
1  Generalities

1.1  Information-Theoretic Maximum Entropy Principle and Inverse 
Problem

1.1.1  Information-Theoretic Maximum Entropy Principle

According to recent literature (Golan, Judge, & Miller, 1996; Golan, 2008), the infor-
mation-theoretic maximum entropy principle is a coincident junction of two lines of 
research: inferential statistics and statistical thermodynamics. 

The first line of research emerged in the beginning of the 18th century through the 
work of Bernoulli (Jaynes, 1957), (Halmos & Savage, 1949), Bayes (1763), and Laplace 
(1774). They developed the Principle of Sufficient Reason, which consists of deter-
mining the state of the system on the basis of limited information (moments) from 
a subsystem. This principle was later extended in the last century by Jeffreys (1946), 
Cox (1946), and Jaynes (1957b) to the principle of “not telling more than you know,” 
thus suggesting the necessity of avoiding additional hypotheses imposed merely to 
simplify the problem to be solved. The purpose of all of the above authors’ research 
was to retrieve characteristics of a general population on the basis of limited infor-
mation from a possibly non-representative sample of that population, out of risky or 
non-convenient hypotheses.

The second line of research is represented, amongst others, by Maxwell (1871), 
Boltzmann (1871), Cauchy (1855), Weierstrass (1886), Lévy and Gibbs (Gibbs, 1902), 
Shannon (1948), Jaynes (1957, 1957b), Rényi (1961), Bregman (1967), Mandelbrot 
(1967), Tsallis (1988). Its main objective was to provide mathematical formalism to 
statistical modelling of physical information related to natural phenomena. Thanks 
to the celebrated work of Tsallis (1988), on non-extensive thermodynamics2, this 
second line elegantly extended its multidisciplinary applications to “auto-organized 
systems” and to the social sciences, particularly in financial fields. 

The ascent and development of the post-war information theory-based, maximum 
entropy proposed by Shannon (1948) can be viewed as a major step toward the rapid 
extension of the discipline. Less than a decade was needed to develop the informa-
tion-theoretic principles of statistical inference, inverse problem solution methodol-
ogy based on Gibbs-Shannon maximum entropy, and its generalizations by Kullback 
and Leibler (1951), Kullback (1959) and Jaynes (1957b). The above authors developed, 
in particular, fundamental notions in statistics, such as sufficiency and efficiency 

2 Currently, this theory—undoubtedly the best—generalizes Boltzmann-Gibbs statistics for describ-
ing the case of anomalous systems characterized by non-ergodicity or metastable states. It thus bet-
ter fits dynamic correlation of complex systems and can be better explained (e.g. Douglas, 2006), 
amongst many others. 
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(Halmos & Savage, 1979), a generalization of Cramer-Rao inequality (e.g., Kullback, 
1959) and the introduction of a general linear model as a consistency restriction 
(Heckelei et al., 2008) through Bayesian philosophy. Thus, it became possible to unify 
heterogeneous statistical procedures via the concepts of information theory. Lindley 
(2008), on the other hand, had provided the interpretation that a statistical sample 
could be viewed as a noisy channel (Shannon’s terminology) that conveys a message 
about a parameter (or a set of parameters) with a certain prior distribution. This new 
interpretation extended application of Shannon’s ideas to statistical theory by refer-
ring to the information in a statistical sample rather than in a message.

Over the last two decades the literature concerned with applying entropy in 
social science has grown considerably and disserves closer attention. On one side, 
Shannon-Jaynes-Kullback-Leibler-based approaches are currently used for modelling 
economic phenomena competitively with classical econometrics. A new paradigm in 
econometrical modelling is taking place and finds its roots in the influential work of 
Golan, Judge, and Miller (1996). The present monograph constitutes an illustration of 
this.

As mentioned above, this approach is particularly useful in the case of solving 
inverse problems or ill-behaved matrices when we try to estimate parameters of an 
econometric model on the basis of insufficient information from an observed sample, 
and this estimation may concern the behaviour of an individual element within the 
system.

