
2  Ill-posed Inverse Problem Solution and the 
Maximum Entropy Principle

2.1  Introduction

As explained in the introduction, many economic relationships are characterized by 
indeterminacy. This may be because of long-range feedback and complex correla-
tions between source and targets, thus rendering causal relationships more difficult 
to investigate.

In this part of the work, the formal definition of the inverse problem will be dis-
cussed. A Moore-Penrose approach will be presented for solving this kind of problem 
and its limits will be stressed. The next step will be to present the concept of the 
maximum entropy principle in the context of the Gibbs-Shannon model. Extensions 
of the model by Jaynes and Kullback-Leibler will be presented and a generalisation 
of the model will be implemented to take into account random disturbance. The next 
step will concern the non-ergodic form of entropy known in the literature of thermo-
dynamics as non-extensive entropy or non-additive statistics. There will be a focus on 
Tsallis entropy, and its main properties will be presented in the context of information 
theory. To establish a footing in the context of real world problems, non-extensive 
entropy will be generalized and then random disturbances will be introduced into 
the model. This part of the work will be concluded with the proposition of a statistical 
inference in the context of information theory.

2.2  The Inverse Problem and Socio-Economic Phenomena

An inverse problem, e.g., Thikonov et al., (1977), Bwanakare (2015), Golan et al., 
(1996) explains a situation where one tries to capture the causes of phenomena for 
which experimental observations represent the effect. 

The essence of the inverse problem is conveyed by the expression:

  XY  	 (2.12)

or its equivalent in continuous form:

)(),()()(  bdXXBXgY
D

   	 (2.13)

where
X represents the state space,
Y designates the observation space,
D defines the Hilbert support space of the model,
B is the transformation kernel linking measures X and Y,
b(ζ) displays random error process.
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In classical econometrics, when given a state X, an operator B and, as happens most 
of time, a disturbance term (ζ), what is Y? This is referred to as a forward problem. In 
social science, one must often cope with the above random (Gaussian or not) distur-
bance term, and this usually complicates matters in spite of significant, recent devel-
opments in econometrics, particularly concerning stochastic time-series analysis 
(Engle & Granger, 1987). Furthermore, the inverse question is more profound: Given y 
and a specific B, what is the true state X?

If B should also be a functional of X, the problem becomes arbitrarily complex. 
Correlation between (ζ) and X will be at the base of such additional complexity.

Everyday, psychologists cope with such inferential problems. Patients display 
identical symptoms from different sicknesses. Health practitioners need more histori-
cal (a priori) information on patients to try to find the solution.

In economics, the same national output growth rate may result from different 
combinations of factors. One of the main problems encountered by practicing econo-
mists is isolating the causes of economic phenomena once they have occurred. In 
most cases, the economist becomes inventive in finding an appropriate hypothe-
sis before trying to solve the problem. As an example, in the case of a recession or 
financial turbulence, it is usually difficult to point to principal causes and fix them. 
Schools of economics suggest different, even contradictory, solutions—the legacy of 
its inverse problem nature.

In empirical research, many techniques exist to try to solve the inverse problem. 
In the context of the present work, the presentation will be limited to those more 
applicable to matrix inversion, like the Moore-Penrose pseudo-inverse approach, 
and, naturally, maximum entropy based approaches. The approach better known in 
economics for updating national accounts on the basis of bi-proportionalities will 
then be added to these two techniques.

2.2.1  Moore-Penrose Pseudo-Inverse

Let us consider the discrete and determinist case and rewrite (2.12) as follows:

Y = XB = Xρ	 (2.14)

In the right equality reflects the case where we have to deal with a ratio or prob-
ability parameter, for example, after reparametrizing B. We then have:

ρ = YS ⇔ Y = XBS
ρ̂ = BY ⇔ Y = XYV
Y = Xρ̂ = YXV = XBXρ,	 (2.15)

which means:
XBX = X and V, representing the generalized inverse matrix (Golan, 1996), (Kalman, 
1960).
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This is a matrix with the symbol B+ that satisfies the following requirements:

B B+ B = B,
B+B B+ = B,
B+B is symmetric,
B B+ is symmetric.

Following Theil (1967), a unique B+ can be found for any matrix: square, non-
singular or not. When the matrix B+ happens to simultaneously be square and non-
singular, then the generalized inverse will be the ordinary inverse B-. The problem 
that interests us is the over-determined system of equations

Y = XB

where B has n rows, K < n columns and column rank equal to R ≤ K.
If we retain the particular case when R equals K to ensure the existence of (B’B)-1, 

then the generalised inverse of B is 

B+= (B’B)–1B’ 

as can be easily verified. A solution to the system of equations can be presented as:

X= B + Y.

Following Green (2003, pp. 833), we note in this case that the length of this vector 
minimizes the distance between Y and BX, according to the least squares properties 
method. This distance will naturally remain equal to zero if y lies in the column space 
of B.

If we now retain the more general case where B does not have full rank, the above 
solution is no longer valid and a spectral decomposition using the reciprocals of the 
characteristic roots is involved to compute the inverse which becomes:

 B+ = C1 A1
–1 C1’B’

where C1 are the R characteristic vectors corresponding to the non-zero roots arrayed 
in the diagonal matrix A1.

The next and last case is the one where B is symmetric and singular, that is, with 
the rank R ≤ K. In such a case, Moore-Penrose inverse is computed as in the preceding 
case but without pre-multiplying by B’. Thus, for such a symmetric matrix,

B+ = C1 A1
–1C1’,	 (2.16)

with A1
–1 being a diagonal matrix of the reciprocals of the non-zero roots of B.

It is important to note that only matrix B with full rank ensures a minimum dis-
tance between Y and BX. In other cases, there may exist an infinite number of combi-
nations of elements of matrix B or ρ̂ which satisfy (2.14).
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To conclude, in spite of strong advantages of the Moore-Penrose generalised 
inverse, outputs will not always reflect an optimal solution.

2.2.2  The Gibbs-Shannon Maximum Entropy Principle and the Inverse Problem

Let us introduce the concept of Shannon entropy by continuing with the case of pure 
linear inverse problem solution discussed above. The simplest (one dimensional 
case) example is the Jaynes dice inverse problem.

If a dice is fair, and we throw it a large number of times n, with k different output 
modalities9 (k = 1,..., K), the expected value will be 3.5, as from a uniform distribution 
with probability fk equal 1/6. How can one infer about pk if we have ‘loaded’ (unfair) 
dice and the expected value of the trial becomes:

4.5 = 



K

k
kkp

1
5.4  								        (2.17)

where frequencies pk is n
nk  ?

