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3  The Input-Output (IO) Table and its Main 
Application
Leontief (1941, 1966), the 1973 Economics Noble laureate and the father of the I-O 
table approach to economic analysis, began his first book about I-O analysis with the 
following words:

This modest volume describes an attempt to apply the economic theory of general equilibrium—
or better, general interdependence—to an empirical study of interrelations among the different 
parts of a national economy as revealed through covariations of prices, outputs, investments, and 
incomes.

Leontief tried to apply neo-classical (Walras) general equilibrium to practical eco-
nomic life. This suggests that subsequent analyses based on I-O tables or their exten-
sions could have economic interpretations within the Walrasian framework apart 
from a few particular cases—e.g., those that consider the environment—violating 
Pareto optimum conditions. 

The objective of this chapter is to present a consistent methodology of updating, 
forecasting, and economic modelling on the basis of I-O tables—for which underly-
ing matrices are ill-behaved or data are not reliable. The proposed maximum entropy 
methodology can dynamically assess I-O multipliers and update and forecast I-O 
table information by combining the generalized maximum entropy principle and 
macroeconomic theory. The procedure remains in line with multiplier-accelerator 
analysis, assuming that induced investment is a function of expected growth. The 
only required condition to apply the proposed techniques is the availability of statis-
tical information on final demand or value-added accounts which allow for updat-
ing under some constraining information (macroeconomic or not) obtained earlier, 
according to the traditional approach I-O table. 

In the following sections, classical structure of an I-O table will be reviewed. The 
next step will describe I-O multipliers and their usage before trying to solve the more 
complex aspects of their estimation. Next, the proposed methodology for updating 
and forecasting an ill-behaved IO table will be described and the model presented.

3.1  The I-O Table and Underlying Coefficients

The I-O method (Tomaszewicz 1992, 2005) represents a quantitative research approach 
that helps to understand how economic global product is created and shared with 
particular reference to connections within different sectors of production at this inter-
mediate stage of product processing (Almon, & Clopper 2000; Avonds & Luc 2007; 
Robinson, Cattaneo & El-Said, 2001).
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Use of this method of analysis is built upon I-O tables, the construction of which 
assumes the existence of constant returns to scale in the production process and the 
existence of general Walrasian equilibrium in the overall economy. In fact, as sug-
gested earlier, the intention of Wassily Leontief was to apply general equilibrium 
theory previously proposed by Warlas (Leontief, 1970, 1986). In the context of the 
methodology of this work, let us first present the familiar I-O table structure, known 
for many decades, with only a slight modification that allows it to retain its square 
form. The fundamental concept of the I-O model is the concept of a direct technical 
financial coefficient: 

j

ij
ij X

x
a    for  i,j = 1,...,n.	    (3.1)

Matrix A = (aij) is called a matrix of coefficients of inputs. It expresses the propor-
tion of the value of product from sector i to be involved (sold) in the sector j for produc-
tion of one unit value (e.g., 1 euro). The elements of this table are also called technical 
coefficients when expressed in quantitative flows between industries.

Indications:
Xj is the value of the global product of j- branch, j = 1, ..., n.
xij is the flow from the branches i to j, i.e., the value of the product manufactured in 
branch i-th and consumed by a branch of the j-th, i, j = 1, ..., n.
Yif is the value of the final demand, i = 1, ..., n and f =1, ...F. Index f represents final 
demand composition, such as households, investment, exports, etc. The number F 
depends on the degree of table aggregation.
Dj is the value added from branches of the j-th, j = 1, ..., n.

Note that the above table can be split into four main parts:
The first part (upper-left part of the table) is composed of sub-matrix A showing 

the structure of intermediary demand of products “i” by sector “j”.

Table 4: Simplified inputs-outputs table structure.

Sector Flows The demand of the final Total

1 x11 x12 x13 … xln Y1f X1

2 x21 x22 x23 … x2n Y2f X2

… … … … … … … ….

N xn1 xn2 xn2 … xnn Ynf Xn

D1 D2 D3 … Dn D

Total X1 X2 X3 … Xn Yf

Source: own elaboration.
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In the second part (top right), we have the final demand (Yif). Its traditional ele-
ments are: household consumption, government consumption, investment and 
stocks and the export sector. 

The third part (lower left) shows the revenue created in the modes of production, 
i.e., the value added (Dj), i.e., remuneration of labour and gross profit of capital in 
production sectors. If in the second part the “export” sector is explicitly shown, then 
in the third part one must, consequently, show the import sector. 

Part four of the table refers to the secondary division of generated revenues. In 
the case of the I-O matrix it remains empty. Only construction of the social accounts 
matrix allows for completing this information. 

Here, one should recall macroeconomic balance between final demand and value 
added, i.e.:

 
j i

ij YD  .

A further important equation is the definition of the Leontief model: 

(I – A)X = Y	                  (3.2a)

or

(I – A)–1 Y = X	                  (3.2b)

where:
X = [Xj] n-dimensional relationships to the column vector of global product 
Y = [Yi] n-dimensional relationships to the row vector of the final product and I is the 
identity matrix. This relationship between the final product Y, the global product X, 
and cost structure matrix A is useful for the calculation of one of these elements when 
information about the other items is available. In the literature, this is known as a 
forecast of the first type (3.2a) or the second type (3.2b).

3.2  Input-Output Multipliers

3.2.1  The principal models

Multiplier coefficients play a central role in economic analysis (Leontieff, 1970). They 
make it possible to measure the impact of the exogenous variable or a shock on the 
whole system in which elements are interconnected. On these grounds, systemic 
models like these based on I-O tables—or their extension, or on computable general 
equilibrium models—have proved decisively superior to the classical ceteris paribus 
approach, using the classical econometric models.

The above defined relations (3.2a) and (3.2b) are very useful in empirical research. 
(3.2b) explains, in (input) multiplier terms, responses of producing sectors to a one 
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unit value increase in sectorial demand. For example, if the government spends one 
additional euro for buying a product from a given sector, what will the (backward) 
production impact be on the whole economy? The response is given by the level of 
multiplier coefficients along the sector column under consideration and total impact 
is given by its multiplier sum. The term (I – A)–1 in relation (3.2b) represents the multi-
plier. This formula can be decomposed as follows:

(I – A)–1 = 




i

i

iA
0

  with A0 = I and Ai = Ai–1 A	 (3.2c)

Such a multiplier displays three impacts:
–– initial impact equal to one,
–– direct impact equal to A, and
–– indirect impact summing up to A2 + A3 +...+ Ak +...+ An. Note that this geometric 

progression is quickly convergent; after a few steps, the last term vanishes to zero.

