
Guth, Susanne

Book — Digitized Version

Interoperability of DRM Systems: Exchanging and
Processing XML-based Rights Expressions

Forschungsergebnisse der Wirtschaftsuniversität Wien, No. 14

Provided in Cooperation with:
Peter Lang International Academic Publishers

Suggested Citation: Guth, Susanne (2006) : Interoperability of DRM Systems: Exchanging and
Processing XML-based Rights Expressions, Forschungsergebnisse der Wirtschaftsuniversität Wien,
No. 14, ISBN 978-3-631-75423-8, Peter Lang International Academic Publishers, Berlin,
https://doi.org/10.3726/b13942

This Version is available at:
https://hdl.handle.net/10419/182847

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3726/b13942%0A
https://hdl.handle.net/10419/182847
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Interoperability of DRM
Systems

F O R S C H U N G S E R G E B N I S S E D E R
W I R T S C H A F T S U N I V E R S I TÄT W I E N

Susanne Guth

The study deals with the cutting-edge subject of electronic contracts which have
the potential to automatically process and control the access rights for (electronic)
goods. It shows the design and the implementation of a rights expression exchange
framework. The framework allows DRM systems to exchange electronic contracts,
formulated in a standardized rights expression language, and thus provides DRM
system interoperability. The work introduces a methodology for the standardized
composition, exchange and processing of electronic contracts or rights expressions.

Susanne Guth received her degree in Information Systems from the University of
Essen in 2000. She specialized in software techniques and production/operations
management and studied at Clemson University in Clemson, South Carolina
(USA) in 1997. Since 2000, she has been an assistant professor in the Department
of Information Systems at Vienna University of Economics and Business
Administration. For the last six years, her research focus has been on contract and
rights management for digital goods. Since 2005, Susanne Guth has been working
for a German mobile network operator and designs products in the field of content
distribution and DRM. Susanne Guth is co-leading the ODRL initiative.

F O R S C H U N G S E R G E B N I S S E D E R
W I R T S C H A F T S U N I V E R S I TÄT W I E N

Susanne Guth

Interoperability of DRM Systems

Interoperability of DAM Systems

Forschungsergebnisse der
Wirtschaftsuniversitat Wien

Band 14

• PETER LANG
Frankfurt am Main · Berlin · Bern · Bruxelles· New York · Oxford · Wien

Susanne Guth

Interoperability
of ORM Systems

Exchanging and Processing
XML-based Rights Expressions

£
PETER LANG

Europaischer Verlag der Wissenschaften

Open Access: The online version of this publication is published
on www.peterlang.com and www.econstor.eu under the interna-
tional Creative Commons License CC-BY 4.0. Learn more on
how you can use and share this work: http://creativecommons.
org/licenses/by/4.0.

This book is available Open Access thanks to the kind support of
ZBW – Leibniz-Informationszentrum Wirtschaft.

ISBN 978-3-631-75423-8 (eBook)

Bibliographic Information published by the Deutsche
Natlonalblbllothek
The Deutsche Nationalbibliothek lists this publication in the
Deutsche Nationalbibliografie; detailed bibliographic data is
available in the internet at <http://www.d-nb.de>.

Q)
:f!

Printed with support of the
Wirtschaftsuniversitat Wien.

ISSN 1613-3056
ISBN 3-631-53845-6

US-ISBN 0-8204-7718-4

© Peter Lang GmbH
Europaischer Verlag der Wissenschaften

Frankfurt am Main 2006
All rights reserved.

All parts of this publication are protected by copyright. Any
utilisation outside the strict limits of the copyright law, without

the permission of the publisher, is forbidden and liable to
prosecution. This applies in particular to reproductions,

translations, microfilming, and storage and processing in
electronic retrieval systems.

Printed in Germany 1 2 3 4 5 7

www.peterlang.de

Fiir meine Felsen in der Brandung: Papi, Mutti und Kerstin,

und fur Christian, der mein Leben versiiftt.

Acknowledgements

First of all, I would like to thank Prof. Gustaf Neumann and Prof. Al-
fred Taudes for supervising this thesis. In particular, I am indebted to
Prof. Gustaf Neumann for numerous discussions and for his support in the
rapid completion of this thesis. My thanks also go to my friends and all
colleagues at the Department of Information Systems, especially to Mark
Strembeck and Uwe Zdun who have always been open for discussions and
who have given me a very agreeable working environment. Renato Iannella
was always available for technical support and advice concerning the Open
Digital Rights Language. I am indebted to Margit De Toma, who has ac-
complished most of the technical implementation of the rights expression
generator. Further more I am grateful to my friend Tina Litschauer who
spent a good deal of her spare time to correct my English vocabulary and
grammar mistakes. Again, thanks to all of you without whose promotion
this promotion would not have been possible.

Contents

Acronyms

List of Figures

List of Tables

13

14

16

1 Motivation 19
1.1 Introduction . 19
1.2 The Impact of Standardised Contracts to Electronic Commerce 21
1.3 Objectives of this Doctoral Thesis . 23
1.4 Classification into Research Theory . 27
1.5 Structure of this Doctoral Thesis . . 33

2 Digital Rights Management Systems
2.1 Trading Digital Goods

2.1.1 Characteristics of Digital Goods .
2.1.2 Business Models for Digital Goods

2.2 Digital Rights Management (ORM).
2.2.1 DRM Definition

37
38
38
38
41
41

2.2.2 Perspectives of DRM 42
2.3 A Sample Digital Rights Management System and its Functions 46

2.3.1 DRM System Functions 47
2.3.2 A Sample ORM System 53
2.3.3 A Sample DRM Process 54
2.3.4 Commercial ORM Products and

DRM System Variants 59
2.4 The Role of Rights Expression Languages in DRM 63

10

3 Rights Expression Languages (RELs)
3.1 Definition of Terms ...

67
67

3.2 Requirements of RELs . 68
3.3 Characteristics of RELs 70

3.3.1 REL Syntax. . . 71
3.3.2 Rights Data Dictionary (RDD) 72

3.4 Existing Rights Expression Languages and Initiatives . 73
3.4.1 Open Digital Rights Language (ODRL) . . . 73
3.4.2 eXtensible rights Markup Language (XrML) . 81
3.4.3 MPEG 21 83
3.4.4 LicenseScript

3.5 Current Market Situation and Trends

4 Electronic Contracts
4.1 Contract Life Cycle.
4.2 Contract States . . .

84
84

87
89
90

4.3 Execution of Rights 92
4.3.1 Electronic Contracts, Electronic Tickets, and Licenses 93
4.3.2 Ticket-Driven Rights Execution .
4.3.3 Hybrid Rights Execution . .

4.4 Contract Objects and Contract Use .. .
4.4.1 Core Contract Objects

95
97
98
98

4.4.2 Sample Usage Scenarios for Electronic Contracts . 101
4.4.3 Scenario-Specific Contract Objects 103

4.5 Contract Modelling and Creation 104
4.5.1 Required Information for Specific Software Services . . 105
4.5.2 Modelling Scenario-Specific Contracts .
4.5.3 Scenario-Specific Contract Composition

4.6 The Generic Contract Schema
4.6.1 Definition of Terms
4.6.2 Application-Specific CoSa Example
4.6.3 The CoSa API
4.6.4 CoSa Serialisation

4. 7 Enforceability of Electronic Contracts
4.8 Contract Management Issues
4.9 Related Work

. 109

. 112

. 115

. 115

. 117

. 121

. 124

. 126

. 129

. 138

11

5 Design of a Rights Expression Exchange Framework 145
5.1 Exchanging Rights Expressions 145

5.1.1 The Communication Model 146
5.1.2 The Rights Expression Communication Model . 147

5.2 The Rights Expression Exchange Framework . 149
5.2.1 Technical Design 150
5.2.2 Implementation Check List 153

6 Implementing the Rights Expression Exchange Framework157
6.1 Software Architecture 157

6.1.1 The XOTcl Language 158
6.1.2 ActiWeb . 160
6.1.3 Document Object Model (DOM) Implementation . . 161
6.1.4 MySQL 163
6.1.5 OpenSSL 163

6.2 The Rights Expression Generator . . 164
6.2.1 Functional Description 165
6.2.2 Class Hierarchy 168

6.3 The Rights Expression Interpreter . 169
6.3.1 Functional Description 170
6.3.2 xoREL Packages and Classes . 172
6.3.3 Mapping ODRL Elements to the Contract Schema . 176

6.4 The Rights Expression Wrapper and Unwrapper . 179
6.4.1 Functional Description . . . 180
6.4.2 Class Hierarchy and API . 181

6.5 The Mediator 182
6.6 Implementation Assumptions . 183
6. 7 Related Work 184

7 Case Study of the Rights Expression Exchange Framework189
7.1 Access Control with Context Constraints 191
7.2 Access Control Decision Based on Electronic Tickets . 196

7.2.1 Application-Specific CoSa 197
7.2.2 Generating ORM-Specific Licenses 198
7.2.3 Wrapping DRM Licenses 200
7.2.4 Unwrapping, Interpreting and Processing DRM Li-

censes 200

8 Conclusion and Future Work 209

12

9 Appendix A 215
9.1 ODRL Foundation Model 215
9.2 XML Schema of ODRL Syntax Version 1.1 215
9.3 XML Schema of ODRL Data Dictionary Version 1.1 . 222

10 Appendix B 229
10.1 CoSa Application Programming Interface 229
10.2 Extended CoSa Application Programming Interface 234
10.3 Wrapper/ Unwrapper Application Programming Interface .. 237

Bibliography 241

Index 260

Acronyms

API Application Programming Interface
ATM Automated Teller Machine
B2B Business to Business
B2C Business to Consumer
C2C Consumer to Consumer
CoSa Contract Schema
CRM Customer Relationship Management
DAC Discretionary Access Control
DOI Digital Object Identifier
DOM Document Object Model
DTD Document Type Definition
EDI Electronic Data Interchange
FTP File Transfer Protocol
HTML Hytertext Markup Language
HTTP Hypertext Transfer Protocol
IEC International Electrotechnical Commission
IPR Intellectual Property Rights
IS . Information Systems
ISBN International Standard Book Number
ISO International Organization for Standardization
ISSN International Standard Serial Number
LOM Learning Object Metadata
MAC Mandatory Access Control
MIS Management Information Systems
MPEG Moving Picture Experts Group
OCR Optical Character Recognition
ODRL Open Digital Rights Language
OMA Open Mobile Alliance
PDA Personal Digital Assistant

13

14

PDF Portable Document Format
PHP Hypertext Preprocessor
PKI Public Key Infrastructure
RBAC Role Based Access Service
RDBMS Relational Database Management System
RDD Rights Data Dictionary
RDF Resource Description Framework
RE Rights Expression
REL Rights Expression Language
SGML Standard Generalized Markup Language
SIM Subscriber Identity Module
SQL Structured Query Language
SSL Secure Socket Layer
Tel Tool command language
TCP Transmission Control Protocol
TLS Transport Layer Security
W3C World Wide Web Consortium
XML eXtensible Markup Language
XOTel eXtended Object Tel
XrML eXtensible rights Markup Language

15

List of Figures

2.1 The six perspectives of DRM 42
2.2 The DRM perspectives in the order of their influence on DRM

systems . 45
2.3 Basic and extended functions of DRM systems 48
2.4 A sample DRM system . . 53
2.5 A sample DRM process . 56
2.6 InterTrust's DRM system 61

3.1 A subset of the ODRL language syntax 75
3.2 A simplified subset of XML schema defining ODRL . 77
3.3 A valid language instance of the simplified ODRL schema 78

4.1 A simple contract life cycle with four phases 89
4.2 Basic states and state transitions of electronic contracts 91
4.3 Contract right versus permissions 93
4.4 Contracts and tickets - an example 94
4.5 Combination of tickets and direct rights processing 97
4.6 The abstract core objects of electronic contracts 99
4. 7 Various usage scenarios for electronic contracts . 104
4.8 Assigning permissions in RBAC 106
4.9 Application-specific data model ll0
4.10 Example of mapping of objects instances and their attributes

to software services . ll2
4.ll Composing tailored electronic contracts ll4
4.12 Class diagram of an application-specific Contract Schema . ll8
4.13 Application-specific contra.ct schema ll9
4.14 Instance of an application-specific Contra.ct Schema . 120
4.15 The enforceability matrix 128

16

4.16 Sample operations when managing electronic contracts 130
4.17 General structure of an service level agreement [LDF+o2] .. 139
4.18 Simplified model of contracts applied in a WFWM [KGV99] . 141

5.1 The communication model [Sch71] 146
5.2 The rights expression communication model 147
5.3 Components of a rights expression exchange framework . 151

6.1 Technology used in the rights expression exchange framework 158
6.2 Features of XOTcl, OTcl, and Tel . . . 159
6.3 Basic architecture of ActiWeb [NZ00a) . 160
6.4 A general DOM-tree 162
6.5 Choice of ODRL tags 166
6.6 Display and store generated ODRL rights expression . 166
6.7 Choosing constraints via the customised generator GUI . 167
6.8 Reused software packages in the rights expression generator . 168
6.9 Class hierarchy of ODRL specific elements 169
6.10 Functional layers of XML-based rights expressions . 170
6.11 The interpretation process 171
6.12 Classes of the package contract 173
6.13 Classes of the package reinterpreter 175
6.14 Packages with wrapping respectively unwrapping functionality182
6.15 The mediator, using framework components and other packages183

7.1 Execution of an access request 193
7.2 Sample access permission with constraints 193
7.3 xoRBAC access control decisions with context constraints . 195
7.4 The application-specific CoSa 198
7.5 Provide license templates with the generator 199
7.6 Mediator code combining generator and wrapper functionality 201
7. 7 Sequence diagram with basic activities of the secure viewer . 202
7.8 Runtime model of the DRM CoSa objects . 204

9.1 The foundation model of ODRL [Ian02b). . 216

17

List of Tables

4.1 Characteristics of application-specific and domain-specific
CoSa. 117

4.2 Possible role names in application-specific CoSa . 121

6.1
6.2
6.3
6.4

Possible role names in application-specific CoSa . 174
. 178
. 179

Mapping of ODRL asset context to CoSaResource objects
Mapping of ODRL party context to CoSaParty objects ..
Mapping of ODRL agreement/offer context to CoSaContract
objects . 180

19

Chapter 1

Motivation

The first section shall deliver an overall insight about this doctoral thesis.
Section 1.1 gives a short introduction to the exchange of rights on goods
or services within the scope of electronic commerce {short: e-commerce)
and gives some examples of drawbacks that the current non-standardised
e-commerce technology has. Section 1.2 then provides the theoretical back-
ground why standardised technology can improve and quicken e-commerce.
In Section 1.3 the objectives of this doctoral thesis are defined. The subse-
quent section deals with the classification of this thesis into research theory
(see Section 1.4) and introduce the research methods that have been ap-
plied. The first chapter closes with an overview of the overall structure of
this thesis (see Section 1.5).

1.1 Introduction

The Internet has evolved as worldwide e-commerce platform for digital
goods. Technically, digital goods are any kind of information that can be
digitised, such as baseball scores, books, databases, software, magazines,
movies, music, stock quotes, and web pages [SV99]. Most of the existing
digital goods did not evolve with the penetration of the Internet, but simply
changed their medium from physical to digital. The digital medium offers a
large spectrum of new ways for commercialisation [WIP02]. Ten years ago,
for example, one obtained a certain song by buying the complete album for
€10.00 in form of a compact disc or on vinyl, i.e. there was only one way
to purchase this song, because it was bound to the medium of a compact
disc. Producing a compact disc for ea.ch song on the album is far too cost

20

intensive and risky. By using the Internet as medium, these boundaries
melt and it is possible to bring this song to market in various forms: as a
single song for e.g. €1.00, in a bundle of 5 songs for €3.00, and with the
restriction to play the song only five times for €0.50. The production costs
of these three products are low, as the copying and bundling of digital goods
is cheap.

The Internet gains increasing importance as distribution channel for dig-
ital goods [Bak98, Zhu0l]. The distribution via the Internet is also cheap
for the seller, as normally the consumer pays the carrier costs. People and
companies from all over the world have business with each other trading
both physical and digital goods. The basis for each business is a contract.
Today's electronic business works with electronic contracts concluded be-
tween two dislocated contracting parties that are not very transparent. An
electronic contract is an agreement of two or more parties, on the exchange
of rights to (digital) goods or services under certain terms and conditions.
The memorandum of an electronic contract is digital and can be transmitted
via an electronic network (see Section 4).

With a simple click, you can purchase a book, a song, a washing ma-
chine. What is missing, most times, is the contract information in a format
that enables consumers, vendors, and third parties to reconstruct what ex-
act product has been purchased, who the contract parties are, and which
permissions and duties have been agreed on. Nowadays, contracts that are
concluded via the Internet are either not explicitly stored or kept as data-
base entries in a proprietary format, containing relevant information for the
processing software system. For example, the EducaNext platform1 , a bro-
kerage platform for learning resources, stores booking id, resource id, user
id, and optionally a comment, after a learning resource has been booked.
This fact has a number of drawbacks:

• People enter into proprietary contracts with each business partner.
The non-standardised representation of terms and conditions is not
transparent or comparable.

• The contracts can not be presented to or verified by a third person
(e.g. a lawyer or a bank) because in most cases electronic contracts
are ambiguous and/ or not readable for humans.

• The contracts can not be exchanged between platforms that do not
operate with the same software or did not agree on a common contract
format.

1See: http://www.educanext.org/

21

• Because of the non-standardised format of contracts, most times elec-
tronic contracts have to be fulfilled with the platform where they have
been concluded. For example, one can not buy a contingent of 100
music units and spend it at arbitrary online music providers.

• Contracts also contain valuable information for various business ap-
plications (access control, book keeping, customer relationship man-
agement, etc.). Today, most contracts are designed to be processed
in a single application. Changing the contract structure or the con-
tract content usually requires an adaptation of database tables and
software.

• In the pricing model (see Section 2.1) 'playing a certain music file
5 times for €0.50' the contract comprises the constraint information
(play only five times). This information usually has to be interpreted
by the digital player (also called secure viewer. To understand and
enforce the constraint information, the player has to understand the
proprietary format. As a result, today's online music shops all have
their own player, to the displeasure of the customer.

Most likely, this is not a complete list of disadvantages, but it shows a
number of severe drawbacks when using proprietary contracts. This thesis
aims at giving a basis to reduce these disadvantages. To reason the objec-
tives of this thesis more profoundly, the subsequent chapter describes the
theoretical background to the advantages of deploying standardised elec-
tronic contracts.

1.2 The Impact of Standardised Contracts to
Electronic Commerce

Electronic Commerce is the 'business activities conducted using electronic
data transmission via the Internet and the world wide web' [SPOO]. Sev-
eral parties profit from e--<;ommerce, e.g. consumers and providers of phys-
ical and digital goods: consumers benefit from accessing global markets for
electronic and physical goods via the Internet. In turn, content providers
can sell their products and services on global markets and in narrow mar-
ket segments that may be geographically distributed [NJRWOl]. Apart
from providers and consumers, many additional actors will profit from e--
commerce [Rig03], namely the actors in the business to business (B2B)
context that are involved in the supply chain: e.g. actors in procurement,

22

content creation, content packaging, content publishing, content selling, con-
tent distribution, content consumption services, and customer relation ship
management [Sup03, Ian03b, Sun02, Ass00].

Cooperation among various actors in the supply chain results in a net-
work of actors on the Internet. The term 'Metcalfe's Law'2 , sometimes
also called network effect, that was coined by Gilder [Gil93], states that the
value of a network grows with the square of the number of participants.
In other words, each additional member of a network adds an incremental
amount of value to every other member, thus increasing the aggregate value
of the network in a quadratic fashion, while the cost-per-user remains the
same or even decreases. This means that actors cooperating in the supply
chain build an e-commerce network that is more valuable than a number
of isolated actors. For example, a number of content publishers found a
consortium to offer their goods via a common portal and agree on using
a certain payment method. If their customers trust this consortium and
find the payment method comfortable and secure, a new member of the
consortium will easily be accepted and trusted by the customer as well.
The consortium reaches more customers by affiliating new members, and
the customer has more products at the favorite content publisher portal to
choose from.

In practice, organisations have aspired to achieve better collaboration
with partners via interorganisational systems like electronic data inter-
change (EDI) that permit firms to exchange electronic information. How-
ever, most attempts have been focused on pairs of business partners rather
than on providing an open standardised solution [CM03]. Such technology is
hindering the network effect because a data interchange with all partners in
a large community is not intended. Besides earlier attempts of cooperation
have not been based on legally binding contracts which has caused increas-
ing costs for managing collaboration and reduced its advantages [WBK03].
Accordingly, a general solution is required that facilitates the standard-
ised data interchange of business to consumer (B2C), business to business
(B2B), and also consumer to consumer (C2C). In particular, standardised
contracts are required to state legally binding obligations between providers
and sellers of goods and services in an electronic market [GSSS00], i.e. all
actors in the supply chain.

To underline the importance of such standardised technology, the subse-
quent paragraphs will present studies that have investigated the perceived

2 Attributed to Robert Metcalfe, originator of Ethernet and founder of 3COM

23

strategic value of information technology (IT) in general, the strategic value
of e-commerce systems in particular, and the influencing factors to adopt
e-commerce systems.

• Strategic value. In most studies the perceived strategic value of in-
formation technology focuses on the relationship between IT and the
firm's performance. In [HE96] is was found that IT increases pro-
ductivity and consumer surplus but not necessarily business profits.
In [GP03] it is therefore concluded that "IT investments are impor-
tant to maintain competitive parity but do not necessarily support
competitive advantage". For e-commerce, as one particular field of a
company's IT, [SS02] found that the most important area in which e--
commerce will create value is in reducing transaction costs involved in
bringing consumers and suppliers together. After reviewing a number
of relevant studies in this field [GP03] identifies organisational sup-
port, managerial productivity, and decision aid as strategic reasons
for e-commerce.

• Technology adoption. Statements on information technology adoption
are often based on the Technology Acceptance Model (TAM) devel-
oped by Davis [Dav89]. In [LMSZOO] investigations based on TAM
on different applications, such as e-mail, Internet, ATM , and MS
Word, have been summarised. The results show that ease of use and
perceived usefulness are the major factors that affect the intentions to
technology use. Perceived benefits, organisational readiness, and ex-
ternal pressure were considered to be important factors for the adop-
tion of EDI technology in the study of [IBD95]. In (GP03] a study
with small and mediums sized businesses identified that the factor of
compatibility is highly influencing the adoption of e-commerce tech-
nology.

1.3 Objectives of this Doctoral Thesis

Standardised electronic contracts are an important building block for com-
patibility and consequently a basis for cooperation between companies and
customers doing electronic commerce. Studies about the adoption of elec-
tronic commerce clearly show that among other factors the perceived ease
of use, the perceived usefulness, and especially the compatibility of e--
commerce systems are the main reasons for the adoption of e-commerce
systems (see Section 1.2). Therefore, electronic contracts as an elemen-
tary constituent of electronic commerce need to be easily exchangeable and

24

processable to provide compatibility for e-commerce systems. Thus, elec-
tronic contracts have the potential to acquire the same acceptance, validity
and trustworthiness as contracts in the paper world, and to quicken elec-
tronic commerce. To achieve this goal technically, a number of issues have to
be solved: standardised syntax, semantics, and processing approach. Elec-
tronic contracts must have standardised syntax and semantics to be mean-
ingful, machine readable, human and machine interpretable and revisable.
Standardised syntax and semantics provide a language that, in turn, al-
lows for exchanging contract information. Additionally, a standardised way
of 'using' electronic contracts in software services is required. Here, soft-
ware services are running programs that process electronic contracts such
as access control services or accounting software.