Insufficient information implies that we are trying to solve an ill-posed problem, 
which plausibly can arise in the following cases:
— data from sampling design are not sufficient and/or complete due to technical or 
financial limitations—small area official statistics could illustrate this situation;
— non-stationary or non-co-integrating variables are resulting from bad model speci-
fication;
— data from the statistical sample are linearly dependent or collinear for various 
reasons;
— Gaussian properties of random disturbance are put into question due to, amongst 
many others things3, systematic errors from the survey process; 
— the model is not linear and approximate linearization remains the last possibility;
— aggregated (in time or space) data observations hide a very complex system repre-
sented, for instance, by a PL distribution, and multi-fractal properties of the system 
may exist. 

3 It is not excluded that distribution law may be erroneously applied since, for instance, randomness 
is dependent on the experimental setup or the sophistication of the apparatus involved in measuring 
the phenomenon (Smith, 2001). 
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Using the traditional econometrical approaches in one or more of the above cases—
without additional simplifying hypotheses—could lead to various estimation prob-
lems owing to the nonexistence of a bounded solution or the instability of estima-
tes. Consequently, outputs from traditional econometrical approaches will display, 
at best, poor informative parameters. In the literature, there are other well-known 
techniques to cope with inverse problems or ill-conditioned data. Among them, two 
popular techniques deserve our attention: the bi-proportional RAS approach (and 
its variants), particularly used for updating or forecasting input/output matrices 
(Parikh, 1979) and the Moore-Penrose pseudo-inverse technique, useful for inver-
ting irregular matrices (e.g., Green, 2003, p. 833). In spite of their popularity, both 
techniques present serious drawbacks in empirical investigations. In fact, the RAS 
techniques, in spite of their divergence information nature, remain less adapted to 
solving stochastic problems or to optimizing the information criterion function under 
a larger number of different prior constraining data. Since Moore-Penrose generalized 
inverse ensures a minimum distance (Y-BX) only when the matrix B has full rank, it 
will not reflect an optimal solution in other cases. Golan et al. (1996) have clearly 
shown higher efficiency of Shannon maximum entropy econometrics over the above 
cited methods in recovering unknown information when data or model design is 
poorly conditioned. The suggested superiority stands on the fact that it combines and 
generalizes maximum entropy philosophy (as in the second law of thermodynamics) 
and statistical theory of information attributes as a Bayesian information processing 
rule. As demonstrated convincingly by Golan (1996, 2006), Shannon entropy econo-
metrics formalism may generalize least squares (LS) and the maximum likelihood 
(ML) approaches and belongs to the class of Bayesian method of moments (BMOM). 
It is worthwhile to point out that in the coming chapters many cases of cross-entropy 
(or minimum entropy) formalism will be used in place of maximum entropy. This is 
because, in this study, many problems to be treated involve information measuring in 
the context of the Kullback-Leibler framework.

This monograph does not intend to treat the case of high frequency series for 
which a rich literature already exists. We invite readers interested in the case of high 
frequency series to see, for instance, J.W. Kantelhardt (2008) for testing for the exis-
tence of fractal or multi-fractal properties, suggesting the case of a PL distribution.

1.2  Motivation of the Work

1.2.1  Frequent Limitations of Shannon-Gibbs Maximum Entropy Econometrics

In spite of a growing interest in the research community, some incisive critics have 
come forward to address Shannon-based entropy econometrics (e.g., Heckelei et al., 
2008). According to some authors, generalized maximum entropy (GME) or cross-
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entropy (GCE) econometrical techniques face at least three difficulties. The first is 
related to the specification and interpretation of prior information, imposed via the 
use of discrete support points, and assigning prior probabilities to them. The authors 
argue that there are complications that result from the combination of priors and 
their interaction with the criterion of maximum entropy or minimum cross-entropy 
in determining the final estimated a posteriori probabilities on the support space. The 
second group of criticisms questions the sense of the entropy objective function once 
combined with the prior and data information. The last problem, according to the 
same authors, refers to computational difficulties owing to the mathematical com-
plexity of the model with an unnecessarily large number of parameters or variables.