If we try to make a thorough analysis regarding the probabilistic nature of the multi-
plier, then we can rewrite (3.2c) as follows:

 


0
!

i

iA Aie  = (I – A)–1,	                  (3.2d)

after having used the Taylor development. Thus, due to (3.2d), economic multiplier 
structure displays the exponential family of laws, which may constitute—as indicated 
in the first part of this book—a transitional law between power law and Gaussian law 
when power law-related higher frequency data are progressively aggregated towards 
the low frequency series. The purpose of this short discussion is to draw attention to 
the use of formula (3.2c). Not only should the frequency level of data have an impact 
on results, but also the functional relation of matrix A could modify the convergence 
transition path between the three probabilistic laws above.

Equation (3.2b) is generalized by the following, one of the most important rela-
tions of I-O modelling theory, referred to as the central model of input-output:

Z = B (I – A)–1 Y	 (3.3)

B = matrix of input coefficients for specific variables in economic analysis (intermedi-
ates, labour, capital, energy, emissions, etc.)
I = Identity matrix
A = matrix of technical financial coefficients [aij]
Y = diagonal matrix of final demand 
Z = matrix with results for direct and indirect requirements (intermediates, labour, 
capital, energy, emissions, etc.)
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Three of the most frequently used types of multipliers in I-O analysis are those that 
estimate the effects of the exogenous changes of final demand (consumption, invest-
ment, exports) on:
a)	 outputs of the sectors in the economy,
b)	 value added and income earned by the households, and
c)	 employment that is expected to be generated by the new activity levels.

However, due to interesting potential applications of this theory, it is worthwhile to 
be more complete about I-O multipliers. In empirical research, the I-O models used 
are based on input coefficients. Nevertheless, there is also a family of I-O models that 
are based on output coefficients. These models are sometimes called Gosh-models 
(Gosh, 1964). These models can be used to study price and cost effects or forward link-
ages of industries. Input coefficients reflect production functions or cost structures 
of activities. In contrast, output coefficients are distribution parameters for products 
reflecting market shares.

Presented below are only the four basic I-O models with input and output multi-
pliers. The four I-O models have a dual character with an underlying symmetry. Each 
I-O model with input coefficients has a complement with output coefficients.

j

j
j X

Dd   , i.e., input coefficient for value added. 	   (3.4)

Input coefficients for intermediates (aij) (3.1) reflect the requirements for the use 
of product i in industry j for one unit of output of industry j. The capital and labour 
requirements are defined in the same way.

i

ij
ij X

Xb   , output coefficients for products					       (3.5)

i

i
i X

Yy   , output coefficients for final demand				      (3.6)

Output coefficients for intermediates (bij) identify the share of deliveries of sector 
i for sector j, (xij) in the total output of sector i.

Model 1: quantity model with input coefficients
This model has been already defined in (3.2a) and (3.2b).

Model 2: price model with input coefficients

A'p + d = p	 (3.7)
(I – A')p = d	 (3.8)
p = (I – A')–1d	 (3.9)

A' = transposed matrix of input coefficients for intermediates with A =[aij] for i, 
j = 1,...,m.
I = identity matrix
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x = column vector of unit product price indexes for sectors 1 to m. w = column vector 
of exogenous input coefficients for value added w1,...wm.

Model 3: price model with output coefficients

Bp + y = p	 (3.10)
(I – B)p = y	 (3.11)
p = (I – B)–1y	 (3.12)

B = matrix of output coefficients for intermediates with B = bij for i, j = 1,...,m
I = identity matrix
p = column vector of unit product price indexes for sectors 1 to m
y = column vector of exogenous output coefficients for final demand by product, with 
y1,...,ym. 

Model 4: Quantity model with output coefficients

B'x + Z = X	 (3.13)
(I – B')X = Z	 (3.14)
x = (I – B')–1Z	 (3.15)

B' = Transposed matrix of output coefficients for intermediates with B = bij for i, 
j = 1,...,m
I = identity matrix
X = Column vector of product output for sectors 1 to m
Z = Column vector of exogenous value added by sector, with Z1, ..., Zm.

However, due to lack of a proper microeconomic foundation, I-O models with output 
coefficients are rarely used in empirical research. The question often put to empirical 
researchers concerns the extent to which I-O multipliers are stable in time and behave 
according to expectations. Naturally, we can ask the same—but on a different scale—
concerning the stability of I-O coefficients. We do not pretend to have the answers to 
these questions, which remain beyond the scope of this book. 

3.2.2  A Model of Recovering the Sectorial Greenhouse Gas Emission Structure

Starting from insufficient information, let us combine below the central model of 
I-O (3.3) with the statistical information theory approach to predict emission multipli-
ers of an extended I- O table (Miller & Blair, 1985). As above, let vector Xt be the global 
product of a given economy, At a matrix of I-O coefficients, Yt a diagonal matrix of final 
demand, and Bt a matrix of outputs emission. Let us now suppose that these pieces 
of information have been obtained for a given period zero t0 and that this has made it 
possible to derive multipliers Z0 from the equation explaining emission content from 
final demand. 
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Next, we need to predict these multipliers for the next period one t1 to eventu-
ally compare changes within economic sectors and/or environmental themes. As 
very often happens in the real world, the only information concerning each emis-
sion theme is the total Ei (where index i refers to each type of theme) estimated at 
the end of the period t1, for example, a certain number of tons of CO2 emitted during 
that period is equal to E1 without, however, any knowledge concerning the indus-
trial branch being the source of that emission. We must then estimate matrix B1(see 
Table 5) on the basis of the priori information of the initial period 0 and from data on 
measured sector totals of each ecological theme in the current period 1.

Evidently, we are confronted with an inverse problem since there may exist infi-
nite combinations of emission levels by theme, related to global product, the total of 
which could lead to Ei. Without additional imaginative assumptions, any classical 
approach could solve this class of problem. As we will see later, some techniques 
exist like the bi-proportional approach, known as the RAS method (Bacharach, 1971), 
which could offer a solution with sufficiently limited effects as it does not take into 
account additional information on the investigated stochastic model. The Bayesian 
approach could be used in this class of problem. It can be shown that the approach 
presented below may be seen as an enhanced Bayesian technique to incorporate the 
second law of thermodynamics, which is a natural principle of organization. The neu-
ronal class of model could also be suggested. However, it is not based on any theory, 
its application is time-consuming, and its outputs are not always guaranteed. 

Using minimum information and without additional assumption, we suggest 
solving the problem by applying minimum entropy formalism, according to 
(2.43 or 2.44)23. Shannon-Gibbs entropy has been applied with success for updat-

23 At the end of Part IV of the book, a theorem is presented proposing the power law properties of 

Table 5: Example of matrix B1 of ecological emissions.