• Standardised Representation (Syntax) of Electronic Contracts. To
make contracts easily exchangeable, first of all, a standardised rep-
resentation of electronic contracts is needed. One alternative is to
linearise the contract content with the help of the eXtensible Markup
Language (XML} [BPSMM00]. XML provides a framework to de-
fine the syntax of electronic documents, i.e. the structure and the
allowed character set that may occur in documents. The structure
and the allowed character set of an electronic contract is then defined
in an XML schema [TBMM0l, BMOl] or XML Document Type De-
finition {DTD} [BPSMM00]. The nature of XML-based documents
provides machine readability. In fact, the machine readability comes
with XML parsers that understand the XML schema or DTD and ac-
cordingly read XML documents. Today, a large number of commercial
and non--commercial XML parsers as well as XML document creators
are available.

• Standardised Semantics of Electronic Contracts. To be human and
machine interpretable electronic contracts require clear semantics. Con-
tract semantics are defined, e.g. in the specifications of rights ex-
pression languages (see Chapter 3). Rights expression languages are
XML-based languages capable of expressing rights of parties over as-
sets. An instance of a rights expression language is a rights expression.
Depending on their content, rights expressions can represent different
semantic constructs, e.g. licenses, digital tickets, or contracts. Being
machine readable simply means that a parser is able to extract the
XML-tag names and their values from electronic contracts. Machine
interpretable denotes a semantic analysis of the tags and values of the
electronic contract. For example, the XML parser reads an XML-

25

tag with the name party and the value Department of Information
Systems at a certain location in the XML contract document. The
parser is not able to determine whether this party is the consumer,
the provider, or simply a beneficiary. To assign the correct meaning to
this information an interpreter that is familiar with the specification
of the respective rights expression language is required. A language
specification, in this context, is a text document or formal semantics
that defines the semantics for the elements in a specific XML-schema
or DTD. As an alternative to XML, the resource description frame-
work (RDF) [LS99, BGOO] could be used to define contract semantics.
In contrast to XML, RDF is independent of a specific linearisation
technique.

• Standardised Processing of Electronic Contracts. Clear syntax and se-
mantics, respectively machine readability and interpretability are pre-
requisites for processing electronic contracts. Partly the pragmatics,
or more exactly the processing task of electronic contracts has to be
standardised as well, thus ensuring a common way of using electronic
contracts in software services. Examples for processing electronic con-
tracts are:

- Enforcing Electronic Contracts. Enforcing electronic contracts is
one way of processing them. Enforcing is the act of implement-
ing access rights as stated in electronic contracts. Electronic
contracts are technically enforceable if: means for processing are
provided, the contra.ct comprises all required information, and a
'secure' enforcement software seruice (e.g. an access control ser-
vice) is available.

- Human Readability of Electronic Contracts. To be human read-
able and additionally human revisable the contract information
has to be represented in a sensible layout, without showing the
XML-typical tags or tree structure. To provide human read-
ability, a software service has to be available that arranges the
contra.ct information in a sensible layout.

In the two above examples and most likely in all other contra.ct us-
ages it is important that two dislocated, independent software services
have the same effect (or result) when processing an identical electronic
contra.ct.

In addition to the above mentioned technical challenges, the handling
of electronic contracts additionally has legal, managerial, and security chal-

26

lenges. For example, it is important to decide whether a contract is legally
and technically valid or not, or to uniquely identify contract parties and
objects. Besides, it is crucial to know which contract content is mandatory
for a specific software service (such as access control service or accounting
services) and if, or to what extent the contract content is electronically en-
forceable.

This work aims at developing methods3 and tools for exchang-
ing and processing XML-based rights expressions (in particular
electronic contracts) in consideration of legal, managerial, and
security issues.

The methods and tools (see Section 1.4) aim at reaching the goal, i.e.
compatibility via standardised representation, semantics, and processing,
and thus address the drawbacks mentioned in the introduction. We are
not aware of any methods and tools that are currently available for ex-
changing and processing of electronic contracts (generally speaking: rights
expressions). The methods to be developed need to be of generic nature
and independent of a specific technology (e.g. the programming language or
the used rights expression language). The tools should be available at least
as prototype implementations that are open and extensible and prove the
correctness and usability of the introduced methods.

More precisely, my work is focused on designing and implementing a
rights expression exchange framework that facilitates the encoding, trans-
mission, and decoding of rights expressions for subsequent processing in
software services. With regard to standardisation, the rights expressions
shall be formulated in a rights expression language (see Chapter 3). The
components require a well defined interface to assure its (re)use in various
environments and to ease its integration into existing systems. The imple-
mentation shall be coded in an appropriate programming language, reuse
existing technology, and consider relevant standards. The deployment of
the resulting software components shall be demonstrated in a concrete use
case.

Standardisation of processes and interfaces can be used to achieve com-
patibility (KS94, FS92]. According to studies mentioned in Section 1.2,

3 A method can be understood as a procedure or concept that is comprising steps to
reach a certain goal.

27

compatibility is a driving factor for the adoption of e-commerce systems.
Therefore, I conclude that this thesis has the potential to leverage the adop-
tion of e-commerce technology. E-<:ommerce platforms that facilitate the
distribution of digital content via standardised, electronically processable
rights expressions additionally have potential to reduce distribution costs
and thus can have strategic value [Rig03]. However, these platforms should
have in mind to find the right balance (described in [LesOl]) between copy-
right protection and freely available digital content.

1.4 Classification into Research Theory

Firstly, this section defines the term 'Wirtschaftsinformatik' and proposes
its translation into English. Then the general classification of the discipline
'Wirtschaftsinformatik' into existing sciences is sketched. Sciences can be
classified depending on their research objects, their research goals and their
research methods. These three criteria will be used to classify the discipline
'Wirtschaftsinformatik' in general and the work at hand in particular.

This thesis is handed in to acquire the doctoral grade in the field of 'Wirt-
schaftsinformatik'. 'Wirtschaftsinformatik' is a German term that has no
common translation into English. It is sometimes referred to as "Business
Information Systems (BIS) Science", "Management Information Systems"
(MIS), "Business Informatics", or simply "Information Systems". There is
an ongoing debate in the German speaking countries about an appropri-
ate English term. In a panel discussion of the German professors Buhl,
Mertens, Koenig, and Krcmar it was stated that the German translation
for Information Systems is 'Wirtschaftsinformatik' [BKKM97]. Despite this
definition, in this thesis the term business information systems (short: BIS)
will be used as the translation of 'Wirtschaftsinformatik', representing the
field of information systems that has its focal point on business issues and
often applies constructive research methods (see Section 1.4). However, a
common agreement exists that 'Wirtschaftsinformatik' has an interdiscipli-
nary orientation between the fields of economics, business administration,
and computer science [BKKM97, KHvP95, Fra99].

In general, science is divided into formal science and informal science.
In formal sciences, such as mathematics and logic, formal languages are
developed that do not have a relation to real objects. Informal sciences

28

deal with the description, explanation, and design of empiric objects. Infor-
mal sciences can be divided into fundamental science and applied science.
Whereas fundamental sciences have the goal to describe and explain empiric
objects, applied sciences have the goal to investigate the design of sociotech-
nical systems.

As mentioned above, BIS combines the fields of economics, business
administration, and computer science. Computer science is an applied sci-
ence, whereas economics and business administration can be both, funda-
mental science and applied science. Therefore, BIS is classified as an infor-
mal science, comprising both fundamental and applied sciences. Because
of the interdisciplinary orientation between computer science, economics,
and business science and the relatively young history, business informa-
tion systems is lacking a common vision about research object and goal.
This difficulty has been mentioned and criticised by various researchers
[KHvP95, BKKM97, Fra99, MH02]. In the subsequent paragraphs visions
from different researchers about research object and goal of BIS are intro-
duced with the ambition to give a general overview of this matter.

Research goals of business information systems

In 1993, the German research commission of information systems defined
the research goals of BIS as follows:

The objective of business information systems is to gain theories,
methods, tools and reviewable knowledge about/to information-
and communication systems and to add methods and tools of
business information systems that customise the sociotechnical
knowledge and composition subject of scientific studies, to the
"scientific case of methods and tools" .[Wis94]

Research objects· of business information systems

Two years later, in a panel discussion [KKK+95] the German professors
H. Krcmar, W. Konig, K. Kurbel, D. B. Pressmar, A-W. Scheer, and W.
Stucky named the following issues as current research objects of BIS:

• Distributed information systems in business and management. W.
Konig: "The long term research goal in this field is to develop a nor-
mative co-ordination scheme for interacting actors. We aim to better

29

integrate methods, tools, and applications, thus connecting human
actors and machines more economically ... "

• Empirical research on information systems in Germany. H. Krcmar:
"This research comprises survey methods, case studies, ethnographic
studies, and laboratory studies in the field of BIS".

• Parallel Processing and business applications. D.B. Pressmar: "The
application of evolving technologies to optimisation problems in pro-
duction planning, such as scheduling and lot sising. Computational
power is also needed when building neural networks to problems of
pattern recognition such as forecasting or diagnosis in quality man-
agement and controlling" .

• Research on petri nets. K. Kurbel: "This research field is especially
focused on process modelling. Petri Nets are proposed as formal de-
scription language for business processes".

• The influence of {BIS} research on industry. A.-W. Scheer: " The
BIS research is strongly dedicated to the development of prototypes.
The ideas behind the prototypes should be included into commercial
software products and improve applied information systems".

In the same year, the findings of an investigation, that tried to iden-
tify the essential research objects and theories of BIS with the help of
the Delphi and AHP (Analytic Hierarch Process) method were published
[KHvP95]. According to this investigation the four most important research
objects in BIS are:

1. Science with a strong relation to organisation theory. This approach
tries to describe and optimise the structure and process flow of so-
ciotechnical systems.

2. Functional business administration. This discipline is investigating
particularly the role of data processing and information processing in
companies.

3. Information science. Information science aims at exploring the econ-
omy of the power factor "information" and its purposive allocation.

4. Innovation science. This discipline defines requirements for new infor-
mation and communication techniques, and implements the resulting
products and processes in companies.

30

Research goals of this thesis:

The research goal of this work is to develop methods, tools, and reviewable
knowledge in the field of BIS, namely:

• methods, such as, the mapping of electronic contracts (respectively
rights expressions) to a generic contract schema (see Section 4.6) , or
the process for composing tailored contracts (see Section 4.5),

• tools, e.g. the prototype implementation of a software tool that facili-
tates the generation of rights expressions, or the prototype implemen-
tation of a software tool that facilitates the interpretation of rights
expressions, or (see Chapter 6), and

• reviewable knowledge e.g. about typical functions in DRM systems,
the core components and the application-specific components of elec-
tronic contracts, characteristics of rights expressions languages, the
constituents of a rights expression exchange framework, etc.

Thus this thesis meets the requirements in accordance with the research
goal of the German research commission of information systems (Wis94].

Research objects of this thesis:

In general, the research object of this thesis is to provide technology to fa-
cilitate economic concepts. The methods and tools developed in this work
shall provide technical means to support new business models for digital
goods, to support technical means to meet the legal requirements of elec-
tronic contracts (e.g. providing digital signature information), as well as to
provide new functionality to DRM systems in general, such as interoper-
ability. Therefore, the thesis at hand models the processes of generating,
wrapping, transmitting, unwrapping, and interpreting electronic contracts
in a generalised way. In particular it addresses the processing of rights ex-
pressions in subsequent software services. As rights expression languages
play a substantial role in this field, an empiric survey on rights expression
languages is necessary. The work shall present the design and implementa-
tion of software tools that are capable of generating, wrapping, unwrapping,
interpreting, and processing rights expressions. The work shall include a
prototype implementation of such a general design and integrate the proto-
types into different software environments. The overall focus of this work
is to better integrate human actors and machines by providing means for

31

the comfortable handling of electronic contracts. This thesis addresses the
essential research objects (integration of applications, process modelling,
surveys, and prototype development) of BIS in accordance with [KKK+95].

Research methods of business information systems

In [LHM95] it is stated that: ".. [BIS] applies methods and tools out of
formal, informal and engineering science and develops them. The sociotech-
nical cognition subject of [BIS] demands that not only questions of technical
efficiency but also questions of economical and social utilisation (including
the acceptance of different social groups) are considered within the choice
and combination of the used methods and tools."

In 1997 H. U. Buhl et al. three dominant methodological orientations in
business information systems are named [BKKM97]:

1. Engineering. This approach aims at developing and testing software
prototypes, including the design and application of formal modelling
methods.

2. System integration. This approach focuses on organisational aspects
of introducing and using information systems.

3. General Models. This approach aims at the development and analysis
of formal models in order to support optimisation and decision making
in general.

Most researchers feel committed to one of these three approaches exclu-
sively. The combination of the various disciplines in BIS result in different
methodological research orientations, depending on the weight of each dis-
cipline in the research work.

Empirical methods as well as constructive methods are the basic re-
search methods in the field of BIS [Hol99, KHvP95]. The BIS incorporates
the anglo-american MIS research as well as application oriented aspects of
computer science; thus, compared to MIS research its methodologies are
more constructive (ASBA99].

• Empirical research follows the process of problem analysis, i.e. devel-
oping a theoretical model and testing the model, data analysis, and
interpretation. The interpretation of the results of such an analysis
produces new knowledge.

32

• Constructive methods follow the idea that new knowledge is gained
by constructing new ideas or concepts based upon the researcher's
knowledge. Accordingly, when deploying constructive methods, the
researcher does not try to verify predefined theories.

The discussion in the previous paragraphs have illustrated the disaccord
on the objects of research in BIS. This disaccord causes some researchers
to question if BIS actually needs its own research methods and theories
[KHvP95, LHM95]. In practice, researchers avail themselves of method-
ologies from the related "mother" sciences business science and computer
science.

Research methods applied in this thesis

In this thesis empirical methods as well as constructive research methods
are applied. In general, this thesis follows the process of problem analysis,
comprising the phases problem analysis, development of theoretical model,
testing the model, and analysis and interpretation. The empiric objects
in this process are electronic contracts, or, more generally, electronic (or
digital) rights expressions:

• Problem analysis. Rights expression languages are a means to express
usage and access rights of parties over (digital) assets. Such languages
support the trading of electronic goods via the Internet. There are
different initiatives that are developing language syntax and vocabu-
lary for rights expression languages, but no general concept has been
discussed or designed that describes the exchange and processing of
rights expressions. The problem and research question of this work
is: "What does a framework design that is capable of exchanging and
processing rights expressions to support ORM system interoperability
look like?"

• Development of a theoretical model. This phase comprises the design
development of a framework that is capable of exchanging and process-
ing rights expressions (e.g. in the form of electronic contracts).

The theoretical model for the exchange of rights expressions signi-
fies that the communication model [Sch71] of Schramm illustrated
in Figure 5.1 (a further development of Shannon's basic communica-
tion model [Sha48]) can be adapted to the communication via rights

33

expressions. The resulting rights expression communication model is
the basis for the rights expression exchange framework, consisting of
the four tools: rights expression generator, - wrapper, - unwrapper,
and - interpreter.

The theoretical model for rights expression processing is the generic
contract schema (see Section 4.6). It describes a generic data model
that serves as a basis for rights expression processing and facilitates an
approach of the semantically unambiguous representation and process-
ing of electronic contracts.

• Testing the model (Implementation). The implementation of a proto-
type is a means to test the previously developed framework design.
The framework implementation naturally incorporates the theoreti-
cal model of rights expression processing (i.e. the generic contract
schema).

• Analysis and Interpretation. The integration into various system envi-
ronments allows an analysis of the framework design and its usability.
A concrete application shows the usability for a certain domain (e.g.
processing contract in the educational domain). The interpretation of
the analysis' results are part of the findings of the work at hand.

Constructive methods have been applied during the implementation
phase. For example, object oriented concepts have been used to structure
and develop the tool for exchanging and processing rights expressions. The
process definition for scenari<rSpecific contract composition (see Section
4.5.3) has been developed in a constructive manner.

1.5 Structure of this Doctoral Thesis

The work at hand has the following further structure:

• Chapter 2 is an introduction to the area of digital rights management
systems. Firstly, the chapter deals with the general commercialisation
of digital goods. Consequently, it addresses characteristics, dimen-
sions, and business models for digital goods. The chapter discusses
various definitions of the term Digital Rights Management (DRM)
and introduces the perspectives of DRM. The basic functions of a
DRM system are defined, namely: Content Provision, Content Safe-
keeping, Offer Placement, Content Preparation, Content Distribution,

34

Booking, Payment, Authorisation, and Content Consumption. A sub-
sequent section describes a sample system comprising all basic DRM
functions that are grouped into typical system components. The in-
formation flow through such a sample system, which is basically the
interaction between modules that implement a certain function and
components, is described in detail. Finally, the role that rights ex-
pression languages play in DRM systems is explained.

• Chapter 3 gives an introduction to the field of rights expression lan-
guages. The chapter addresses the requirements and characteristics
of rights expression languages. It introduces relevant existing rights
expression languages, gives some practical examples, and shows their
deployment in current non-commercial and commercial software prod-
ucts.

• Chapter 4 deals with relevant aspects of handling electronic contracts.
Electronic contracts can be expressed in rights expression languages.
Thus, the contracts have a standardised representation that facili-
tates the exchange of contracts between interoperating platforms. The
chapter introduces a contract's life cycle and discusses typical tech-
nical states. It further presents means for rights execution, i.e. the
technical fulfillment of contracts. The contract content is analysed in
detail; core elements as well as application-specific elements of con-
tracts are identified. The chapter discusses potential exploitation (or
usage scenarios) of electronic contracts and describes the process of
creating tailored electronic contracts. The generic contract schema
(CoSa) is introduced; the generic CoSa is a concept for a (rights ex-
pression) language independent representation of electronic contracts.
The chapter finally addresses the enforceability of electronic contracts,
management issues when handling electronic contracts, and relevant
related work.

• In Chapter 5 a general communication model facilitating the exchange
of rights expressions is introduced. From the model a software frame-
work, namely the rights expression exchange framework, is derived.
This framework consists of the software components rights expression
generator, --wrapper, -unwrapper, and interpreter. Additional sections
describe the detailed functionality of all framework components and
the technical requirements independent of a specific technological ap-
proach.

35

• Chapter 6 shows one implementation of the rights expression ex-
change framework that is naturally compliant with the general de-
sign described in Chapter 5. The components are capable of generat-
ing, wrapping, unwrapping, and interpreting rights expressions of the
XML-based open digital rights language (ODRL)4 [Ian02b) and are
open for the support of any other current or future rights expression
language. The implementation is coded in XOTcl5 and reuses various
software tools, such as the tDOM parser6 for the handling of XML
documents in general or the MySQL 7 data base server. The chapter
gives detailed information about the tools class hierarchies and inter-
faces and presents examples for the tools' usage.

• Chapter 7 exemplifies an application of the rights expression exchange
framework components. It describes the successful integration of the
generator - and wrapper component in ActiWeb, a class library that
is supporting extended web server functionality, and the deployment
of the unwrapper - and interpreter component with an access control
service.

• The conclusion gives a summarisation of this work. It highlights the
developed findings in the field of exchanging and processing rights
expressions. Additionally, the chapter addresses future work in this
field that can be based on the work at hand.

4 See http://www.odrl.net/
5See: http://www.xotcl.org/
6See: http://www.tdom.org/
7See: http://www.mysql.org/

Chapter 2

Digital Rights
Management Systems

37

The electronic commerce of digital goods has significantly evolved in the
last decade. When electronic goods are traded between geographically dis-
tri buted consumers and providers, electronic contracts are concluded. An
electronic contract is an agreement of two or more parties, on the exchange
of rights to goods or services under certain terms and conditions. Elec-
tronic contracts differ from traditional paper contracts in their medium, i.e.
in contrast to paper contracts, electronic contracts are/or can be digitised
and exchanged via an electronic network.

A DRM system is facilitating the 'digital management of rights' [IanOl].
As stated above, electronic contracts comprise rights to goods and services
and consequently are related to DRM systems. To draw the bridge to the
economic aspects of DRM systems, Section 2.1 discusses the characteristics
of digital goods and their business models. Subsequently, Section 2.2 gives
some definitions of DRM and discusses their different perspectives. Section
2.3 introduces typical functions of DRM systems and describes a sample
DRM system with its internal workflow. In Section 2.4 the chapter finally
envisions a potential role of rights expression languages in DRM systems as
a part of the next generation of e-commerce systems.

38

2.1 Trading Digital Goods

In this section the characteristics of digital goods and their business models
are addressed. The section describes how digital goods are different from
physical goods, and why this allows for new business models for digital
goods.

2.1.1 Characteristics of Digital Goods

Digital goods are sometimes called electronic goods, information goods, vir-
tual goods or intangible goods, as well as digital content or digital products.
Digital goods sometimes also comprise digital services, such as digital phone
or television services. In this thesis, the term digital goods will be used de-
noting both digital goods and digital services.

Digital goods are usually cheap in reproduction and cheap in distribution
[SV99], as the customer pays for the storage and carriage. Advantages and
disadvantages result for both consumer and provider: a cheap copy of a dig-
ital product keeps the reproduction costs low, and the cheap distribution
via the Internet is also advantageous for the product vender. Neverthe-
less, these advantages count also for the customers who are able to easily
copy and distribute digital goods (music files, films, etc.) to their friends.
From the point of view of the music and video industry, this habit causes
a decrease in sales of digital goods. However, to transfer digital goods via
the Internet, they sometimes have to be compressed. Although also lossless
compression mechanisms exist, the compression of digital goods may reduce
the product's quality and consequently decrease the value for the consumer.
Despite the sketched problems, economists consider the commercial poten-
tial of digital goods, which will be addressed in the subsequent section.

2.1.2 Business Models for Digital Goods

The digital medium offers a large spectrum of ways of commercialisation,
and facilitates new, innovative business models for digital content [vWT03],
i.e. the secure delivery of digital content will open global markets, reduce dis-
tribution costs, create more intimate contact with consumers, etc. [Rig03]

"Licensing has become a familiar mechanism for providing ac-
cess to some types of digital information (e.g. software), but is
relatively new for other types (e.g. research journals). . .. By

offering a distribution model different from that represented by
copyright and sale, licensing has the potential to open new mar-
kets." [SD00]

39

Although the Internet is a driving factor for trading physical goods, this
thesis is focused on technically supporting the formulation and processing of
new business models for digital goods. In DRM literature the term business
model is often related to different meanings. Osterwalder [OLP02] defines
an e--business model ontology which is founded on four main pillars:

l. Products and Services. The products and services a firm offers, which
represent a substantial value to the customers, and for which they are
willing to pay.

2. Infrastructure and Network of Partners. The infrastructure and the
network of partners that are necessary in order to create value and to
maintain a good customer relationship.

3. Relationship Capital. The relationship capital the firm creates and
maintains with the customers, in order to satisfy them and to generate
sustainable revenues.

4. Financial Aspects. The financial aspects, which are transversal and
can be found throughout the three former components, such as cost
and revenue structures.

Following Osterwalder's definition for a business model, the subsequent
paragraphs address electronic products and services and their financial as-
pects. In this thesis the term pricing model is used to express price and
terms and conditions for a certain usage or access right to a digital goods
produced by the seller, for example, 'listening 50 times to the music file
X for the payment of €2.00'. Issues concerning the importance of the in-
frastructure and network of partners is generally addressed in Section 1.2.