Concerning the first criticism, the problem—selecting a prior support space and 
prior probabilities on it—exists since estimation outputs seem to be extremely sensi-
tive to initial conditions. However, when there is a theory or some knowledge about 
the space on which parameters are supposed to be staying, the problem becomes trac-
table. In particular, when we have to estimate parameters in the form of ratios, the 
performance of entropy formalism is high. To this counterargument, it is worthwhile 
to add that GME or GCE formalism constitutes an approach based on the Bayesian 
efficient processing rule and, as such, prior values are not fixed constraints of the 
model; they combine and adapt with respect to other sets of information (e.g., con-
sistency function) added to the model to update a new parameter level in the entropy 
criterion function. 

The second problem concerns questioning the sense or interpretability of output 
probabilities from the maximum entropy criterion function once combined with real 
world probability-related restrictions. One cannot comment on this problem without 
making reference to the important contribution of Jaynes (1957, 1957b), who proposed 
a way to estimate unknown probabilities of a discrete system in the presence of less 
data point observations than parameters to be estimated through the celebrated 
example of Jaynes dice. Given a set of all possible ways of distribution resulting from 
all micro-elements of a system, Jaynes proposed using the one that generates the 
most “uncertain”4 distribution. To understand this problem, the question becomes a 
matter of combining philosophical interpretation of the maximum entropy principle 
with that of Jaynes’ formulation in the context of Shannon entropy. Depending on the 
type of entropy5 considered, output estimates will have slightly different meaning. 
However, all interpretations refer to parameter values that assure a long-run, steady-

4 Here we are in the realm of the second law of thermodynamics, which stipulates, in terms of en-
tropy, that natural equilibrium of any set of events is reached once disorder inside them becomes 
optimal. This results from their property of having equal (ergodic system) odds to occur. In that state, 
we reach the maximum uncertainty about which event should occur in the next trial.
5 Later, for comparison, properties of the most well-known types of entropy in the literature will be 
presented.
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state equilibrium of the system (relations defined by the model) with respect to data 
and other knowledge at hand, usually in the form of moments and/or normalization 
conditions. Owing to maximum entropy alone, the more consistent moments are or 
the more other a priori information binds, the more output probabilities will differ 
from those in a uniform distribution. Considering the above, interpretation of the 
maximum entropy model is far removed from interpretation of the classical model, 
especially in the case of the econometric linear model where estimates mean a change 
in the endogenous variable due to unitary change in an explicative variable, that is, 
in ceteris paribus conditions.

The last criticisms concern the burden arising from the computational and 
numerical process—a problem common to all complex, nonlinear systems. Thanks to 
recent developments of computer software, this problem is now less important.

In many empirical studies that attempt to solve inverse problems, the Shannon 
entropy-based approach is relatively efficient in recovering information. However, 
gaining in parameter precision requires good design of the prior. In particular, the 
point support space must fit into the space of the true population parameter values. 
As Golan et al. (1996) have shown, when prior design is weak, outputs of Shannon 
entropy econometrics will produce approximately the same parameter precision as 
traditional econometrical methods, such as LS or the ML, which means Shannon 
entropy could discount information not fitting the maximum entropy principle as 
expected. 

The above criticisms of the Shannon entropy econometrics model remain rela-
tively weak as has been shown through the preceding discussion. 

According to us, the main drawback related to that form of model is due to the 
analytical function of constraining moments. In fact, as already suggested, long-
range correlation and observed time invariant scale structure of high frequency series 
may still be conserved—in some classes of non-linear models—through a time—or 
space—aggregation process of statistical data. This raises the question of why this 
study proposes a new approach of Tsallis non-extensive entropy econometrics. 

The next section provides a first answer by showing potential theoretical and 
then empirical drawbacks of the Shannon-Gibbs entropy model and potential advan-
tages from the PL-related Tsallis non-extensive entropy approach.