Themes Sector 1 Sector 2 … Sector n Themes total (period 1)

CO2 E1

CH4 E2

N2O E3

HFCS E4

PFCS E5

SF6S E6

Total global product X1 X2 ... Xn T
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ing and balancing matrices. However, on theoretical grounds, this assumes that 
entropy is a positive function of the number of possible states and is extensive 
(see 2.21), and it then neglects the possibility of inter-correlations among the states 
and their impact. 

Let us then minimize the criterion function of the next non-extensive entropy 
model:

Min(p,p0) →     1
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Probabilities rij distribution of theme emission i on column j is defined on a 
discrete support space Zh where H is the number of points minimally equal to two, 
z = [z1, z2,..., zH]. Support space is added since rj are not probabilities and do not sum—
by column—to unity. On a support space Z, parameters rj are distributed with prob-
abilities 

Pjk = [pjk1, pjk2,... pjkH]’. 

Thus, in matrix formulation, we have:
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an input-output or a SAM. For the time being, it is suggested that the existence of these properties 
be assumed and non-extensive entropy formalism be applied. As we already know, non-extensive 
entropy formalism generalizes Shannon-Kullback-Leibler, which means at least we cannot lose the 
advantages of that generalization. 
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Moments expression in (3.17), as already seen in Part II of this work, contains a 
term of probability coefficients referred to as escort distribution24.

In that way we get quantity emission eij, being elements of matrix B, and on this 
basis, we can immediately derive the matrix of direct and indirect requirement emis-
sions consecutive to one unit final demand Yi according to the relation (3.3). 

In this example, we have supposed the global product xj and transactions matrix 
xij or I-O coefficients are known. At the end of this book, in Annex C (Tables 17 and 18), 
an instructional example is provided in which we are asked to recover total pollutants 
emission by industrial sector and by region on the basis of moment information. In 
the next section, we will remove these assumptions and suppose that the only infor-
mation we have about the current I-O table is the final demand vector Y and a priori 
components, a previous I-O matrix.

3.3  Updating and Forecasting I-O Tables

3.3.1  Generalities

Methods for updating I-O tables (Snower, 1990; Toh, 1998) can be categorized into 
univariate, bivariate, econometric, and stochastic procedures (e.g., Miller & Blair, 
1985:266–316). All methods attempt to solve the following problem: row and column 
sums of an I-O table should correspond to the exogenous projection, and negative 
inputs should be avoided.

The basic idea of univariate methods to update I-O tables is to correct the matrix of 
input coefficients row-wise with a diagonal matrix of correction factors. An example 
of a version of such a method is the Statistical Correction Method.

The Bivariate approach, in contrast to univariate methods, which work with cor-
rections of rows only, corrects rows and columns of an I-O table at the same time. The 
well-known RAS approach (Stone, 1984; Toh, 1998) represents an example of such an 
approach. However, a simple RAS procedure will normally fail to produce an accept-
able projection of the structural change of an I-O table when change in relative prices 
and change in technology are substantial. Nevertheless, the incorporation of other 
exogenous data in the modified RAS procedure will tend to improve the quality of 
the projection. Several variations of the RAS technique can be found, for example, in 
Miller and Blair (1985:276–313).

Stochastic procedures assume that many independent variables may influence 
changes of input coefficients. The changing coefficients do not follow homogenous 

24 As discussed in (II.2.5.2), note that there is now an ongoing discussion of whether or not his form 
of constraint is appropriate in this case of Bergman relative entropy.
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row and column multipliers, but rather the complex features of stochastic elements. 
The Lagrange method applied by the Central Statistical Office of the Netherlands 
(CBS) is an example of that method. The Least Squares Method can constitute another 
example of such an approach. It is worthwhile to add to this category of stochastic 
procedure: the EURO method used by EUROSTAT. The basic idea of this approach is to 
derive I-O tables that are consistent with official macroeconomic forecasts for GDP but 
avoid arbitrary adjustments of input coefficients to ensure the consistency of supply 
and demand. More specifically, this method should only use official macroeconomic 
forecasts as exogenous input for the iterative procedure. Column and row vectors 
for intermediate consumption and final demand should be derived as endogenous 
variables rather than accepted as exogenous variables from unspecified sources. The 
EURO method, like any other method presented above, presents advantages related 
to simplification of numerically and conceptually complex problems with substan-
tial cost advantages. However, these advantages come at the price of certain disad-
vantages. In fact, primary forecasts for output levels normally not being available, it 
should be noted that the structural composition of final demand estimates in the Euro 
procedure is not based on econometric functions. Moreover, the impact of relative 
prices and other important economic variables such as innovation, technical prog-
ress, and productivity gains become difficult to fully anticipate. 

3.3.2  RAS Formalism and its Limits

While the RAS method was implemented in the 1930s, Stone adapted the technique in 
1961 for use in updating I-O tables from the work of Deming and Stephan (1940). The 
method is used when new information on the matrix row and column sums becomes 
available and we need to update a fully existing matrix.

Thus, following Lemelin, Fofana & Cockburn (2005) and Robinson, Cattaneo & 
El-Said (2001), the basic problem is generating a new nxn matrix of A1 from an existing 
matrix A0 of the same dimension under restriction of the new given row and column 
totals X and Y. We then need to apply row and column multipliers r and s, respectively. 
The (2n – 1) unknown multipliers are determined by the (2n – 1) independent row and 
column restrictions using an iterative adjustment procedure. 

Suppose we need to update a social accounting matrix (SAM). If we define T as 
a SAM transactions matrix, where tij is a cell value that satisfies the next restrictions:

•
i

ijj tT  

to construct the coefficient matrix [aij] = A of a SAM, we divide each cell tij by the row 
total t⋅j of a corresponding column , i.e.:

aij = 
j

ij
t

t
•
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In this case, if we indicate the unknown coefficients of A1 by [a1
ij] and known coef-

ficient elements of A0 by [a0
ij], the RAS procedure is as follows :

a1
ij = ri a0

ijsj, 

In matrix notation, we have:

SARA ~~ 0
1   ,

Where  ͠  indicates the diagonal matrix of elements R and S. Then, this last equa-
tion shows that the RAS method successfully constitutes an iterative algorithm of bi-
proportional adjustments.

Let us indicate the serial number of different steps of the RAS algorithm by 1,2,…t 
and then define each algorithm as the following:

Step 1:
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Thus, the step t corresponds to the last iteration ensuring a final convergence solution.
Compared to the cross-entropy approach presented above, the RAS procedure 

presents an obvious advantage of being relatively simple to use. However, it presents 
the following severe drawbacks: 

Lack of underlying economic theory and limited possibility of constraining information

For instance, there is a need to fix some cell values inside an I-O matrix during its 
updating procedure when these values are known with sufficient certainty. The RAS 
procedure is not well suited for tackling such problems.