Ten years ago, for buying song 'S' a customer had to purchase the entire
album for about €10.00 in form of a compact disc or on vinyl. The pricing
of that time allowed only one purchase condition for song 'S', because it was
bound to the storage medium of a compact disc. Producing a CD for each
song on the album would have been far too cost intensive and risky. Gainful
business models for digital goods vary depending on their product type (or
dimension [Kop99]). For example, usually, digital information containing
the weather forecast or the last weekend's baseball scores are valuable for

40

the customer only once and only at the right time. A weather forecast for
January 1st 2004 will be of no value for the customer on January 20st 2004.
In contrast to this, the desire to listen to the same music file over and over
again can be very valuable for the customer. Therefore, the conditions for
reading the latest news will be different from the conditions for listening to
music files. For example, a reasonable pricing model for an online newspa-
per, whose value is determined by timeliness, is a monthly subscription for a
fixed higher price or a lower price payable for each access. A sensible pricing
models for a music file might be unlimited access rights to that music file for
a higher price or a lower price for access rights to that music file limited to
five times. Generally, a sensible business model is certainly to give away the
digital goods for free without any restrictions, and finance this business by
other income streams, such as advertisement [SV99]. But as such business
models lack contracts on digital goods and also exchanging and processing
rights expressions, these business models are not further investigated.

To understand the potential of digital goods and to find the right busi-
ness models, different dimensions (or product types) for digital goods have
been identified by Choi et al. [CSW97] and Koppius [Kop99]. Choi et al.
name the five dimensions transfer mode, timeliness, intensity in use, oper-
ational usage, and externalities. Koppius has further developed the work
of Choi et al. and additionally distinguishes consumer (buyer) dimensions,
such as value determination, perishability, recipient, complexity of product
use, externalities and provider (seller) dimensions, such as specifiability,
customisability, substitutability, intensity in use, and existence of a tangi-
ble equivalent. Furthermore Koppius defines the delivery process-related
dimensions transfer mode and options for tangible support. The forming
of the named dimensions influences the 'right' business models for digital
goods.

As soon as customers decide to purchase and electronically consume
digital goods, there is a need to express participating parties (consumer
and seller), price, terms and conditions in electronic contracts. Electronic
contracts can be formulated in rights expression languages (RELs) that will
be described in more detail in Chapter 3.

41

2.2 Digital Rights Management {ORM)

This section gives a short introduction to the term digital rights manage-
ment. It provides and discusses an extract of ORM definitions, concepts
and visions which will be used in later sections. The section also introduces
the different perspectives of ORM, such as the legal, functional, and tech-
nical perspective and points out the perspectives that are addressed with
this thesis.

2.2.1 DRM Definition

Today, the term digital rights management is frequently associated with
online music shops, secure viewers, and copy protection mechanisms. But
these areas only are a small part, respectively a particular type of DRM
system applications. Digital rights management has been defined by vari-
ous researchers and industry associates. To give an overview of the ORM
spectrum, here are some recent definitions:

Iannella: " .. Digital Rights Management covers the description,
identification, trading, protection, monitoring and tracking of all
forms of rights usages over both tangible and intangible assets
including management of rights holder's relationships." (IanOl]

Gunter et al.: " .. ORM systems enable sellers of digital content
to move beyond current distribution." [GWWOl]

Neylon: "The technical means by which content is dynamically
licensed for, or protected against, a particular use is known as
digital rights management. The tools of digital rights manage-
ment do not define how commerce must be conducted. Rather,
they allow business models to be defined and support their im-
plementations." [NeyOl]

ContentGuard, Inc.: "The reality of the Internet and the need
to control the use of digital content and digital services has fu-
eled the development of technologies that attempt to manage,
secure, control, and automate the flow of content and the access
of services. Digital Rights Management (ORM) is the common
term associated with such technologies. Other technologies such
as Digital Asset Management, Content Management, and Trust
Systems are also getting incorporated into the ORM workflow.

42

The DRM space is becoming more important and, in many cases,
required to enable certain business models." [ConOO]

The various definitions show the broad spectrum of DRM. The devel-
opment of DRM has emerged from the commercialisation and trading of
goods and services over the electronic/digital medium. The DRM definition
that is used in this thesis is introduced in the subsequent chapter. Iannella
states that: "it is important to note that DRM is the "digital management of
rights" and not the "management of digital rights". That is, DRM manages
all rights, not only the rights applicable to permissions over digital content
[IanOl]. However, the definitions also indicate that DRM systems can be
seen and influenced from different perspectives, as the subsequent section
shows.

2.2.2 Perspectives of DRM

The four definitions mentioned above of DRM differ from each other not
least because the authors are looking at DRM from different perspectives.
The definition by Iannella lists the functions that are required for a sophis-
ticating and successful DRM system. The definition of Gunter et al. does
not specify the functionality in detail, but sees DRM as a means to extend
current distribution channels - it describes the intentional perspective of
DRM. That means, to comprehensively describe DRM systems several per-
spectives need to be considered. After reviewing a large number of DRM
definitions, I have identified six different perspectives that give an overall
view on DRM systems: the intentional perspective, the technical perspective,
the functional perspective, the legal perspective, the social perspective and
the economic perspective (Figure 2.1).

Figure 2.1: The six perspectives of DRM

The six perspectives of DRM influence each other. A change of the
intentional perspective of DRM has an impact on the functions and also
on the technical implementation of the DRM system. This example shows
that some perspectives dominate others. A change in the legal, social, in-
tentional, and economic perspective causes changes in the functional and

43

technical perspectives. The mutual relationships between the different per-
spectives can be very complex and are subject to future research. In the
following sections each of the identified DRM perspectives is described in
more detail.

• The intentional perspective. The intentional perspective defines the
overall goal for a particular DRM implementation. One intention of
a DRM system might be to protect the property rights of an enter-
prise's asset. The asset in this case could be tangible (e.g. a book) or
intangible (e.g. an Ebook). Another intention of a DRM system might
be to establish the awareness of intellectual property rights (IPR).

• The economic perspective. The economic perspective shows how eco-
nomic factors, e.g. the business model or the market environment,
can influence a DRM system. Neylon states that "the tools of digital
rights management do not define how commerce must be conducted.
Rather, they allow business models to be defined and support their
implementations" [Ney0l]. Accordingly, the implementation of DRM
systems depends on the underlying business models, i.e. the economic
goal of the system. For example, the definition and enforcement of
usage rights are less important for a platform like 'The Knowledge
Conservancy'1 that provides any material "free-to-read", than for a
commercially run electronic market for music tracks like MusicNet2

and Apple's ITunes platform3 •

• The legal perspective. Amongst other potential applications, a digi-
tal rights management system can provide the technical environment
to protect intellectual property rights. Intellectual property rights
are defined by the law. So law influences digital rights management
system with respect to compliance, investigation, and enforcement
mechanisms. The legal perspective represents the influence of these
predominant laws on a DRM system. For example, copyright law
could be adjusted in the near future to be digital age compatible.
These changes would most presumably require a reengineering of the
existent DRM systems. Copyright law in the USA and Europe differ
from each other in their national interpretation or even collide. For
a globally operating DRM system the legal perspective will play an
important role since it is a considerable challenge to integrate different

1See: http://yen.ecom.cmu.edu/kc/
2See: http://www.musicnet.com/
3See: http://www.itunes.com/

44

legislations of various countries. The Creative Commons4 is an ini-
tiative that aims at formulating a set of copyright licenses according
to copyright law in order to help content creators to distribute their
protected works. A DRM system that wants to make business with
those content creators will probably have to support those licenses.

• The social perspective. Crucial success factors of today's electronic
markets or Internet platforms are their acceptance and frequency of
usage. These factors are governed to a great deal by social norms. The
social perspective addresses social, personal, and psychological aspects
of a DRM system. Clients must have incentives to be willing to use
platforms with a digital rights management. The social perspective
addresses questions like: "Why should a client use this platform with
DRM?" - because it is convenient or a good information source? Is it
maybe because the client is aware of intellectual property rights (IPR)
protection? Why should the client acquire digital content of the plat-
form with DRM, where content is liable for costs or at least requires
registration instead of searching for a free, anonymous source? DRM
systems are influenced by the public sense of IPR protection. Con-
sumers who understand the risks associated with pirated electronic
content will more likely acquire content from legitimate sources with
digital rights management [oAPIOlj.

• The functional perspective. The functional perspective describes the
functions of a DRM system, e.g. protection, management and mon-
itoring of property rights, enforcement of terms and conditions, cre-
ation and management of contracts, revenue stream control et cetera.
The technical perspective is vastly influenced by the other perspec-
tives of the DRM system. The functionality of an exchange platform
will be designed for example depending on the platform's intention
or business model. If the business model of a platform changes, the
functions of the platform will change as well.

• The technical perspective. The technical perspective has a number of
sub-areas. It covers, for example, the data model, the secure electronic
environment, the system architecture, the applied standards, the pro-
tocol stack, the authentication and identification mechanisms, and the
digital rights language. The technical perspective is also strongly de-
pendent on all other perspectives. Changes in all other perspectives
require most likely technical reengineering.

4http://www.creativecommons.org/

45

Figure 2.2 illustrates all identified DRM perspectives in the order of their
influence on the technical implementation. The characteristics of each per-
spective finally determine the strategy of an actual operating DRM system.
A perspective on the higher level has influence on the perspectives on lower
levels. Consequently, if the economic perspective of a DRM system changes,
the functional and technical perspectives change as well. For example, if in
the economic perspective it is specified that only rights to physical goods
shall be managed, no functionality that supports access control to digital
resources is required. If a change in the higher perspectives is made, this
change will cause costly modifications in the lower level, i.e. reengineering
of the functional, respectively technical implementation. This thesis focuses
on the lower namely the functional and technical perspectives of DRM sys-
tems. It aims at providing technology to facilitate economic functions or
concepts (e.g. to express various pricing models} and supporting the require-
ments of the legal perspective (e.g. providing digital signature information),
as well as giving new functionality to DRM systems, such as interoperability.

intentional

social - economical - legal

.
I functional
I

I
I [
I "' I technical

I I ~
I---------~ 15 ! ("-""• ORM ,y,rem) ! f .. ____________ ,

Figure 2.2: The DRM perspectives in the order of their influence on DRM
systems

The DRM perspectives introduced in this section help to classify and
describe DRM systems. To provide an overall specification of a present or
future DRM system, all named perspectives should be considered. The de-
finitions given in the previous section only partly address DRM systems.
For example, Iannella and Neylon mention the functional perspective of
a 'typical' ORM system, Gunter names one particular economic goal that
can be achieved by using DRM systems, whereas ContentGuard addresses

46

both the functional perspective by naming typical functions, such as "man-
age, secure, control and automate the flow of content", and the economic
perspective by "DRM ... is ... required to enable certain business models."

In this work the following definition for DRM will be used:

"DRM systems provide techniques and functions that facilitate
the digital management of rights to digital or physical goods or
services. Each actual DRM system thereby may aim at address-
ing different economic, or social goals, respectively implement
legal requirements."

2.3 A Sample Digital Rights Management Sys-
tem and its Functions

This thesis deals with the exchange and the processing of rights expressions.
Rights expressions are exchanged between system components of DRM sys-
tems or between DRM systems. Therefore, in this section a sample DRM
system along with its basic functions, system components, and internal in-
formation flow is introduced. To describe a sample DRM system and typical
DRM functions various prevailing DRM systems have been analysed. For
the analysis the DRM systems described in [RTM02, IBM02, Dig03, Mic03,
FFSSOl, KM00, Nok0l, DKOl] have been consulted. Accordingly, the sam-
ple DRM system described in this section is a non-existing system which
includes the typical characteristics of the analysed systems and may serve
as a reference DRM system.

The analysis shows that there are many variants of DRM system ar-
chitectures, which makes it difficult to describe a 'typical' DRM system.
However, DRM systems can be characterised by their basic functional-
ity. Therefore, this chapter starts with a brief look at DRM systems from
the functional perspective and identifies their basic functions, namely Con-
tent Provision, Content Safekeeping, Offer Placement, Content Preparation,
Content Distribution, Booking, Payment, Authorisation, and Content Con-
sumption. The functions identified are provided by DRM system parties
(or components) such as the content provider, DRM platform, etc. All
analysed DRM systems can be described on the basis of these functions, al-
though all these systems have different technical architectures. The sample
DRM system described in Section 2.3.2 covers all identified basic functions

47

and displays a typical architecture in which customer, ORM platform, con-
tent provider, and clearing house interact. In Section 2.3.3 the information
flow through the sample ORM system is described. The chapter closes with
an introduction of some commercial ORM systems with respect to their
functions and system components; it finally addresses ORM system designs
which differ architecturally from the sample ORM system. In some of these
systems, additional parties come into play and assume responsibility for
one or more ORM functions, thus changing the ORM's architecture and
information flow.

2.3.1 DRM System Functions

A ORM system provides the digital management of rights to digital or phys-
ical goods or services. The 'digital management' involves several functions,
such as the provision of goods or services, their distribution, purchasing,
and the delivery or rendering respectively consumption. The occurrence of
such functions describes the functional perspective of ORM systems. All
ORM functions require the deployment of suitable security mechanisms.
The provided functions of a ORM system are more or less similar, but the
ways they are implemented vary, which means that similar ORM functions
are executed by different system components with varying responsibilities
and differing system architectures.

For example, let us assume a customer wants to access secure digital con-
tent. A license (see Section 4.3.1) specified by the content provider defines
the rights governing access to the content. Both the content and the license
have to be delivered to the customer, the rights have to be interpreted and
executed, and the content has to be rendered. The implementation of these
functions can differ with respect to the following questions: Are the license
and the secured content delivered to the customer together or separately?
Are access rights interpreted and enforced by a mobile software agent, by
a secure viewer on the client's PC, or possibly by a web server which regu-
lates access to its realms? The mentioned variations are different technical
implementations of the same functions. That is, these different implemen-
tations or technical architectures describe the technical perspective of ORM
systems.

In this subsection, basic and extended ORM functions that have been
identified in the analysis are introduced. Identifying ORM functions helps
us to categorise and describe ORM systems. The functions introduced are

48

Basic ORM Functions

Offer Placement

Booking

Content Provision

Content Safekeeping

Content Preparation

Distribution

Authorization

Consumption

Security

Worlct1ow Control

Payment
through ORM

system?

N YES

Payment Clearing

Figure 2.3: Basic and extended functions of DRM systems

used in the subsequent sections to describe the sample DRM system as well
as current DRM system implementations. Basic functions are Offer Cre-
ation, Booking, Security and Workfiow Control. Whether a DRM system
provides extended functions, depends on the forming of the system's in-
tentional, social, and economic perspective (see Figure 2.3), i.e. the DRM
system's strategy. For example, if the DRM system trades digital goods
the functions Content Provision, Content Safekeeping, Content Prepara-
tion, Distribution, Authorisation, and Consumption should be supported
as well. If monetary transactions are part of the exchange process, DRM
systems have to provide a Payment respectively Clearing function or at
least provide an interface to such components. Examples for DRM systems
where rights are exchanged but payment is not an obligatory part of the

49

transaction are educational projects such as Universal5 or COLIS6 , both of
which are brokerage platforms for learning resources. The list of extended
ORM will probably get longer as new generations of ORM systems emerge.

Each of the following ORM functions comprises a number of DRM ac-
tivities. The activities differ depending on the technical implementation of
the respective function. For example, the consumption of digital goods may
include the following activities: handling the access request of the consumer,
authenticating and identifying the consumer, identifying the resource that
is subject to the access request, decrypting and decompressing the digital
good(s), granting or denying access to the digital goods according to the li-
cense, and rendering the digital goods according to the granted permissions
in the license.

• Content Provision: Content providers, e.g. sellers of digital music,
videos or Ebooks [AssOO, oAPIOl), who decide to distribute electronic
goods via a ORM system have to make the content available to the
ORM system, that is, e.g. encoding the digital content in the right
format (e.g. AAC+ in MP4) and securely uploading the digital con-
tent to the ORM system. This initial function is called content provi-
sion. Content provision also includes the delivery of content metadata,
such as workflow metadata7 , metadata on security (e.g. using XML-
Signature (BBF+o2)), and product metadata (e.g. using Dublin Core
(DubOl), or learning object metadata (LOM) (IEE02)) for content dis-
covery. Metadata provision can be classified as an extra function.
Some ORM systems do not consider content provision to be a basic
function and assume that content is simply available on the ORM
platform.

• Content Safekeeping: Content safekeeping (or administration) deals
with making the content available to the ORM system. This function
merely supports the secure storage of traded content.

• Offer Placement: An offer contains the terms and conditions also
called usage and access rights, which regulate content usage. The
offer placement function provides a means for the content provider to
specify these terms and conditions.

5See: http://www.educanext.org/
6See: http://www.colis.mq.edu.au/
7See: The Workfiow Metadata Initiative, http://www.metadata.sis.se/

50

• Content Preparation: In content preparation, the content is trans-
formed into a secure, tradable format. The result of this process is
a format called a secure container. The form of this container varies
in the different ORM systems. A variety of security technologies are
used to create containers, and their ingredients vary from system to
system. For example, in some systems the containers comprise the
digital content and its access rights, in other systems the access rights
are transported separately from the content. Content preparation also
included the technical bundling of digital content.

• Booking-. The booking function provides services for the customer
to purchase content or, more precisely, to purchase usage rights for
content. Booking or purchasing the digital product asks for a contract
between the content provider and the consumer. The contract should
have an exchangeable and standardised format, and ideally it should
be written in a rights expression language (see Chapter 3). Booking
also includes reporting for the content providers that want to know
how often their content was requested.

• Content Distribution: The content distribution function provides se-
cure distribution channels to the customer.

• Payment/Clearing: In a great number of contracts, the purchase of
digital content requires a payment from the consumer to the content
provider or to the ORM platform (acting as a proxy). The payment
has to be executed according to the specifications in the contract.
For this task, a clearing house is required which provides various pay-
ment methods (credit card, debiting, electronic cash, etc.), maintains
accounts for all involved parties, and facilitates the settlement of pay-
ments. To learn more about electronic payment systems, please refer
to [8S03].

• Authorisation: Authorisation to access or use goods or services is
allowed by a token. It is important to note that the token is not the
specified license. In this thesis, a token is defined as a technical means,
such as a decryption key for the secure container, which enables the
customer to use the content according to the license. Depending on
the security strategy, the token is either transmitted from the platform
to the customer or is hosted by the secure viewer.

• Content Consumption: Content consumption provides mechanisms
to access and render the content kept in the secure container. Often,

51

consumption is facilitated by a DRM client software on the consumer's
computer [vWT03, Mic03, IBM02], called secure viewer. The content
consumption function also facilitates content tracking, which might be
a relevant activity for IPR protection.

• General Function: Workftow Control: As various components inter-
act in a DRM system, each component requires the integration of a
workflow mechanism to control and coordinate the sequence of tasks
and activities in the workflow through a DRM system.

• General Function: Securit'!f. The DRM system processes digital con-
tent and data that has to be constantly protected. The content and
data (e.g. contracts) have to be protected against various types of
fraud, such as unauthorised access or the modification of rights in-
formation in contracts. The following security techniques are used in
DRM systems.

- Encryption/Decryption: Most DRM systems use encryption and
decryption to protect the data circulating in the system. For ef-
ficiency reasons, symmetric key algorithms are generally used to
encrypt and decrypt the digital content, while asymmetric key
algorithms are used to generate digital signatures, establish se-
cure channels, and to encrypt and decrypt symmetric keys. Thus,
encryption and decryption support the DRM functionsContent
Distribution, Content Preparation, Content Consumption, etc.
and facilitate digital signatures and secure containers.

- Digital signature: Digital signatures provide a means of verifi-
cation, integrity checking, authentication, and non-repudiation.
For example, digital signatures can be used in the Offer Place-
ment and Booking function to evidence their validity.

- Watermarking: Watermarks bind information directly to the
content. Most watermarking technologies claim to be unremov-
able from the content (even after data compression), which en-
ables the lasting identification of digital content. Thus, water-
marks support, for example, the Consumption function, when
an access request to a certain digital content has to be checked
against a licence. For more detailed information on watermark-
ing in DRM systems, refer to [Pet03].

- Secure Container: The secure container technique is used as a se-
cure transport format for the distribution of digital content. The

52

container protects the content from unauthorised access. Erick-
son [EriOl] states that the role of secure containers (wrappers)
is that of a mediator service. The wrapper can link to services
such as the repository, authentication and authorisation.

- Public Key Infrastructure (PK/): PKI is the basic infrastructure
for many security technologies [KL89]. It is used to facilitate dig-
ital signatures, encryption and decryption services, secure trans-
port channels, key registration, certificate issuing, revocation ser-
vices, etc. Thus, PKI supports various DRM functions, such as
Authorisation, Offer Placement, Content Consumption, Booking,
etc.

- Proprietary Mechanisms: Not all DRM systems use standard
technologies to ensure system security. Some systems use propri-
etary mechanisms and processes, for reasons such as unsophis-
ticated standards in a particular field or the fear that known
technologies are easier to circumvent.

The design of the security concept can strongly influence the entire
system architecture and information flow.

Functions versus System Components. Previous studies in this field deal
with the definition of DRM system components rather than functions; for
example, Rosenblatt, Trippe and Mooney [RTM02] define a DRM reference
architecture on the basis of standard components. In my view, it is more
transparent to understand, evaluate, compare, and categorise DRM sys-
tems using a set of functions. Whereas functions describe the smallest unit
of the DRM system (module), a system component comprises several func-
tions. The functions introduced can be combined in many different variants.
Some might even be processed by hardware components; for example, the
European pay TV contractor Premiere World8 uses smart cards to handle
parts of its security process. In the next section, one of many possible com-
binations is introduced.

DRM system implementations that support the identified functions are
sometimes called DRM middleware [FFSSOl]. Many businesses may de-
ploy DRM middleware, with possibly different products, information base
and privacy policies. This makes DRM systems different from specific e--
commerce solutions, such as PressPlay9 , which uses the Microsoft DRM

8 See: http://www.premiere.de/
9See: http://www.pressplay.com/

53

system, or MusicNet10 which operates with the Real Networks' ORM sys-
tem (see also Section 3.5).

2.3.2 A Sample DRM System

This section introduces a sample ORM system based on the functions re-
ferred to in the previous chapter. As mentioned above, the sample ORM
system is a non-existing system, but comprises the typical characteristics of
the analysed systems and may serve as a reference model for ORM systems
that manage payments and deal with digital goods, such as music and video
files, Ebooks [KF02), images, etc.

Client
Content

Consumption

I Authorization I

Clearing House

Content Provider/ Partner DRM PlaJform

DRM PlaJform

Content
Booking Provision

Content Content
Safekeeping Preparation

Offer Content
Placement Distribution

Content, User Data,
Metadata&Llce,_

Repository

Figure 2.4: A sample ORM system

Figure 2.4 shows a ORM system that comprises three components: the
client (or consumer) who desires to consume digital goods, the DRM plat-
form, and the clearing house. The three components are interoperating
with each other. The content providers and partner ORM platforms repre-
sent parties that interact with the ORM system but do not provide ORM

10See: http://www.musicnet.com/

54

functionality. The DRM platform is the key component which controls the
information flow through the sample DRM system (see Section 2.3.3) The
information flow integrates all participating components of the DRM system
(content providers, consumers and the clearing house). The DRM platform
provides the functions content provision, offer placement, content safekeep-
ing, content preparation, content distribution, and booking (see Figure 2.4).
The payment function has been outsourced to a clearing house. Content
consumption and authorisation are supported by DRM client software on
the consumer's personal computer. The subsequent chapter describes the
process of a typical DRM process and shows the information flow through
the sample DRM system of Figure 2.4.

