
4  Balancing a SAM 
As already noted, the data sources used in this process are numerously in disagreement, 
and in need of supplemental assumptions. Hence, it is no surprise that the resulting 
SAM is not balanced. The largest discrepancies are found inside accounts concerned 
with secondary distribution of income. This concerns, in particular, the disaggregated 
household account because of the assumptions that have been involved to spread 
the various incomes, transfers, and expenditures of households within its disaggre-
gated components or between the disaggregated components and other accounts.

Once again, there are several ways of balancing inconsistent social accounting 
or any other matrix. Besides economic closure rules, one of the most commonly used 
techniques to balance matrices is the RAS approach. It is typically used for updating 
SAMs for which new row and column sums are known. As we have already noticed in the 
case of the input-output transactions matrix, the RAS technique produces a new trans-
action matrix that is consistent with the new row and column sums by interactively 
adjusting the row and column entries proportionately until the new totals are obtained. 
This approach has at least one severe drawback. The RAS technique assumes that the 
initial SAM is consistent and that there is no measurement error in the row and column 
sums. When dealing with social accounting matrices in general, the initial SAM will 
often not be consistent, there will typically be measurement errors, and there will cer-
tainly be some data entries that the analyst finds more reliable than others. Mainly for 
that reason, the cross-entropy approach seems to be better adapted for balancing the 
SAM. If a reader is interested in comparing the RAS approach with the cross-entropy 
technique, we refer him to Part III, section 3.3. The only question that remains con-
cerns the distribution law of the model to be retained, capable of describing the above 
discrepancies and stochastic errors. This will be answered in the following section. 

Since much has been said in Part II concerning relationships between the cross-
entropy approach and the statistical information theory approach, only a concise 
presentation of this technique will be given here, and the reader is referred to the 
aforementioned references for further detail.

The entropy technique is a method of solving undetermined estimation problems. 
The problem is undetermined because, in the case of a SAM, for an nxn matrix dimen-
sion, we seek to identify n(n – 1) independent, unknown, non-negative parameters, 
i.e., all the cells of the SAM but one column or row, in conformity with Walras’s law. 
In other words, restrictions must be imposed on the estimation problem so that we 
have enough information to obtain a unique solution and to provide enough degrees 
of freedom. The underlying philosophy of entropy estimation is to use all the infor-
mation at hand for the problem and only that information: the estimation procedure 
should not ignore any available information nor should it add any false information.33

33 See Shannon (1948) and Theil (1967) for a discussion of the concept of ‘information.’
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In the case of a SAM estimation, ‘information’ may be the knowledge that there 
is measurement error concerning the variables, and that some parts of the SAM are 
known with more certainty than others. There may be a prior in the form of a SAM 
from a previous year, whereby the entropy problem is to estimate a new set of coef-
ficients ‘close’ to the prior using new information to update it. Furthermore, ‘informa-
tion’ could consist of moment constraints on, for instance, row and column sums, or 
the average of the column sums. In addition to the row and column sums, ‘informa-
tion’ may also consist of certain economic aggregates such as total value-added, final 
demand components, and/or imports. In that way, it becomes possible34 to maintain 
Walrasian conditions of equilibrium. Such information may be incorporated as linear 
adding-up restrictions on the relevant elements of the SAM. In addition to equality 
constraints such as these, information may also be incorporated in the form of inequal-
ity constraints to the macro-aggregates mentioned. In most cases, macroeconomic 
theory can be useful in suggesting signs or interval of variation of certain parameters 
or ratios. This information will then be incorporated among other constraining equa-
tions. Finally, one may want to restrict cells that are zero in the prior to remain so after 
the entropy balancing procedure. Similarly, some cell values belonging to the SAM to 
be updated may not need to be modified because they come from well documented 
sources. Such cell values could then be restricted to stay unmodified during all steps 
of information processing. 