In this case, the central question is: Which estimate of the set of frequencies 
would most likely yield this number? The problem is underdetermined since there 
are many sets of fk that can be found to fit the single datum of equation (2.17). Here 
we have to deal with a multinomial distribution where the multinomial coefficient w 
is given by:

!!..!
!

!!..!
!

2121 kk kkkppp
W








  

Deriving and using the Stirling approximation lnx! ≅ xlnx – x for a large number 
of N, we get the Shannon entropy formulation: 





K

k
kkp pppHMax

1
ln)(  					                    (2.18)10

In the case of a die, parameter K equals 6, and W is the multinomial coefficient, 
i.e., the number yielding a particular set of frequencies among 6N possible outcomes.

9  Generally, if the number of trials is equal to n, we will have nk possible outputs corresponding 
to each modality k with 

k
knn  . Thus, the frequency pk = 

n
nk  is related to each modality k. 

10  Note that the generalized form of Shannon entropy in the continuous case has the form: 
Maxf(y)H(f(y)) = –∫f(y)logf(y)dy.
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We need only find the set of frequencies maximizing W in order to find the set that 
can be realized in the greatest number of ways. This is the most plausible combina-
tion in the case of fair dice.

This turns out to convey the same logic as maximizing Shannon Gibbs entropy. 
Thus, starting from two pieces of information that is, the number k equal to six and N a 
large number of trialswe are able to derive six probabilities related to a die distribution.

Next, Jaynes (1994) maximized the Shannon function through the restriction of 
consistent information at hand. This opened entropy theory application to many sci-
entific fields, including the social sciences. 

Thus, if we add to the formulation (2.18) the moment-consistency and the adding 
up-normalization constraints, we then get:





K

k
kkp pppHMax

1
ln)(  						      (2.19)

subject to:





K

k
tktk Ttyxfp

1
1,)(  					                      (2.20)





K

k
kp

1
1  								        (2.21)

where {y1, y2,..., yt} denotes a set of observations (e.g., aggregate accounts or their 
averages) being consistent with a function ft(xk) of explicative variables weighted by a 
corresponding distribution of probabilities {p1, p2,..., pk}. As usually happens, T is less 
than K, and the problem is ill-posed (underdetermined).

Two main results emerge from the above formulation. First, if all events are inde-
pendent or quasi-independent (locally dependent) and equally probable, then the 
above entropy is a linear function of the number of the possible system states and then 
is extensive11.

A second fundamental result is connected with information theory and suggests 
that a Gaussian variable has the largest entropy among all random variables of equal 
variance (see Papoulis, 1991 for proof). In the next chapter on non-extensive entropy, 
a measure to assess the divergence of a given distribution from Gaussian distribution 
will be presented.

11  For this reason, as earlier alluded to, the Gibbs-Shannon entropy is called extensive. In reverse, 
as it will be commented on in the coming sections, the hypothesis of long-range correlation between 
events leads to the concept of non-extensive entropy (e.g., Tsallis entropy) suggesting an entropy no 
longer being a linear function of data. 
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Coming back to the dice case, maximization of Shannon entropy in (2.19), that is 
H(P) = –P΄ ln P under Jaynes consistency, leads to the distribution presented in Table 1. 
To solve this inverse problem of six unknowns, the only two pieces of information 
available are the expected value—from the experiments in this example—assumed 
to be equal to 4.5 and the information that the probability of different possibilities 
adds up to one. However, since we are dealing with unbalanced dice, we have no idea 
about the distribution.

The next chapters extend the Shannon-Gibbs-Jaynes maximum entropy principle 
with Kullback-Leibler relative entropy. The next to the last targeted presentation will 
deal with the general linear entropy model, that is, the one with a stochastic compo-
nent. To conclude, Tsallis power law distribution to generalize Kullback-Leibler cross-
entropy will be considered. 

2.2.3  Kullback-Leibler Cross-Entropy

Kullback (1959), Good (1963) extended the Jaynes-Shannon-Gibbs model by formulat-
ing the principle of minimum (cross or relative) entropy. Using an a priori piece of 
information q about unknown parameter p, the resulting formulation is as follows:





K

1k
qp'lnp')/ln(),(_ pqppqpHMin kkk  				    (2.22)

 
under restrictions:

Y = XP	 (2.23) 

P'1 = 1	 (2.24)

where p = (p1,..., pK)ʹ, q = (q1,..., qK).

These restrictions are the same as those presented earlier. In the criterion func-
tion (2.22), a posteriori and a priori vectors or matrices p and q are confronted with the 
purpose of measuring entropy reduction resulting from exclusive new content of data 
information. 

Table 1: Recovering probability distribution of an unbalanced die through the maximum entropy 
principle.

P1 P2 P3 P4 P5 P6 

0.054 0.079 0.114 0.166 0.240 0.348
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One should note that when q is fully consistent with moments, then p = q and the 
distribution becomes uniform with qk = 1/K. This leads to the solution of the maximum 
entropy principle. 

Thus, the cross-entropy principle stands for a certain form of generalization of 
maximum entropy. Relation (2.22) above is an illustration of the previous Kullback 
formulation in (2.8) as a mean information from (2.23) and (2.24) for discrimination in 
favour of p against q.

2.3  General Linear Entropy Econometrics

In social science, it is rare to encounter the situation described by the relation (2.14) 
where the random term is meaningless as is often encountered in the experimental 
sciences. Social phenomena are particularly affected by stochastic components. Let 
us rewrite it below in its generalized form:

𝑦𝑦𝑖𝑖 =∑𝐵𝐵𝑗𝑗𝑋𝑋𝑗𝑗 +
𝐾𝐾

𝑗𝑗−1
 ei   	 (2.12’)

with the random term ζi∈e and
i = (1,..., I) (I being the number of observations); K is the number of model parameters 
to be estimated.

2.3.1  Reparametrization of Parameters

Following Golan et al., (1996), we first reparametrize the above generalized entropy 
model (2.12’).

We treat each Bj (j = 1,…, K) as a discrete random variable within a compact 
support and 2 < M < ∞ possible outcomes. So, we can express Bj as: 

1

M

k km km
m

B p v k K


  
 

	 (2.25)

where pkm is the probability of outcome vkm and the probabilities must be non-negative 
and sum up to one.

Similarly, let us treat each element ζi of e as a finite and discrete random vari-
able with compact support and 2 < M < ∞ possible outcomes centred on zero. We can 
express ζi as:





J

j
njnji wr

1
.  	 (2.26)
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where rn is the probability of outcome wn. The term ζi, like any prior value in the 
model, reflects Bayesian properties and is not a fixed value as in the case of classical 
econometric models. In practice, support sets with three or more points12 are used to 
take into account higher moments of the distribution during the process of informa-
tion recovery.