2.3.3 A Sample DRM Process

This section exemplifies a DRM process that undergoes all functions in
the DRM system - from content provision to content consumption. In the
analysed systems , which all support the management of rights for digital
goods or services, the DRM process is implemented either the same way or
alike as shown below.

1. Content Promsion. First of all, content has to be provided by the
rights holder (see Figure 2.5). Content provision can be technically
implemented in many ways, for example by uploading to a content
server or by sharing a folder on the provider's computer. An interface
has to be provided for manual provision by content providers as well
as for automatic provision by cooperating DRM systems. In order to
facilitate interaction between cooperating DRM systems, a standard-
ised interface is necessary. During the provision process, the content
has to be protected from unauthorised access by security mechanisms,
for example by a secure channel (e.g. with the help of SSL), or by
encrypting the content. The content metadata can be provided sepa-
rately from the content. A graphical user interface should be provided
for the manual input of workflow, security, and resource metadata by
content providers, and/or a standardised format could be offered for
the automatic provision of content metadata records.

2. Content safekeeping. Once the content has been provided, it is stored
in a secure environment in the content repository. Depending on the
DRM system concept, the content is stored in plain format, or in a
security wrapper (secure container). The metadata is stored in the
metadata repository.

55

3. Offer Placement. Content providers offer their content on certain
terms and conditions. In this sample system, these conditions are not
fixed but can be defined individually for each unit of tradable content.
Specifying these terms and conditions can also be regarded as rights
metadata provision. The provision of rights metadata results in an
offer. The offer placement function has to be flexible and various
business models shall be supported. In practice, the content providers
are guided through a menu where they are able to specify terms and
conditions for any of their resources. Similar to product metadata, the
offer can either be provided personally by the content provider or by a
cooperating ORM system acting on behalf of the content provider. In
the latter case, an interface has to be provided to receive and exchange
offers and to process them automatically. The licenses are stored in
the license repository.

4. Booking. When consumers wish to purchase content, they will need
to contact the ORM platform. The buying desire usually precedes
promotion activity. The connected e-commerce system is in charge of
such activity. The booking module merely should support searching
for content and browsing for offers. However, the ORM platform's
booking module then receives the customer's purchase request and
returns terms and conditions, as well as information on the payment
process to the customer. The customer agrees to the terms and condi-
tions of the platform by signing the offer previously defined, or rejects
it by not doing so. Accepting the offer results in a legally binding
digital contract. The contract is formulated using a machine readable
rights expression language (see Chapter 3).

5. Payment. The customer then contacts the clearing house and initiates
the payment process. The clearing house balances the customer's and
the platform's accounts and notifies the ORM platform of the pay-
ment. The electronic payment system PayPal11 , which is currently
used predominantly by online auction participants, supports this pay-
ment procedure. However, other payment systems could be used as
well.

6. Content Preparation. As soon as the booking module receives the
payment notification, the content has to be prepared for distribution.
In this sample system, this includes the following steps:

11See: http://www.paypal.com/

56

Client .--------,
Secun, Container

License

Authorization/
Content 0---rT
Consumption:
- Unwrapping
- Decompression
- Rights l,ut,prttation
-Rendtring

Payment

Secun,

Container

(Content Provider/Partner DRM Platform)

}_~ }_

Offer Creation

Booking

6a.

Content
Preparation:
- Wattrmarlcins
.. Compression
-EnricNMnt
- Wrapping

Content, User Data.
Metadala & License

Repository
DRM

Platform

Figure 2.5: A sample DRM process

• Watermarking. A watermark is added to the content. This wa-
termark comprises metadata on the content and enables, e.g. the
identification of content.

• Compression. The digital content is compressed into a manage-
able size, e.g. from original memory-intensive picture represen-
tation to JPEG format.

• Metadata Enrichment. The digital content is now enriched with
metadata, such as licensing, product, security and workflow infor-
mation. This metadata is restored from the platform's repository.
This system is designed send the license information directly with
the content {more about the difference between electronic con-
tract and license in Section 4.3.1). The licensing information

57

is retrieved from the concluded contract between consumer and
platform . The licensing information is available in a rights ex-
pression language, and comprises concrete usage and access rights
of the consumer to the digital content; for example, the content
may be accessed by one particular consumer in the read-only
mode before 31st December 2004. The license is digitally signed
by the platform.

• Wrapping. In order to protect the content against unauthorised
access the meta data (including the license) and the compressed
content are wrapped by means of a symmetric key mechanism.
The result of content wrapping is the secure container, which
constantly prevents unauthorised access to the content.

7. Content Distribution. The content is now delivered by the platform to
the customer for consumption. In the sample system the content may
be distributed via an unsecured network, as the content is protected by
the 'secure container' technology. The distribution channels should be
able to serve various kinds of end devices, such as PCs, PDAs, cellular
phones, etc.

8. Authorisation/Content Consumption. In this system design autho-
risation and content consumption are executed by the DRM client
software that has to be installed on the customer's PC. The DRM
client is trusted by the DRM platform and naturally owns the autho-
risation token to access the secure container and thus is able to render
the content in accordance with the the terms and conditions in the
license. The authorisation token, in this case is the symmetric key
with which the secure container can be unwrapped. In this process it
is assumed that the symmetric key has been exchanged before hand.
Alternatively, the decryption key can be sent separately (separate de-
livery). The DRM client is sometimes referred to as a secure viewer.
The consumption process of a customer's access request includes the
following steps:

• The secure container content is unwrapped.
• The compressed content has to be decompressed.

• Now the secure viewer has access to the content and the license,
among other metadata. The license, formulated in a rights ex-
pression language {REL), is parsed and interpreted by a REL
interpreter that is part of the secure viewer. The secure viewer

58

queries the license by the application programming interface (API)
of the REL interpreter for the data in the license. If the license
allows the requested access, the secure viewer releases the con-
tent for rendering. Advanced functions, such as quality control
mechanisms for ensuring content quality after encryption, com-
pression, transmission and decryption of the digital goods, could
be applied at this time. Prior to rendering the content, the client
software also has to execute a number of security checks. For ex-
ample, it checks the digital signature of the license to see whether
the license has been manipulated during the distribution phase.
The secure viewer verifies that the content identification number
in the license is identical with that in the watermark, etc.

• Finally, the client renders the content in compliance with the
license specifications (a process which is also called rights en-
forcement [GSZ03]).

The consumption of usage rights to a web site is handled in a different
manner from the process described above. In that case, access rights to
a web site are enforced e.g. by a web server that protects the web site
from unauthorised access rather than by a secure viewer on the consumer's
computer. Also if the digital goods to be protected are web sites, they
usually do not have to be decompressed and encrypted prior to distribution
respectively delivery. An example of such a DRM system is the German
online newspaper 'Spiegel Online' 12 , where dossiers on certain subjects can
be purchased and then accessed via the web browser. In addition, DRM
systems are not only prevalent in business-to---<:onsumer relationships, but
also in business-to-business relationships, where DRM is used to regulate
trading among electronic brokerage platforms [GSZ03]. This means that
the consumption or the trading of digital goods may have various facets
or technical implementations. DRM systems must provide consumption
mechanisms for all formats in which content is offered. The various technical
mechanisms that are provided by a DRM system form the DRM system's
technical perspective.

Digital content is not always directly sent to the customers. In some
applications, such as in Nokia's distribution of ring tones [NokOl], the con-
tent is delivered by superdistribution. Superdistribution is an alternative
distribution channel where digital goods can be given away freely without
resistance from either copy protection or piracy. The originator never re-
linquishes ownership rights with the digital good when distributed [Cox94].

12See: http://www.spiegel.de/

59

Superdistribution can be implemented for example with peer-to-peer net-
works or by people who exchange resources among each other, i.e. potential
customers exchange the secure containers privately in unstructured ways.
These containers do not contain a license. If the customer decides to pur-
chase a ring tone, s/he requests the license and token at the DRM plat-
form belatedly. A sample DRM system that describes the superdistribution
process can be found in [Gut03].

In terms of security, the process described above only sketches a few
mechanisms used in the field of DRM. The usage of other security mecha-
nisms changes the information flow through the DRM system. Every DRM
system requires a system for the global or at least system-wide identifica-
tion of digital goods and users. Thus, the usage and access rights of certain
users can be uniquely assigned to certain resources in rights expressions
respectively licenses and contracts. This unique identification then allows
the correct fulfillment or processing of licenses respectively contracts. Such
identification mechanisms are, e.g. DOI [NatOO] for the identification of digi-
tal content and x509 certificates [IT93b] for the identification of individuals.

The digital goods or services traded via the DRM system are related to
metadata that further describes the resource. The DRM system requires the
use of a standard description language, such as dublin core [Dub0l] and/or
LOM [IEE02], that eases the recording respectively exchange of such data.
Finally, an infrastructure for security services, such as PKI [KL89] has to
be provided. The process described above does not address the technical
protocols that the DRM components use for communication. To read more
about this technical detail, please refer to Erickson [Eri02] who describes
a reference architecture for the communication between DRM system com-
ponents on the protocol level. Erickson introduces the required protocols
and standards in context of the 'DRM reference architecture' described in
[RTM02]; this DRM system architecture has already been addressed in Sec-
tion 2.3.1.

2.3.4 Commercial DRM Products and
DRM System Variants

The sample system in the previous section describes one possible form of a
DRM system as well as one typical DRM process through such a system.
In this section, actual implementations of DRM systems are described with
the help of the functions identified in Section 2.3.1 to show that those hold
for all investigated DRM systems. In the DRM process of Section 2.3.3, the
license that grants access is packaged with the resource in a secure container

60

(combined delivery). In other DRM systems the resource comes in these-
cure container but the license and the token have to be acquired separately
from the DRM system (separate delivery). Both approaches have advan-
tages and disadvantages. The license which is bound directly to the content
reduces the complexity of security and communication in the DRM system
because only one secured transmission between consumer and DRM plat-
form is necessary. The drawback of this approach is that the license cannot
be changed once it is issued and integrated into the secure container, e.g.
in cases where access respectively usage conditions change over time and
outdated versions of the secure container are still circulating. If the license
is distributed separately from the content, an additional tamper-resistant
connection to the DRM system is required in order to receive the license,
but this approach makes the DRM platform very flexible in controlling,
varying, and changing the terms and conditions for the digital content and
allows superdistribution. Every time use or access rights are purchased for
the packaged product, the consumer has to contact the DRM system that in
turn sells a license under the current (changed) conditions. However, each
of the two mechanisms have sensible applications; therefore a DRM system
should support both.

InterTrust has done pioneer work in the field of DRM. In the descrip-
tion of InterTrust's DRM system below, the terminology and the graphic
symbols from the previous sections will be used. In the InterTrust sys-
tem design [DK0l], the license and the content are handled separately from
each other, both in a protected format. The licenses are administered by an
additional, independent component called the Content Rights Server (see
Figure 2.6). The booking and payment functions aer delegated to an exter-
nal e-commerce system. Once the customer has settled the payment with
the e-commerce system, the authorisation module (called the Authorisa-
tion Generator) sends an authorisation (token) to the customer, who can
then use it to retrieve a license for the purchased content from the Content
Rights Server. Content consumption is then processed by the RightsJSystem
Client. InterTrust, does not provide a DRM middleware implementation.
However, InterTrust has recently had success in licensing its DRM specifi-
cations.

The Windows Media Rights Manager [Mic03] differs from the sample sys-
tem introduced in this chapter in that the DRM platform does not host the
booking service. The clearing house is responsible for the booking process.
An additional booking module which challenges booking requests has to

Content Provitkr

RightslSystem Packager

I Content Provision I
I Content Prepartion I
I Content I Safekeel!inl!

I Offer Creation I
I Content I Distribution

'T"

C
,... -=>

Coo- - Meladata
Rcpo,iu,ry

II
£-Commerce System

Booking
11

i E :) User Dall

Authorization Generator

I Authorization I

Figure 2.6: InterTrust's DRM system

61

Content Rights Server

be installed in the clearing house component (called Microsoft's License
Server). As Microsoft's system delivers the licenses separately from the
content, the booking module is also responsible for delivering the license to
the customer once the payment has been made.

IBM's Electronic Media Management System (EMMS) [IBM02] distrib-
utes content and the associated rights together in a secure container. With
the exception of its payment function, this system resembles the sample
DRM system. However, EMMS can be integrated into e-commerce systems
which provide distribution and clearing services.

ADo2RA is a DRM system developed by Digital World Services (DWS)
[Oig03], which is part of the Bertelsmann Group. The system is designed
with an separate component for the majority of DRM functions. It is worth
noting that ADo2RA uses a sophisticated two-step solution to facilitate the
DRM function "authorisation": The content as well as the usage and access
rights that have been purchased by the consumer are not delivered directly

62

to the consumer but stored in a rights locker. The rights locker is a central
repository for content and tokens which is accessible to the customer from
various locations, e.g. from the car, home, or office, and from different device
types, such as mobile phones, PCs or PDAs. To access the rights lockers
from their current location customers have to authorise themselves to the
rights locker. This approach has the advantage that content and rights do
not need to be ported from one device to another by the customer.

The following approaches have not yet been developed as commercial
DRM systems but introduce alternative technical approaches to the imple-
mentation of DRM systems.

Feigenbaum et al. in [FFSS0l] introduce a very generic, distributed sys-
tem architecture in which separate components are responsible for each
function, including that of content safekeeping, packaging, and authorisa-
tion. This approach is also designed with a rights locker for the storage of
the customer's licenses. One prerequisite for the implementation of a rights
locker is the separation of content and licenses.

The study of Konstantas and Morin [KM00] presents an agent-based
approach in a DRM system developed as a prototype. In this approach,
the content provider is responsible for provision and offer placement, and
delivers the content as well as the respective license to an agent platform via
a secure channel. The agent platform then takes care of the content prepa-
ration. The content and the license are wrapped together within an agent.
This agent is the only application that is permitted to access the content;
thus the agent permanently secures the content. Agents containing digital
content can be released through the common distribution channels. They
also provide content consumption functions. In order to be executed on
the customer's PC, agents require a suitable agent platform, for which Java
technology was used in this prototype. Prior to accessing the content, the
consumer has to consult the clearing house, which is responsible for booking
and clearing. The customer obtains access (in the form of a token) from
the clearing house and consequently does not directly get in touch with the
content provider. The clearing house transfers payment and booking infor-
mation to the DRM platform on a regular basis.

63

2.4 The Role of Rights Expression Languages
inDRM

Section 1.2 highlights the importance of collaboration and compatibility in
the field of ORM and explains the need for standardised contracts. The
technical means to provide such collaboration and compatibility is to work
with standardised technology. Such technology is sometimes developed by
the industry or can be adopted from standard-setting bodies, such as the
World Wide Web Consortium (W3C)13 . A prerequisite for collaboration is
that all participants agree one a set of technologies.

The need for collaboration occurs throughout the entire supply chain
(see Section 1.2), including collaboration among ORM systems (in the B2B
and the B2C context) and among ORM system components. Generally,
the focus of this thesis, is the exchange and processing of rights expres-
sions between distributed systems, either ORM systems or ORM system
components. Various ORM systems have different representations of rights
expressions respectively contracts. For example, in one system the contract
information is stored as database entry with a fixed number of fields (e.g.
on the EducaNext platform14), in another system the contract information
may be stored in software objects, and in a third system contracts and their
content can be kept as rules and facts in an contract expert system. To
exchange contracts or rights expressions with other ORM systems or ORM
system components with customers or third parties, contracts or rights ex-
pressions have to be formulated in a standardised format. Such a format is
offered by rights expression languages (see Chapter 3). The following two
examples describe typical cases in which rights expressions occur in ORM:

Rights expressions are used within the ORM content consumption func-
tion (see Section 2.3.1). The digital content is rendered by the secure viewer
according to earlier defined usage and access rights. These usage and ac-
cess rights are formulated as rights expressions that either come with the
content in a secure container or are received later on access demand. Thus,
in this scenario rights expressions are exchanged within one ORM system,
i.e. between ORM system components. They are interpreted and processed
by the secure viewer. Rights expressions are used in IBM's ORM system,
the Electronic Media Management System (EMMS) (IBM02) (see Section

13See: http://www.w3.org/
14See: http://www.educanext.org/

64

3.5). In EMMS, the rights expressions are packed into the secure containers
(formerly Cryptolope technology [Kap96]). Microsoft's WMA format uses
rights expressions formulated in a rights expression language to render var-
ious content types (music, video, etc.) with their Media Player. The Media
Player functions as Microsoft's secure viewer. Nokia is currently developing
a consumption technology [NokOl] for the mobile communications sector.
Here, users receive content, such as images, ring tones, etc., in a secure
container and have to purchase so called 'vouchers' (comprising rights ex-
pressions) to render the content on their mobile phone.

A number of providers of different digital and physical goods or services
aim at offering their products via a common web portal and exploit the net-
work effect (see Section 1.2). A typical example for this form of networking
is Amazon.com15 that started this strategy on a large scale very early and
thus was able to realise first mover advantages [RvdV04]. Amazon, which
formerly started as web portal for purchasing books, is now offering a large
variety of products from digital cameras to apparel and toys. To techni-
cally implement this network the DRM systems of the providers have to
formulate offers (i.e. rights expressions) comprising the description of the
goods and their terms and conditions for Amazon. When offering a large
number of different digital goods, with different conditions, such as music
or video files, the offers can not be formulated manually. The offers there-
fore have to be available in a standardised format to be fed into the offer
database of Amazon. This standardised format can potentially be a rights
expression languages. In this example, the exchange of rights expressions
occurs between DRM systems (content sellers and a content distributer) in
the supply chain rather that between DRM system components.

The exchange of rights expressions occurs in all stages of the supply
chain, i.e. between content creators, content packers, content managers,
content publishers, content sellers, content distributers, and consumption
service providers. Another application area of rights expressions are service
level agreements (SLA) (see Section 4.9). Service level agreements coordi-
nate the access of customers to certain services, e.g. a slot of the physical
mobile telephone network to a mobile network operator (e.g. T-Mobile).
Generally, the main field of application for rights expressions formulated
in a REL is the exchange of rights information between interoperating
DRM systems or their components, independent of the logical construct
the rights expressions represent (contract, offer, etc.) or the application
(secure viewer, accounting software, etc.) they serve.

15See: http://www.amazon.com/

65

In order to use a REL for the exchange of rights expressions between
ORM systems respectively between their components, at least two technical
tools have to be available [GSZ03]:

• Rights expression generator. This component supports the user in
writing rights expressions, e.g. in the form of a web-based graphical
user interface (GUI) that helps content providers to create offers. In
that case, a rights expression is generated that expresses a digital
good, the usage and access rights that the provider intends to grant
to it, and the respective terms and conditions under which the rights
are granted.

• Rights expression interpreter. A rights expression is not processable
without an interpreter which is able to read and interpret the rights
expression. For example, a secure viewer in charge of handling a secure
container must be able to interpret the license that applies to content
in order to grant access to and render the content accordingly. This
type of processing is also called rights enforcement (see Section 4.7).

In the sample process described in 2.3.3 the generating tool is part of
the ORM platform and supports the activity metadata enrichment of the
ORM function Content Preparation. The interpreter tool, in turn, is part of
the client software (or secure viewer) supporting the ORM function Content
Consumption.

Chapter 3

Rights Expression
Languages (RELs)

67

This chapter provides an insight to the field of rights expression languages
(RELs). It justifies the application of rights expression languages in rights
expressions respectively electronic contracts in today's DRM systems and
addresses the requirements which have to be met by these languages (see
Section 3.2). Section 3.3 addresses the language syntax and vocabulary
of RELs. Standardisation is a critical success factor for RELs. If a REL
has been accepted from or is supported by a standardising body, such as
the W3C1 or the Open Mobile Alliance2 , it is likely to become globally
accepted respectively applied (as is exemplified with XML or RDF). There-
fore, Section 3.4 introduces REL initiatives and their background, as well
as languages that have already been accepted of standard-setting bodies.
Practical examples (XML instances) of rights languages are given for the
RELs ODRL and XrML. Finally, the chapter provides a short survey of the
current market situation and trends in the field of DRM middleware and
implementations using RELs (see Section 3.5).

3.1 Definition of Terms

Rights Expression Language: A rights expression language is a means
of expressing usage and access rights of parties to assets. Rights

1See: http://www.w3.org
2See: http://www.openmobilealliance.org/

68

expression languages provide a syntax and semantics that are suffi-
ciently rich to formulate rights expressions for digital publications,
audio and video files, images, games, software, and other digital or
physical goods, including pricing models as well as terms and condi-
tions, regardless of whether a monetary consideration is part of the
transaction. Consequently, rights expression languages provide meta-
data framework for the expression of rights.

REL instance or rights expression: Every document that is formu-
lated in a rights expression language shall be defined as 'REL in-
stance'. REL instances are exchanged between DRM systems respec-
tively DRM system components and serve as interface between them.
After being exchanged REL instances are further processed in appli-
cations, such as access control, accounting, etc. Sometimes the term
rights expression is used as a synonym for REL instance. Depending
on their content, rights expressions can represent different semantic
constructs, e.g. licenses, digital tickets, or contracts (see Chapter 4,
and in particular Section 4.3.1}. A REL can be used to formulate
"simple" rights expressions, such as "party X has the permission to
play the resource Y", as well as complex electronic contracts where
all contracting parties, the traded resources or rights, and the terms
and conditions are specified in great detail. The mandatory elements
in REL instances are defined in the respective REL specification. The
difference between a "simple" rights expression and an electronic con-
tract lies within content and its semantics. A contract requires at least
the following elements: parties (consumer and rightsholder), resource,
and permission.

3.2 Requirements of RELs

In order to provide a means of expression rights of parties to assets, a REL
has to fulfill several technical and conceptual requirements. One substan-
tial technical requirement of RELs is machine readability. Documents are
machine readable, if a computer is able to digitally record the document in-
formation. Various techniques meet this requirement, e.g. even a newspaper
article is machine readable after scanning the article and processing the im-
age with an OCR (optical character recognition) software. OCR software,
however, is not 100 percent reliable in terms of correct symbol recognition.
Most of today's RELs are developed for the serialisation in XML, allowing
for a formal representation of electronic contracts. Reading XML docu-

69

ments by a machine is more reliable than reading scanned documents and
thus XML qualifies as an exchange format for rights expressions. XML is
described in more detail in Section 3.4.1.

In Section 2.3.1 the function Content Consumption is described with
the following sample DRM activities: handling the access request of the
consumer, authenticating and identifying the consumer, identifying the re-
source that is subject to the access request, decrypting and decompressing
the digital good(s), granting or denying access to the digital goods accord-
ing to the license, and rendering the digital goods according to the granted
permissions in the license. A number of REL requirements can be derived
from these sample activities. In order to provide the relevant metadata, the
REL should support

• identification mechanisms: unique ids are needed for the identification
of parties (e.g. x500 [IT93a]) and resources (e.g. DOI [NatO0], ISBN
[ISO92], ISSN [1SO98], etc.).

• the definition of usage and access rights: usage and access rights are
e.g. play, print, copy, etc.

• the definition of permission and duties: permissions and duties, such
as 'play Ebook no. 12356' or 'pay €100.00' are (operation, object)
pairs where operation is an action (play) that may be or has to be
performed on a certain resource.

• the definition of constraints: constraints are needed to narrow duties
or usage and access rights in time, location, device, etc.