4.1  Shannon-Kullback-Leibler Cross-Entropy

Let us follow for the next estimation procedure found, for example, in Robinson et 
al. (2001), and let the SAM be defined as a matrix T with elements Tij representing a 
payment from column account j to row account i. As mentioned above, each account 
is supposed to display Walrasian equilibrium. In other words, every row sum (toti) in 
the SAM must equal the corresponding column sum (totj):

 
j j

jiiji TTtot  	   (4.1)

Dividing each cell entry in the matrix by its respective column total generates a 
matrix of column coefficients A:

j

ij
ij tot

T
A   	   (4.2)

34  This constitutes a necessary and not a sufficient condition for the achieving of Walras equilib-
rium.
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It is assumed that the entropy problem starts with a prior A which plausibly is a 
SAM from a previous period or, as in this case, a raw and unbalanced SAM. A repre-
sents the starting point from which the cross-entropy balancing procedure departs 
in deriving the new matrix of coefficients A. The entropy problem is to find a new 
set of A coefficients which minimize the so-called Kullback-Leibler (1951) divergence 
measure of the ‘cross-entropy’ (CE) between the prior A* and the posteriori coefficients 
matrix A.
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ii
j

ij tottotA    = 1 and 0 ≤ Aij ≤ 1	 (4.5)

Note that, according to Walras’s law in general equilibrium theory, one equa-
tion can be dropped in the second set of constraints: If all but one column and row 
sums are equal, the last one must also be equal. The solution of the above problem is 
obtained by setting up the Lagrangian. The k macro-aggregates can be added to the 
set of constraints on the problem above as follows:

)()( k

i j
ij

k
ij T   	 (4.6)

where H is an nxn aggregator matrix with ones for cells that represent the macro-
constraints and zeros otherwise, and γ is the value of the aggregate constraint. As 
mentioned above, in the real world one faces economic data measured with error. The 
cross-entropy problem can also be formulated as an ‘error-in-variables’ system where 
the independent variables are measured with noise e. If, for example, we assume the 
known column sums are measured with error, the row/column consistency constraint 
can be written as:

totj = xi + ei	  (4.7)

where totj is the vector of row sums and xi, the known vector of column sums, is mea-
sured with error ei. The prior estimate of the column sums could be, for instance, the 
initial column sums, the average of the initial column and row sums, or the row sums.

Following Golan et al. (1996), the errors are written as weighted averages of 
known constants v defined over a finite discrete support space m>>1,...,M with points:
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where fim is a set of weights that fulfil the following constraints:
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 = 1 and 0 ≤ fim ≤ 1	 (4.9)

In the estimation problem, the weights are thus treated as probabilities to be esti-
mated, and the prior for the error distribution in this case is chosen to be a symmetric 
distribution around zero with predefined lower and upper bounds, and using either 
three or five weights. Naturally, not only the column and row sums can be measured 
with error, the macro-aggregates by which we constrain our estimation problem may 
also be measured with error, and so we can operate with two sets of errors with sepa-
rate weights f1’s on the column sum errors, and weights f2’s on the macro-aggregate 
errors. The optimization problem in the ‘errors-in-variables’ formulation is now the 
problem of finding A’s, f1’s, and f2’s that minimize the cross-entropy measure, includ-
ing terms for the error weights:
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(4.10)

Referring once again to the definition of information provided by Kullback and 
presented in the second part of this book, cross-entropy measurement reflect how 
much the information we have introduced has moved our solution estimates away 
from the inconsistent prior, while also accounting for the imprecision of the moments 
assumed to be measured with error. Hence, if the information constraints are binding, 
the distance from the prior will increase. If they are not binding, the cross-entropy 
distance will be zero. It becomes now clearer why we have proposed, while assessing 
forecasting performance of the entropy technique, the difference between the average 
error variance coefficients (AEVC) of the periods 2006 and 2007 as a benchmark, 
maximum divergence precision measurement.