2.4  Tsallis Entropy and MainProperties

2.4.1  Definition and Shannon-Tsallis Entropy Relationships

This relatively new form of entropy is emerging over an immense area of applica-
tions in social science, including economics. One of the fields of interest is model-
ling and predicting markets of financial returns (Drożdż & Kwapień, 2012), (Grech & 
Pamula, 2013). Nevertheless, due to the high frequency nature of Big Data in Official 
Statistics (e.g., Braaksma & Zeelenberg, 2015), the PL-based non-extensive entropy 
econometrics should be seen as a potential and natural estimation device in this 
new statistical area. As in statistical physics, socioeconomic random events display 
two types of stochastic behaviour: ergodic and non-ergodic systems. Whenever iso-
lated in a closed space, ergodic systems dynamically visit with equal probability all 
the allowed micro-states (Gell-Mann & Tsallis, 2004). However, it seems logical to 
imagine systems visiting the allowed micro-states in a much more complex way than 
defined by ergodicity. The financial market is a well-known example of such complex 
systems, as characterized by multifractal dimensions (Drożdż & Kwapień, 2012), 
(Grech & Pamula, 2013). Other examples include income distribution inside a given 
region, evolution of a given disease inside a region, size of cities, or cellular structure. 
These forms seem to display an organized structure owing to long-range correlation 
between micro-elements, heavy queues with respect to Gaussian distribution, scale-
invariant structures, and criticality. Such phenomena would be better described by a 
stable law-based Levy process, like power law distribution.

Shannon-Kullback-Leibleir Equations (2.22–2.24) are generalized by Tsallis rela-
tive entropy formulation. To emphasize consistency among the principal formula-
tions, it is worthwhile to reiterate the statistical theory connection between the above 
relations and the Kullback relation presented in (2.8) or to some extent (2.9), which 

12 Golan, Judge, and Miller (1996) suggest the Chebyshev inequality as a good starting point to define 
the error support set: Pr[|x| < vσ] ≥ v–2 where v is a positive real and x a random variable, such that 
E(x) = 0 while var(x) = σ2. This inequality leads to three-sigma rule (Pukelsheim, 1994) for v = 3, i.e., to 
the probability Pr[–3σ < x < 3σ], which is at least 0.88 and higher when x displays a standard normal 
distribution. Let us remember that this inequality has the additional advantage of being independent 
of distribution laws.
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measures the divergence between two hypotheses H1 and H2. A similar concept will be 
introduced in the case of non-extensive entropy, which will constitute the final step 
of Shannon entropy extensions.

Let us generalize the Shannon Gibbs inverse problem through ordinary differen-
tial equation characterization (Tsallis, 2009). First, we need to introduce the three 
simplest—in terms of dynamic complexity—differential equations and their inverse 
functions,

0
dx
dy  = 0    (y(0) = 1).	 (2.27)

Its solution is y=1 (∀x), and its inverse function is X=1 (∀y).
The next simplest differential equation is

0
dx
dy  = 1    (y(0) = 1).	 (2.28)

Its solution is y=(1 + x) and its inverse Y=(x – 1).
The next higher step in increasing complexity is the differential equation

0
dx
dy  = y    (y(0)=1).	                  (2.29)

Its solution is y = ex, and its inverse is y = lnx.
Note that the latter inverse equation satisfies the additive property:

ln(xaxb) = ln(xa) + ln(xb).	 (2.30)

Following Gell-Mann & Tsallis (2004) and trying to unify the three cases (without 
preserving linearity), we get:

0
dx
dy  = yq    (y(0)=1; q∈ℜ).	 (2.31a)

We observe that this expression displays power-law distribution form.
Its solution is

𝑦𝑦 = [1 + (1 − 𝑞𝑞)𝑥𝑥]
1

1−𝑞𝑞 ≡ 𝑒𝑒𝑞𝑞𝑥𝑥(𝑒𝑒1𝑥𝑥 = 𝑒𝑒𝑥𝑥) ,

and its inverse function is 
 

x
q

xy q

q

ln
1

11








 lnq x (ln1 x = ln x).					                    (2.31b)

The above represents the non-extensive (Tsallis) entropy formula. Though it 
will be discussed in the next section, let us immediately show here the relationship 
between Shannon and Tsallis entropies through the next pseudo-additive property:

lnq(xaxb) = ln(xa) + ln(xb) + (1 – q)lnq(xa)lnq(xb)				    (2.32)
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for q → −∞, q = 0, q = 1 we obtain the three initial cases (2.27 – 2.29), respectively.
In particular for q = 1, we then obtain (after using l’Hôpital’s rule) the solution 

of (2.29), the case of Shannon Gibbs entropy. The expression (2.30) states that if two 
systems xa and xb are logarithmically multiplied, the output is the additive sum of 
these systems in a logarithmic scale. This explains why Shannon entropy is some-
times referred to as additive entropy. This observation has been taken from (2.21) to 
emphasize that Shannon entropy is a direct function of data. The term q is referred 
to as “q-Tsallis.” When it is equal to unity, we reach in this limiting case the Shannon 
entropy.

Tsallis entropy should now be described and compared with other entropy forms. 
This description indirectly replies to the question of why Tsallis or Shannon entropy 
rather than Renyi entropy or another is appropriate for a given problem. 

2.4.2  Characterization of Non-Extensive Entropy 

2.4.2.1  Correlations
Following Tsallis (2009), suppose we have a system composed of subsystems13 A (with 
WA possibilities of complexities) and B (with WB possibilities of complexity). Their 
joint probabilities can be presented as  AB

ijp  (i = 1,2,..., WA j = 1,2,..., WB) and marginal 
probabilities as 





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j

AB
ij

A
i pp

1
 (hence 1

1
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A
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In general,
AB
ij

B
j

A
i ppp   	 (2.33)

if they happen to be equal, then A and B are said to be probabilistically independent. 
Otherwise, they are dependent or correlated. Let us then define entropies: 

    A
iq

A
q pSpS   

and 

    B
iq

B
q pSpS   . 

13 For models to be presented later, subsystem A can be considered as a data generating process and 
B as a subsystem of disturbances. After reparametrization, these two subsystems will be associated 
in terms of probabilities.
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More interestingly, the conditional entropies definition, that is, 

   A
qBAq pSpS    and  ABq pS  ,

may deserve closer attention, as it can intervene for the definition of estimation preci-
sion of a model if the hypothesis of independence between the model variables and 
its random terms has been accepted or not. If and only if A and B are independent, 

   A
qBAq pSpS   

and 

   B
qABq pSpS   .