• the articulation of roles: some security mechanisms grant or deny ac-
cess to resources depending the user's role rather than his/her identi-
fication number. Therefore, RELs also have to provide the possibility
to express user roles, respectively express usage and access· rights for
roles.

• the definition of technical details: this supports the handling of de-
cryption algorithms, viewers, etc.

• workfl,ow data: this supports the course of the DRM process.

This informal enumeration does not represent a complete list of require-
ments for a REL. The Moving Picture Experts Group (MPEG) has specified

70

the requirements for a rights expression language and its rights data dictio-
nary in detail for the multimedia domain [Bor02]. The MPEG requirements
comprise those listed above and a large number of additional ones, such as
concepts for content aggregation, the sequencing of elements, etc. The work
of Neal et al. [NCL +03] deals with the requirements for a special Business
Contract Language. The definition of time constraints is addressed in de-
tail, but the sequencing of operations (e.g. order, deliver, pay), and general
constraints are only shortly sketched. The MPEG documents provide a
comprehensive list of requirements and will be used as reference list for
REL requirement in this thesis. The requirements of a rights language vary
depending on their application field and scope, consequently RELs should
be open and extensible.

3.3 Characteristics of RELs

Two basic factors in a language are its syntax and lexis (or vocabulary).
The vocabulary of a language includes words that are created from permit-
ted symbols (e.g. letters, numbers, and symbols). The syntax applies to the
language vocabulary with which syntactically valid sentences can be formu-
lated. Another crucial issue in language analysis is the field of semantics.
The term semantics refers to the study of meaning as encoded in language
[Wid96]. Syntax, lexis and the semantics of RELs are usually defined in a
document called language specification [Ian02b, Con00, DWW03, Oct02].
The vocabulary of rights expression languages is sometimes referred to as
rights data dictionary (RDD)) [Rig02, BR02]. With this specification an
offer, contract, or other rights expression construct can be formulated.

Rights expression languages facilitate the interoperation of DRM sys-
tems and their components. They allow expressing rights information in a
static format, i.e. putting down certain rights and conditions at a certain
time/state. This static format provides

• The separation of space: Geographically distributed systems deploy-
ing different DRM technologies obtain means to communicate and
interoperate.

• The separation of time: A contract is expressed at a certain state. At
any time, business partners can re-read the contract and its conditions
and verify its validity.

71

Rights expression languages have the potential to express aggregated
rights information, i.e. RELs can phrase a good deal of rights information
in a reduced representation. For example, permissions can be granted to
groups of people (e.g. all students may access the script of informatics)
or permissions can be granted to a type of resource that includes a large
number of actual resources (e.g. user sguth may access all learning resources
of the Department of Information Systems). Of course the software service
that is processing such rights expression must be able to map the aggregated
information to real objects.

3.3.1 REL Syntax

The basic elements in every REL syntax are permissions, resources and
parties; the terminology for these three basic elements vary in each REL.

• Permissions are certain use or access rights to digital or physical goods
or services. For the purpose of this thesis, permission is defined as
operation-object pair. An operation is a certain action that can be
performed on goods or services (objects), such as print, play, use,
etc. Example for a permission is (print, test.pd/). Permissions can
be specified in more detail by constraints. Constraints describe terms
and conditions that have to be fulfilled before an operation is granted
respectively serve to narrow the granted operation by time, location,
individual, etc.

• The resources (or objects) represent the digital goods or services which
the operations refer to. Resources have to be described by a non-
ambiguous identifier such as DOI [NatO0].

• The party element represents any kind of party, i.e. a legal entity
or a physical person which has a relationship (e.g. owns, controls,
has permission to) to a digital product or service. In contracts, the
party elements predominantly represent the people who enter into the
contract. Examples of parties are the rights holder, the creator, the
content provider, the consumer, the administrator, the beneficiary and
the like.

Starting from these basic elements, each REL contains additional con-
cepts for expressing containers, sequences, royalties, constraints, etc., and
their relationships in more detail. Unfortunately, the REL community has
not yet agreed on a general terminology for the basic REL elements. In one
language the operation play is called a right, whereas in the other language

72

play is indicated as permission. Following the terminology of this thesis
a permission is an operation-object pair. Due to the longer history and
available research, this definition has been adopted from the access control
community.

3.3.2 Rights Data Dictionary (RDD)

The rights data dictionary (vocabulary) of a REL defines the words that
are permitted in REL instances and their semantics. For example, in a REL
instance the terms print, play, or view may be used as operations and the
terms time, location, and individual may be used to constraint permissions.
The table below shows an extract from the ODRL Data Dictionary in which
several operation elements are defined. Similar vocabulary definitions exist
for other ODRL syntax elements, such as ODRL constraints, and the ODRL
context element. Each term is usually defined by a name, an identifier, and
a description. The description denotes the informal semantics to a certain
term. The ODRL Data Dictionary is compliant to the ISO-11179 stan-
dard which provides naming and identification principles for data elements
[1SO95].

Name Identifier Description Comment
Play play The act of rendering the asset in ...

audio/video form.
Print print The act of rendering the asset on ...

paper or hard copy form.
Execute execute The act of executing the asset. ...

...

Other rights expression languages define their vocabulary in the same
way (e.g. <indecs>rdd [RB99]) or similarly. XrML [Con00], for example,
defines the informal, textual semantics of each lexical item in a small para-
graph that also includes the respective extract of the XML schema defining
the term. Additionally, the paragraph exemplifies the term's usage, its re-
lations to other terms, and exceptions. Therefore, the XrML specification
version 2.0 is very complex. In contrast XrML, the clear RDD definition
(due to the application of the ISO-11179 standard) in ODRL is more com-
prehensive. All languages introduced in this chapter allow for an extension
of the RDD via XML subschemata.

73

RELs are often more powerful than the ORM system requires. There-
fore, the rights expression language is usually adapted to the specific imple-
mentation and domain, i.e. a subset of the vocabulary or only a restricted
syntax is used. For example, in the Colis3 project only a subset of ac-
cess rights occurs in rights expressions [Ian03c). For the purpose of this
thesis, such adaptations are called REL application policies. Apart from
defining the vocabulary subset such policies can also state the permitted
identification schemes in instances (e.g. DOI, ISSN) or the depth of nested
rights expressions. Application-specific rights expression generators and
interpreters have to implement these policies.

3.4 Existing Rights Expression Languages and
Initiatives

In this chapter, the most commonly used specifications in the field of rights
expression languages are introduced. The field is still evolving, but the
standards mentioned below have managed to prevail.

3.4.1 Open Digital Rights Language (ODRL)

The Open Digital Rights Language (ODRL) [Ian02b) is being developed
by the ODRL initiative4 • The ODRL initiative is an international effort
which aims at developing an open REL standard. In the spirit of the open
source community, ODRL is freely available. It was recently accepted by
the Open Mobile Alliance (OMA)5 as the standard REL for mobile con-
tent. The OMA aims at facilitating global user adoption of mobile data
services. Therefore, OMA is developing specifications that ensure service
interoperability across devices, geographies, service providers, operators,
and networks, while allowing businesses to compete through innovation and
differentiation. The latest version of the ODRL specification (version 1.1)
has been co-published by W3C (as a W3C Note). The OpenIPMP Open
Source Rights Management Project6 has just released the first version of
their ORM software that utilises ODRL for formulating rights expressions.
The ODRL initiative does not have a focus on some particular application
domain. However, ODRL is well accepted in the telecommunication domain

3See: http://www.colis.mq.edu.au/
4 See: http://www.odrl.net/
5See: http://www.openmobilealliance.org/
6See: http://www.openipmp.com/

74

(through adoption of ODRL by OMA), in the educational domain, e.g. in
the COLIS7 project, the le@rning federo.tion8 , the Open Archives Initiative
[Bir0l], and of the Dublin Core initiative (PJ02]. As ODRL is an open-
source project, it is likely that the further development of ODRL will be
research driven, i.e. researchers from all over the world will participate in
future versions of ODRL. The release of ODRL version 2.0 is scheduled for
the end of 2004. As a part of this thesis an interpreter for ODRL has been
implemented. Therefore, ODRL will be discussed in more detail.

The following paragraphs present a REL syntax example of the straight-
forward concept of ODRL. Referring to the earlier definitions, an operation
in ODRL, e.g. play or print, is called permission (!), resources are indicated
in ODRL as assets, and parties are also called parties in ODRL. The root
element in ODRL is the rights element (see Figure 3.1), which represents
one rights expression (e.g. a license, contract, etc.). The rights element can
contain the rights expression itself with the party, asset and permissions el-
ements or, alternatively, it can use the offer/agreement element to indicate
semantically that a given rights expression is an offer or agreement. ODRL
offers three different types of constraints: requirements, constraints, and
conditions.

• If a requirement is defined in ODRL, the permission it is related to may
not be granted prior to the fulfillment of this requirement. Payments
are the most common requirements of ODRL.

• The constraint element in ODRL is designed to narrow ODRL per-
missions. For example, the permission play can be constrained to five
times, by using the bound constraint count. ODRL provides for user-,
device- bound-, temporal-, aspect-, target-, and rights constraints.

• An ODRL condition is oppositional to ODRL requirements. Once a
condition is fulfilled, the respective permission is revoked.

If the ODRL rights expression includes a digital signature, the corre-
sponding XML Signature (BBF+o2) conforming information can be inte-
grated into the document by means of the ODRL signature element. The
ODRL syntax allows the addition of XML elements that are compliant
with the XML Signature namespace. Figure 3.1 illustrates the elements
discussed, which are merely a subset of the ODRL syntax. The entire cur-
rent foundation model of ODRL is shown in Appendix A 9.1 (for a full

7See: http://www.colis.mq.edu.au/
8See: http://www.thelearningfederation.edu.au/

75

Rights

Signature

Figure 3.1: A subset of the ODRL language syntax

description of the concept, please refer to Iannella (Ian02b]). All ODRL
elements can be further described by means of an ID, name, etc. with the
help of the context element (not shown in Figure 3 .1). Note that the OD RL
model is further developed on the basis of the data model presented in this
thesis. Please find the latest development of the ODRL foundation model
at the ODRL Initiative web site9 •

Excursus: XML as Language Definition Framework

Extensible Markup Language (XML) (BPSMM00] is a meta-language for
the definition of application, respectively domain-specific markup languages.
Consequently, XML is a means to define new markup languages for a certain
domain, e.g. rights expressions. XML is a successor of the Standard Gen-
eralized Markup Language (SGML) (ISO86]. A new XML-based markup
language defines XML elements and their XML types (e.g. complex type),
as well as their structure, i.e. how these elements may be arranged in an
instance of the language. XML documents have a well-defined document
structure and are human as well as machine readable. XML plays an in-
creasing role in the exchange of data on the web and elsewhere.

The code that defines new markup languages or document types in XML
is called Document Type Definition (DTD) (BPSMMOO] or XML Schema
(TBMM0l, BM0l]. In contrast to DTDs, XML schemata provide rich
datatyping capabilities for elements and attributes (e.g. String, Integer),

9See: http://www.odrl.net/

76

object-oriented design principles (e.g. inheritance), and namespaces. A
document that is derived from a specific XML schema or DTD is called
XML document or XML instance. An XML instance is valid if it conforms
to that specific XML schema or DTD. In order to check whether an XML
instance is valid (with respect to a specific XML schema or DTD) is is
'validated' against the respective XML schema or DTD (see the Example
below). An XML instance is well-formed if it contains at least one element,
if it has a unique opening and closing tag, if the tags are nested properly
(i.e. there must be an opening and a closing tag that do not overlap), and if
the attribute values are quoted[BPSMM00]. XML documents contain one
root element; an XML root element and its nested elements below is some-
times referred to as XML tree.

All rights expression languages introduced in this chapter are defined
in XML schema documents. For the better understanding of subsequent
chapters, a small introduction to XML Schema is exemplified with ODRL.
To make the example more comprehensive, the following code (see Figure
3.2) is a simplified subset of the XML Schema defining the Open Digital
Rights Language (for the complete ODRL schema, see Appendix A)

As mentioned above, XML Schema documents define permitted ele-
ments, as well as their types and structure. In the example, a number
of elements are defined, namely rights, offer, agreement, as well as asset,

party, permission, and context and finally uid, date, and remark. Each of
these elements have types; element types can either be simple or complex.
Elements with simple types do not have further elements, and represent
the 'leaves' of an XML tree, whereas complex element types comprise one
or more further elements. The elements right (rightsType), offer, agreement

(offerAgreeType), and context have complex element types. An element of
the rightType may comprise offer and/or agreement elements.

To reduce complexity, within the definition of a complex type it can
be referred to element definitions, e.g. as to offer and agreement in the
rightsType definition. The elements offer and agreement are of the complex
offerAgreeType, comprising the elements context, party, asset, and permission.

Finally, the element context is defined as complex type, comprising the ele-
ments uid, date, and remark. The element uid, date, and remark , as well as
the elements asset, party, and permission are of the simple type xsd:string

and may therefore simply comprise words or sentences.

<?ZIil varaion•"l. 0" encoding-"OTr-1"?>

<aad: • - ..i.n• :uclo"http://.-.w3.or9/2001/l111LS.,_"
aal.a• :o---•http://odrl.net/1.1/0DRL-U"
t&r<J9tJl---··http://odrl.net/1.1/0DIIL-IIX"
•1-ntl'ol:llllefault•"qualified" attrilNtdol:llllefault•"unqualified">

<aad:el...at naaia•"ri9bta 11 t.ype•"o-ea:: ri9bt•Type">

<a• d:annotation>
<aad:do...-ntation• aoot •1-t of each ODRL U</aad:do.,_,,tation•

</a•d: annotation•
</aad:•1-t•

<aad: el~t nua•"offer" type-"o-as: off•r&.9r-Type" />
<aad:el-nt naae•"qraeaent" typa•"o-aa:off•~"/>

<a• d:coo,plU'l'ype -••right•Type"•
<asd:cboice aiD0ccura•"0" masocc:ura•"UDboUllded">

<a8d:eleaant ref•"o-ea:offer" lllia0ccura•"O" -..OCcura•"unbounded"/>
<aad:alamant raf•"o-es:aqr.....at." ain0ccura•"0" mazOcc:ura•"unbowaded"/>

</aad: cboica•
</a•d:caaplU'l'ype>

<aad:complU'l'ype DU11a• 1'offaz:A9Z"NType">

uad:cboica aiDOccura•"O" maaoccw:a•"unbounded">
<aad:al...at ref•"o-ea:contmrt" ain0ccura•"O" masOCcura•"unbounded"/•
<a9d:al..-nt ref•"o-ea:party" aiDOccura•"O"OCcura•"unbounded"/•
<asd:•1-nt ref•"o-ex:aaaet" llliDOcc:ura•"O"occw:a•"unbouaded"/>
<aad:al.-.at ref•"o-ea:pezaia• ion" ainOc:cu.r• •"O" M&Occur• •"unbowlded" />

</a• d: choice>
</a•d:caaplU'l'ype•

<a• d:•1-nt nama•"••-t" type-"a• d: • trin9"/>
<a• d:•1-nt nama•"party• typea 11aad:atrln9"/•
<zad:•1-nt naaa•"pend.aalon" typea"aad:atrlnq"/•

<aad:•1-nt DUa•"contest"•
<aad: c-lU'l'ype•

<aacl:cbolce alnOccura•"O" ...OC:cur• •"unbounded">

<aad:el-.nt ref•"o-ea:uld" ainOccurP"O" ...OC:cur••"Wlbounc:lad"/•
<aad:el-.nt ref•"o-ea:dat•• ainOccura•"O" aazOccura•"ualk>UDded"/•
<aad:el-.at ref•"o-ea:r-.rk" 1111D0ccara•"0" aa&Occur• •"unboundecl"/•

</a• d:cbolce•
</a• d:coo,ple&Type•

</a•d:el..-nt•

<aad:•l-nt naaa•"W.d" typea"a• d:atrlnq"/•
<aad:el-Dt naaa-"data" typea"aad: •trlq"/•
<aad:•1-at naae•"r-.rk" type•"a• d:atri119"/•

</aad: •=->

Figure 3.2: A simplified subset of XML schema defining ODRL

77

78

<?xml v• raiona"l. 0 11 encoding-"tJTl'-8"?>

<right• xmln• •"http://odrl.net/1.1/0DRL-BX"
xmln• :x• i•"http://www.w3.org/2001/XIILSch--in• tanc•"
x• i: • ch•maLocation="http://odrl.n• t/1.1/0DRL-BX
http://wi.wu-i•n.ac.at/W• r_• incl....wir/Guth/• ch-.• /odrl-• imple.x•d">

<agr• .-nt>
<context>

<uid>agr•-nt 1112233</uid>
<dat• >12/31/03</date>
<r-rk>Thi• aqr-.it wa• concluded in Vi• nna/Au•tria</r-rk>

</context>
<party>SU• ann• Guth</party>
<permi•• ion>play</p• rmi•• ion>
<aa•• t>Bit clip 1999888</aaa• t>

</aqr• -nt>
</right•>

Figure 3.3: A valid language instance of the simplified ODRL schema

At the beginning of the XML schema, there is a definition of which char-
acter set can be used in instances (UTF-8), which namespace has been used to
write the schema (http://www.w3.org/2001/XMLSchema), and which namespace
the schema at hand provides (http://odrl.net/1.1/0DRL-EX). The XML schema
also specifies that all elements in instances of this schema have to be as-
signed to a qualified namespace (elementFormDefault). The attribute
attributeFormDefault denotes that only the globally declared attributes must
be namespace qualified in instance documents; locally declared attributes
are not namespace qualified. From the schema above a respective ODRL
instance can be derived (see Figure 3.3). It is important to note that this
is a simplified XML instance that is not compliant with ODRL version 1.1.
The two XML schemata defining ODRL version 1.1 can be found in Chap-
ter 9 (Appendix A). Stating rights information in an XML-based language
provides flexibly, as language elements from other XML schemata can be
integrated, i.e. XML-based RELs permit to reuse of description languages,
such as the Learning Object Metadata (LOM) standard [IEE02] or Dublin
Core (Dub0l] or XML Signature (BBF+o2] .

Several free open-source tools are available for the work with XML
schemata and instances. Tools for processing XML documents are called
XML parsers.

79

XML Parser. An XML parser, such as Expat10 or Xerces11 , is a software
tool that receives input in the form of XML markup tags and breaks
them up into parts (for example, the nouns, verbs, and their attributes
(or options)) that can then be managed by other software services, e.g.
a language interpreter. Some parsers include XML validators, such
as PyTREX12 (for Python platform) or DSD Processor13 (for Java
platform). A validator checks if an XML document is valid in respect
of a certain XML schema. A large number of other XML parsers can
be found on the W3C web page for XML schema 14 .

ODRL Example

ODRL version 1.1 includes two XML schemata: one that defines the lan-
guage syntax and a second that defines the ODRL rights data dictionary.
The XML schema defining the ODRL rights data dictionary is basically an
extension of the XML schema defining the ODRL syntax. For example,
in the syntax an element called permissionElement is defined. Via the XML
mechanism substitutionGroup the data dictionary defines all terms that can
be used as permissionElement, e.g. play, print, copy, etc. Both the XML
schema of the ODRL syntax and rights data dictionary can be found in
Appendix A. The following code is an example compliant to ODRL version
1.1, showing a contract for a video (disregarding XML namespace labels).
ODRL uses XML attributes to assign additional information to the ODRL
vocabulary (see "currency" of the amount tag).

The sample license shows a recording of a marketing lecture sold to the
Universite Libre de Bruxelles for the price of€ 10. 00 with the permission to
play the video five times. The video stream's rights holder is the Department
of Information Systems at the Vienna University Economics and BA. In this
example, ids from the numbering system of the Universal Project15 are used.

<rights>
<agreement>
<party>

10See: http://www.jclark.com/xml/
11See: http://xml.apache.org/xerces-c/
12See: http://pytrex.sourceforge.net/
13See: http://www.brics.dk/DSD/
14See: http://www.w3.org/XML/Schema
15See: http://www.ist-universal.org/

80

<context>
<uid>urn:univ:us-wuw-deptIS </uid>
<name>Department of IS, Vienna Univ. of Economics and BA</name>

</context>
<rightsholder/>

</party>
<asset>

<context>
<uid>urn:univ:lr-wuw-vid-1</uid>
<name>Marketing strategies for Universal</name>

</context>
</asset>
<party>

<context>
<uid>urn:univ:us-wuw-uniBrux</uid>
<name>Universit6 Libre de Bruxelles</name>

</context>
</party>
<permission>

<play>
<requirement>

<prepay>
<amount currency=EUR>10.00</amount>

</prepay>
</requirement>
<constraint>

<count> 5 </count>
</constraint>

</play>
</permission>

</agreement>
</rights>

This example reflects the ODRL syntax illustrated in Figure 3.1. The
basic elements within an agreement are party, asset, and permission. The
party element occurs twice, for the consumer and for the rights holder.
The rights holder is identified by the (rightsholder) element nested below
a party element. The language specification defines that permissions on the
same XML tree level as assets, refer to these assets (if no further references
are specified). Likewise, assets and permissions are related to customers.
The example above does not use a signature element. Constraints (such
as ODRL requirements and ODRL constraints) are directly nested below
ODRL permissions.

81

3.4.2 eXtensible rights Markup Language (XrML)

The eXtensible rights markup language (XrML) (Con00] is a rights expres-
sion language developed by ContentGuard16 , a spin-off of Xerox in co-
operation with Microsoft. The language XrML itself is free of charge, but
ContentGuard holds a US patent on the usage of rights expression languages
in general. ContentGuard claims that its patents pertain "to the distribution
of digital works and to any rights language". The interpretation and the
consequences of this patent are not clear and are often discussed in DRM/
REL-related communities. After working through various online resources,
such as web pages and news groups, and personally discussing this issue
with ContentGuard employees, I have come to the conclusion that usage
rights for industrial/commercial use in the US of XrML or any other rights
expression language need to be licensed with ContentGuard.

ContentGuard aims at applying XrML in DRM systems that focus on the
commercial exchange of digital goods. Therefore, the standard vocabulary
of XrML is designed to express a large number of pricing models. Today
XrML is used in Microsoft products (see Section 3.5). Most likely, the
further development of XrML will be industry-driven. Is is likely that
Microsoft will be able to use its impact to the further development of XrML
and the above named patents as competitive advantage in the market for
DRM system solutions.

XrML Example

XrML is defined by three XML schemata: the XrML core schema, the
XrML standard extension (sx) schema and the XrML content extension
(ex) schema. The following example includes XML namespace information,
which is necessary for the validation of elements from different namespaces.
Just as ODRL, XrML envisages the use of XML Signature (BBF+o2J to
specify the identity of the contracting parties. The example below shows an
XrML instance which reuses elements of the XML Signature namespace.

The "license" -tag is the root element of an XrML instance, resource and
party are referred to as the "resource" and "principal" in the basic syntax
of XrML. "Grant" includes the actual rights expression. Operations are ex-
pressed as "rights" and constraints as "conditions". The XrML--compliant
representations of resource and consumer party are "digital work" and "key-

16See: http://www.contentguard.com/

82

Holder." The XrML vocabulary contains "print" and "validitylnterval" as
an operation and condition. The XrML license below grants the owner of
the x509 certificate the use of someResource until the end of 2005.