No possibility to treat the problem on the stochastic side
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For instance, if the new known row and column totals, X and Y, are known with 
uncertainty—a realistic hypothesis—one will need to add a random component to the 
model. The RAS procedure is not suited for tackling such problems.

The risk of starting with a basic I-O matrix A0 characterized by “spurious consistency” 

This is the case when the matrix has been updated or balanced on the basis of a 
theoretical hypothesis, e.g., macroeconomic closure rules. In such a case, the matrix 
appears well balanced despite possibly containing systematic errors. 

Because of the above empirical problems, many researchers have tried the exten-
sion of the RAS procedure in the hope of rendering it more flexible. Lemelin et al. 
(2005) show that the RAS procedure can be apprehended as a Bayesian information 
processing rule with the new known row and column totals X and Y taken for new data 
in the Bayesian sense. In the process, after having compared the Lagrange multipli-
ers of both procedures, the authors show conditions of equivalence between the RAS 
procedure and the Kullback-Leibler cross-entropy approach. Similar work has been 
presented by McDougall (1999). He concluded that the RAS approach corresponds to a 
generalized Shannon cross-entropy technique, suggesting that the latter cannot sup-
plant the former. Nevertheless, according to McDougal, the cross-entropy approach 
can extend and adapt the RAS technique to problems that do not fit well with the 
traditional matrix balancing framework. Interestingly enough, Robinson et al. (2001), 
have conducted a comprehensive experiment on a 1994 SAM of Mozambique. Start-
ing from the balanced SAM and randomly imposing new row and column totals, the 
authors have operated a Monte Carlo experiment in which they have simultaneously 
updated the matrix using RAS and Shannon cross-entropy procedures. They found 
RAS and CE to be equivalent measures—meaning that RAS is an entropy theoretic—if 
the CE method uses a single cross-entropy measure as an objective instead of attempt-
ing to use the sum of column cross-entropies. They concluded by confirming the find-
ings of many previous researchers according to whom the RAS procedure remains less 
flexible in the case of new information in comparison with the cross-entropy tech-
nique, which is better at processing new information for optimal consistency of the 
updated SAM. 

However, due to its popularity, researchers have proposed new extensions of the 
RAS approach [e.g., http://ec.europa.eu/eurostat/ramon/statmanuals/files/KS-RA-
07–013-EN.pdf]. 

One of the interesting extensions has been the Model of Double Proportional Pat-
terns (MODOP) developed by Stäglin (1972:69–81). This model consists of estimating 
all the existing cells of transaction. The resulting inconsistent matrix is then esti-
mated by the RAS approach. The basic idea is to calculate the geometric mean of row 
and column multipliers and then to apply this factor to each element of the matrix. 
Following the above author, outputs from the MODOP are often similar to those from 
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the RAS approach. Some trials that allow the RAS approach to constrain targeted cells 
inside a matrix or to render the cells stochastic have been undertaken in recent years. 

In a recent, thorough study on the comparative performance of the cross-entropy 
and RAS techniques, Chisari et al. (2012) concluded that cross-entropy had a more 
general character for the following reasons:
a)	 It does not need all the new totals of rows or columns (although prediction will 

be less accurate).
b)	 It does not need a balanced initial matrix (the sum of rows could be more/less 

than the sum of columns).
c)	 New rims could contain an error term.
d)	 New rims can be non-fixed parameters.
e)	 Many values on the final matrix could be fixed (not necessarily a parameter).
f)	 It allows non-linear constraints.

Referring to their simulation outputs, the authors propose a rule of thumb consisting 
in preferring the RAS method if and only if any constraint or one constraint is enforced. 
This seems to explain why the RAS approach continues to be successfully applied in 
different prediction studies. Furthermore, comparing the starting point to the RAS 
method, the above authors observe that the purchasing method is preferred to the 
supplying matrix because the aggregate bias is in this lower case. Furthermore, note 
that this suggestion does not seem to be consistent with the above investigations done 
by Robinson et al. (2001) on the Mozambique economy according to which the RAS 
and Shannon entropy approaches produce the same performance when no additional 
restriction is imposed. We will come back to this point when we present an example of 
I-O updating at the end of this section.

Trying to assess the cross-entropy approach in a dynamic, stochastic multi-objec-
tive optimisation problem, Bekker & Aldrich (2011) have concluded that acceptable 
results can be obtained while doing relatively few evaluations. Such an empirical fact 
tends to confirm a large area of cross-entropy application.

Finally, the central point to focus on through this section has been the limit—at 
least according to existing literature—of the RAS method compared to Shannon-Kull-
back-Leibler cross-entropy. Thus, since the latter is itself a converging case of Tsallis 
non-extensive entropy, the RAS procedure can be seen as relatively less attractive 
with respect to both entropy approaches.

3.3.3  Application: Updating an Aggregated EU I-O Matrix

3.3.3.1  The RAS Approach
Tables 8 and 9 represent 27 aggregated EU symmetric I-O tables for domestic output 
at basic prices for years 2006 and 2007. In this simplified example, let us suppose 
that we have no information—though we do—on the elements of the intermediate 
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consumption sub-matrices for the period 2007 in Table 2. Using both the RAS and 
cross-entropy approaches, we are asked to predict those elements on the basis of the 
2006 I-O matrix and sectorial accounts totals of the period 2007, which are supposed 
to be known. 

In the example below, we directly use the transaction matrix in current price 
value. Thus, instead of coefficient matrix A presented in the above RAS formula, we 
use the matrix X of transactions. Using the formalism explained in the above section 
for the RAS approach, we present below the algorithm to solve the problem:

Iteration 1
Calculation of row multipliers 
1.098105 1.068032 1.066862 1.044765 1.052929 1.037053

Actual Row  
multipliers

50495.53 184777.3 3012.483 24612.5 3822.238 6453.238 273173.2 280691 1.027522

84702.14 2585662 382824.5 542838.5 230943.7 266151.9 4093122 4128898 1.008741

2941.775 45081.56 361192.4 47169.66 121551.4 47356.15 625293 598576 0.957274

38756.27 770976.1 124401.9 865048.6 264081.2 185633.2 2248897 2228709 0.991023

27106.73 694435.6 18950.7 753990.3 1314546 370177.4 3349764 3236274 0.96612

5269.119 83635.91 11198.4 72001.38 108426.3 267284.2 547815.4 538038 0.982152

where, e.g., starting multiplier 1.098105 to be later multiplied by the first column 
elements of the initial transaction matrix of 2006 is obtained from the quotient 
419340/381876, i.e., the first column output of 2007 divided by the first column output 
of 2006, both respectively from Tables 9 and 8.

