
1  Information and its Main Quantitative Properties

1.1  Definition and Generalities

This chapter constitutes the base of the next theoretical formalism to be developed 
in this part of the book. The connection between the Bayesian rule and Kullback 
information divergence is first envisaged. This will permit a better understanding of 
Shannon-Jaynes-Kullback cross-entropy. The next section will deal with the connec-
tion between Shannon-Gibbs entropy and non-extensive (Tsallis) entropy. Finally, the 
generalized non-extensive cross-entropy will be presented for further applications in 
the remaining parts of the work.

Many forms and measures of information exist. As far as parameters linked to 
data observations are concerned, one well-known measure of information was pro-
vided by R.A. Fisher in 1929. As will be clear below, the next can be log(n), explaining 
the sum of n hypotheses Hi, all uniformly distributed and known as Hartley’s infor-
mation measure, Hartley (1928). Information theory has its mathematical roots in the 
concept of disorder or entropy in statistical mechanics. Kullback (1959) provides an 
extensive literature on the form and mathematics linking entropy and information 
theory. As mentioned, the next formal definition will be followed by theoretical and 
empirical extensions arising from the entropy principle.

Let us now develop a workable measure of information obtained through obser-
vation of an event having probability p. Our first problem is to ignore any particular 
features of the event and focus only on whether or not it happened. Thus we will think 
of an event as the observance of a symbol whose probability of occurring is p. Thus, 
the information will be defined in terms of the probability p.

Let us consider the probability spaces (χ, ϑ, μi), i = 1,2 as a basic set of elements Χ ϵ 
χ (sample space) and the σ — algebra ϑ, a collection of all possible sets of events from 
χ with the probability measure μi. Under general assumptions of the above probability 
measures, in particular those stating their absolute continuity with respect to one 
another, let λ ≡ μi. By the Radon-Nikodym theorem (e.g., Loeve, 1955), there exist func-
tions ſi(x), i = 1,2, called generalized probability densities, 0 < ſi (x) < ∞ [λ] such that:

 𝜇𝜇𝑖𝑖(E) = ∫ 𝑓𝑓𝑖𝑖(𝑥𝑥)𝑑𝑑𝜆𝜆(𝑥𝑥),
E

  𝑖𝑖 = 1,2 ,	 (2.1)
E

for all E belonging to the σ — algebra ϑ. Following Kullback (1959) and Halmos & 
Savage (1949), the symbol [λ], pronounced “modulo λ”, means that the assertion is 
true along with all the support space of events E except the case for E ϵ ϑ and λ (E)=0.

In (2.1), the function ſi(x) is also referred to as the Radon-Nikodym derivative. If 
the probability measure μ is absolutely continuous with respect to the probability 
measure λ and the probability measure v is absolutely continuous with respect to μ, 
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then the probability measure v is also absolutely continuous with respect to λ, and the 
Radon-Nikodym derivatives satisfy:
𝑑𝑑𝑑𝑑
𝑑𝑑𝜆𝜆 = 𝑑𝑑𝑑𝑑

𝑑𝑑𝜇𝜇 ∙ 𝑑𝑑𝜇𝜇𝑑𝑑𝜆𝜆 [𝜆𝜆] 

The defined symbols above allow us to better derive the conceptual definition of 
information below as it will be understood in the coming chapters of this book.

Next, let Hi, i = 1,2, be the hypothesis that a variableis X from the statistical pop-
ulation with probability measure μi. Then, by applying Bayes’s theorem, it follows 
that:
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After transformations with respect to logarithms of relative function densities 
ſi(x), we obtain:
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where: x is an element of X; P(Hi) is the prior probability of Hi and P(Hi | x) is the pos-
terior probability of Hi. The logarithm in (2.3) stands for an information measure base 
unit (Hartley, 1928). The right-hand side of (2.3) is an informative measure resulting 
from the difference (positive or negative) between the logarithm of the odds in favour 
of Hi once observation of x has occurred and before it occurred. 

Thus, following Kullback, one defines the logarithm of the likelihood ratio,
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as the information in X = x for discrimination in favour of H1 against H2. An interesting 
alternative definition of information after (2.3) is the weight of evidence for H1 given x 
(Kullback, 1959), (Good, 1963). Next, most informative is the mean information for 
discrimination in favour of H1 against H2 given x∈ E∈ ϑ, for μ1, which is defined as 
follows:
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with = dμi (x) = ſ1(x)d λ (x).
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Here one has treated the general case when E represents the entire sample space χ 
and then must not appear as support space for integration (see 2.1). The last member 
in (2.4) is the difference between the mean value, with respect to μ1, of the logarithms 
of the posterior and prior odds of the hypotheses. Following Savage (1954), Kullback 
(1959), I(1:2) could be referred to as the information of μ1 with respect to μ2.

Let us extend the above general definition of information to some known cases. 
Suppose we have a set (categories) of hypotheses , Hi = 1, 2,.., n and that from observa-
tion, we can infer with certainty which hypothesis is true. Then the mean information 
in an observation about H is the mean value of -log P(Hi), that is,

P(H1) log P(H1) – P(H2) log P(H2) – ...– P(Hn) log P(Hn).	 (2.5)

The expression in (2.5) above is called entropy of the âj (e.g., Khinchin, 1957; 
Shannon, 1948). When hypotheses Hi are uniformly distributed (then equally prob-
able) so that

P(Hi) = 1/n, i = 1...n; this leads to      ,log)(log)(
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which turns out to be Hartley’s information measure.
As shown below, an interesting applicability of (2.4) may concern the analysis 

of hypotheses Hi, i = 1,2, on dependency between variables x and y  0q  or on 
the measure of divergence between given hypotheses Hi. Presenting relationships 
between information discriminating measure and dependency between variables 
will be useful when we introduce an inferential approach for entropy econometrics 
models. In particular, measure of divergence constitutes, once again, the cornerstone 
of the present work in which a priori and a posteriori hypotheses will be recalled in 
many applicable analyses.