<?xml version•" 1. 0" encoding•"UTF-8"?>

<license :mlna•"http: / /vvv .:um].. org/schama/2001/11/:rrml2cora"

:mlna: sx•"http: //vvv. :uml. org/achama/2001/11/:uml.2sx"

:mlna: daig-"http: / /vvv. v3. org/2000/09/xmldsig#"

:mlna:xsi•"http://vvv.v3.org/2001/XMLSchama-instanca"

:mlna: cx•"http:/ /vvv. :uml .org/schema/2001/11/:uml.2cx•

xsi: schamaLocation•"http: / /vvv .:rrml. org/schema/2001/11/:rrml2cx

<grant>

<keyHolder>

<info>

<daig:x509Data>

.• \schemata\:rrml2cx.:i:sd">

<dsig: X609IssuarSerial>

<daig:X609IasuerName>CN•Guth Susanne,

0U•Dapt. of Information Systems,

0•Vie1111a University of BA, L•Via1111a,

ST•Via1111a, C•Austria

</dsig: X609IssuarNama>

<daig: X609Seria1Number> 12345678</ daig: X509Seria1Humber>

</daig: X609IssuarSarial>

<dsig:X509Cartificata>MIIEODCCA6GgAvIBAgIBEDAHBgkqhki ...

. . . Zos6NAm8m6UQBA•• </daig: X509Cartificata>

</dsig:x509Data>

</info>

</kayHoldar>

<ex :print/>

<ex: digi talWork>

<ex: locator>

<nonSacurallldirect URI•"http://vvv.vu-vian. ac. at/somaRasource• />

</ex: locator>

</ex: digi talWork>

<validi tylnterval>

<notAftar>2006-12-24T23: 59: 69</notAf tar>

</validityllltarval>

</grant>

</lica11Ba>

In XrML the elements keyHolder, operation (e.g. print), digitalWork, and
constraint (e.g. validitylnterval) are positioned on the same XML tree level.

83

Therefore, like in ODRL, the keyHolder is related to the operation print
and print refers to someResource. Likewise, the constraint is referred to the
operation print. The latter semantics is different from ODRL, where con-
straints are nested directly below the respective operation. Thus, in XrML
the constraints are related to the operation and the resource (digitalWork),
whereas in ODRL the constraints are related only to the operation. This
fact illustrates one of a probably large number of differences in the syntaxes
of the two languages. Such syntax differences between the two RELs are
hard to identify as unfortunately, until now no formal semantics has been
developed, neither for ODRL nor for XrML. XrML seems to be focused
more on the commercial aspect of a rights expression language, i.e. on ex-
pression licenses that a sold and issued by a DRM platform and bought
respectively executed by consumers. In contrast to ODRL, XrML does not
seem to focus on the formulation of contracts as in XrML not contract par-
ties are specified but issuers and keyholders.

3.4.3 MPEG 21

The Moving Picture Experts Group (MPEG) 17 is the 1SO/IEC working
group in charge of developing standards for the coded representation of
digital audio and video. Among other standards, MPEG is working on
MPEG 21 with the intention to develop a standardised multimedia frame-
work. Parts 5 [DWW03] and 6 [BR02] of the MPEG 21 standard specify
a REL respectively RDD suitable for such a framework. After defining the
requirements for RELs and RDDs [Bor02], MPEG issued a call for contri-
butions to select one REL and one RDD as a basis for future development.
XrML version 2.0 has been accepted as basis for the development of a fu-
ture MPEG 21 rights expression language, and the data dictionary from
the <indecs>initiative has been accepted as the basis for the future Part 6
(RDD) of the MPEG 21 standard.

The <indecs>2rdd Project

The <indecs>2rdd project is based on the <indecs> project, which defined
a framework for interoperable meta.data in content-based e--commerce and
is now hosted by the DRM consulting company Rightscom18 . In contrast
to ODRL and XrML, the project does not provide a syntax, but focuses

17See: http://mpeg.telecomitalialab.com/
18See: http://www.rightscom.com/

84

exclusively on defining a rights data dictionary. Thus, <indecs>2rdd is
not a rights language but can be adapted from a REL as RDD. The rights
data dictionary of the <indecs>2rdd project aims at providing a more so-
phisticated RDD than XrML and ODRL do, and therefore introduces a
rights ontology which supports interoperability between the various RELs.
The <index>2rdd project is currently working on the shaping of its RDD
according to the requirements of MPEG 21.

3.4.4 LicenseScript

LicenseScript [CCL +03] is a rights expression language that is not defined
in an XML schema. LicenseScript is a multi-set rewriting/logic-based lan-
guage for expressing dynamic conditions of use of digital assets such as
music, video or private data. LicenseScript differs from the other DRM lan-
guages in that it does not express a certain state, such as an XML contract,
which states an agreement at a certain date, but it tracks the development
of a rights expression from its issue to its consumption. This REL does
not intend to provide a rights expression exchange format between differ-
ently designed DRM components or systems. Therefore, each system that
aims at using LicenseScript has to use the implementation of the Licens-
eScript interpreter. Although this characteristic is reducing semantic errors
when interpreting rights expressions, it also restricts the usage spectrum of
LicenseScript. Each rights expression in LicenseScript is a small Prolog pro-
gram. Therefore, the question arises if LicenseScript is a rights expression
language. Another approache of logic-based rights expression languages has
been discussed in [Sza02].

3.5 Current Market Situation and Trends

This section examines the application of rights expression languages in the
current DRM systems market. The leading developers of DRM middleware
are IBM, Adobe, Real Networks and Microsoft. Real Networks, however, is
currently not using any of the introduced RELs in their products.

• IBM has developed a product called the Electronic Media Manage-
ment System (EMMS} 19 , which currently deploys a proprietary rights
expression language influenced by ODRL. EMMS supports a variety of
media formats. IBM is working in close cooperation with Nokia to de-
velop solutions for the mobile communications sector [Nok0l]. Nokia

19See: http://www.ibrn.com/software/data/ernms/

85

has just released a new version of their content publishing toolkit
that provides a content creation that meets the requirements of OMA
(OMA uses ODRL, see Section 3.4.1) and enables deployment of con-
tent and rights to mobile handsets.

• Microsoft has implemented XrML in its Windows Media™ Rights
Manager. This software provides a means of packaging content and
specifying usage and access rights formulated in XrML. The output
of this tool is a file in the Windows Media format (WMA). XrML
instances can be interpreted and processed, i.e. enforced, by the Win-
dows Media Player.

• Adobe offers DRM solutions for the exchange of documents including
e-Books in PDF. The documents are created with the Adobe Content
Server software and can be interpreted and enforced with the corre-
sponding reader, which offers the proprietary functionality of a secure
viewer. Adobe is a supporter of the ODRL initiative and a DRM
player which will potentially use ODRL in future products. Today, a
proprietary format to express rights is used in Adobe's software.

Based on this middleware, some implementations have already appeared
on the Internet. One of the first music subscription services, PressPlay20 ,

uses the Microsoft solution and thus works with XrML. MusicNet21 is a dig-
ital music service based on Real Networks' technology. The M-Stage Mo-
bile Music Service22 is a product on the Japanese mobile-commerce market
hosted by NTT DoCoMo, based on IBM's EMMS technology. Apart from
the market leaders, there are also other projects which have implemented
rights languages, such as the "Collaborative Online Learning & Information
Services (COLIS)23 project, which uses ODRL.

One good source of online information on RELs is the XML coverpages
of OASIS' The XML Coverpages24 • Another online source for DRM news
(currently free of charge) is DRM Watch25 , which has become a commer-
cially run platform for DRM content.

20See: http://www.presaplay.com/
21 See: http://www.musicnet.com/
22See: http://www.nttdocomo.eo.jp/p..s/mstage/music/
23See: http://www.colis.mq.edu.au/
24See: http://xml.coverpages.com/drm.html
25See: http://www.giantstepsmts.com/drmwatch.htm

87

Chapter 4

Electronic Contracts

This thesis deals with the exchange and processing of rights expressions.
Electronic contracts are rights expression with a particular semantic mean-
ing and have importance in terms of their legal effect. As this thesis espe-
cially focuses on processing electronic contracts, this chapter addresses the
particularities when dealing with electronic contracts.

As soon as parties agree to exchange digital or physical goods, a contract
is concluded.

A contract is an agreement of two or more parties, i.e. a two
or multilateral declaration of intent on the exchange of rights
to goods or services under certain terms and conditions. The
memorandum of an agreement is informal, i.e. can be stated
verbally, or in writing, etc.

The rapidly growing interest in purchasing goods (e.g. music files, e-
books, videos, or e--learning content) via the Internet is therefore accom-
panied by an increasing demand for contracts that are concluded via the
Internet. Platforms that offer the exchange, respectively the purchase of
goods or services are e.g. Amazon 1, eBay2 , or iTunes3 . Every time cus-
tomers desire to purchase goods and services offered via the Internet, they
usually declare their intent to do so via a click-through-agreement [AmeOl],
resulting in a contract between seller and buyer. Parties that participate in

1See: http://www.amaz.on.com/
2 See: http://www.ebay.com/
3See: http://www.itunes.com/

88

e-<:ommerce are usually not at the same physical location. Electronic con-
tracts support the conclusion of contracts between dislocated parties. For
the purposes of this thesis, an electronic contract is defined as follows:

A digital/electronic contract is an agreement of two or more
parties, on the exchange of rights to (digital) goods or services
under certain terms and conditions. The memorandum of an
electronic contract is digital and can be transmitted via an elec-
tronic network.

In the European Union the declaration of intent in electronic contracts
is legally binding if it has been stated in the form of an electronic signature
[Eur99]. Due to their digital format, electronic contracts have the potential
to be electronically processable. The memorandum of an electronic contract
in a well-structured, standardised format increases its processability. A
way to structure and standardise electronic contracts is the formulation in
a rights expression language (REL) (see Chapter 3).

The remainder of this chapter is structured as follows: Section 4.1 intro-
duces the contract life cycle and its four basic states offer placement, con-
tract conclusion, execution of contracts, and contract archiving. Section 4.2
addresses the states and state transitions for electronic contracts. Section
4.3 gives a detailed insight into the execution of rights that result from con-
tracts and their processing. At modelling level, an electronic contract can be
seen as a composition of different contract objects with various attributes.
In other words, an electronic contract aggregates a number of interrelated
objects. The core objects, additional application-specific contract objects,
and their attributes are addressed in Section 4.4 of this chapter.

The Section 4.5 is concerned with the application-specific generation
of electronic contracts. First, various usage scenarios for the application
of electronic contracts (e.g. access control, accounting) are identified (see
Section 4.4.2) and shortly described. Then, in an example, the required
contract objects and their attributes are derived for the usage scenario ac-
cess control. In the last subsection, Section 4.5.3, a basic process for the
tailoring of electronic contracts is proposed.

Section 4.6 addresses the pragmatics of electronic contracts, i.e. their
processing in software services. For this purpose the generic Contract
Schema (CoSa) in introduced that is an abstraction layer of rights expres-
sions. Within one application or domain all rights expressions are mapped
to one contract schema. The application programming interface of CoSa

89

then allows a uniform querying of the contract information within that ap-
plication respectively domain no matter what underlying representation the
contract has

In Section 4. 7 the enforceability of electronic contracts is addressed.
Section 4.8 covers management issues, such as contract validity, digital sig-
natures, identification of contract content, when dealing with electronic con-
tracts. The chapter closes with various related projects and approaches in
the field of electronic contracts.

4.1 Contract Life Cycle

The contract life cycle defines the different phases that are undergone by
electronic contracts. The contract phases directly affect the required con-
tract characteristics, such as the contract content, and also influence man-
agement issues with respect to electronic contracts. The contract phases
can be considered from a technical and a legal view point. The legal phases
are outlined in the contract life cycle and the technical phases are addressed
in the contract states.

Figure 4.1 shows a simple contract life cycle from a non-technical stand-
point. The phases were derived from considering the German Civil Code.
The contract life cycle has four different phases: the offer placement, the
offer confirmation, the contract fulfillment, and the contract archiving. The
following paragraphs describe these four phases in more detail.

First Phase:
Offer Placement

Fourth Phase:
Archiving

Second Phase:

Third Phase:
Execution of Rights =
Fu/Jillment of Contract

Figure 4.1: A simple contract life cycle with four phases

90

1. Offer Placement. A contract results from two (or more) declarations
of intent about the exchange of rights to goods or services. A signed
electronic offer is legally considered as a declaration of intent. Content
owners (or rights holders) off er their goods to the consumers on cer-
tain terms and conditions. These terms and conditions describe the
permissions and duties of the contracting parties (i.e. the consumer
and the content owner).

2. Offer Confirmation / Conclusion of Contract. At this stage, the con-
sumer confirms the electronic offer made by the content provider. The
consumer does so by signing the offer (second declaration of intent)
and thereby accepting the terms and conditions; this results in an
electronic contract. Note that the contract conclusion is usually pre-
ceded by negotiations between content owners and consumers. In
other words, a contract can only be concluded if the contracting par-
ties have reached an agreement on the relevant terms and conditions.
Sometimes, several new offers are placed until an agreement is reached.
Every new offer may include significant modifications to the contract's
original terms and conditions. In order to be legally valid, a contract
has to be signed by all contracting parties.

3. Fulfillment of Contract/Execution of Rights. In this phase, the con-
tract "fulfillment" takes place, i.e. the contract parties exercise their
rights and fulfill their duties under the corresponding conditions. The
chronological sequence of these actions can be specified in the contract
(e.g. payment in advance). Once all rights have been exercised and
all duties have been fulfilled, the contract is completed.

4. Archiving of Contract. After completion, each contract is saved in a
permanent archive. However, the statutory period for which a partic-
ular contract has to remain archived depends on the type of contract
(e.g. contract of sale, last will, etc.) and on local law .

4.2 Contract States

The various contract states and state transitions describe the process that
electronic contracts undergo to move from one phase in the contract life
cycle to the next. Figure 4.2 depicts a state chart diagram with the basic
states and state transitions of electronic contracts. State transitions are
specified by the required event, the [condition} and the respective /action.

Consumer has buying interest
/Cooicnt owner presea!J offer

•
offer

Ap«meot reached
/Sign cootnct

Execute rights and/or fulfill duties
[Coottact complded)
/Move contract to permanent archive

completed

Cootract tenns and conditions ooc OK
[Negotillioo failed I
/ Abon oegotillioos

Cootrac:1 icrrns and conditions 001 OK
[Continue negotiation)
/OwJfo tenns and conditions

Execute ripus and/or carry out duties
[Coottact DOI completed)

Figure 4.2: Basic states and state transitions of electronic contracts

91

Once a consumer has expressed interest for buying digital goods or ser-
vices, the owner of the corresponding content places an electronic offer and
thereby begins the negotiations. In general, the consumer may reject the
offer, demand modifications to the offer, or accept the offer. If the consumer
rejects the offer, because of unfavorable terms and conditions, and s/he does
not wish to continue negotiation, then the negotiations have failed and are
consequently aborted. If the consumer rejects the offer, but is willing to
negotiate with the content owner, then the terms and conditions can be
modified. Subsequently the consumer checks terms and conditions again.
[GSSGOO] presents the negotiation process with additional cases (e.g. an
offer is not answered) that lead to the states in Figure 4.2. If an agreement
is reached, both parties (consumer and content owner) will sign the con-
tract. After the conclusion of contract the contract in turn becomes valid.
Subsequently, both parties can execute the rights and/ or have to fulfill the
duties specified in the contract. Once all rights have been consumed and
all duties have been carried out, the contract is fulfilled and then moved
to a permanent archive. These basic states and state transitions can be
extended and customised for software services that support this process.

92

4.3 Execution of Rights

This section deals with options for the execution of rights derived from elec-
tronic contracts. Rights are exercised in the 'fulfillment of contract !....phase
of the contract life cycle (see Section 4.1). The execution of rights is of
particular interest for this thesis as it addresses the process of extracting
rights information from contracts and forward it to other software services,
such as access control. A detailed technical consideration of this process
can be found in Section 7.2.

For the purpose of explaining the 'execution of rights '-process in detail,
in the first subsection the term electronic tickets will be introduced and dis-
tinguished from electronic contracts. Tickets can be derived from electronic
contracts and redeemed as detached rights. To fully understand electronic
tickets, Subsection 4.3.2 introduces tickets characteristics and some research
that has been done in this field.

The term contract right in connection with the execution of rights has to
be further explained: note that in general the contract duties of the content
provider are the contract rights of the consumer, and vice versa. Therefore,
instead of defining contract rights and contract duties separately, they can
be expressed as contract rights only. For example, a contract has been
concluded which states that the consumer has the duty to pay a certain
amount in order to receive the right to visit a concert. This contract finally
results in two rights, 1. the right of a customer to attend a concert and
2. the right of the concert promoter to collect the corresponding entrance
fee from this particular customer. Consequently, a contract right is a triple
that comprises an operation (e.g. collect, or access) which has been granted
to one of the contract parties (e.g. consumer, provider, beneficiary) and
which may be performed on certain objects (e.g. money, respectively digital
goods or services) under certain terms and conditions. In contrast to this,
a permission is defined as a pair that comprises simply an operation that
may be performed on a certain object. An example for a permission is the
pair (play, music track) (see Chapter 3). Figure 4.3 is an illustration of the
two terms contract right and permission.

93

operation object terms and conditions

play music file ,,My Way" I 10 times

• .. ___ Permission-----•

------- Contract Right---------

Figure 4.3: Contract right versus permissions

4.3.1 Electronic Contracts, Electronic Tickets, and Li-
censes

In this section, a definition of electronic tickets will be provided and the sim-
ilarities and differences between electronic contracts and electronic tickets
will be identified. In the definition of electronic contracts at the begin-
ning of this chapter, these contracts comprise information about rights of
contracting parties to goods or services (the object of the agreement), and
their terms and conditions. Permissions are permitted operations to certain
objects. Electronic tickets are defined as follows:

A digital/electronic ticket is the option to consume a per-
mission under certain terms and conditions.

Electronic tickets are sometimes called voucher [NokOl}. Electronic con-
tracts and tickets both contain rights expressions pertaining to digital goods
or services. However, owning a ticket is different from being party of an
electronic contract. Among other things, a contract specifies several rights
exchanged between the contracting parties, while an electronic ticket de-
scribes an excerpt from a contract, namely one (or more) contract right{s)
which can be executed. At the beginning of this section, we mentioned
that both contract rights and contract duties can be expressed in the form
of rights. Consequently, each contract right specified in a contract can be
extracted and formulated as an electronic ticket. In one frequently encoun-
tered situation, two parties conclude an electronic contract in which one
party receives the right to consume specific digital goods, while the other
party receives the right to collect money for these goods. When fulfilling
a contract, its rights can thus be transformed into tickets which may be
executed independently of each other.

For example, a rock concert promoter sells two tickets for admission to
a person who is planning to see the concert with a friend. The right to

94

Conlnlct '
Conlractl'artlea

Concert I Promoter
Coaswner I

I I
I Rlpls I

I ~ Tkketlo
Receive Two ,,) visit Concert I nc11., lo r admission admlsslo111

c:oUect IINIDeW fee lo concert ... "l i Tickel lo I visit Concert

Figure 4.4: Contracts and tickets - an example

attend the concert with a friend (the right of the consumer) as well as the
right to receive the concert entrance fee (the right of the concert promoter)
can be extracted from the contract and formulated as stand-alone digital
tickets. The concert promoter thus owns a ticket that allows him/her to
collect money from the consumer, and in return the consumer receives two
admission tickets to the concert (see Figure 4.4).

A license is a specific type of contract right, respectively a specific type
of electronic ticket. A license grants usage rights to intellectual property,
technical know-how or technical inventions [Sch03]. Consequently, a license
is a ticket for the usage of intellectual property, technical know-how, or
technical inventions. Licenses are traded in license agreements.

The chronological sequence in which the tickets are executed (or re-
deemed) can be specified in the electronic contract. Concert tickets, for
example, usually have to be paid for in advance. Once the concert pro-
moter has received the entrance fees, he issues the concert tickets to the
consumer, thereby granting the right(s) to attend a particular concert.

There are a number of other approaches to facilitate the consumption
of rights granted in an electronic contract. One interesting approach is
described in the works of Fujimura et al. [FKT+99], Stefik [Ste97], and
Rivest [Riv97] who define the term "digital ticket."

• Fujimura defines a digital ticket as " ... a digital medium that guar-
antees certain rights of the owner and it includes software licenses,
resource access tickets, event tickets, and plane tickets." This defini-

95

tion is closest to our approach but not considering the ticket as option
and does not state what the rights are referred to.

• Stefik compares digital tickets with " ... coupons found in a local paper
that give discounts on the purchase of grocery products. Issued by a
publisher, they correspond to prepayment or discounts for using works
by the publisher."

• Rivest et al. have referred to digital tickets as a " ... means of pay-
menf'.

However, Stefik's and Rivest's definition do not correspond our definition
given above. According to my definition in this thesis, tickets are part of the
contract life cycle and occur in phase 3, "fulfillment of contracts / execution
of rights" (see Section 4.1). As mentioned above, some rights specified in a
contract might result in a ticket allowing one of the contracting parties to
collect money from another contracting party. In this particular case, the
digital ticket can be seen as "a means of payment." However, other types
of contract rights, such as "attending a concert", results in a ticket issued
by the concert promoter; in such cases the ticket serves as "a means of
gaining admission." In my view, their definition of tickets as a "a means of
payment" or "coupon for discount" is only one special case in which digital
tickets can be applied.

4.3.2 Ticket-Driven Rights Execution

This section introduces different types of electronic tickets and their appli-
cation fields. A digital ticket can be personalised (e.g. bound to a certain
individual) or anonymous:

• Anonymous. A digital ticket is considered anonymous if only the
issuer of the ticket can be identified, while the beneficiary remains
anonymous. Since contracting parties can be identified by their digital
signatures, an anonymous ticket has to be signed only by the issuer.
In other words, a digital ticket must at least include the signature of
the ticket issuer. The signature then serves as means for verifying the
integrity of the digital ticket and authenticating the ticket issuer.

• Personalised. A digital ticket is personalised if it allows the identifi-
cation of the consumer and the issuer. Anonymous tickets are used
e.g. for concerts or bus fares, to name but two examples. In such
a case, the identity of the person who executes a ticket is generally

96

not important to the issuer. One possible use of personalised tickets
is in airline ticketing, as airline companies are required to verify the
identity of all passengers on a flight.

In many cases, all ticket information is available in the contract. It is
reasonable ask: " What are it sensible applications of electronic tickets'?
Examples might include the following:

• Privacy. If, for example, the contracting parties want to consume
their rights anonymously, a ticket is a means of addressing this issue.

• Efficiency. As tickets are excerpts from contracts, they often comprise
a smaller amount of data. The actual size of a digital document can be
relevant for storage-restricted applications, for example transmitting
electronic tickets to chip cards or SIM (subscriber identity module)
cards.

• Specific Ticket Information. In some cases, consumption-relevant in-
formation (for example, the current download location of a digital
resource) is not specified in the contract but has to be added to the
ticket when issued.

In cases where a contract specifies that goods or services may be accessed
a certain number of times, the ticket issuers can use two basic mechanisms
to formulate a ticket. They can either issue a certain number of equal tickets,
or one ticket that expires once all rights have been exercised. Depending
on the intended use of the ticket and the technology used, both mecha-
nisms can be appropriate. Issuing one ticket for each use may result in a
large number of electronic tickets to be stored and managed. On the other
hand, changing the number of "remaining uses" in the ticket after each use
requires greater administration and security effort at runtime. Questions,
such as "Who may edit the ticket?" arise in this case.