With elements of row multipliers on the diagonal matrix premultiplied by X0ij 
obtained in the above transformation, we get:

0~
ijXR   equal to:

1.027522 0 0 0 0 0

0 1.008741 0 0 0 0

0 0 0.957274 0 0 0

0 0 0 0.991022853 0 0

0 0 0 0 0.96612 0

0 0 0 0 0 0.982152
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X
50495.53 184777.3 3012.483 24612.5 3822.238 6453.238

84702.14 2585662 382824.5 542838.5 230943.7 266151.9

2941.775 45081.56 361192.4 47169.66 121551.4 47356.15

38756.27 770976.1 124401.9 865048.6 264081.2 185633.2

27106.73 694435.6 189507.7 753990.3 1314546 370177.4

5269.119 83635.91 11198.4 72001.38 108426.3 267284.2

equal to:

51885.25 189862.6 3095.392 25289.88 3927.432 6630.843

85442.48 2608262 386170.6 547583.2 232962.2 268478.2

2816.084 43155.38 345759.9 45154.27 116358 45332.79

38408.35 764055 123285.2 857282.9 261710.5 183966.7

26188.35 670908 183087.1 728445 1270009 357635.7

5175.075 82143.16 10998.53 70716.28 106491.1 262513.7

209915.6 4358386 1052397 2274472 1991459 1124558

Actual 210592 4373650 1056144 2280581 1974301 1115919

Column 
multiplier 1.00322 1.003502 1.003561 1.002686 0.991384 0.992318

SXRX ij
~~ 0

1    equal to:

51885.25 189862.6 3095.392 25289.88 3927.432 6630.843

85442.48 2608262 386170.6 547583.2 232962.2 268478.2

2816.084 43155.38 345759.9 45154.27 116358 45332.79

38408.35 764055 123285.2 857282.9 261710.5 183966.7

26188.35 670908 183087.1 728445 1270009 357635.7

5175.075 82143.16 10998.53 70716.28 106491.1 262513.7

X

1.00322 0 0 0 0 0

0 1.003502 0 0 0 0

0 0 1.003561 0 0 0

0 0 0 1.002685984 0 0

0 0 0 0 0.991384 0

0 0 0 0 0 0.992318
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equal to:

52052.34 190527.6 3106.414 25357.81 3893.595 6579.903

85717.63 2617396 387545.8 549054 230955.1 266415.7

2825.153 43306.52 346991.2 45275.55 115355.5 44984.53

38532.04 766730.8 123724.2 859585.6 259455.7 182553.5

26272.69 673257.6 183739.1 730401.6 1259068 354888.3

5191.74 82430.84 11037.69 70906.23 105573.6 260497

Iteration 2. …j….:
Repeat Iteration 1 algorithm
In this example, we reach the optimal value at the seventh iteration and then get the 
following values of the new supposed unknown transaction matrix of the year 2007:

0.999998 0 0 0 0 0

0 0.999999 0 0 0 0

0 0 1.000001 0 0 0

0 0 0 0.999999944 0 0

0 0 0 0 1.000001 0

0 0 0 0 0 1.000006

X

51929.5 190003.4 3095.379 25249.69 3870.157 6543.312

85635.77 2613871 386712.9 547482.9 229888.1 265307.2

2829.519 43356.44 347112.1 45258.99 115109.9 44909.49

38562.37 767033.6 123673.6 858620.7 258707.4 182111

26405.53 676396.6 184447.4 732693.9 1260792 355538.3

5228.733 82985.65 11103.05 71275.19 105935.8 261511.4

X

1.000001 0 0 0 0 0

0 1.000001 0 0 0 0

0 0 1 0 0 0

0 0 0 0.999999724 0 0

0 0 0 0 0.999999 0

0 0 0 0 0 0.999998
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equal to:

51929.54 190003.5 3095.379 25249.68 3870.153 6543.302

85635.84 2613873 386712.9 547482.7 229887.9 265306.8

2829.521 43356.47 347112 45258.98 115109.8 44909.42

38562.4 767034 123673.6 858620.4 258707.2 182110.7

26405.55 676397 184447.4 732693.7 1260790 355537.7

5228.738 82985.69 11103.05 71275.17 105935.7 261511

Table 6: Error(%) prediction from the RAS procedure

3 0 1 -4 -7 4

1 0 0 -2 0 0

-7 5 -1 6 -4 3

-6 -1 -2 1 0 3

1 0 2 0 0 -1

-4 1 4 2 2 -2

The above errors are calculated as the error discrepancy percentage between 
the true matrix of transaction representing the period of year 2007 and the matrix 
updated by the RAS procedure on the basis of the 2006 I-O matrix.

3.3.3.2  The Entropy Approach
For comparative purposes, let us apply entropy formalism for updating the same IO 
transactions table as in the above example related to the RAS approach. Thus, using 
the Tsallis entropy formalism presented in (3.17) and in (2.48–2.50) under the hypoth-
esis that transaction totals of the targeted period are known (and without any addi-
tional restriction), we get the outputs presented in Table 7.
Comparison of Tables 6 and 7 show slightly higher performance of the RAS approach. 
This seems to confirm the rule of thumb proposed by Chisari et al. (2012): if and only 
if any constraint or one constraint is enforced as in the present case. However, such 
a conclusion, as already mentioned above, is not in line with the one proposed by 
investigations conducted by Robinson et al. (2001) which lead to equivalent perfor-
mance in the same conditions between the cross-entropy and RAS approaches. More 
investigations are needed to contradict or confirm the study results of the above 
authors. Of course, following the results of several investigations presented above, 
cross-entropy naturally presents higher performance than the RAS approach, par-
ticularly when statistical data are known with uncertainty. In the next section, we 
are going to propose the forecasting of a higher dimension I-O table through cross-
entropy formalism. Later, when treating the case of a SAM with higher dimension, we 



� Updating and Forecasting I-O Tables   73

will present the methodology of updating it in the presence of uncertainty and with a 
free number of restrictions.