Next , 

    AB
ijqq pSABS   , 

in general, satisfies:

                     BAq
B

qBAq
B

qABq
A

qABq
A

qq pSpSqpSpSpSpSqpSpSABS  11  

                     BAq
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qBAq
B

qABq
A

qABq
A

qq pSpSqpSpSpSpSqpSpSABS  11  						                       (2.34)

Finally, to be more explicit than in the previous section, Sq is said to be non-exten-
sive in the sense that given two independent random systems A and B, i.e., P(A, B) 
=P(A)P(B),
then,

           B
q

A
q

B
q

A
qq pSpSqpSpSABS  1  	 (2.35)

In the next, empirical part of this book, for inferential purposes and for optimal 
simplification of numerical computations, this formula will play a key role in deter-
mining the level of entropy of a complex system under the hypothesis of indepen-
dence of subsystems, i.e., between the model and the random term.

2.4.2.2  Concavity
The concept of concavity is important since, among others things, it allows us to 
determine whether or not a system is stable. Stability is a meaningful concept in 
econometrics since it implies stationarity of a process in a given system. Testing for 
stationarity and cointegration using entropy distribution seems thus to be an open 
area of further research14.

14 However, the job may be rendered difficult since optimal equilibrium responding to economic 
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Sq is concave (convex) for all probability distributions and all  .00  qq  ( .00  qq  ) (Gell-
Mann & Tsallis, 2004). Let us follow the traditional mathematical definition of con-
cavity and let {pi} and   Wipi ,...,2,1'    be two arbitrary probability distributions. The 
next relation of intermediate distribution follows: 

   .101   
iii ppp  

By concavity we mean that it can be proven that for all α,

         .1 

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
 





 

iqiqiq pSpSpS   

2.4.3  Tsallis Entropy and Other Forms of Entropy

Let us first review the mathematical main forms of entropies before presenting their 
most important distinctive properties.

LVRAR
iBG SSSpipipS 111ln)(    				                     (2.36)
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A key element deserves attention here. We see from the first mathematical rela-
tion in (2.36) above that Shannon-Gibbs entropy may be generalized, too, by Renyi 
entropy (2.38) or by the normalized non-extensive form (2.39), independently intro-
duced by Landsberg & Vedral (1998) and by Rajagopal and Abe (2000). Both forms of 
entropy are monotonically increasing functions of Sq. Tsallis (Gell-Mann & Tsallis, 
2004, p. 11) poses and explains a relevant question concerning relationships between 
these forms of entropy. In fact, after pointing out that monotonicity makes Sq, SqR, 
and SqN extreme for the same probability distribution, he asks why not base thermo-
dynamics on SqR or SqN rather than only on Tsallis entropy. The response lies in the 

laws does not necessarily fit into optimal entropy equilibrium. This problem will be briefly covered, 
later.
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disadvantages of these two forms of competitive entropy. In fact, it happens that they 
are not concave for all positive values of q, but only for 0  .00  qq   q ≤ 1. Since many physi-
cally meaningful phenomena for which q are higher than unity exist, this becomes a 
serious drawback of both competitive entropies. As far as economic, financial, or social 
phenomena are concerned, the problem does not allow for any ambiguity since, as we 
will see in the next section, 1 ≤ q  .00  qq   5/3. For the majority of them15, extreme events are 
on average more frequent (with persistence) than predicted by Gaussian law and not 
the reverse (i.e., less frequent—with persistence—than predicted by Gaussian law). 
Tsallis entropy thus remains the one form that not only generalizes SG entropy but 
also ensures concavity (stability) inside the whole finite interval where probability 
distribution is defined. The reader should thus far understand why non-extensive 
Tsallis entropy has been recently used to generalize all other forms of entropy, at least 
in many fields where entropy is applied.

2.4.3.1  Characterization
In the following table, we illustrate different links between the commonly used forms 
of entropy with respect to the characterization in Table 2.
“yes” and “no” correspond, respectively, to what, according to recent thermodynamic 
literature (Gell-Mann & Tsallis, 2004), are thermodynamically allowed and forbidden 
violations of the Boltzmann–Gibbs (BG) entropy properties.16

15  For example, for stock market returns, q is around 1.4, far enough from the unity which charac-
terises Gaussian distribution.
16 “Exp” for exponential and “P” for power.

Table 2: Comparison of different forms of entropy with regard to important properties

Property Entropy

SBC Sq
R
qS  LVRA

qS  

Extensive 

  B
j

A
i

AB
ij pppq   

yes no yes no

Concave  0q  Yes Yes No no

Stable  0q  Yes Yes No no

Optimizing distribution
( 0q  )

exponential Law16 Power Law Power Law Power Law

Source: own, based on Tsallis (2009) and Gell-Mann & Tsallis (2004)
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NB: R stands for Renyi, and N
q

LVRA
q SS   (LVRA and N stand for Landsberg-Vedral-

Rajagopal-Abe and normalized, respectively (Gell-Mann & Tsallis, 2004). 

2.4.3.2  Scale of q-Tsallis Index and its Interpretation
Following the thermodynamic literature built on Lévy-like anomalous diffusion, it 
has been shown that 

2

)( x
qexp    optimizes

 
1

)(1



 

q
xpdx

S
q

q  

under appropriate constraints. If one convolutes n times p(x)(n → ∞), we approach a 
Gaussian distribution if q  .00  qq   5/3, and a Lévy LγL(x) if 5/3  .00  qq   q  .00  qq   3. The index γL of Lévy 
distribution is related to q as follows:

1
.3





L
Lq



 (5/3  .00  qq   q  .00  qq   3).

Thus, in empirical applications, the value of q should vary inside an interval from 
unity to 5/3, which corresponds to cases of finite variance for phenomena dwelling 
within the Gaussian basin of attraction. 

2.5  Kullback-Leibler-Tsallis Cross-Entropy

2.5.1  The q-Generalization of the Kullback-Leibler Relative Entropy

Kullback-Leiber-Tsallis cross-entropy is known in literature as the q-generalization of 
Kullback-Leibler relative entropy. The Kullback-Leiber-Shannon entropy introduced 
in Part II can be q-generalized (Tsallis, 2009) in a straightforward manner. The dis-
crete version becomes:

 
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q
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ioq  	 (2.40)17

since with any real r  .00  qq  , one has the following properties:
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17  In a continuous case, we have:
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= 
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Thus, retaining the practical case of , we can write:
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Therefore, coming back again to the generalized K-Ld cross-entropy, we have19:

Iq(p,po) ≥ 0 if q  .00  qq   0, 
	 = 0 if q = 0,

	 ≤ 0 if q  .00  qq   0.								       (2.42)

Thus, as Tsallis (2009) has made us aware, the above q-Kullback-Leibler index 
has the same basic property as the standard Kullback-Leibler entropy and can be used 
for the same purpose while having the additional advantage of an adaptive q accord-
ing to the system with which we are dealing. 