Suppose we have the entire sample space χ being the Euclidean space of two 
dimensions R2 with elements X = (x, y). Let us consider that under H1 variables x and y  
(∀q ≺  ≻  0) are dependent with probability density f(x, y) and that, under the alternative 
hypothesis H2, both variables are independent with probabilities g(x) and h(y). In this 
case, we rewrite (2.4) as follows:
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Information measure I(μ1 : μ2) is nonnegative (Kullback, 1959) and equal to zero 
if and only if f(x, y) = g(x) h(y) [ λ ]. As such, it constitutes an informative indicator 
on dependency degree between x and y (∀q ≺  ≻  0). Note that in the case of a bivariate 
normal density 
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where hypothesis H2 then represents the product of the normal densities as explained 
in (2.6), and finally one obtains:

)1log(
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21  I   ,	 (2.7)

which indicates that in the case of bivariate normal distribution, as expected, the 
mean information is discriminatory in favour of H1 (dependence) against H2 (indepen-
dence); that is I(μ1 : μ2) is a function of the correlation coefficient ρ alone.

Following (Jeffreys, 1946), (Kullback, Information theory and statistics,, 1959), if 
we define I(2 : 1) as
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as the mean information from μ2 for discrimination in favour of H2 against H1, one can 
define the divergence (noted ∇) by:

∇(H1, H2) = I(μ1 : μ2) + I(μ2 : μ1) = )(
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Thus, ∇(H1, H2) measures the divergence between H1 and H2 or between μ1 and μ2. 
As such, it constitutes a measure of the difficulty of discriminating between them.

1.2  Main Quantitative Properties of Statistical Information

The approach undertaken here is axiomatic (Carter, 2011). It is worthwhile to note 
that we can apply this axiomatic system in any context where we have an available 
set of non-negative real numbers. This can be the case, for instance, when we dispose 
of non-negative coefficients (noted p) of a given set and target the estimation of the 
related model parameters through their reparametrization (Golan, Judge & Miller, 
1996). Naturally, we will come back to such applications, and an estimation approach 
using probabilities and support space simultaneously will be presented. This under-
scores an important role to be assigned to the probability form of numbers, which 
motivated the selection of the axioms below. We will want our information measure 
I(p) to have several properties:
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1.	 Information is a non-negative quantity, i.e., I(p) ≥ 0. Following what has been pre-
sented above on information definition (see 2.4), one may generalize this prop-
erty to convexity in the next theorem:
Theorem: I(p1 : p2) is almost positive defined, that is I(p1 : p2) ≥0 with equality if 
and only if ſ1(x) = ſ2(x) [λ]. 
We will not demonstrate this theorem (see Kullback, 1959, pp. 14–15); we just 
provide the reader with the essence channelled through it. The above theorem 
explains that in the mean, discrimination information from statistical observa-
tions is positive. It follows from what has been previously said that no discrimi-
nation information will result if the distribution of observations is the same [λ] 
under hypothesis one and two. A typical example—as we will see later—may con-
stitute maximum entropy and cross-entropy principles. In that case, when non-
informative consistency moments from observations are not provided, minimum 
cross-entropy declines into maximum entropy.

2.	 If an event has probability 1, certainty follows, and we get no information from 
the occurrence of the event: I(p = 1) = 0.

3.	 If two independent events occur (whose joint probability is the product of their 
individual probabilities), then the information we get from observing the events 
is the sum of the two pieces of information: 
I(p1 p2) = I(p1) + I(p2). This property is referred to as additivity. Note that this prop-
erty presents a valuable feature; it represents the basis of the logarithmic form 
of information. Intuitively, that means that a sample of n independent observa-
tions from the same population provides n times the mean information in a single 
observation.
In the case of non-independent events, the additive property is retained, but in 
terms of conditional information. 

4.	 Finally, as already stipulated in the preceding section, we will want our infor-
mation measure to be a continuous (and, in fact, monotonic) function of the 
probability—slight changes in probability should result in slight changes in infor-
mation. For consistency with the properties above, it can be useful to show the 
logarithmic feature of statistical information in the following way:

1. I(p2) = I(pp) = I(p) + I(p) = 2I(p)				                     (2.10)

2. Through inductive reasoning, one can generalize (2.10) and  rite, I(pn) = 
nI(p)

3. I(p) = I((p1/m)m) = m(p1/m)

and we have
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and, once again, we can generalize in the following way :

)()( / pI
m
npI mn   

4. The property of continuity allows us to write, for 0 < p ≤ 1 and a real 
number α:

)()( PIpI    .

From (2.10), one can observe that an operator transforming the probability p at 
the power n/m, (that is, pn/m) into an information measure I(pn/m) displays a logarithmic 
property of additivity. This allows us to write a general, useful relation:

)1(log)(log)( pppI bb    for base b.	 (2.11)

For other information properties not directly connected with the aim of this work, 
such as invariance or sufficiency, which will not be presented here, see Jaynes (1994), 
Kullback (1959). Furthermore, in the coming chapters, additional properties for differ-
ent forms of entropy will be presented, such as concavity and stability (common for 
both Shannon-Gibbs and Tsallis entropies) or extensivity (common for both Shannon-
Gibbs and Renyi (1961) entropies).

As a final remark of this section, it is important to note that the above logarithmic 
nature of information as explained in (2.11)—for the case of independent events—is 
limited to ergodic systems which convey additive-extensive properties of information 
in the case of independent events.