3.3.3.3  I-O table Forecasting
By “updating,” we compute operations on table rows and columns with the purpose 
of balancing its row and column totals, but a forecasting operation implies the use of 
a certain theoretical model—whether deterministic or not. To forecast an I-O table, 
the statistical data concerning final demand Yi and the value added Dj are generally 
available or could be obtained on the basis of existing information. For example, 
in the case of Eurostat, this information exists for the time horizon year 2013 while 

Table 7: Error (%) prediction of the I-O table by the Tsallis (or Shannon) cross-entropy procedure

Products 
(CPA) 

P1 P2 P3 P4 P5 P6

P1 7.985 3.141 1.934 -0.049 -7.602 4.579

P2 8.954 2.214 -0.722 -0.099 -2.772 -0.158

P3 -8.035 2.042 -5.767 3.010 -11.670 -2.940

P4 -4.044 0.691 -4.533 7.906 -4.444 0.523

P5 0.370 -2.219 -2.198 -1.980 -6.118 -0.147

P6 -2.688 0.587 1.827 1.848 -2.704 -4.190

Table 8: Symmetric I-O Tables for domestic output at basic prices (year 2006; EU27, Mio. EUR current 
prices)

Inputs of products
Products 
(CPA)

P1 P2 P3 P4 P5 P6 Others Total

P1 45984 173007 2824 23558 3630 6223 126650 381876

P2 77135 2420959 358832 519579 219335 256642 2999462 6851944

P3 2679 42210 338556 45149 115441 45664 1130576 1720275

P4 35294 721866 116605 827984 250806 179001 2465270 4596826

P5 24685 650201 177631 721684 1248467 356951 1932724 5112343

P6 4798 78308 10497 68916 102976 257734 3054393 3577624

Others 191301 2765392 715330 2389956 3171688 2475408 1499777 13208852

Total 381876 6851944 1720275 4596826 5112343 3577624 13208852

Source: own calculations. 
Source: based on http://ec.europa.eu/eurostat/web/esa-supply-use-input-tables/overview
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neither the value of global product Xj nor the matrix of cost structure [aij] are known 
for that forecasting period. Here, the last updating of IO tables concerns the period 
2007. Building an I-O table is time consuming and a lot of information, particularly 
concerning the transaction matrix (including import elements), is not easy to assess. 
Economic information from different enterprises or industries must be updated on 
the basis of new flows of additional information. As a result, getting a final version 
of that table comes long after with many lag years. Under such conditions, finding a 
workable methodology for setting up a robust prediction technique of an I-O table 
should bear precious advantages.

Therefore, the key question is: Based on the I-O table of the previous period, on 
vectors Yp

i and Dp
j (both from the forecasting period), is it possible, using the connec-

tion (3.2), to estimate the unknown IOtablep of the forecasting period? Of course, the 

Table 9: Symmetric I-O Tables for domestic output at basic prices(year 2007)

Inputs of products

Products 
(CPA)

P1 P2 P3 P4 P5 P6 Others Total

P1 53529 189315 3126 24311 3626 6784 138648 419340

P2 86528 2624065 386717 535924 229362 266302 3189197 7318095

P3 2656 45671 344941 48062 111100 46147 1236719 1835296

P4 36335 756877 121086 869135 258074 187202 2573895 4802604

P5 26539 673893 188669 730656 1264384 352132 2146659 5382932

P6 5005 83827 11606 72494 107755 257351 3172149 3710187

Others 208748 2944446 779152 2522023 3408631 2594266 1599374,605 14056642

Total 419340 7318096 1835296 4802604 5382933 3710185 14056642

Source: based on http://ec.europa.eu/eurostat/web/esa-supply-use-input-tables/overview

where :

P1 Products of agriculture, hunting and fishing

P2 Industrial products (incl Energy)

P3 Construction work

P4 Trade, transport and communication services

P5 Financial services and business services

P6 Other services

Others Use of imported products, cif

  Taxes less subsidies on products

  Value added at basic prices

Total Row or column totals
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answer is not affirmative if we use the classical statistical-mathematical approach to 
solve that inverse problem. On the one hand, we do not have information about matrix 
Ap of the forecasting period to derive the value Xp using relation (3.2) and, in this way, 
to determine IOtablep. On the other hand, as an effect of the possibility of estimating 
Xp, for example using a dynamic investment model, the new question that arises is: 
Disposing of Xp and of Yp of the forecasting period, could one possibly determine the 
matrix coefficients Ap on the basis of the same relation (3.2)? Since the IO table has 
size NxN, and we have by assumption only information about final demand Yp and 
global product Xp of each sector, this means that we have (N – 2)x(N – 2) degrees of 
freedom, where N is, once again, the number of branches in the IO table. Such a prob-
lematic belongs then to the category of inverse problems, which suggests that there 
may be an infinity of matrices Ap that could reproduce the identical values of final 
demand Yp and the global product Xp. Among them, we will choose the one that best 
maximizes consistency information between the prior, data, and the posterior. We 
can retrieve a solution proposal to that problem in the second part of this monograph 
about the maximum entropy principle or relative (cross) entropy. Let us again present 
it below in the context of updating and forecasting an I-O table on any other form of 
its extension. 

3.3.3.4  The Non-Extensive Cross-Entropy Approach and I-O Table Updating
As suggested above, in the recent literature there are several methods for updating 
and balancing elements of national accounts balance sheets, for instance, an I-O 
table when equality of corresponding sums of columns and rows is required. Some 
of their limits have been emphasised here. Preference is then given to methods based 
on statistical theory of information for their capacity to adjust information when 
structural changes affect the economy or when additional consistent information has 
to be added to what already exists. The most frequently used theoretic-information 
methods are the Maximum Likelihood, Bayesian method of moments, and methods 
based on the maximum entropy principle. Through their article, Giffin & Caticha 
(2007) have proven that the principle of maximum entropy represents a generaliza-
tion of the Bayesian approach as a method of inference on the basis of an a priori 
information. Probably for these reasons, application of the cross-entropy approach to 
balance the social accounting matrix has been widely adopted in empirical applica-
tion during recent years (e.g., Robinson et al., 2001).

As we know from Part II of the monograph, on the basis of the results of Shannon 
(1948) and Jaynes (1957), Kulback-Leibler (KL) (1951, 1957) and Good (1963) have pro-
posed the principle of minimum (relative) entropy. This principle aims at assessing 
a posteriori parameters (probabilities P) of the most plausible, shortest divergence 
in relation to a priori parameters (probabilities Q), under restrictions related to data 
moments, normalization condition, or any other a priori information presenting con-
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sistency with probabilities in the criterion function. The formulation in the case of 
discrete events is like in (3.16) and, thus, we have:

Min(rj,r0) →  oq rrI   1
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Ω(h) = F	 (3.20)

P'I = 1 and P ≥ 0.	 (3.21)