There exist two different versions of the Kullback-Leibler divergence (K-Ld) 
in Tsallis statistics, the usual generalized K–Ld shown above and the generalized 
Bregman K–Ld. According to Venkatesanet et al., (Plastino & Venkatesan, 2011), prob-
lems have been encountered in empirical thermodynamics trying to reconcile these 
two versions. Unfortunately—or fortunately!—the same problems seem to reappear 
while applying this theory in social science since every version of generalized K-Ld 
leads to different outputs. Let us try to synthesize what recent literature says about 
this problem.

18  It is straightforward to derive this property in the case of the continuous case.
19 The same conclusion is obtained by using Jensen's inequality (e.g., Gell-Mann & Tsallis, 2004).
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2.5.2  Tsallis Versions of the Kullback-Leibler Divergence in Constraining Problems

This short section represents the final bridge between theory and the applications 
in the last parts of this work. In a recent study, Plastino & Venkatesan (2011) lay out 
interesting aspects of empirical research when q-generalized K-Ld cross-entropy is 
associated with constraining information. Since, in the social sciences, we particu-
larly need discrete forms of these relative entropies, let us first rewrite these forms 
before commenting on their conditions of applicability:

 
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The form (2.43) is the one derived directly from Kullback-Leibler formalism and 
presented in (2.40). The second form is referred to as the generalized Bregman form of 
K-Ld cross-entropy, and it is more appealing than (2.43) from an information-geomet-
ric viewpoint (Plastino & Venkatesan, 2011) even if it does contain certain inherent 
drawbacks.

A study by Abe and Bagci (2005) has demonstrated that the generalized K–Ld 
defined by (2.44) is jointly convex in terms of both pi and p0i while the form defined by 
(2.43) is convex only in terms of pi. A further distinction between the two forms of the 
generalized K–Ld concerns the property of composability. While the form defined by 
(2.44) is composable, the form defined by (2.43) does not exhibit this property. 

The second interesting aspect for practitioners concerns the manner in which 
mean values are computed. Non-extensive statistics has employed a number of forms 
in which expectations may be defined. The first among these are the linear constraints 
initially used by Tsallis (2009), also known as normal averages, that is:

i
i

i ypy   

The second is the Curado-Tsallis (C-T) constraints of the form:

i
i

q
iq ypy   

and the normalized Tsallis-Mendes-Plastino (TMP) constraints (also known as q-aver-
ages or an escort distribution) of the form: 
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q
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q y
p
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  

A fourth—less applied by practitioners—constraining procedure is the optimal 
Lagrange multiplier approach.
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Among these four methods to describe expectations, the most commonly 
employed by Tsallis practitioners is TMP, referred to as escort distribution.

Recent work by Abe (2009) suggest that, in generalized statistics, expectations 
defined in terms of normal averages, in contrast to those defined by q-averages, seem 
to display higher consistency in material chaos hypotheses. Recent reformulation of 
the variational perturbation approximations in non-extensive statistical physics fol-
lowed from these findings. To my knowledge, application in the social sciences to 
assess the universality of this finding has not been done yet. 

Finally, there is the issue of consistency. This stems from the form of the gen-
eralized K–Ld defined by (2.43) being consistent with expectations and constraints 
defined by q-averages (“prominently” the TMP) while, on the other hand, the gen-
eralized Bregman K–Ld defined by (2.44) is consistent with expectations defined by 
normal averages.

Thus, through reformulations of an empirical inverse problem, this last point may 
play a key role since non-appropriated constraints should lead to a non-optimal solu-
tion in the best case or to computational problems, as is often the case. 

2.6  A Generalized Linear Non-Extensive Entropy Econometric 
Model

2.6.1  A General Model

This section presents a generalized linear non-extensive entropy econometric 
approach to estimate econometric model. Following Golan et al., (1996), we first repa-
rametrize the generalized linear model of the equation (2.12’) rewritten below: 

 
ik

K

k
ki XBy 

1
	 (2.12’)

With, once again, the random term ζi∈e and i = (1,...,I) (being the number of 
observations); K is the number of model parameters to be estimated.

Where B values are not necessarily constrained between 0 and 1, and ζ is an 
unobservable disturbance term with finite variance, owing to the nature of economic 
data that exhibits error observation from empirical measurement or random shocks. 
If we treat each Bj (k = 1...K) as a discrete random variable with compact support and 
2 < M < ∞ possible outcomes, we can express B as:

km

M

m
kmk vpB 




1

,  Kk ,,1  	 (2.45)

where pkm is the probability of the outcome vkm. The probabilities must be non-nega-
tive and add up to one. Similarly, by treating each element ζi of ζ as a finite and dis-
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crete random variable with compact support and 2 < M < ∞ possible outcomes centred 
around zero, we can express ζi as:





J

j
ijiji wr

1
  	 (2.46)

where ri is the probability of outcome wi on the support space j, with j∈{1,...,J} and i∈ 
{i = 1,...,N}. Note that the term e (an estimator of ζ) can be fixed as a percentage of the 
explained variable, as an a priori Bayesian hypothesis. Posterior probabilities within 
the support space may display non-Gaussian distribution. The element vkm constitutes 
a priori information provided by the researcher while pkm is an unknown probability 
whose value must be determined by solving a maximum entropy problem. In matrix 
notation, let us rewrite β = V⋅P with pkm ≥ 0 and
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where again, K is the number of parameters to be estimated and M the number of data 
points in the support space. Also, let e = r⋅w, with rij ≥ 0 and
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for N the number of observations and J the number of data points on the support 
space for the error term. Then, the maximum Tsallis Entropy Econometric (MTEE) 
estimator can be stated as:
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where the real q, as previously stated, stands for the Tsallis parameter. 
Above, Hq(p,r) weighted by α dual criterion function is nonlinear and measures 

the entropy in the model. The estimates of the parameters and residual are sensitive 



40   Ill-posed Inverse Problem Solution and the Maximum Entropy Principle

to the length and position of support intervals of β parameters. When parameters 
of the proposed mode20 concern elasticity or error correct coefficients, the values of 
which lie between 0 and 1, then the support space should be defined inside the inter-
val zero and one. In other cases, the support space may be defined between minus 
and plus infinity, according to the intuitive evaluation of the modeller. Additionally, 
within the same interval support, the model estimates and their variances should be 
affected by the number of support values (Golan et al., 1996). Increasing the number 
of point values inside the support space leads to improving the a priori information 
about the system. A few years of modelling with the maximum entropy approach 
seem to show that a well-defined support space is crucial to obtaining better results. 
The weights α and (1 – α) are introduced into the above dual objective function. The 
first term “of precision” accounts for deviations of the estimated parameters from the 
prior (defined under support space). The second, “prediction ex post,” accounts for 
an empirical error term as a difference between predicted and observed data values 
of the model. 