4.2  Balancing a SAM Through Tsallis-Kullback-Leibler 
Cross-Entropy

In the following, we are going to generalize the Jaynes-Kullbac-Leibler model (4.10) 
and thus reconsider all the implications of the above theorem on the power law prop-
erty of economy.
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Let us formally explain Tsallis relative entropy model (2.47-2.50) to be minimized 
together with the above suggested constraints. In this presentation, the Bregman form 
of relative entropy (2.47) will be used:
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subject to: 
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Symbols are as in equ. (4.9), except wih, which takes the place of f2iJ, and both rep-
resent disturbance errors on parameters but, this time, of different distribution laws.

Empirical, long practice with this class of economy-wide models provides some 
prior information on relevant ranges for parameter values and likely parameter esti-
mates. Furthermore, while the support of any imposed prior distribution for a parame-
ter is a maintained hypothesis (the estimate must fall within the support), the shape of 
the prior distribution over that support (e.g., the weights on each support point) is not. 
Unless the prior is perfect, the data will push the estimated posterior distribution away 
from the prior. The direction and magnitude of these shifts are, in themselves, informa-
tive. Also, note from Equations (4.11– 4.14) that, with increases in the number of data 
points, the second term of prediction in the objective function increasingly dominates 
the first term precision. In the limit, the first term in the objective becomes irrelevant. 
The prior distributions on parameters are only relevant when information is scarce.

4.3  A SAM as a Generalized Input-Output System

In the present paragraph, Kullback-Leibler (K-L) information divergence is extended 
to Tsallis non-ergodic systems and a q-Generalization of the K-L relative entropy cri-
terion function (c.f.), with a priori consistency constraints, is derived for balancing a 
SAM as a generalized input-output transaction matrix. 

On the basis of an unbalanced, Gabonese social accounting matrix (SAM) rep-
resenting a generalized inverse problem input-output system, we propose to update 
and balance it following the procedure explained through the above section.
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4.3.1  A Generalized Linear Non-Extensive Entropy Econometric Model

This section applies the results of, e.g., Jaynes (1957) and Golan et al. (1996) to present 
the model to be later implemented for updating and balancing input-output systems. 
While the argument in the criterion function is already known (see Equation 4.18), 
we need to reparametrize35 the generalized linear model, to be introduced later into 
the model as restrictions in the spirit of Bayesian method of moments (e.g., Zellner, 
1991). Note that such a linear restriction will be affected by a stochastic term expected 
to belong to the larger family of power law distribution. Let us succinctly present the 
general procedure for parameter reparametrization as it follows:

Y = X ⋅β + ε	 (4.15)

Parameter β in general bears values not constrained between 0 and 1. When this 
is the case, reparametrization will no longer be necessary since parameter variation 
area fits well to probability definition area. The variable ε is an unobservable dis-
turbance term with finite variance, owing to the economic data nature of exhibiting 
observation errors from empirical measurement or from random shocks. These sto-
chastic errors are assumed to be driven by a large class of PL. As in classical econo-
metrics, variable Y represents the system, the image of which must be recovered, and 
X accounts for covariates generating the system with unobservable disturbance ε to 
be estimated through observable error components e. Unlike classical econometric 
models, no constraining hypothesis is needed. In particular, the number of param-
eters to be estimated may be higher than the observed data points and the quality 
of collected information data low. Additionally, as already explained, to increase 
the accuracy of such estimated parameters from the poor quality of data points, the 
entropy objective function allows for incorporation of all constraining functions 
which act as Bayesian a priori information in the model.

Let us treat each βk(k = 1,...,K) as a discrete random variable with compact support 
and 2 < M < ∞ possible outcomes. Thus, we can express βk as:
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  Kk  	 (4.16)

where pkm is the probability of outcome vkm and the probabilities must be non-negative 
and sum up to one. Similarly, by treating each element ei of e as a finite and discrete 