We adopt Shannon-Gibbs symbols in the criterion function above. Correspon-
dence with the Tsallis criterion function in (3.16) is easy to do. The symbol P corre-
sponds to r and Q to ro. Matrix P stands for posterior probabilities guaranteeing the 
balance of a previously unbalanced table, the elements of which sum up to unity by 
column (sector). Q is a matrix of coefficients from a known table. In the case of the 
I-O table (see Table 2) elements of Q are derived by dividing each column element by 
its total. They then represent input coefficients except the case of the final demand 
column, where these coefficients explain the structure of product consumption for a 
given final demand institution. Thus, its elements must satisfy the additivity condi-
tion. Equation (3.18) demonstrates that the column total must match with correspond-
ing row elements multiplied by corresponding probabilities (coefficients) Pj. Equa-
tion (3.19) states equality between value added and final demand totals, with d

jp '   
and 'y

iP   being transposed respective vector of sectorial value added components and 
vector of structural coefficients of final demand. Probabilities are presented in escort 
distribution formulation presented in footnote 17. Functional h in (3.20) gives a piece 
of information which has a significant relationship (consistency) with probabilities in 
the criterion function. This may be, for example, a macroeconomic balance equation 
or any distribution of a treatment of errors. Equation (3.21) is one of the additivity con-
ditions of probabilities and reminds us that any probability can take a negative value.
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3.3.3.5  Forecasting an I-O Table
Let us first formulate the model. As previously stated, a fundamental problem results 
from the lack of information about sectorial global product Xj

p or equivalent input 
transactions xij since we assume final demand to be known. Thus, before implement-
ing entropy formalism (3.16), we must first estimate the values Xj

p. For this purpose, 
we propose using a dynamic model25 of I-O in which investment is the endogenous 
variable in the context of accelerator analysis of macroeconomic theory. According 
to macroeconomic theory, it is expected that investment is induced if final demand is 
expected to grow. Based on the preceding period, traditional assumptions of such a 
model are as follows:

–– the investment is a function of the expected growth, 
–– information about the coefficients of material and production factors are avail-

able, 
–– information about capital ratios are available, 
–– all economic sectors are in full effect, 
–– capital has an infinite lifetime.

We then have the following dynamic equation of global product:

Xt+1 = B–1[(I – A + B)Xt – Yt]	 (3.22)

and

Invt = B(Xt+1 – Xt)	 (3.23)

where: 
Xt+1: 	 global product,
Invt: 	 induced investment, 
B: 	 coefficients of capital production,
A: 	 coefficients of material, 
Yt: 	 final demand,
t: 	 the index of the time.

It should be added that value of global product derived in this way does not con-
stitute the ultimate result of the whole process of forecasting. This value only provides 
the information a priori in terms of a Bayesian viewpoint and it will be changed in the 
process of entropy minimization, as previously explained. At the end of the proce-
dure, applying relation of relative entropy in (3.16), we upgrade I-O coefficients for the 
period T + 1 to obtain a new post entropy I-O table. Thus let us consider a known I-O 
matrix BT of period T in the form of Table 2.1 displaying coefficient structure, obtained 

25  See EUROSTAT.
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after dividing each column element by the corresponding total column. The problem 
is retrieving new matrix BT+1 of period T + 1 for which we already know global product 
from (3.22) and sectorial aggregates of final demand. As is often the case in real life, let 
us suppose sectorial value added is known, too. If our I-O table has a dimension n x n 
(with n >> 2), then we have (n – 1) (n – 2) degree of freedom. Building on the formula-
tion (2.40–2.41) involving an inverse problem, we obtain: 
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Ω(h) = F 	 (3.28)

blij ≥ 0.	 (3.29)

In the present model Bt[bijt] with (i = 0 and 1) is a matrix of I-O coefficients for 
the period Tt. Thus, B0 is a priori known, and we seek to estimate B1, that is, for t = 1. 
Since both coefficients display probability properties of continuously belonging to 
interval zero-one, of summing up to unity (by column), and of additivity, we do not 
need to reparameterize B, and it will be taken for probability. Tsallis complexity index 
q informing about departure from Gaussian to power law distribution appears in 
the criterion function (3.24) and in constraints (3.25) and (3.26) under formulation 
of escort distribution, as earlier explained in footnote 9. Index one on variable X1j 
(explaining “global product”) in (3.25) refers to the period of forecast. It is equal to the 
vector column of coefficients multiplied by the total column, taking then into account 
weights related to escort distribution. A total obtained this way is equal to the total 
corresponding line X1i. This applies equally well to (3.26), which means that totals 
of value-added Dj and of final demand Yi are equal. The rest of the restrictions, i.e., 
(3.27–3.29) are as in (3.21).
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3.3.4  Application: Forecasting the Aggregated 27 EU IO Coefficients

In this example, we will present two cases where we apply the non-extensive entropy 
principle26 to forecast the aggregated 27 EU I-O coefficient table for the period 2007. 
The basis of that forecasting is the I-O table of the previous year, 2006, and some 
information related to the targeted I-O coefficients of 2007. Both tables can be found at 
the Eurostat statistics site: http://ec.europa.eu/eurostat/web/esa-supply-use-input-
tables/overview. Since we already know the true values27 of the I-O table of 2007, it 
will be much easier to assess the performance of the applied technique.

In the first case, besides information from the 2006 table, we are supposed to 
additionally have data on sectorial value added and final demand of the targeted 
period 2007. In this example, sectorial global product is neither known nor assessed. 
We then consider here a case which is more unfavourable than it appears in empirical 
investigations where, in general, many values of the targeted I-O table are assessable 
on the basis of existing theory or through intuition.

In the second case, besides the information used in the first case, we are sup-
posed to additionally have the possibility of estimating some reliable inter-sector 
transactions of the targeted period 2007 and to incorporate them into the model as 
new data, according to the Bayesian model. Then, the following list of accounts which 
have been arbitrarily selected from the true 2007 table and information related to 
them have to be incorporated into the entropy model: 
tobac Tobacco products
pulpap Pulp, paper, and paper products
Insur Insurance and pension funding
compserv Computer and related services
uranores Uranium plus ores

Among the 60 accounts in the table—we have a NACE A60 breakdown—these five 
accounts represent 5% of all accounts and around 2% of their transaction total. Thus, 
in spite of using that additional piece of information, we are still dealing with an 
inverse problem consisting of recovering (n – 6) x (n – 6) coefficients of the I-O table 
on the basis of the coefficient table from the previous period, 2006, and some addi-
tional, random information from the forecasted period. Not included28 in this book, 

26 In this study, outputs from Shannon and Tsallis entropies are similar.
27 As can be verified at the electronic address http://appsso.eurostat.ec.europa.eu/nui/show.
do?dataset=naio_15_agg_60_r2&lang=en, this version of the 2007 table does not yet seem to be defin-
itive since some accounts are not balanced. The implication is that input-output coefficients related 
to that table cannot be considered known with certainty. At the same electronic address, we can find 
input-output tables of other periods, such as for 2006. However, since we have made small changes to 
these two tables, they will be displayed in the annex. 
28 Due to lack of space, these tables cannot be presented in this book. Nevertheless, they are here 
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two output tables allow for assessing the performance of the proposed technique. 
The first table F1displays the precision error for the ex post forecasted inter-sector 
transactions for the period 2007 and related to a minimum of hypotheses, that is, the 
knowledge of sectorial values added and final demand. Thus, that table displays the 
forecasted I-O transaction table for the period 2007 with the minimum a priori infor-
mation. The second table F2 displays the precision error for the forecasted inter-sector 
transactions of the period 2007 in the second hypothesis, that is, with some knowl-
edge on inter-sector transactions of the five above listed accounts. 