1.2.2  Rationale of Pl-Related Tsallis Entropy Econometrics and Low Frequency 
Series

This section presents the essence of the scientific contribution of this monograph 
to econometric modelling. For a few decades, PL has confirmed its central role in 
describing a large array of systems, natural and manmade. While most scientific 
fields have integrated this new element into their analytical approaches, economet-
rics and hence, economics globally, is still dwelling—probably for practical reasons—
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on the Gaussian fundamentals. This study takes a step forward by introducing Tsallis 
non-extensive entropy to low frequency series econometric modelling. The potential 
advantages of this new approach will be presented, in particular, its capacity to ana-
lytically solve complex PL-related functions. Since any mathematical function form 
can be represented by a PL formulation, the importance of the proposed approach 
becomes clear. To be concrete, one of the complex nonlinear models is the fractionally 
integrated moving average (ARFIMA) model, which, to our knowledge, has remained 
non-tractable using traditional statistical instruments. An empirical application to 
solve such a class of models will be implemented at the end of Part V of this book.

According to several studies (Bottazzi & et al, 2007), (Champernowne, 1953), 
(Gabaix, 2008), a large array of economic laws take the form of a PL, in particular 
macroeconomic scaling laws, distribution of income, wealth, size of cities and firms6, 
and distribution of financial variables such as returns and trading volume. Ormerod 
and Mounfield (2012) underscore a PL distribution of business cycle duration. Stanley 
et al. (1998) have studied the dynamics of a general system composed of interacting 
units, each with a complex internal structure comprising many subunits, where the 
subunits grow in a multiplicative way over a period of twenty years. They found that 
this system followed a PL distribution. It is worthwhile to note the similarity of such a 
system with the internal mechanism of national accounts tables, such as a SAM, also 
composed of interacting economic sectors, each with a complex internal structure 
defined by firms exercising similar business. Ikeda and Souma (2008) have made an 
international comparison of labour productivity distribution for manufacturing and 
non-manufacturing firms. A PL distribution in terms of firms and sector productivity 
was found in US and Japanese data. Testing the Gibrat's law of proportionate effect, 
Fujiwara et al. (2004) have found, among others things, that the upper-tail of the dis-
tribution of firm size can be fitted with a PL (Pareto-Zipf law). The list of PL evidence 
here is limited to social science. 

Since this study focuses on the immense potentiality of PL-related economic 
models, PL ubiquity in the social sciences will be underscored and a theorem showing 
the PL character of national accounts in its aggregate form will be presented.

In line with the rationale for the proposed methodology detailed below, the fol-
lowing from recent literature is evidence of entropy:

–– Non-extensive entropy, as such, models the non-ergodic systems which com-
pound Levy7 instable phenomena8 converging in the long range to the Gauss-
ian basin of attraction. In the limiting case, non-extensive entropy converges to 
Shannon Gibbs entropy.

6 See (Bottazzi & et al, 2007) for different standpoints on the subject.
7 Shlesinger (Shlesinger, Zaslavsky, & Klafter, Strange Kinetics, 1993) 
8 (Shlesinger & et al, Lévy Flights and Related Topics in Physics, 1995).
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–– PL-related Tsallis entropy should remain, even in the case of a low frequency 
series, a precious device for econometric modelling since the outputs provided 
by the exponential family law (e.g., the Gibbs-Shannon entropy approach) cor-
respond to the Tsallis entropy limiting case when the Tsallis-q parameter equals 
unity. 

–– A number of complex phenomena involve long-range correlations which can 
be seen particularly when data are time scale-aggregated (Drożdż & Kwapień, 
2012), (Rak & et al, 2007). This is probably because of the interaction between 
the functional relationships describing the involved phenomena and the inheri-
tance properties of a PL or because of their nonlinearity. Delimiting the thresh-
old values for a PL transition towards the Gaussian structure (or to the exponen-
tial family law) as a function of the data frequency amplitude is difficult since 
each phenomenon may display its own rate of convergence—if any—towards the 
central theorem limit attractor. 