2.6.2  Parameter Confidence Interval Area 

In this section, we will propose the normalized Tsallis entropy coefficient S(âk) as an 
equivalent to a standard error measure in the case of classical econometrics. An equiv-
alent of the determination coefficient R2 will be introduced, also under the entropy 
symbol S(P̂r). The departure point is that the maximum level of entropy-uncertainty 
is reached when significant information-moment constraints are not enforced. This 
leads to a uniform distribution of probabilities over the k states of the system. As 
we add each piece of informative data in the form of a constraint, a departure from 
the uniform distribution will result, which means a lowering in uncertainty. Thus, 
the value of the proposed S(P̂r) below reflects a global departure from the maximum 
uncertainty for the whole model. Without giving superfluous theoretical details, we 
follow formulations in, e.g., Bwanakare (2014) and propose a normalized non-exten-
sive entropy measure of S(âk) and S(P̂r).

From the Tsallis entropy definition, Sq vanishes (for all q) in the case of M = 1; for 
M > 1, q > 0, whenever one of the pi(i = 1..M) occurrences equals unity, the remaining 
probabilities, of course, vanish. We get a global, absolute maximum of Sq (for all q) 
in the case of a uniform distribution, i.e., when all pi = 1/M. This vanishes (for all q) in 

20  As already presented, the expression 
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  is referred to as escort probabilities, and we 

have for q=1 (then Pm is normalized to unity), that is, in the case of Gaussian distribution (Gell-Mann 
i Tsallis, 2004), (Tsallis, 2009).
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the case M = 1; and for M > 1, q >0, whenever one of the pi equals unity, the remaining 
ones vanish. A global, absolute maximum of Sq (for all q) is obtained in the case of 
equiprobability, i.e., when all pi = 1/M. Note that we are interested, for our economic 
analysis, in q values lying inside the interval (1, 5/3). In such an instance, we have for 
our two systems:

Sq(p) = (M1 – q – 1)⋅(1 – q)–1	 (2.51)

and

Sq(r) = (N1–q – 1)⋅(1 – q)–1	 (2.52) 

in the limit when q = 1, relation (2.51) or (2.52) leads to the Boltzmann-Shannon expres-
sion (Gell-Mann & Tsallis, 2004). 

Below, a normalized entropy index is suggested, one in which the numerator 
stands for the calculated entropy of the system while the denominator displays the 
highest maximum entropy of the system owing to the equiprobability property:

S(âk) = – [1 – ∑k∑m(pkm)q]/[k ⋅(M1 – q – 1)]	 (2.53)

with k varying from 1 to K (number of parameters of the system) and m belonging to M 
(number of support space points), with M > 2. S(âk) then reporting the accuracy on 
estimated parameters. Equation (2.48) reflects the non-additivity property of Tsallis 
entropy for two (probably) independent systems; the first, parameter probability dis-
tribution, and the second, error disturbance probability distribution (plausibly with 
quasi-Gaussian properties):

S(P̂r) = [ S(p̂ + r̂)] = {[S(p̂) + S(r̂)] + (1 – q) ⋅ S(p̂) ⋅ S(r̂)}		               (2.54)

where:

S(p̂) = – [1 – ∑k∑m(pkm)q]/[k ⋅(M1 – q – 1)]

and

S(r̂)= – [(1 – ∑ ∑rq)]/[k ⋅N ⋅(J1 – q – 1)]
	               n        j

S(P̂r) is then the sum of normalized entropy related to parameters of the model 
S(p̂) and to the disturbance term S(r̂). Likewise, the latter value S(r̂) is derived for all 
observations n, with J the number of data points on the support space of estimated 
probabilities r related to the error term. 
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The values of these normalized entropy indexes S(âk), S(P̂r) vary between zero 
and one. Their values, near to one, indicate a poor informative variable while lower 
values are an indication of better informative parameter estimate âk about the model. 

The next part of the book will present in detail national accounts tables used for 
building or forecasting macroeconomic models. The statistical theory will be imple-
mented particularly in the case of the inverse problem, while keeping in line with this 
work's objective.

2.7  An Application Example: a Maximum Tsallis Entropy Econome-
trics Model for Labour Demand

This example presents, through Monte Carlo simulations, a model for labour demand 
adjustment for the Polish private sector. It constitutes an extension of an initial model 
presented by Bwanakare (2010) for the labour demand adjustment by the private 
sector of Subcarpate province in Poland. The model aims at displaying short-run and 
long-run relationships between labour demand determinants through an error self-
correct process. Due to the relatively short period of the sample (fourteen annual data 
points) and the autoregressive nature of the model, we may have to deal with limited 
possibilities of statistical inference in the absence of convergence properties or, in the 
worst case, an inverse ill-behaved problem. Thus, traditional methods of parameter 
estimation may fail to be effective. We then propose to apply the generalized maximum 
Tsallis entropy econometric approach—as an extension of Jaynes-Shannon-Gibbs 
Information theoretic entropy formalism, already applied in econometrics (Golan, 
Judge & Miller, 1996). Due to an annual data frequency of the sample, the approach 
proves to be applicable in the case of classical econometrics when a small, lower fre-
quency data sample is available. Such a small data sample should display tail queue 
Gaussian distribution. Through this application, Monte Carlo experiment outputs 
seem to confirm the reliability of the Tsallis entropy econometrics approach, which 
in this particular case performs as well as the generalized least square technique.

2.7.1  Theoretical Expectation Model

In the short run, managers decide on the number of employees to be hired (or dis-
missed) in accordance with the expected long-run optimal level of production. 
However, because of institutional or economic reasons, that optimal number is not 
hired (or fired) at once. First, uncertainty remains a predominant characteristic of 
business. For this reason, employers naturally prefer a moderate and progressive 
adjustment of recruited workers to the targeted optimal level. Recruitment in some 
economic sectors could be time-consuming as well, especially when searching for 



�An Application Example: a Maximum Tsallis Entropy Econometrics Model for Labour Demand   43

good specialists. Second, relatively well organized trade unions could prevent 
employers from abrupt, large-scale layoffs, or the cost of dismissing a worker may 
become high, depending on prevailing labour laws at a given period. In both cases, 
the process of shock correction will be more or less long, depending on its origin and 
magnitude. 