One proposal for a formal ticket language is XML Ticket [FNS99]. Every
ticket formulated in XML Ticket can theoretically be expressed in a digital
rights language, but not vice versa. XML Ticket only provides the syntax
and semantics to specify a right which a ticket issuer grants to a (subse-
quent) ticket owner. The XML Ticket language is restricted to these two
roles (issuer, owner) and provides no means of expressing other relevant in-
formation, such as payments methods, etc. Furthermore, the XML Ticket
language is not subject to any current further development. Therefore, for
the time being, I propose the formal expression of tickets in a digital rights
language as well.

97

4.3.3 Hybrid Rights Execution

However, the fulfillment of a contract does not have to be regulated exclu-
sively by tickets. For instance, it is not sensible to issue tickets for a service
that can be consumed without specific limitations. If, for example, a con-
sumer enters into a contract for an online newspaper subscription without
a specific time limit, it is not sensible to issue an admission ticket for each
time the newspaper is accessed. In my view, the most sensible use of tick-
ets is to issue them for a single or limited number of access rights, such as
downloading a specific resource or streaming a certain video.

AB regards the execution of contract rights, a DRM system has the abil-
ity to combine electronic tickets with other mechanisms. Figure 4.5 depicts
the case in which a customer purchases a subscription for an online newspa-
per, where electronic tickets are combined with direct processing of access
rights. As described in previous examples, upon contract conclusion an
electronic ticket is derived from the contract for the right to collect money.
This ticket is then forwarded by the processing DRM system to the operator
of the online newspaper. In contrast to the contract right of the seller, the
contract rights of the customer will not be issued as tickets, but directly
processed by the the DRM platform. In this scenario the DRM platform is
most likely a secured web server that converts the contract rights to access
right on the web server. After the access rights are processed the consumer
has the ability to access the online newspaper according to the terms and
conditions of the contract (e.g. for one month).

Ticket to
celleclmomy e

Contnct

Coalrllcl Parda

I N•=• I ,-Comum--er--,

RecelYe
sublcrlpdo•

ree

Rlpla ,.__...___,,
Acee.to

oalloe
aewpaper

Execute uallmllad
-rorlmoatb

DRM Plalrorm

0
Figure 4.5: Combination of tickets and direct rights processing

98

Note that Figure 4.5 differs from Figure 4.4 in Section 4.3.1, as it ad-
dresses not only the derivation of contract right to tickets, but partly de-
scribes their processing. The contract rights in tickets as well as the contract
rights that are directly processed on the DRM platform contain rights ex-
pressions written in a rights expression language. Section 7.2 in this thesis
addresses the implementation of directly processing electronic contracts. In
Section 2.3 an application and the processing of electronic tickets has been
described. In the sample DRM system the booking results in an electronic
contract. After the payment is settled, the Content Preparation module
adds a license (i.e. an electronic ticket) to the secure container. The license
is later processed by the secure viewer on the consumer PC.

4.4 Contract Objects and Contract Use

In general, depending on the content of documents, different general doc-
ument types can be identified. For example, a recipe is a document type
and usually comprises the ingredients for a certain product and the work
instructions for the production process. Likewise, a handwritten as well
as an electronic contract is a document type that is characterised by con-
taining one or more parties that exchange rights or products under certain
terms and conditions. This section introduces a contract data model, that
includes typical contract objects and their interrelations. Here the term
contract objects refers to instances of classes that occur in contracts.

Contract objects can be subdivided into core objects, and additional
scenario-specific objects. In Section 4.4.1 the interrelated core objects of
electronic contracts and their attributes are introduced. Electronic con-
tracts can be applied in various usage scenarios (see Section 4.4.2). Each us-
age scenario requires a distinctive agreement category. Each agreement cat-
egory may require extra information in the electronic contracts. Scenario-
specific objects, and their are addressed in Section 4.4.3.

4.4.1 Core Contract Objects

This section introduces three abstract contract objects which can be seen
as core objects of electronic contracts. These three core objects of electronic
contracts are: Party, Resource and Permission. The definition of these
abstract core objects was influenced by earlier information models [IanOl],
my experience with current rights expression languages which often apply

99

similar approaches [DWW03, Ian02b], and the investigation of projects in
which electronic contracts are used (e.g. the COLIS project4).

Abstract Core Contract Objects

t .. •

grants

t .. • '

Abstract
Permission

t .. •

Abstract

.___P_art ___ Y _ __, possesses control
' -·

is assigned to -.
•

permission for

•
Abstract
Resource

1

------refers to------

Figure 4.6: The abstract core objects of electronic contracts

The core contract objects are interrelated as follows: Specific parties
("rights holders") possess intellectual property rights for one or more spe-
cific resources, such as books, software, music files, or digital videos. A party
in possession of such property rights is authorised to grant usage permissions
to other persons (customers, or beneficiaries). As a result, permissions are
assigned to parties. Each permission refers to one particular or one specific
type of resource, and one or more permissions may exist for each resource.

Each of the core contract objects shown in Figure 4.6 comprises a num-
ber of attributes. The required object attributes and their relevance are
explained in the following:

• Party is a mandatory contract object that appears at least twice in
each contract. A Party instance represents contracting parties, e.g.
consumer and seller, and other contract-related persons. With respect
to digital contracts, different party types can be distinguished: A
rightsholder is a party that holds rights on the respective contract
resource and may grant those rights to another contract party. A

4See: The Collaborative Online Learning and Information Services (COLIS) Project,
http://www.colis.mq.edu.au/

100

consumer is the party that receives rights from the rightsholder. A
beneficiary can be a third party that may actually execute the rights
of the contract on behalf of the consumer. Parties must always be
identified by a unique id. In general, different types of values can be
used to identify a contract party, e.g.:

- A (globally or at least locally) unique identifier that identifies a
certain individual, e.g. an X.500 distinguished name [IT93a] or a
Kerberos [SNS88] established identity.

- A unique identifier that identifies a certain party type (e.g. as
defined in MARC 21 role code list [MAR03]). A party type
represents a number of individuals sharing one or more common
characteristics. For example, a party type "faculty member"
could represent each faculty member at the Vienna University of
Economics and BA.

Note that additional scenario-specific attributes can be assigned to
parties, such as name, role, position, age, credit standing, profession,
etc.

• Resource is a mandatory contract object which denotes the objects
of the agreement that are the actual digital goods or services. Re-
sources are likewise identified by a mandatory unique resource id, as
well as by optional metadata. Possible identifiers for digital goods are
a uniform resource identifier (URI) [BL94] or a digital object identifier
(DOI) [NatOO]. The scenario-specific metadata attributes may supply
details on the resource, for example book title, author, isbn number,
description, size, file format, author's remarks, etc.

• Permission is a mandatory contract object which appears at least
once in a contract. A Permission represents the concrete usage rights
granted/assigned to the consumer as a result of the conclusion of the
contract. Permissions express usage rights (e.g. play music file, print
document, etc.) and may also comprise attributes describing (infor-
mal) copyright information or (informal) derivative work rights. A
permission always represents at least an (operation, object) pair de-
scribing an operation that can be invoked on a specific resource (or
object), i.e. the two mandatory object attributes of a Permission soft-
ware object are operation and object. A simple example of a per-
mission is: (print, researchpaper). Typical operation values include

101

terms such as print, play, copy, modify. Permissions stated in a valid
contract can be enforced either legally or electronically (by a software
service). Currently, there is no ongoing standardisation initiative for
operation terms. Therefore, operations can not be uniquely identified,
which may lead to ambiguous interpretation (see Section 4.6).

Generally, ids have to be uniquely identified for each type of application,
even if no globally unique ids, such as x509, or DOI, are used or available.
For example, operation terms that are used in an application can be defined
in a rights data dictionary (see Section 3.3.2). Rights expression languages
(RELs) (see Chapter 3) that are used for contract representation facilitate
the expression of the core contract objects mentioned above (e.g. [Ian02b],
[DWW03]).

4.4.2 Sample Usage Scenarios for Electronic Contracts

This section presents an overview of potential usage scenarios for electronic
contracts. The selection of usage scenarios is based on experiences in the
field of electronic contracts, an additional analysis of the literature on rights
expression languages [DWW03, Ian02b], research papers [MSMOl, GSSS00]
as well as projects dealing with the management of electronic contracts (e.g.
the COLIS project5).

Access Control

Contracts contain information on permissions concerning digital goods or
services. This information is suitable to serve as basis for access control.
Theoretically each contract right can be transformed into an access control
statement. Primarily, access rights to digital resources that are stated in
electronic contract are suitable to be processed in an access control mecha-
nism. The information that is processed in this usage scenario depends on
the access control model (e.g. Role-Based Access Control or Discretionary
Access Control) that shall be applied.

Accounting

Electronic contracts are the documentation of an agreement between two
parties over assets or services. Usually, in an agreement duties respectively
payments are stated that have to be settled by the contracting parties.

5See: The Collaborative Online Leaming and Information Services (COLIS) Project,
http://www.colis.mq.edu.au/

102

Therefore, electronic contracts can be an information source for accounting
services. For example, every time a contract is concluded, the monetary
duties are transferred to open positions in the accounting service.

Intellectual Property Rights (IPRs) Protection

From a legal perspective, content owners market their IPRs to customers.
Electronic contracts provide a means for the content owner to specify the
extent to which the content may be used. As the IPRs specified in electronic
contracts can be (semi-)automatically enforced, the IPRs of content owners
are protected. Therefore, on a technical level, this can be seen as a special
case of the usage scenario access control.

Customer Relationship Management (CRM)

The overall body of contracts concluded can represent a valuable data pool
for marketing activities. Information on purchasing habits of customers,
that is which goods or what type of services customers usually demand,
can form an information basis for marketing activities such as one-to-one
marketing or personalised marketing within the framework of CRM. For
example, personalised goods or services can be offered to the respective
customers on the basis of their recorded contract history.

Workflow Management

To a certain degree, electronic contracts can be used to specify workflow
process information. This process information can be used to control cer-
tain task sequences in an information system. For example, let us assume
that a contract states that a right is granted after a certain amount has
been paid to the content provider. This information reveals a sequencing of
tasks that have to be executed and can be used in the workflow process, as
follows: an incoming payment event related to an electronic contract initi-
ates the assignment of rights to the respective consumer(s) or contract party.

This section has spanned a relatively broad range of possible uses for
electronic contracts. However, it does not claim to be complete and could
be extended at reasonable expense. This thesis especially focuses upon the
usage of electronic contract in access control services.

103

4.4.3 Scenario-Specific Contract Objects

The information to be included in electronic contracts varies depending on
the scenarios they need to satisfy. For some scenarios not all contract in-
formation can be sufficiently represented by the core contract objects or by
an extension of their attributes. For example, when using electronic con-
tracts for accounting, the payment conditions and banking details have to
be included. Consequently, scenario-specific objects and attributes have to
be identified and added to the data model. The additional objects have
to be set in relation to the core contract objects. The number of objects
and attributes that satisfy one usage scenario is called agreement category.
Naturally, the agreement category comprises the core contract objects and
scenario-specific contract objects. If in one specific application an elec-
tronic contracts has to satisfy several usage scenarios, e.g. access control,
accounting, and CRM, the number of contract objects and attributes po-
tentially grows with each additional scenario. More precisely, for each addi-
tional usage scenario objects have to be added that are not yet covered by
earlier agreement categories. Contracts objects that conform to a specific
application (that possibly includes several usage scenarios) are denoted as
application-specific contract objects.

Each application then accesses specific contract information, i.e. con-
tract objects and their attributes, when the contract is processed. Figure
4.7 illustrates various agreement categories (ACl-5) and their overlapping
as well as how different software services access electronic contracts in order
to fulfill specific usage scenarios. The contract objects include the core ob-
jects (white rectangle) and additional, interrelated, scenario-specific objects
(colored rectangles). The resulting data model of an electronic contract is
called application-specific data model. An application-specific data model
is described in more detail in Section 4.6. It could be argued that it is suffi-
cient to simply state the ids of resource, party, permissions, constraints, etc.
in an electronic contract and query the scenario-specific attributes from a
database. However, this proceeding would contradict the original goals that
have been defined for this thesis, e.g. to support contract transparency for
contracting parties in e--eommerce.

The following section describes how additional objects and attributes
can be identified for a number of (additional) usage scenarios.

104

I ACl: Customer Relationship I AC2: Intellectual Property Rights
Management (CRM) Software (IPR) Management Software

AC3: Accounting

I
AC4: Access Control 11 ACS: Workflow

Software Service Management Service

• ,, • ,
Scenario-Specific -
Objects I_

AC2

- I

~ ----" 1 AC5 1-
f

~ I - I :::
1- I -
AC4

J l jl

I I CoreC Jntract Objects , I

~ I ~ I I I 1-
a • ..

-I I L-J ~ I I

AC! - I
" -

Figure 4.7: Various usage scenarios for electronic contracts

4.5 Contract Modelling and Creation

This section deals with the modelling of electronic contracts and their formu-
lation in rights expression languages tailored to specific usage scenarios. One
main reason why the formulation of electronic contracts in rights expression
languages and their interpretation make sense is that two or more DRM
systems respectively DRM system components use the electronic contracts
to exchange rights expressions. Contracts formulated in rights expression
languages are suitable to serve as an interface between DRM systems and
DRM system components, if their contents meet the specifications of the
respective rights expression language (see Chapter 3) that the two systems

105

have agreed on. Nevertheless, for most applications it is not sufficient to
simply agree on a REL. If the electronic contract shall be reliably processed
in a sensible application, such as access control, the DRM systems addi-
tionally need to agree on application policies (see Section 3.3.2) and the
contract content. The contract content is defined by contract objects as
described in the previous section. This section addresses how application-
specific contract objects are identified.

A concrete implementation that processes electronic contracts in a spe-
cific usage scenario is referred to as software service. Software services are,
for example, accounting software, access control mechanism, etc. Section
4.5.1 identifies information which is required to satisfy two different usage
scenarios. Section 4.5.2 derives a contract data model from the required in-
formation by identifying contract objects, their attributes and relations. In
Section 4.5.3, a process for the tailored composition of electronic contracts
is introduced. This process supports the composition of contracts, i.e. as-
sembling contract objects and their attributes, tailored to their intended
use (i.e. the usage scenarios a contract is to be applied to).

4.5.1 Required Information for Specific Software Ser-
vices

As mentioned above, all information in electronic contracts and their re-
spective uses should be clearly defined in advance in order to facilitate
the automatic processing of contract information. Before identifying the re-
quired information of electronic contracts, the intended usage scenarios have
to be defined. Each scenario requires a certain number and type of contract
objects and attributes in order to process contract data properly, more pre-
cisely, software methods that accomplish the respective usage scenario in a
well-defined sequence require certain attributes. Therefore, the first step
towards tailored contracts is to identify the information that the software
methods of each scenario require. In the following requirement analysis, it
is assumed that the respective contract shall be processed in an access con-
trol mechanism and in an accounting software. For each required attribute
it has to be defined whether it is a mandatory or an optional attribute for
this application, how often the attributes will occur in the contract, and to
which other attributes it is related.

106

Required Information for Role-Base Access Control

Access control mechanisms aim at regulating the access of users (subjects)
to resources. When using the discretionary access control (DAC) approach,
access permissions are directly assigned to the users. For example, the per-
mission read book #"The future of ideas" is directly assigned to subject
sguth. The role--based access control (RBAC) approach assigns usage per-
missions to roles rather than to subjects [FSG+01, SCFY96]. The roles are
then assigned to subjects. Thus, users receive permissions transitively via
their assigned roles (see Figure 4.8). For example, the permission read book
#"The future of ideas" is assigned to the role researcher, which in return is
assigned to user sguth. Roles can be arranged in role hierarchies, in which
more powerful roles (senior roles) inherit permissions (and constraints) from
subordinate roles (junior roles). A role hierarchy is a directed acyclic graph.
Roles are a convenient means to assign and manage permissions.

Constraint is Permission is Role is assigned
___ as_si.gned to Pemu~·-ss_io_n __ assigned to Role ____ to Subject

Constraint Pennssion Subject

Transitive) the

Figure 4.8: Assigning permissions in RBAC

Permissions can also be associated with constraints [NS03b]. One specific
type of constraint is a precondition, i.e. a premise which has to be fulfilled
before a permission can be granted/assigned to a specific subject. Other
types of constraints might restrict permissions, for example to a certain
time interval or to a specific user or device. For instance, prepayment
might be necessary in order to receive the permission to play an audio file
(assignment constraint), and once the fee is paid, this particular permission
might be exercised a limited number of times (authorisation constraint).
Thus, to execute the usage scenario" role--based access control" the following
methods are used:

• createSubject (SubjectID): Creates a new subject, i.e. the party
that receives access rights from the contract.

• createPermission(Operation ResourceID): Creates a new permis-
sion from an operation-object pair (see Section 3.3.1).

• createRole (Role ID): Creates a new role.

107

• createConstraint (Name Operator Value): Creates a new constraint.

• rolePermAssign(RoleID PermissionID): Assigns the created per-
mission to the role.

• subectRoleAssign(SubjectID RoleID): Assigns the created role to
the subject.

• relatedConstraintToPerm(Constraint Permission): Assigns the
created constraint to the permission.

These methods have to be provided with contract information to implement
the access rights from an electronic contract to the role-based access control
mechanism. In other words, the parameters of the methods are the required
information for the usage scenario role-based access control. In the following
the RBAC-specific contract information is described in detail:

• Subject Type. To identify which of the contract parties receives access
rights, each contract party must be further specified by a type, e.g.
customer, seller.

• Subject-JD. For all contract parties that receive access rights to re-
sources via the contract, a user id is required (e.g. sguth, mstrem). A
consumer subject id occurs at least once in a contract and is manda-
tory data that uniquely identifies the users in the system to which the
access control assigned shall be assigned.

• Resource-JD. For all resources that access shall be granted to, a re-
source id is required (e.g. music-file#12345). Resource id occurs at
least once in a contract and is mandatory data that uniquely identifies
the resource in the system where the resource is stored and secured
by the respective access control mechanism. The resource id can also
identify a set of resources, such as a folder or a certain type of resource.

• Operation. The operation is mandatory data for RBAC that has to
occur at least once in a contract. Remember that in the access con-
trol community a permission is a pair consisting of a certain operation
(e.g. play) and an object (or resource, e.g. music-file#12345). If more
than one permission is defined and the contract comprises several con-
tract parties, the relations between parties and permissions have to
be stated unambiguously .

108

• Role. The role is mandatory data in RBAC, unless the access control
mechanism can also handle discretionary access control (see Section
4.4.2). A role that is "known" by the respective RBAC service has
to be assigned to each party that shall receive access rights. A role is
a named collection of users and permissions, and possibly other roles
(San96]. Role names sometimes resemble user group names, such as
student, employee, etc.

• Constraint. A constraint specifies that certain context attributes must
meet certain conditions in order to grant a specific permission. For
example, a constraint may specify a date until which the permission is
valid. A constraint can be assigned to no, one, or several permissions
and has at least three attributes, two operands and one operator,
for example, name, operator, and value, e.g. (date,<, 12/31/2004).
Constraints are optional data.

Required Information for Accounting Services

From Section 4.4.2 it can be learned that, for example, every time a contract
is concluded, the monetary duties can be transferred to an open position
in the accounting system. To implement the use of electronic contracts in
accounting services the following method has to be called:

• createOpenPosition(PartyID ResourceID Duty Conditions): Cre-
ates a new open position in the accounting sytem.

This means that the attributes Party-ID, Resource-ID, Duty, and Term
and Condition are required:

• Party ID. For all parties that are involved in monetary transactions an
id has to be specified (e.g. sguth, mstrem). Party id is mandatory data
that uniquely identifies the user in the accounting system and occurs
at least once. In accounting software users are related to payment
obligations (duties) and to the resource they have purchased.

• Party Type. Each contract party must be further specified by a type
with respect to payment relations, e.g. customer or seller.

• Resource ID. Resource id is optional data that, if available, uniquely
identifies the traded resource in the accounting system (e.g. music-
file#12345). Although a duty can be booked without the related
resource or service id, it is reasonable to specify this id, to further

109

specify the business transaction. The resource is related to one or
more permissions.

• Duty. The duties specify the monetary or non-monetary liabilities
between the contract parties or third persons that result from a con-
tract. Duties are mandatory data for the accounting service and for
defining the type (e.g. amount of money), value (e.g. 1000,00), and
attribute (e.g. €) of the duty. The goods might also be bartered or
paid for with artificial credits, which are alternative occurrences of a
monetary duty. However, one or more duties can be specified in a
contract. Duties are related to a certain contract party and can be
related to constraints.

• Terms and Conditions. A duty is often afflicted with terms and con-
ditions, such as "the payment has to be settled until 31st December
2009." Such terms and conditions are optional data and can also be
expressed as triples, like the constraints in the role-based access con-
trol example, e.g. (settlement datetime, <,01/01/2004). None, one,
or many conditions can be assigned to a duty and one condition can
be assigned to several different duties.

4.5.2 Modelling Scenario-Specific Contracts

In Section 4.4 the abstract core contract components Abstract Party, Ab-
stract Permission, and Abstract Resource have been introduced. Section
4.4.3 explains why for each agreement category it is necessary to extend
the core objects with scenario-specific objects to ensure the sophisticated
processing of electronic contracts in these scenarios. In this section these
scenario-specific objects will be identified on the basis of the attribute analy-
sis in Section 4.5.1.

The required contract objects for the agreement category "role-based
access control", are Party, Resource, Permission, Constraint, and Role.
The attributes resource-id, subject-id, subject-type and permission can be
represented with the contract objects Resource, Party, and Permission.
Thus, for access control purposes the core objects have to be extended by
the objects Role and Constraint:

• Role is a mandatory access control-specific contract object. Its single
attribute name is storing the role name. Roles are related to Party
objects.

110

• Constraint is an optional, scenario-specific contract object. This ob-
ject type provides the three attributes type, operator, and value. Con-
straints are related to Permission objects.

With these three new contract objects the agreement category for role--
based access control service can be represented. The same procedure has to
be accomplished for the scenario-specific attributes of the accounting soft-
ware. The attributes party id, party type, and resource id can be represented
by the Party respectively the Resource object. As the object attribute terms
and conditions can be expressed with the same attributes as the RBAC con-
straints, no additional objects or attributes are required for this attribute.
Finally, to satisfy the accounting service a new contract object of the type
Duty has to be added.

• Duty. The Duty object is comprising the attributes name, value, and
attribute. Duties are related to Party objects, and can be associated
with Constraint objects.

Contract
agrttmtnl ca1egory ,. access conrrol"

Core Contract Objects

Role
I . is assigned to I..!' I Party I I
IJ> - I I I I - i assi1 nedto I • I possesses control

const'nts T - \ .. • -· penm1:fo•
I• ,_. 1_ • is pim:ha ed by

I Constraint I . constrai, rs ~ Permission ~ I Resource I
L• I is assigned to f, .

refers to

agreement category ,.acco11nting"
constraints L I Duty I

I I .

Figure 4.9: Application-specific data model

In a contract that has additional scenario-specific contract objects, such
as Role, Constraint, Duty, and Contract, the relations between the contract
objects change, respectively new relations have to be added. A contract

111

that is processed by an access control mechanism or and accounting software
and automatically results in access rights to protected resources respectively
open positions must be secured, i.e. it is necessary to check if the contract
is valid, e.g. with an electronic signature. Such external characteristics of
the contract do not belong directly to the respective usage scenario and
are implementation-dependent. The additional contract object Contract is
comprising such extra attributes for eventual validity checking, i.e. it can
store digital signature, physical location of the contract conclusion, date,
etc. The Contract object also aggregates the remaining contract objects and
therewith provides a means to assign the contract objects to one specific
contract. Figure 4.9 depicts the application-specific data model, i.e. the
resulting contract objects and their relations (also called contract schema)
that are required for the usage scenarios REA C and accounting.