35 Reparametrization aims at treating parameters of the model as outputs of probability distribu-
tion to be estimated following the procedure presented by Golan et al. (1996) and later exploited for 
modelling many entropy econometric models (see, e.g., Bwanakare, et al. (2014, 2015, 2016). Since 
the same probabilities are related to entropy variable defining the criterion function, optimizing the 
whole model then leads to outputs taking into account stochastic a priori information owing to model 
restrictions. 
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random variable with compact support and 2 < M < ∞ possible outcomes centred 
around zero, we can express ei as:
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 	 (4.17)

where rn is the probability of outcome zn on the support space j. Following Bwana-
kare (2014), we will use the commonly adopted index n, here and in the remaining 
mathematical formulations, to set the number of statistical observations. Note that 
the term e can be initially fixed as a percentage of the explained or endogenous vari-
able, as an a priori Bayesian hypothesis. Posterior probabilities within the support 
space may display non-Gaussian distribution. The element vkm constitutes an a priori 
information provided by the researcher while pkm is an unknown probability whose 
value must be determined by solving a maximum entropy problem. In matrix nota-
tion, let us rewrite β = V⋅P
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where again,is the number of parameters to be estimated and the number of data 
points over the support space. Also, let e =r ⋅w 
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and rnj = 1 for N the number of observations and the K number of data points over the 
support space for the error term. Then, the Tsallis cross-entropy econometric estima-
tor can be stated as:
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Additionally, k macro-aggregates can be added to the set of constraints as follows:
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where H is an dxd aggregator matrix with ones for cells that represent the macro-con-
straints and zeros otherwise, and γ is the expected value of the aggregate constraint. 
Once again, gs stands for a discrete point support space from s = 2,...,s. Probabilities 
wts stand for point weights over gs. The real q, as previously stated, stands for the 
Tsallis parameter. 

Above, Hq(p||p0, r||r0, w||w0) is nonlinear and measures the entropy in the model. 
Relative entropies of three independent systems (three posteriors p, r, and w and cor-
responding priors p0, r0, and w0) are then summed up using weights αβδ. These are 
positive reals summing up to unity under the given restrictions. We need to find the 
minimum divergence between the priors and the posteriors while the imposed sto-
chastic restrictions and normalization conditions must be fulfilled. As will be the case 
in the application below, the first component of the criterion function may concern 
the parameter structure of the table; the second component errors on column (or 
row) totals and the last component may concern errors around any additional con-
sistency variable, such as the GDP in the case below. As it has been shown by Tsallis 
(2009), this form of entropy displays the same basic properties as K-L information 
divergence index or relative entropy. The estimates of the parameters and residual 
are sensitive to the length and position of support intervals of β parameters (Equa-
tions 4.16 and 4.17) in the context of the Bayesian prior. When parameters of the pro-
posed model are expressed under the form of elasticity or ratio—as will be the case 
in the example below—then the support space should be defined inside the interval 
between zero and one and will fit that of the usual probability variation interval. In 
such a case, no reparametrization of the model is needed. In general, support space 
will be defined between minus and plus infinity, according to the prior belief about 
the parameter area variation by the modeller. Additionally, within the same support 
space, the model estimates and their variances should be affected by the support 
space scaling effect, i.e., the number of affected point values (Foley, 1994). The higher 
the number of these points, the better the prior information about the system. The 
weights αβδ are introduced into the above dual objective function. The first term of 
“precision” accounts for deviations of the estimated parameters from the prior (gen-
erally defined under a support space). The second and the third terms of “prediction 
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ex-post” account for the empirical error term as a difference between predicted and 
observed data values of the model. As expected, the presented entropy model is an 
efficient information processing rule that transforms, according to Bayes’s rule, prior 
and sample information into posterior information (Ashok, 1979).