Under classical assumptions of constant returns to scale, ex ante and ex post 
complementarities of factors, and long-run constant rate of labour productivity, the 
desired level of labour demand Lt* is a function of the output Yt and the technical 
progress t21:

Lt* = α.exp(–β.t).Yt	 (2.55)

Assuming that labour demand adjusts to its targeted level by an error correction 
model:

log(Lt /Lt–1) = λ.log(L*t /L*t–1) +μ. log(L*t–1/Lt–1),	 (2.56)

combining (2.55) and (2.56) leads to:

log(Lt /Lt–1) = λ.log(Yt/ Yt–1) +μ. log(Yt –1/Lt–1) + μ. β.t + αo	 (2.57)

The parameter λ is the impact of output on labour demand, and then a short-run 
elasticity of labour demand with respect to output Yt, μ being the error correction 
parameter. Since a relation –1 ≤ μ ≤ 0 should prevail, the equilibrium error is only 
partly adjusted at each period. In other words, this parameter synthesizes employ-
ers’ determinants of labour demand adjustment once a shock in sales for the coming 
period is expected. 

2.7.2  A Generalized Non-Extensive Entropy Econometric Model

2.7.2.1  General Model
Presently we are interested in the estimation of parameters of a Podkarpacki labour 
demand model, applying a generalized non-extensive entropy econometric approach. 
Following Golan, Judge & Miller (1996) and Bwanakare (2014a, 2014b), we reparam-
etrize, in the first step, the generalized linear model before fitting it to equation (2.48). 
This step allows for including in moment equations-restrictions the same probability 
variables as those optimized in the criterion function. 

To reparametrize the model, we follow each equation in (2.45–2.46) where each 
βk  (k = 1,…,K) is treated as a discrete, random variable with compact support and 
2 < M < ∞ possible outcomes. Next, for the estimation of the model, we maximize the 
entropy criterion function in (2.47) under moment and normality condition restric-

21 This is a simplification stipulating that technical progress is a linear function of time.
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tions presented in (2.48–2.50). For confidence area analysis, we need to apply Equa-
tions (2.53–2.54).

With the purpose of improving estimated parameter quality, one can add addi-
tional a priori restrictions to (2.48–2.50) as follows:

e = Y – Y = Ŷ – XVp̂ = 0.	 (2.58)

Then we constrain the error term e to sum up to zero22 which provides an addi-
tional quality of requiring an unbiased parameter estimator. 

Efficiency property mainly depends upon informative quality of the prior. When 
it is poor, the values of the estimated p̂i from the model tends to be equal for all pi, i.e., 
the case of a uniform distribution. 

According to economic theory, we constrain elasticity parameters within a point 
support space of zero and one. As known (e.g., Golan, Judge & Miller 1996), sharper 
support area points of a parameter act as increasing quality of the “a priori” infor-
mation. Furthermore, this allows computations of this nonlinear model to promptly 
converge to an optimum solution. This is explained as follows:

0 ≤ λ = Vp̂ ≤ 1	                  (2.59)

Likewise, we may add additional economic restrictions to the model (2.57) param-
eters; this leads to the following formulations:

–1 ≤ μ = Vp̂ ≤ 0	 (2.60)

–∞ ≤ β = Vp̂ ≤ 0	                    (2.61)

2.7.3  Estimated Confidence Area Of Parameters 

In classical econometrics, we usually combine the variance of random model error 
with the co-linearity level of explicative variables to determine the standard error of 
estimated parameters and to infer their confidence area while assuming a normal 
distribution law of random errors. This is particularly true in the case of the Least 
Squares approach for a linear model.

In entropy econometrics, the approach is very different. We use the normalized 
entropy S(âij) (equation 2.53) as an equivalent of the estimate standard error measure 
in classical linear model econometrics. Likewise, the equivalent of the coefficient 
of determination R2 is a S(P̂r) (equation 2.54). Following Golan et al. (1996a, 1996b, 
1996c, 2002) and Soofi (1992, 1994), in the case of maximum entropy formulation, the 

22 Note that our model has a constant term, suggesting that the economic initial condition may im-
pact the optimal solution.
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maximum level of entropy-uncertainty results when the information-moment con-
straints (a priori information) are not enforced. Furthermore, this leads to uniform 
distribution of probabilities over the k states of the system. As we add each piece of 
informative data in the form of a constraint, a departure results from the uniform 
distribution, which explains an uncertainty reduction. Thus, the value of S(P̂) reflects 
a global departure from the maximum uncertainty for the whole model. A similar 
measure, 1 – S(P̂), called the information index, explains the level of informative 
content of the model. For theoretical details, we refer you to the formulations pre-
sented above in Equations (2.51–2.54) or, e.g., in Golan et al., (1996). 

2.7.4  Data and Model Outputs

In this section, the output parameter of Tsallis entropy, Shannon entropy, and least 
squares econometric models are presented. Next, the obtained results will be com-
pared to those from a Monte Carlo simulation using the same data.

Data used in the model (equation 2.57) come from the Polish Office of Statistics 
(GUS) and concern the period 1997–2010. Parameters of the model have been com-
puted with the GAMS (General algebraic modelling system) code with the incorpo-
rated solver PATHNLP. We have noticed, through different simulations, that the Shan-
non-Gibbs entropy model seems more sensitive to initial conditions (support space of 
parameters in particular) than Tsallis entropy. This is a useful property, particularly 
when an economic theory does not exist to prompt us as to the starting parameters 
with which to begin. Parameter estimation by robust standard errors least squares 
(LS) approach has been carried out, using freeware Gretl software (http://gretl.source-
forge.net/). Thus, the HAC estimator is used for heteroscedasticity and autocorrela-
tion correction.
a)	 Parameter outputs of Tsallis entropy model:

Dependent variable: 






1
log

t

t
L

L
 

 Exogenous variables   






1
log

t

t
y

y
 

  










1

1log
t

t
L

Y
 

 T  a0

 Estimates âj  0.710  0.010  -0.020 -0.266

Precision error S(âk) on estimated 
parameters

 0.135  0.250  0.250 0.236

Information Index I[S(P̂r)] = 1 – S(P̂r) = 0.852
Tsallis -q parameter (for a weight αi=15%) =  2.091 
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Throughout many conducted experiments, we have observed the coefficient S(P̂r) to 
be very sensitive to weighting parameters α in the objective function. Tsallis-q value 
being itself influenced by the above weights, its values closer or higher to 5/3 cor-
respond to meaningless information index coefficients for which S(P̂r) vanishes to 
zero. In empirical research, the Tsallis-q coefficient may take much higher values as a 
consequence of model linearity attributes or in the case when the sample is small. In 
the present case, we have noticed a high sensitivity of this Tsallis-q parameter on the 
change of the weight αi in the criterion function. The higher the weight αi, the higher 
the value of the Tsallis-q parameter. We have retained the value of this weight for 
which I[S(P̂r)] is the highest.