What could we learn from these outputs? Here, we will limit our comments to 
general aspects of cross-entropy formalism. More details will be provided in the 
coming chapter concerning the procedure of updating a social accounting matrix, as 
a generalized case of an I-O table. The table “F2”, as already mentioned, shows the 
degree of precision of the entropy procedure in forecasting the I-O coefficients of the 
period 2007. The only a priori information remains the I-O transaction matrix of 2006, 
sectorial values added and final demands of the period 2007. All computations have 
been carried out with the GAMS code. To measure the precision of the I-O coefficient, 
we have used the next average error variance coefficient (AEVC):
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The coefficients aij represent the true coefficients displayed by the 2007 table of 
the I-O matrix prepared by Eurostat. Though the table is not fully balanced, we still 
consider it sufficient to correspond to a true data generating system. The forecasted 
coefficients âij are supposed to be affected by a certain margin of error. The denomina-
tor explains the degree of freedom of a Warlasian equilibrium table, i.e., the number 
of accounts29 but one. 

Let us first consider a simple benchmark measure of the information divergence 
between the 2006 and 2007 tables. In these circumstances, values of coefficients âij 
represent the period 2006 and values of the coefficients aij, that of 2007. Thus, the 
derived variance value AEVC is 0.00003846. In the context of information theory, this 
value corresponds to the minimum entropy result when any restriction (except nor-
mality conditions) to the criterion function has been enforced. It corresponds, too, to 
the maximum entropy outputs in the same conditions. 

Now, if we consider the first case when we know the inter-sector values added 
and final demands, we get a new AEVC equal to 0.00002932 and representing a dis-
crepancy between the true and the estimated values. In comparison with the bench-
mark coefficient, the new piece of information has brought about an overall coeffi-

numbered F1 and F2 so that the interested reader can, on request, get a copy of them from the author.
29 For computational reasons, two accounts concerning the mining sectors have been aggregated 
into one account.
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cient variance reduction of around 24%. Though this coefficient is very small, a look 
at the non reported in this book outputs (table “F1") could reveal a high variation in 
these coefficients. As it has been noticed in Shannon entropy econometrics litera-
ture, entropy formalism tends to shrink small probabilities in favour of those higher. 
Through this example, we discover the same stylised fact found in the case of Tsallis 
entropy formalism. Inside that table, we notice the presence of a 100% shift of many 
values. This is the result of small probability shrinkage, as explained above. To reduce 
these variations, we need to impose additional restrictions on the model. On theoreti-
cal grounds, the formal causes of small probability shrinkage is well presented in the 
early presented work (see previous chapters) of Golan et al., (1996) as an extension of 
the work of Greenberg et al., (1989) on the family of Stein-rule estimators30 proposed 
by Stein & James (1961). 

In the last experiment carried out, we additionally consider that some transac-
tion values of the above listed accounts are known. We then get a new AEVC equal 
to 0.00001042502. In comparison with the benchmark coefficient, the new piece of 
information has brought about an overall coefficient variance reduction of around 
74%. Noting that the small variance AEVC naturally represents the average for all 
values inside the table, this seems to contrast with the relatively higher precision 
error affecting many cell values of the tables F1and , F2. In general, as underscored 
above, higher imprecisions tend to affect smaller values (then with smaller weights) 
inside the table cells.

3.3.5  Emission Coefficients Forecasting: A Theoretical Model

One may now combine the two previous procedures of retrieving information in 
the case of the inverse problem. The first procedure has assessed emission coeffi-
cients when sectorial global product and the transactions matrix were available (see 
section III.3.2.2). The second has assessed the I-O table on the basis of knowledge of 
sectorial final demand of current period and a priori information about the table of 
preceding period. Now, the interesting problematic could be assessing sectorial emis-
sion coefficients on a knowledge basis of:

–– total emission by theme of the forecast period,
–– sectorial final demand of the forecast period,
–– an input-output table of a recent period.

30 The main idea is that if three or more unrelated parameters are measured using the James-Stein 
estimator, their total square error will be lower than in the case of the least square (LS) estimator 
well known to provide the lowest variance among all other linear estimators. However, when each 
parameter is estimated separately, the LS estimator leads to higher performance. This is so because 
of the tendency of the Stein family of estimators to shrink small probabilities of the estimated system.
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Table 10: A Simplified Environmentally extended I-O table

i Sector Flows Final demand Total

1 X1 x11 x12 x13 ... x1m Y1 0

2 X2 x21 x22 x23 ... x2m Y2 0 X2

... ... ... ... ... ... ... ... 0 ...

m Xm xm1 xm2 xm2 xmm Ym 0 Xm

m +1 Dj

Value-
added

D1 D2 D3 ... Dn 0 0 D

... Ej e11 e12 e1m 0 eY1 E1

... ... ... ... ... ... ... 0 ... ...

n (Energy 
themes)

ef1 ... ... ... efm 0 eYf Ef

Total X1 X1 X1 ... Xm Yv Ye Total

Source: own elaboration.

Solution of such an inverse problem can be set up as follows:
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1
1




h
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with h=f + 2, i.e., additional columns due to the demand of emissions by institutions 
(one of them having zero value since demand of emissions must have a separate 
column).

All symbols are as before. Note that in this case the environmentally extended 
I-O matrix has the form presented in Table 10 below. Input coefficients are derived 
from global column totals, including, thus, quantities (instead of values) representing 
emissions. 

3.4  Conclusions

As suggested above, generally, new information should render more homogeneous 
divergence between the true coefficients and those forecasted. According to the above 
results, we observe that new restrictions added to the model lead to a significant 
reduction of errors. This is in accordance with the rule of thumb proposed by Chisari 
et al. (2012) in section III.3.3.1 about particular conditions explaining the superiority 
of entropy approaches over the RAS technique.

The obtained AEVC coefficients naturally present a random character and dif-
ferent experiments would produce different values. However, as expected through 
Bayesian formalism, new data evidence will always tend to reduce the level of uncer-
tainty or entropy. 

The true difficulty in assessing a new methodology to assess a complex infor-
mation system—like the one represented by an I-O table—is that, due to instruments 
of measure or adopted economic hypotheses, a part of the observed data may not 
be accurate. This can be even worse in the case of general equilibrium systems in 
which the balance of the whole system—or accounts—may be more or less forced. 
This observation is particularly true in developing countries where statistical infor-
mation management can be more challenging. What we intend to explain here is that, 
faced with such circumstances, the output performance of the non-extensive entropy 
approach should, consequently, be taken with a certain margin of error. The quality 
of priors and model data will always play a central role. 
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