4.4  Input-Output Power Law (Pl) Structure

It is time now to come back to the fundamental problem concerning the true statisti-
cal nature of input-output data used in the above studies or those below. In recent 
years, as already explained in Part I, many studies (Champernowne, 1953; Gabaix, 
2008) have shown that a large array of economic laws take the form of a PL, in par-
ticular macroeconomic scaling laws, distribution of income and wealth, size of 
cities, firms36, and the distribution of financial variables, such as returns and trading 
volume. Stanley and Mantegna (2007) have studied the dynamics of a general system 
composed of interacting units each with a complex internal structure comprising 
many subunits where the latter grow in a multiplicative way over a period of twenty 
years. They found the system follows a PL distribution. Such outputs should present 
similarities with the internal mechanism of national accounts tables, such as an input 
output table or a SAM. A PL displays, besides its well-known scaling law, a set of 
interesting characterizations related to aggregative properties of a PL according to 
which a power law is conserved under addition, multiplication, polynomial trans-
formation, and minimum and maximum. As far as the PL hypothesis for a SAM is 
concerned, taking into consideration the above literature and using PL properties, 
it should not be difficult to prove the PL character of a SAM, including the Gaussian 
trivial case. About SAM construction and components, see for example, Pyatt (Pyatt, 
1985). General equilibrium (Wing Ian Sue , Sept 2004) implies that respective row 
and column totals are expected to balance. Conceptually, this model is based on the 
laws of product and value conservation (Serban and Blake (Serban Scrieciu & Blake., 
2005.)) which guarantee conditions of zero profits, market clearance, and income 
balance. However, different stages of statistical data processing remain concomitant 
with human errors and the SAM will not balance. It is generally assumed that the 
main sources of these imbalances remain different sources of documentation and 
different time of data collecting. This means that an unknown number of economic 
transaction values within the matrix are inconsistent with the data generating macro-
economic system. For clarity, let us use Table 13 to explain these imbalances, noting, 
for instance, a difference between the institution row and column totals as follows:

(iT + e4) – (iT + ε4) = (e4 – ε4)	 (4.22)

36  See Bottazzi et al. (2007) for a different standpoint on the subject.
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The term on the left hand side of the above expression represents the difference 
between two erroneous and unequal totals of institution account. The origin of that 
difference results from difference between plausibly different stochastic errors e4 and 
ε4, respectively, on column and row totals. In Table 11, the first alphabetical letter of 
symbols inside each cell represents the first letter of the row (supply) account, and 
the second letter represents the first letter of the corresponding (demand) column. In 
the SAM prototype below, e.g., the symbol “Ca”, explains purchases by the activity 
sector of goods and services from the commodity sector.

The targeted purpose is to find, out of all probability distributions, a set of a pos-
teriori probabilities closest to a priori initial probabilities and insure the balance of 
the SAM table while satisfying other imposed consistency moments and normaliza-
tion conditions. Following Shannon terminology, one may consider post-entropy 
structural coefficients and disturbance errors, respectively, as signal and noise. The 
first step consists in computing a priori coefficients by column from real data from 
Table 11 by dividing each cell account by the respective column total. Next, we treat 
these column coefficients as analogous to probabilities and column totals as expected 
column sums, weighted by these probabilities (see Equation 4.19). These coefficient 
values will serve as the starting, best prior estimates of the model. The other two types 
of priors to initialize the solution concern errors on column totals (Equation 4.17) and 
on gross domestic product (GDP) at factor and market prices (Equation  4.21). GDP 
variables are added to the model with the purpose of binding the latter to meet con-
sistency macroeconomic relationships for different accounts inside the SAM. Other 
macroeconomic relations like those affecting interior or global consumptions could 
be added. The proposed approach combines non-ergodic Tsallis entropy with Bayes’ 
rule to solve a generalized random inverse problem. We may optionally consider only 