–– Systematic errors from statistical data collecting and processing may generate a 
kind of tail queue distribution. Thus, a systematic application of the Shannon-
Gibbs entropy approach in the above cases—even on the basis of annual data—
could be misleading. In the best case, it can lead to unstable solutions.

–– On the other hand, since non-extensive Tsallis entropy generalizes the exponen-
tial family law (Nielsen & Nock, 2012), the Tsallis-q entropy methodology fits well 
with high or low frequency series. 

In the class of a few types of entropy displaying higher-order entropy estimators able 
to generalize the Gaussian law, Tsallis non-extensive entropy has the valuable quality 
of concavity–and then stability—along the existence interval characterizing most real 
world phenomena. As far as the q-generalization of the Kullback-Leibler (K-L) relative 
entropy index is concerned, it conserves the same basic properties as the standard K-L 
entropy and can be used for the same purpose (Tsallis, 2009). 

The above-enumerated points imply that in cases where the assumed Levy law 
complexity is not verified by empirical observation, outputs from the non-extensive 
entropy model converge with those derived from Shannon entropy. In other words, 
errors which involve taking a sample as if it were PL-driven has no consequence on 
outputs if the truth model belongs to the Gaussian basin of attraction. This explains 
why in most empirical applications—but by no means all—both forms of entropy 
provide similar results and the entropic Tsallis-q complexity parameter then tends 
to converge to unity, revealing the case of a normal distribution. Empirical examples 
will be presented at the end of this document, and the strength of Tsallis maximum 
entropy econometrics will be demonstrated in different contexts.

In summary, the following are entropy function regularities:
–– The Tsallis entropy model generalizes the Shannon-Gibbs model, which consti-

tutes a converging case of the former for the Tsallis-q parameter equal unity.
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–– The Shannon-Gibbs model fits natural or social phenomena displaying Gaussian 
properties.

–– PL high frequency time (space) series scaling—aggregating—does not always lead 
to Gaussian low frequency time (space) series. Additionally, the rate of conver-
gence from the PL to the Gaussian model, if any, varies according to the form of 
the function used.

Is it judicious to replace Shannon-Gibbs entropy modelling by Tsallis non-extensive 
entropy for empirical applications? 

The answer is yes, and this is the motivation for this study. There are at least three 
expected advantages to introducing Tsallis non-extensive econometric modelling:
1.	 A data generating system characterized by a low—or no—convergence rate from 

PL to Gaussian distribution only becomes analytically tractable when using 
Tsallis entropy formalism. (This will be proven through an econometrical model 
with constant substitution elasticity and then considered as an inverse problem 
to be estimated later.) 

2.	 The Tsallis entropy model displays higher stability than the Shannon-Gibbs, par-
ticularly when systematic errors affect statistical data.

3.	 The Tsallis-q parameter presents an expected advantage of monitoring complex-
ity of systems by measuring how far a given random phenomenon is from the 
Gaussian benchmark. In addition to other advantages, this can help draw atten-
tion to the quality of collected data or the distribution involved.

The choice of national accounts-related models for testing the new approach of 
non-extensive entropy econometrics is motivated by the empirical inability of 
national systems of economic information to provide consistent data according 
to macroeconomic general equilibrium. As a result, national account tables are 
generally not balanced unless additional—often contradictory—assumptions 
are applied to balance them. However, following the principle of not adding (to 
a hypothetical truth) more than we know, it remains preferable to deal with an 
unbalanced national accounts table. Trying to balance such a table implies that 
we are faced with ill-behaved inverse problems. According to the existing litera-
ture, and as will be seen through this monograph, entropy formalism remains the 
best approach to solving such a category of complex problems. The superiority 
of Tsallis non-extensive entropy econometrics over other known econometrical 
or statistical procedures results from its capacity to generalize a large category of 
most known laws, including Gaussian distribution. 
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1.3  National Accounts-Related Models and the Scope of this Work