b)	 Parameter outputs of Shannon-Gibbs entropy model:

Dependent variable: 






1
log

t

t
L

L
 

 Exogenous variables   






1
log

t

t
y

y
 

  










1

1log
t

t
L

Y
 

 T  a0

 Estimates âj  0.709  0.010  –0.020 –0.263

Precision error S(âk) on estimated 
parameters

 0.297  0.518  0.518 0.421

Information Index I[S(P̂r)] = 1 – S(P̂r) = 0.829 

c)	  Robust standard errors LS estimation:

Dependent variable: 






1
log

t

t
L

L
 

 Exogenous variables   






1
log

t

t
y

y
 

  










1

1log
t

t
L

Y
 

 T  a0

 Estimates âj  0.709963  0.010417  –0.02031 –0.26578

P-values  2.73e–011***  4.34e–06  2.89e–06*** 0.0302**

Corrected R2 = 0.79
DW = 1.4832 

Three parameters are different from zero at 1%, and one on the variable a0 signifi-
cant at 10%. The above precision on the estimated parameters from such a small data 
sample of an autoregressive model suggests the presence of co-integrating—at the 
same order—variables Lt and Yt. Such a particular situation leads to super-consistency 
of estimated parameters.
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Table 3: Monte Carlo simulation outputs

Poland Labor demand Model  and simulation outputs

Es
tim

at
es

  NEE/GLS #5000 #10000 #15000 #20000 #25000








1
log

t

t
y

y
  
0.709963106 0.7092748 0.70445994 0.7126441 0.709756 0.708636












1

1log
t

t
L

Y
 
0.010416764 0.0105625 0.01052379 0.0103705 0.010461 0.010458

T -0.020312463 -0.020624 -0.0205689 -0.020213 0.020406 -0.02038

C0
-0.26577817 -0.272354 -0.2652226 -0.266263 -0.26784 -0.26663

St
an

da
rd

 e
rr

or
s








1
log

t

t
y

y
 
0.176056192 0.3303391 0.33502592 0.3377129 0.331089 0.335143












1

1log
t

t
L

Y
 
0.003753087 0.0070234 0.00704595 0.0071221 0.007143 0.007144

T 0.007938838 0.0148845 0.01489532 0.0150799 0.015074 0.015107

C0 0.222643946 0.4216688 0.42344287 0.4260381 0.420446 0.426712

Source: own elaboration.

Figure 1: Monte Carlo model estimates and T-student from simulations: initial model, #5000, 
#10000, #15000, #20000, #25000.
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For comparative purposes, the table 3 presents outputs from Monte Carlo experi-
ments (computed with Mathlab 7.3.0 software).

The above outputs have been derived under the hypothesis of random normal 
law. The empirical standard error initially computed for random value generation is 
0.02035. This constitutes 50% of the observed endogenous variable standard error. 
We observe that Shannon-Tsallis entropy and the least squares outputs are similar 
and almost reflect Monte Carlo convergence outputs. The initial t-student related to 
the parameters on the variables yt/yt–1 and yt–1/Lt–1 decrease when we carry out the 
#5000 simulation and remain practically unchanged up at the #25000 simulation 
experiment. Nevertheless, we observe that parameter estimates of the model remain 
unchanged irrespective of the number of the simulations. 
To conclude, we note the accuracy in the similarity of outputs from the three models. 
This suggests that we are dealing with a convergent case of power law to Gaussian 
distribution. If the Tsallis-q parameter is too high, it cannot be interpreted in a model 
where its nonlinearity and the small sample size (in this case 14 observation years) 
should have a significant impact on the value of that parameter (Grech & Pamula, 
2013). The impact parameter is around 0.71. This is, on average, a 0.71% growth of 
labour demand when gross profits shifts up to 1%. As it has been indicated, these 
outputs are related to a period (1997–2010) during which Poland was undergoing 
structural, post-communism reforms. As such, their interpretation should be done 
carefully. As far as exogenous technical progress is concerned, we observe a negative 
sign on the value of the estimated parameter on the symptomatic variable , which 
indicates an expected adverse impact of technical progress on labour demand.

Annex A

The solution for the above constrained equation is obtained by forming the Lagrange 
function:
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After defining the first order conditions, the solution to this (K + T + 1) equations 
and parameters is:
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and, as a formal solution, we obtain:

,)(ˆexp
)ˆ,...ˆ,ˆ(

1ˆ
121












 



T

t
ktt

T
k xfp 


 ,

where 

 
 











K

k

T

t
ktt xf

1 1
)(ˆexp)ˆ( 

 
is a normalization factor.

It is easy to prove the uniqueness of the primal ME solution. In fact, given the first 
order conditions, elements of the Hessian matrix are as follows:
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L   for the off-diagonal elements.

Thus, the Hessian is a negatively defined and sufficient condition for a unique 
global maximum is fulfilled. Furthermore,
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One may observe that the value of the entropy H is a function of the given data:


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t
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Annex B: Independence of Events Within q-Generalized Kullback-
Leibler Relative Entropy

Let us consider (Tsallis, 2009) the problem of independence of random variables in 
the case of two-dimensional random variable (x, y), and its corresponding distribu-
tion function p(x, y) with ∫ dxdyp(x, y) = 1

As expected, the marginal distribution functions are then given by 

h1(x) ≡ ∫ dyp(x, y)
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and

h2(y) ≡ ∫ dxp(x, y).

The discrimination criterion for independence concerns the comparison of p(x, y) 
with po(x, y) ≡ h1(x)h2(y). Once again, the one-dimensional random variables x and y 
are independent if and only if p(x, y) = po(x, y). Therefore, the criterion becomes:
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When q → 1, we then recover the usual discrimination criterion, i.e. :

∫ dx dy p(x, y) ln p(x, y) – ∫ dx h1(x) ln h1(x) – ∫ dy h2(y) ln h2(y) ≥ 0.

An interesting case is if q → 2, then we have:
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The value of this quantity, useful in economics, may give a sign of independence 
between x and y, when it vanishes. 

Finally, if we generalize to the case of many variables, the Kullback-Leibler-Tsallis 
index of information becomes:

Iq (p(x1, x2, ..., xd), po(x1, x2, ..., xd)) ≥0 (for q ≥ 0)

or its symmetrized version:

1
2  [Iq (p(x1, x2, ..., xd), po (x1, x2, ..., xd) + Iq po (x1, x2, ..., xd) p(x1, x2, ..., xd))] ≥ 0 (q ≥ 0)

When equality holds for these two above relations, this means that all elements 
x1, x2, ..., xd are independent among them (almost everywhere). 
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