001  1.000 0.99 0.006

CET(DO(t),Ex(t)) 2.000 0.5 -1.0001 0.999 4.271E-7

CECS(C(t),M(t)) 2.000 0.499 pu -0.985 0.999 2.705E-5

q Tsallis parameter (weight αi=0.05) = 2.333 (CECP)

q Tsallis parameter (weight αi=0.05) = 1.0001 (CECS)

q Tsallis parameter (weight αi=0.05) = 1.0001 (CET)

Table 19: Outputs from the NLS, models CESP, CET, CECS: dependent var: C(t), MO(t), VA(t)

Exogenous var:  A  δ  p  v R2

CESP(L(t), K(t))  1.995  0.282  3.046  0.993  

Parameters T-value) 48.89 6.61 1.49 6.61 0.88

CET(DO(t),Ex(t)) 2.008 0.497 -0.954   

Parameters T-value 558.120 1551.353 -292.532  0.999

CECS (C(t), M(t)) 2.147 0.477 -0.532   

Parameters T-value 6.257 13.073 -1.554  0.83

Table 20: Outputs from the NCEE: dependent var: GDP(t)

COUNTRY  A  δ  p  Q EC n

Belgium 2.326 0.15 - 3.524398E-77/3 0.027 18

USA_sic33 0.777 0.057 -9.84248E-5 7/3 3.373000E-4 20
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barriers and a closer level of productivity among world business partners could advo-
cate in favour of such outputs. For simulation purposes, different Tsallis-q parameter 
values were computed over the domain of definition of q∈ [1, 3] which covers the 
Gaussian basin of attraction [1 < q < 5/3] and Levy’s attractors law [5/3 < q < 3]. The 
q-parameter has been incremented by a step of 0.25 starting from unity (the Shannon 
entropy point). These different values of q generated the model error disturbances 
which allowed the computation of the error coefficient variation (CV). The index CV is 
obtained by dividing the model standard error by the average value of the dependent 
variable. All the above models present an error coefficient variation (CV) of around 
zero. The Tsallis Information Index (Bwanakare, 2014) presented in Part II of this 
book is around unity for the three models, suggesting relatively close to zero informa-
tion divergence between priors and posteriors, under given model restrictions. We 
would have expected optimal solutions for q less than 5/3 or, in the worst case, less 
than 2 for theoretical and empirical evidence. This is the case for the two commer-
cial CET and CECS models where q is almost equal to unity, suggesting a Gaussian 
distribution. For the CESP production model, minimum LS errors are obtained for q 

Table 21: Outputs from the NLS: dependent var: GDP(t)

Exogenous var:  A  δ  p  v R2

Belgium 11,85713 1,82255 2,833935 0,867049 0.999

USA_sic33 0,00038 4,85717 0,061815 1,054080 0.999

Table 22: Aggregated data (chain-linked volumes at 2005 exchange rates) for models (in 1000 billion 
euro).

year 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

VA_mld 7,82 8,136 8,427 8,578 8,978 9,294 9,76 10,28810,2889,777 10,14910,412

K_mld 3,287 3,42 3,55 3,641 3,86 4,02 4,265 4,528 4,476 4,105 4,336 4,444

L_mld 4,427 4,606 4,76 4,819 4,99 5,149 5,374 5,63 5,683 5,554 5,691 5,834

MO 8,691 9,026 9,212 9,325 9,442 9,689 9,877 10,21110,55010,62110,16210,359

DMO 5,719 5,693 5,751 5,792 5,846 5,813 5,773 5,711 5,795 5,797 5,924 5,693

export 2,971 3,333 3,461 3,533 3,596 3,876 4,104 4,500 4,754 4,825 4,238 4,666

Imports 2,938 3,272 3,361 3,414 3,526 3,796 4,029 4,411 4,672 4,727 4,153 4,551

Source: http://appsso.eurostat.ec.europa.eu/nui/setupModifyTableLayout.do
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Figure 4: Error term for NLS, cross-entropy and GMM estimated models (CECS model).

Figure 5: Error term for NLS, cross-entropy and GMM estimated models (CET model).
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Figure 6: Error term for NLS, cross-entropy and GMM estimated models (CESP model).

Figure 7: Model disturbance (CV) curve as a function of q, for [1<q<2.6] (model CESP).
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around 7/3 (see Figure 6). However, comparable outputs from Borges (2004) exist. He 
found cumulative distribution of the scaled gross domestic product of 167 countries 
around the world for the year 2000 corresponding to q = 3.5. Figure 7 and 8 display 
a convex space defining different optimal CV values owing to different simulated 
q-Tsallis parameters for the CESP model. Minimum CV corresponds to the minimum 
of information divergence or of the sum of geometrical error of least squares. To verify 
the Tsallis related model outputs, we have computed a classical S-K-L cross-entropy 
econometric model which has produced for all the three models, as expected, the 

Figure 9: Model random error coefficient for SIC 33: the USA Primary Metals production NCEE model.

Figure 8: The Tsallis q-parameter related model error for the Belgium model (q between 1 and 3).
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same values as those obtained from Tsallis formalism for q equal to unity. Such trivial 
results have not been reported in the above output tables. In the case of the CESP 
model, we found for q converging to unity a CV of 85.3% in the case of K-L, against 
0.06% for an optimal q equal to 2.331. Thus, this point shows the advantage of model-
ling with non-extensive entropy rather than Shannon entropy, reduced to q equal to 
unity. Finally, in Tables 20 and 21 model outputs are limited to two CESP outputs of 
Belgium and the USA Primary Metals production model. Contrary to all the models 
that have been presented in this section, this last USA study treats a space model, 
already discussed in Green58. As expected, the outputs from the NCEE reveal a higher 
precision than those from the NLS approach. In spite of a high coefficient of deter-
mination displayed R2, economic theory related signs and space area of parameters 
remain inappropriate in the case of NLS outputs.

5.4  Conclusions

The present example has presented the rationale of the proposed Tsallis cross-entropy 
approach for unstable, nonlinear econometric models in a more elegant way than in 
the preceding applications. Though the experiment was limited to three different CES 
models with respect to their stochastic forms, a large class of economic and finan-
cial models could fall into this category. Only outputs produced by Tsallis formalism 
reflect these stochastic differences a priori known. The Tsallis entropy super-conver-
gence estimator should only be explained, even in this unique but complex experi-
ment, by the data generating Pl distribution. More investigation, particularly on the 
ARFIMA class of models, is needed to confirm the above findings and the importance 
of the PL approach in econometrical modelling.
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