Under the high frequency series hypothesis, we postulate that social and economic 
activities are characterized by complex behavioural interactions between socio-eco-
nomic agents and/or economic sectors. Recent, Big Data for Official Statistics may 
illustrate such a complexity. This could mean that the supposed extreme events may 
appear systematically more (or less) frequently than expected (Gaussian scheme), 
implying internal and aggregated long-range correlation (over time, space, or both). 
The maximum entropy principle is best suited to estimating ill-behaved inverse prob-
lems and, in particular, models with ratios or elasticity as parameters. In this latter 
case, as we will see later, the support space area for unknown parameters coincides 
with the probability area over the space from zero to unity. Fortunately enough, due 
to its macroeconomic consistency, national account table structure reflects this prop-
erty. In empirical macroeconomic investigations, the national accounts system of 
information plays a crucial role for modelling as it guarantees internal coherence of 
macroeconomic relations. Numerical information is embodied inside comprehensive 
statistical tables or balance sheets displaying algebraic properties of a matrix. Having 
in mind an economic or statistical inference investigation, mathematical treatment 
of information compounded inside these matrices is carried out by economists or 
statisticians on the basis of a priori information at hand. When such matrices are 
algebraically regular, traditional inverse methods can be applied to solve the problem 
of, for instance, estimating parameters that define relationships between the endog-
enous variable and its covariates. Nevertheless, in the social sciences, causality rela-
tionships linking both variables seldom have a one-to-one correspondence. In many 
cases, two or more different inputs or causes can lead to the same output or effect. 
Such different causal concomitances for the same output render the social or eco-
nomic model indeterminate. In such cases, the recovery of a data generating system 
from the observed finite sample becomes impossible using the traditional statistical 
or econometric devices, such as the standard maximum likelihood method or the 
generalized method of moments. On mathematical grounds, this may result from an 
insufficient number of model data points with respect to the number of parameters 
to estimate. Such a sample is said to be ill-behaved. This situation leads to the lack 
of an optimal solution sought. Collinear variables, inadequate size of a small sample, 
or the poor quality of statistical data may lead to the same difficulties. Finally, taking 
into account the above deficiencies and anomalies, modellers have to deal with ill-
behaved inverse problems most of the time. Following what has been said above, 
this monograph targets developing a robust approach generalizing Kullback-Leibler-
Shannon entropy for solving inverse problems related to national account models in 
a way that reflects the complex relationships between economic institutions and/
or agents. Statistical data from such complex interrelations are usually difficult to 
collect, incomplete, and defective. Additionally—and this may be one of the most 
important points—modelling national account table-related information involves 
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some class of nonlinear functions, otherwise only solvable using the PL model; thus, 
non-ergodic situations are involved.

The next area of national accounts modelling to be treated in this monograph is:
–– Updating an input/output table when the problem is posed as inverse, with the 

possibility of adding extra sample information to the model in the form of an a 
priori and without any additional assumption;

–– Forecasting an input/output table or its extended forms, such as the social 
accounting matrix (SAM), solely on the basis of yearly published national accounts 
concerning sectorial elements of final demand and gross domestic product;

–– Deriving backward or forward multiplier coefficient impact on the basis of insuf-
ficient pieces of information; 

–– Demonstrating a method to forecast a sectorial energy final demand and total pol-
lutants emission by producton the basis of an environmentally extended input/
output table when basic information is missing;

–– Presenting a computable general equilibrium model using the maximum entropy 
approach instead of calibration techniques to derive the parameters of CES func-
tions,

–– Estimating other nonlinear economic functions as inverse problems and conduct-
ing Monte Carlo experiments to test Tsallis entropy econometrics outputs;

–– Presenting in detail, across different chapters, national account-related general 
equilibrium models before coming back to inverse problem solution techniques 
as suggested above. 

The reader should be enriched not only by techniques for solving complex inverse 
problems but also by a thorough examination of different aspects of national account 
updating and modelling in the Walrasian spirit. To render the models presented 
here more consistent, emergent elements on an environmentally extended system of 
accounts will be included along with their impact on the general equilibrium frame-
work and the optimum Pareto or social welfare. 
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