Table 11: General structure of a stochastic non-balanced SAM

  Activities Commodities Factors Institutions Capital World Total

Activities 0 Ac 0 Ai 0 aw aT+ ε1 

Commodities Ca 0 0 Ci cc 0 cT+ ε2

Factors Fa 0 0 0 0 0 fT+ ε3

Institutions Ia Ic If ii 0 iw iT+ ε4

Capital 0 0 0 ci 0 cw cT+ ε5

World 0 Wc 0 wi 0 0 wT+ ε6

Total aT+ e1 cT+ e2 fT+ e3 iT+ e4 cT+ e5 wT+ e6  

Source: own elaboration.
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some cell values as certain37 while the rest of the accounts are unknown. This is one 
of the strongest points of the entropy approach over other mechanical techniques 
of balancing the national accounts table through a stochastic framework. All row 
and column totals are known with uncertainty. It is straightforward to notice that the 
potential freedom degree number of parameters to estimate (n – 1) (n – 1) remains 
significantly higher than n observed data points (column totals). In a particular case 
of a SAM, and due to empty cells, that number of unknown parameters may be much 
lower. In any event, that will not generally prevent us from dealing with an ill-behaved 
inverse stochastic problem. The next important step is initializing the above defined 
errors through a reparametrizing process. A five point support space symmetric around 
zero is defined. To scale the error support space to real data, we apply Chebychev’s 
inequality and three sigma rules (Serban Scrieciu & Blake, 2005). Corresponding 
optimal probability weights are then computed so as to define the prior noise compo-
nent (Robinson et al., 2001).

4.5  Balancing a SAM of a Developing Country: the Case of the 
Republic of Gabon

In our analysis of the last cases, we have rather underscored technical aspects of 
entropy for balancing input-output tables. However, when statistical data from differ-
ent sources are available and sufficiently consistent, applying a complex procedure 
as the one relying on entropy formalism can be more time consuming than relatively 
easier techniques like the RAS (e.g., Pukelsheim, 1994, Bacharach (1970). This is the 
case for many developed countries where statistical data gathering is generally effi-
cient38. In reverse, as we are going to see in the coming pages, this is not the case for 
the majority of developing countries in which statistical data are not only scarce but 
also of bad quality.

Thus, to complete an array of empirical advantages of the proposed entropy 
approach, we are going to analyse the case of developing countries where complete 

37 Only transaction accounts with the rest of the world (import, export, external current balance), 
plus government commodity consumption accounts are concerned. 
38 The statistical data gathering system in Poland can been seen as relatively efficient in compari-
son with those of most of developing countries. Availability of data on a large scale and their quasi-
consistency though from various unrelated sources is the criterion retained here for giving such an 
appraisal. As a result, it should be relatively easier to balance national account tables without using 
complicated procedures such the entropy-related one. Thus, inconsistencies displayed in Table 1 may 
not reflect outputs from other publications on the same subject. The purpose of the present example 
is just to show the performance of the cross-entropy procedure in balancing a system under con-
straining, a priori information, like different macroeconomic identities characterizing national ac-
count tables. 
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statistical information is generally unavailable. Not only does such information not 
fully exist, what does should be approached with a high level of uncertainty. Applying 
traditional balancing techniques, like the RAS approach, becomes in practice difficult.

Based on the Shannon entropy approach, a large number of studies—particularly 
from developing countries—designed to balance SAM tables have been prepared in 
the last two decades. The already cited paper of Robinson et al. (2001), consecutive to 
the publications of Golan et al. (1996), has become a reference work for having shown 
an algorithm—in GAMS code (General Algebraic Modelling System)—for balancing 
a SAM in the case of uncertainty. One can list other studies with identical purpose, 
such as those of of Salem (2004) for Tunisia and Kerwat et al. (2009) for Libya. Murat 
(2005), using Shannon cross-entropy formalism, has balanced a Turkish Financial 
Social Accounting Matrix and, more recently, Miller et al. (2011) has built and bal-
anced a disaggregated SAM for Ireland. Note that these last two countries belong, 
respectively, to the category of intermediary developed and developed countries. 
Many other entropy-based studies have been presented for various countries like 
Malawi, South Africa, Zimbabwe, Ghana, Gabon, and Vietnam. The results shown 
below generalizes, once again, Shannon formalism by applying a non-extensive 
entropy divergence formalism.

4.5.1  Balancing the SAM of GABON by Tsallis Cross-Entropy Formalism

A complete description of data sources or others details concerning the methodology 
of building the aggregated and disaggregated SAM of Gabon can be found in Bwa-
nakare (2013).39 That methodology has been proposed by Robinson et al. (2001) for 
balancing the SAM of Mozambique. Briefly, it consists of two steps in building the 
final SAM. In the first step, an aggregate and unbalanced SAM is built on the basis 
of official macroeconomic data. The later will serve as a control in building a much 
more disaggregated SAM in which accounts will be obtained by splitting out aggre-
gated accounts of the balanced40 SAM of the first step. Table 12 below represents the 
initial aggregated and unbalanced SAM of Gabon. Statistical data come from three 
sources: the Ministry of Planning, the Ministry of Economy and Finance, and the Bank 
of Central Africa States.

39 This document was prepared with the help of the Directorate of National Accounting at the Min-
istry of Planning and Development of the Republic of Gabon. A copy of the outputs of the balanc-
ing of this SAM has been transmitted to the Ministry. See the document at http://www.numilog.
com/236150/Methodologie-pour-la-balance-d-une-matrice-de-comptabilite-sociale-par-l-approche-
econometrique-de-l-entropie---le-cas-du-Gabon (ebook: Paris: Editions JePublie)
40 We have used the cross-entropy technique for balancing such an aggregated SAM.
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Thus, one may observe that all columns are not balanced with respective rows. 
This is the case for the enterprise and government accounts. This means that the 
general equilibrium is not attained. The total revenue of enterprises is higher than 
their total expenditures and the situation is reverse in the case of government.

In the case of Gabon, we target disaggregate accounts from 8 macro-accounts of 
the aggregated SAM to 82 subaccounts of the disaggregated new SAM. Among these 
subaccounts, we have 31 activity accounts, 33 product accounts (including 3 margin 
accounts which replace wholesale and retail trade), 3 accounts of labour factors 
and 1 of social capital, 4 classes of households, 3 business institutions, 4 government 
accounts, including public investment. The rest of the accounts are private invest-
ment, change in stock and rest of the world. Disaggregating a SAM requires much 
and often non-consistent information from different sources and periods. In the case 
of Gabon, this is particularly true for labour or the household accounts since reliable 
information allowing to tease out such accounts is scarce.

In statistical theory of information terms, the problem to be solved is one of 
finding a new disaggregated, a posteriori balanced SAM as close as possible to the 
initial unbalanced and disaggregated a priori SAM, while fulfilling imposed statistical 
and/or macroeconomic restrictions. To implement the model, we use the mathemati-
cal expression of non-extensive relative entropy under the next additional macroeco-
nomic restrictions related to the targeted period (i.e.,1997 in the case of Gabon):

–– Nominal GDP = consumption + investment + government expenditures + export 
– import

–– GDP at factor cost = Nominal GDP – indirect taxes + subsidies 
–– Nominal GNP = Nominal GDP + net foreign income 
–– Fixing the input-output coefficients inside the SAM to the level of the previous 

period, implying that the structure of the Gabonese economy has not changed 
during the preceding years. Such a hypothesis remains realistic in the case of 
most developing countries, over a relatively long period. 

–– All accounts concerning business with the rest of the world have been fixed to 
the known level from international sources. This is so because, generally, data on 
international business remain reliable even in the case of developing countries.

When analysing the discrepancy between the prior and the posterior SAM, important 
modifications are observed. In particular, important discrepancies take place in the 
case of the institution and factor accounts. For instance, we note that wage assess-
ment in the petroleum sector is probably underestimated for the senior executive 
category by around 300% of the real value deriving from post entropy modelling. In 
the period 1977, It had been pointed out many times by international institutions and 
media that financial transparency in Gabon needed to be improved. We note large 
modifications in factor inputs for bank and insurance activities.

Finally, it is important to note that outputs from Shannon cross-entropy (reported 
in Bwanakare, 2013) are identical to those from Tsallis cross-entropy formalism. As 
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pointed out many times, this suggests that we are dealing with a Gaussian distribu-
tion model. Thus, since similar outputs have been published in the above reference, 
outputs from the non-extensive entropy technique are not presented in this mono-
graph. Nevertheless, interested readers can obtain more details on these outputs.

To conclude, the question of assessing the performance of the approach could be 
posed here. In fact, since no previous, benchmark SAM exists in the case of Gabon41, it 
is difficult to know to what extent we have deviated from values representing the true 
level of economy. Fortunately enough, entropy approach allows additional informa-
tion embodied by the macroeconomic restrictions to be easily incorporated into the 
model. Next, when optimum solution is reached, we then get the best results, generally 
conforming to our expectations. This should be the case in the present Gabon model.

4.6  About the Extended SAM

A SAM can be extended in different ways and for different purposes. Generally a SAM 
is extended to incorporate monetary aspects of the economy or to take into account 
the natural environment. In this document, we will deal with this last case only. 

A SAM can be extended and incorporate auxiliary accounts concerning the envi-
ronment and natural resource sectors, so that it becomes possible to analyse inter-
actions between them and the economy. In fact, an environmentally extended SAM 
(ESAM) usually captures the relationships among economic activities, pollution 
abatement activities, and pollution emissions. The multiplier and structural path 
analyses are applied to the ESAM for assessing environmental impacts of pollution-
related economic policies.

Recent literature shows that an ESAM can be a useful tool for environmen-
tal policy analysis. Interested readers can find rich and detailed information in the 
monograph of Plich (2002).

Table 13 presents a Polish unbalanced ESAM. The particularity of that matrix is 
that we have added four new sectors related to ecological activity. The first sector is 
the abatement ecological activity sector. In that sector, firms carry out depollution 
activities. The second sector is the abatement ecological commodity sector, which 
offers the produced services and products to the market. The third sector is that of 
pollution fees. Firms (or households) must pay tradable pollution permits or other 
forms of tax to government as a cost of using the polluting engines. In this context, 
this sector is considered as a (negative) factor of production Plich (2002). The last 
sector concerns the environmental capital accumulation for depolluting activity. It is 

41 As in many developing countries, even if it existed, it would not necessarily represent a good 
reference.
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worth emphasising that Table 13 may display more or less weakness since any bench-
mark table for Poland has not been found in the existing literature. The sole source of 
data used is the Polish Central Office of Statistics (GUS). Under these circumstances, 
let us suppose that more reliable information does not exist, as it often happens for 
this kind of research. Finding results using traditional approaches may take time and 
reliability of outputs is generally limited since environmental data assessment is a 
difficult task. The purpose of this section is to apply entropy formalism to update the 
unbalanced Table 13. As we already know, the more significant moment restrictions 
are, the less significant precision errors will result. There are many reasons to con-
sider the non-extensive entropy model to be—in this case of an ecological model— an 
ideal balancing rule since it has been proven to display multidisciplinary properties in 
many application areas. After having applied cross-non-extensive entropy formalism 
(see Equations 4.18–4.21), we present below Table 14 an environmentally extended 
(aggregated) balanced Polish SAM (2005). In this experiment, accounts related to gov-
ernment and to foreign operations are supposed to be known with a random error. 
Such restrictions seem acceptable for a country like Poland, where statistical data on 
government incomes and expenses or operations with the rest of the world remain 
sufficiently reliable. The next restriction has concerned matrix cells with zero values 
in the initial Table 13. These zero value cells have been supposed to be known with 
certainty so that no change has modified them after computation. Information diver-
gence between the two tables is reported in Table 15. Values inside the cells are in 
percent. The reader may notice the precision of the model, through the retained con-
straining variables in the minimization entropy model.
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Glossary of table abbreviations:

aAct: activity sector
aPOLLABAT: abatement ecological activity sector
pCom: commodity sector
pPOLLABAT: abatement ecological commodity sector
Labor: labor sector (factor of production)
Capital: capital sector (factor of production)
Pollfees: pollution fees sector (factor of production)
Hou: households institution
Ent: enterprise institution
GRE: government institution
CapAc: capital accumulation sector (private investment).
CAPACENV: abatement -oriented capital accumulation sector (private investment)
RoW: rest of the world institution.