In the example, the Constraint object is related to the Permission object
as well as to the new objects Role and Duty. Constraints are capable of
narrowing Permissions, Duties and Roles. A Constraint can be assigned
to an infinite number of Permissions, Duties, and Roles and vice versa.
The Role objects are now assigned to Party objects. The "is-assigned-
to" -relation, depicted in Figure 4.6 between Permission and Party is no
longer required for the current usage. Permissions are now assigned to Role
objects. A Duty can be related to one or more Parties, and one Party
can be related to one or more Duties. A new relation between Party and
Permission indicates which Permissions have been purchased by Parties.

With these contract objects the agreement categories for both usage sce-
narios can be represented. Figure 4.10 shows instances of the object types,
their attributes and actual values. The values have been taken from the
examples of each attribute from the previous section. Furthermore, Fig-
ure 4.10 shows the mapping of the respective instances and their attributes
to the corresponding software services. Each software service may require
several attributes from different instances; contract objects (and attributes)
might be used in one or more software services. For example, role is solely
processed in the RBAC service (or the seller information in the accounting
software), and some attributes are processed in both, e.g. the customer id
and the permission. Due to clarity reasons the aggregation function of the
contract object is not illustrated in Figure 4.10. Please note, that the illus-
trated case is an example, and other access control and accounting software
might use different attributes.

With a growing number of software services, the required objects and at-
tributes for the contract will increase as well. Figure 4.7 in Section 4.4.3 can
be seen as an extended example where various usage scenarios are mapped

112

Accounting
Software

...----1d•lia=""
porty-typo -
perm:llsioas=-''"

-a""
openolloa = .,.,
objocl • mmic-lllell2J45
.-11adlll

,., . r,,:ty

ulqaeld=,aatll
dada•a002

Role-Based
Access Control

Service

Figure 4.10: Example of mapping of objects instances and their attributes
to software services

to a number of agreement categories respectively contract objects. The
modelling of electronic contracts is important for communication and im-
plementation purposes (see Section 4.6). The next section introduces a
process that aims at ensuring that electronic contracts include all required
objects identified in Section 4.5.1.

4.5.3 Scenario-Specific Contract Composition

This section describes a conceptual framework which enables the compo-
sition of electronic contracts formulated in any rights expression language
and tailored to the requirements of specific usage scenarios. In order to
include application-specific objects and attributes in as contract document,
it is necessary to know the usage scenarios for this particular contract in
advance, i.e. in order to ensure that electronic contracts contain sufficient
information to satisfy the requirements of specific usage scenarios, the con-
tracts need to be tailored with regard to their intended use(s). Subsequently,
a simple process for the tailored composition of electronic contracts is in-
troduced that adds contract attributes to a contract document based on its
usage scenarios respectively its agreement categories. Figure 4.11 depicts
such a process; the respective activities are described below.

113

• Identify relevant usage scenarios: In this activity, the list of usage
scenarios (see Section 4.4.2) is identified to specify the intended use of
the contract under consideration. In other words, the estimated use
of this particular contract is defined, for example access control and
accounting.

• Identify software methods: Here, the software methods of each sce-
nario that finally process the contract data are identified. These soft-
ware methods, executed in a well-defined sequence accomplish a cer-
tain usage scenario.

• Identify required attributes: The parameters of the identified software
methods are the required attributes of the contract. Therefore, the
parameters of each identified software method have to be determined
for each usage scenario.

• Develop agreement category: For each usage scenario the required con-
tract objects, their attributes and interrelations have to be identified.
The resulting data model is the agreement category of the respective
usage scenario.

• Identify application-specific objects: As shown in Figure 4.9, the agree-
ment categories of the various usage scenarios are overlapping. By
combining the various agreement categories, the application-specific
contract objects and their attributes are identified. The usage of at-
tributes in software various services is illustrated in Figure 4.10.

• Append attributes to contract template: Based on the application-
specific objects and attributes a contract template is generated. For
this step a tool called rights expression generator is used (see Sections
5.1.2 and 6.2). In the analysis shown in Section 4.5.1 the mandatory
and optional attributes and their occurrences have been identified.
The characteristic whether an attribute is mandatory or optional has
to be taken over for the creation of the contract template. The con-
tract template is formulated in the preferred rights expression lan-
guage. When creating the template, it must be considered that the
contract information can be unambiguously mapped to the contract
data model, as defined earlier. This is a prerequisite for the reliable
processing of the contract (see Section 4.6).

• Fill in contract: In this activity the different attributes with actual
values are filled in, i.e. the party ids, the party types, the resource

114

Identify relevant • [for each usage scenario)

usage scenarios
Identify

software methods

• [for each method)

Develop •rror each usage scenario]

agreement category
Identify required

attributes

Identify application 1----------1~ Append object attributes
specific objects to contract template

Sign contract

,~ rights expression generator

• [for each contract party I Fill in contract
infonnation

Figure 4.11: Composing tailored electronic contracts

ids, the roles, the permissions and duties, and the terms and con-
ditions are included in the contract. Note that the contract parties
should have the ability to add additional contract information that
has not been identified as mandatory. The contract template ensures
the availability of, but shall not restrict the contract to the mandatory
attributes. At this point the contract is still in the negotiation or offer
phase (see Section 4.1). All contracting parties have to agree on the
actual attribute and their values before the contract can be signed. If
necessary, the contract is modified until an agreement is reached (see
also Figure 4.2).

• Sign contract: In the final step, the contract has to be signed by each
contracting party in order to be considered as valid. At this point, the
contract reaches the 'Conclusion' stage in its life cycle. Without the
signatures of the contract parties the contract is not valid (see Section
4.8) and will not be processed.

A framework that supports the above mentioned process, i.e. which gen-
erates the contract template and transforms the filled out contract to a REL
instance, can be built on top of the rights expression exchange framework
designed in Chapter 5.

115

The tailoring process increases a contract's enforceability [GK02]. For
example, a contract consisting of the contract objects shown in Figure 4.9
has the potential to be fully electronically enforceable in terms of access
control services and accounting. However, if a contract is not designed as
proposed above, it can still be a valuable source of information for specific
applications, such as sales statistics and customer relationship management.
In such cases, electronic contracts can be processed in 'unstructured' ways,
such as in data mining procedures. Then, usage scenarios will be less likely
be provided with all required information. Accordingly, the enforceability
of such contracts is low.

Note that the question of who decides on the contract usage and con-
sequently on the contract content is a serious privacy matter. This privacy
topic also requires a discussion of organisational, management, and privacy
issues in contract composition, because the contract content has to be agreed
upon by all contracting parties. For example, on the one hand consumers
will demand that their personal information is handled confidentially, while
on the other hand the marketing department will be interested in personal
information for CRM purposes. This issue occurs in every step of the supply
chain, in which electronic contracts are applied.

4.6 The Generic Contract Schema

This section deals with the processing of electronic contracts. It introduces
a further development of contract models from the previous section and
introduces a representation of contracts in a generic data model.

4.6.1 Definition of Terms

In the previous section the three core elements have been introduced. The
interrelated objects Party, Permission and Resource are the minimum con-
stituents of every concluded contract, i.e. they build the core data model of
electronic contracts. To these core objects, additional objects can be added
to represent application-specific information required by the usage scenar-
ios of the contract.

The generic contract schema (generic CoSa) is the theoretical
idea of a contract schema that is capable of representing the to-

116

tal of (electronic) contracts. The entirety of usage scenarios, and
thus all scenario-specific extensions of the core elements underly
such a generic contract schema. Consequently any (electronic)
contract can be mapped to the generic CoSa. The generic CoSa
is thus an abstraction layer of various representations of elec-
tronic contracts, such as ODRL, XrML, other rights languages,
or even contract runtime models. The generic contract schema
shall provide for a higher level of standardisation and openness
in DRM systems that process rights expressions. To access con-
tract data, the generic CoSa can be queried via the CoSa inter-
face. The CoSa interface is a generic application programming
interface (API) which is independent of usage scenarios, allows
to query all contract data, and thus facilitates a standardised
processing of contract data in software services.

The implementation of the generic contract schema is a considerable
challenge and probably technically impossible. It would require knowledge
about all today's and tomorrow's contract usage scenarios as well as the ac-
cordingly needed contract objects and their relations. Yet, the generic CoSa
interface is practicable and will be presented later in this Section. However,
with some restrictions the generic contract schema can be implemented and
helps facilitating and standardising the processing of contract data:

• Domain-specific CoSa. The domain-specific CoSa covers a great
number of deal of popular contract objects and their relations in
a specific domain (e.g. education, music industry). The domain-
specific contract schema would permanently undergo further devel-
opment (such as the the Learning Object Metadata (LOM) standard
(IEE02]) and an independent organisation (such as the Learning Tech-
nology Standards Committee (LTSC)6) would watch and control the
development of the contract schema. The domain-specific CoSa would
also provide guidelines for the contract object attributes and their al-
lowed values. For example, the permitted attributes of Resource ob-
jects are all defined in the LOM standard, or the permitted attributes
for Party are attributes defined in the vCard (HF98] standard. If
not already defined in the metadata standard, the permitted values
of attributes need to be stated as well, e.g. the attribute Identifier
may comprise ISSN (ISO98], ISBN (ISO92], and DOI (NatO0] compli-
ant identifiers. The extension of the contract schema by new objects

6 See: http://ltsc.ieee.org/

117

Domain-specific Application-specific
Covered Scenarios prevalent ones all

Reliability <100% 100 %
Flexibility good poor

Table 4.1: Characteristics of application-specific and domain-specific CoSa

or attributes has to be requested and publicly discussed. After this
process, new objects can be added to the schema by relating them to
existing objects. Technically, this means that it can not be guaranteed
that contract data which is not covered by the domain-specific CoSa
can be reliably processed respectively enforced. Still, this approach of-
fers high flexibility for actors in the educational domain, as electronic
contracts can be easily processed in additional usage scenarios (see
Table 4.1). Also by implementing the domain-specific CoSa, actors
in that domain can ad hoc use and provide services, such as trading,
booking, and rendering of electronic goods.

• Application-specific CoSa. The generic contract schema, as de-
fined above, also holds for a specific, closed application, i.e. an ap-
plication specific data model (such as shown in Figure 4.9). One ap-
plication can comprise several usage scenarios, e.g. access control and
accounting. The application-specific CoSa is fixed in advance; apart
from the contract objects this also includes the object attributes and
their permitted values. As in the domain-specific CoSa already exist-
ing description standards, such as LOM, Dublin Core or vCard, can
be reused for this purpose. All contract data can be reliably processed
in the designated usage scenarios. The disadvantage of this approach
is caused by its prerequisites (predefined and fixed data model) that
lead to a poor flexibility. The processing of electronic contracts in ad-
ditional usage scenarios or extended object attributes requires changes
in the application-specific contract schema which, in return, requires
software modification of the contract interpreter.

The characteristics of the domain-specific and the application-specific
CoSa are opposed in Table 4.1.

4.6.2 Application-Specific CoSa Example

In the following a simple example of an application-specific CoSa is pre-
sented, in order to address further technical details of the CoSa approach.

118

In this sample application it is assumed that the processing in intellectual
property rights (IPR) management services is the only usage scenario of
electronic contracts. This usage scenario requires additional information
about the contract itself, i.e. it is necessary to store the physical location
where the contract is concluded to determine the legal venue. Therefore,
the core objects have to be extended by the object Contract. The Contract
object aggregates all other objects and therefore has to be related to all
core objects (Party, Permission, and Resource). Figure 4.13 illustrates the
objects and their relations of the agreement category for IPR. Because the
application only includes one usage scenario, the agreement category for
IPR is concurrent with the application-specific CoSa.

CoSaObject
-relations

A
I I

CoSaContract CoSaParty CoSaPennlsslon CoSaResource
-location -UID -operation -Identifier

-FN -object -Tille

(> •) • >
-ROLE

1 ~
I 1 . . .

Figure 4.12: Class diagram of an application-specific Contract Schema

The resulting class diagram of the application-specific contract schema
is depicted in Figure 4.12. This figure also reflects the functionality of the
Contract object to aggregate all other objects of one particular contract.
The class CoSaObject comprises common instance variables and methods of
all contract elements (here, the attribute re lat ions).

Figure 4.14 shows instances from the application-specific CoSa classes.
In fact, it depicts all instances that are part of a small sample contract (see
ODRL serialisation in the listing below) and that have been mapped to the
application-specific CoSa.

Core Contract Objects

Party
t .. • '-T--..---~

'
t"• t"•

is assi1 :ned to

Permission -•
con prises

I
possesses control

pennission for

i.
Resource

' 1"• l.._ ____ re_fi_e_rs_to.......,r,.... ______ _,f 1 t.•

comprises t
Contract

1 comprises

agreement category ,.Intellectual Property Rights Management"

Figure 4.13: Application-specific contract schema

<rights>
<agreement>

<context>
<pLocation> Germany </pLocation>

</context>
<party>

<context>
<uid> #sgraf </uid>
<name> Steffi Graf </name>

</context>
<rigbtsholder/>

</party>
<party>

<context>
<uid> #bbecker </uid>
<name> Boris Becker </name>

</context>
</party>
<asset>

119

120

<context>
<uid> ebook#123 </uid>
<name> International Tennis Rules </name>

</context>
</asaet>
<permission>

<print/>
</permisaion>

</agreement>
</rights>

The contract has two parties, the consumer Boris Becker with the (sys-
tem wide) unique id #bbecker and a seller Steffi Graf with the unique id
#sgraf. Steffi is selling a print permission for an Ebook on international
Tennis rules to Boris. The Ebook has the unique id ebook#123. The con-
tract itself was concluded in Germany. Classes from the application-specific
CoSa have two different kinds of attributes: contract attributes and intrinsic
attributes:

• Contract attributes. In contract attributes the factual contract in-
formation is stored. Here, FN, UID, ROLE are contract attributes
for the object Party and Identifier and Title etc. are typical contract
attributes for the object Resource. The application-specific contract
schema is reusing existent, standardised vocabulary for the contract
attributes. The Resource attributes are expressed by the Dublin Core
[DubOl] vocabulary, and Party attributes are taken from the vCard

objQ1 · MeCromr:acr
relalion1 • (agg_chlld, ol>(02},(agg_chld, ob(03},(agg_chlld, obj04}, (agg_chlld, obj05}
localion • Germany

obiQS · eos,e,nv gbj02 · CqSaparty

~1a11ona. fg,8111, obJ03l, (controlJ)Orm, obJ04l, (oWJ>8renl, ob(01l um.-., relatlona • (hasJ)Onn, ob(03},(agg_parent, ob]01l
UID•#sgral

FN • Boris Becker
ROLE • consumer

obiOI · Cn-SaBer,me
~laliona • (agg_parent, obJ01J,(relJ)Orm,ob(03},(cantrollod_by, ob105J
ldontlltr • -123
ITitle • lnlemalionll Tennla Rules

MM · CoSaP,anlylgn

FN .stettlGral
ROLE • seller

relalions. (reloni_lO, obj04), (granlod_by, obj05},(agg_parenl, ob]Ol},(grantod_to,ob]02)
operallon • print
---1123

Figure 4.14: Instance of an application-specific Contract Schema

121

From To Relation Role (from) Role (to)

Permission Resource refers to refers_to reLperm

Contract Resource comprises agg..child agg_parent

Contract Party comprises agg..child agg-parent

Contract Permission comprises agg..child agg_parent

Party Resource contr. permission controLperm controlled_by

Party Permission is assigned to has_perm granted_to

Party Permission grants grants granted_by

Table 4.2: Possible role names in application-specific CoSa

standard [HF98]. We are not aware of initiatives that define usage
and access rights or general contract attributes customary in a line of
trade. The contract attributes are extensible by additional vocabulary
sets.

• Intrinsic attributes. Intrinsic attributes are necessary to express the
relations between contract, objects as defined in the contract data
model. The contract schema defines the attribute relations to store
all relations that the actual objects has to other objects in the con-
tract schema. This attribute comprises a list of (type, CoSa-object}-
pairs. Each pair represents one relation, for example, the relation
(refers_to, obj04} of obj03 expresses that the permission obj03 is
granted to the resource that is represented by object obj04. All pos-
sible relations for this specific application can be derived from the
data model of the contract schema (see Figure 4.13). One relation
in the data model results in two relation roles (names for both ends
of the relation), the role names have to be unique. For example, the
relation with the label refers to between the CoSa objects Resource
and Permission in the data model results in the two roles refers_to
and reLperm (related permission). A list of all roles from the current
small example can be found in Table 4.2.

4.6.3 The CoSa API

The generic CoSa aims at supporting the standardised processing of elec-
tronic contracts. Therefore, in the previous section an application-specific
contract schema has been developed and described. To also access the con-
tract schema in a standardised way, an application programming interface

122

(API) is required that allows to query every information from the contract
schema and process it in subsequent software services. In the following,
such application programming interface, the CoSa API, is introduced, i.e.
the CoSa APL The methods only are presented with a short description, for
a complete reference of the CoSa API please refer to Appendix B (Chap-
ter 10.1). The method prefix cosa represents an instance of a class that is
implementing the CoSa APL The cosa instance is initiated with an elec-
tronic contract and holds all contract information in runtime mapped to
the application-specific CoSa. The question marks tag parameters that are
optional. The method calls are coded in XOTcl [NZ00b].

- cosa getObjects object-type
This method returns instances of the class object-type that exist in the
current runtime CoSa. For example, the following command would re-
turn the instances obj05 and obj02 as a list.

cosa getObjects CoSaParty

- cosa getRelatedObjects cosaObject ?relation? ?object-type?
This method returns all instances related to cosaObject. The related
instances can be optionally filtered by either the relation, or by the
object-type of the related instance, or both. For example, the follow-
ing command would return the instance obj03.

cosa getRelatedObjects obj02 has_Ferm

- cosa getRelObjectTypes cosaObject ?relation?
This method returns the object-types (classes) of all CoSa objects
related to cosaObject optionally filtered for a given relation. For
example, the following command would return all the object-type
CoSaPermission of obj03 which is related to obj02 in the has_perm-
manner).

cosa getRelObjectTypes obj02 has_perm

- cosa getRelations cosaObject ?relation?
This method returns the relations attribute content of cosaObject.

123

The content is a list of (relation - typecosaObject)-pairs. If the argu-
ment relation is specified, all pairs are returned of which relation
equals a certain relation type. For example, the command below would
return a list with one pair, namely (agg_parent obj01).

cosa getRelations obj04 agg_parent

- cosa hasRelation cosaObject relation
This method determines whether cosaObject has a relation to a spe-
cific other instance or not. For example, the following command would
return true.

cosa hasRelation obj04 agg_parent

- cosa getAIIAttributes cosaObject
This method returns all attributes of cosaObject. For example, the
following command would return the list {relations UID FN ROLE}.

cosa getAllAttributes obj02

- cosa getAttributeValue cosaObject attribute
This method returns the value(s) of the attribute of cosaObject.
For example, the following command would return the value consumer.

cosa getAttributeValue obj02 ROLE

- cosa selectObjects list attribute ?value?
With this method a list of cosa instances can be filtered with respect
to a certain attribute, respectively its value. For example, the follow-
ing command would return the instance obj 05.

cosa selectObjects {obj02 obj05} ROLE seller

This API is short but generic. When new contract objects or relations
are added to the contract schema, the API does not have to be changed.
You may have noted that the API allows querying contracts but does not
offer methods to create or modify electronic contracts. This is due to the

124

characteristics of contracts. Once contracts are concluded, they should not
be changed. The concept of the contract schema therefore is not addressing
the offer creation, negotiation or contract conclusion phase, but is intended
to support the fulfillment respectively the automated processing of elec-
tronic contracts.

4.6.4 CoSa Serialisation

The contract schema is the heart of a contract processing framework. As
mentioned above, it determines all information of electronic contracts that
can be processed in software services. Let us assume that new partners or
platforms desire to participate at a domain or application that has defined a
CoSa, for example accounting software providers. They would need to know
what the contract schema looks like and if it meets the requirements for
processing electronic contracts in their accounting software. Additionally,
programmers need the names of CoSa objects and their attributes in order
to call the CoSa API methods. In short, a generally accepted representation
of the CoSa is required to communicate its shape. The resource description
framework (RDF) [LS99] is suited for this purpose. The following listing
illustrates the RDF serialisation in XML of the application-specific CoSa
exemplified in Section 4.6.2:

<?xml versiona"l.0" ?>
<RDF xmlns:ROF •"http://w3.org/TR/1999/PR-rdf-synta.J:-19990105#"

xmlns z "http://www.guth.it/CoSa#" >
<ROF:Description about a "Contract Schema for IPR Applications">
<CoSaDbjects name•'simple contract type'>

<CoSaParty>
<oid/>
<relations>

<has_perm/>
<grants/>
<control_perm/>
<agg_parent/>

</relations>
<FN/>
<UID/>
<ROLE/>

</CoSaParty>

<CoSaReeource>
<oid/>
<relations>

<rel_perm/>

<controlled_by/>
<agg_parent/>

</relations>
<Identifier/>
<Title/>

</CoSaResource>

<CoSaPermission>
<oid/>
<relations>

<agg_parent/>
<granted_by/>
<granted_to/>
<refers_to/>

</relations>
<operation/>
<object/>

</CoSaPermission>

<CoSaContract>
<oid/>
<relations>

<agg_child/>
</relations>

<location/>
<uid/>
<comment/>

</CoSaContract>
</CoSaObjects>
</RDF:Deacription>
</RDF>

125

The RDF instance describes the objects and their attributes of the
application-specific CoSa. The description contains all information that has
been determined in the earlier data model of the specific application (see
Figure 4.13). Both the data model and the RDF description serve as com-
munication basis for engineers and developers of applications that process
electronic contracts. The following numeration summarises the character-
istics and advantages of the generic contract schema concept. The generic
CoSa ...

is a concept that enhances openness and interoperability in DRM sys-
tems.

aims at standardising the processing of electronic contracts.

serves as abstraction layer for various representations (e.g. rights ex-
pression languages) of contract information. The abstraction is achieved

126

by mapping the contract attributes from proprietary representations
to generic objects and their attributes 7.

defines a generic data model for contracts.

has to be restricted either by domain or application, to be applicable.

and its API provide standardised access to contract information that
has been transformed into the application- or domain-specific con-
tract schema.

Another application-specific contract schema, namely for the usage sce-
narios access control and accounting, has been developed in Section 4.5.2.
An implementation of this contract schema and its processing is shown in
Chapter 6.

4. 7 Enforceability of Electronic Contracts

Electronic rights enforcement aims at verifying specified usage rights in digi-
tal contracts and ensuring their observation both by electronic means. Thus,
electronic rights enforcement addresses the enforcement of access rights to
electronic goods but not to physical goods. However, the rights to physical
goods can still be enforced by legal action. Not all usage rights that can
be expressed in digital rights languages can be electronically enforced. For
business partners and, above all, for rights holders it is important to know
to what extent electronic contracts are enforceable. Identifying and ensur-
ing enforceability of electronic contracts should generate trust as a basis for
successful electronic commerce. Therefore, I suggest to divide usage rights
into two categories, based on their enforceability in electronic contracts:

• Non-enforceable rights: These parts of electronic contracts that spec-
ify usage rights for resources, which cannot be observed by computer
technology.

• Enforceable rights: These parts of electronic contracts that specify
usage rights for resources, which can be enforced by computer tech-
nology. This category must be further specified into:

7For example, a resource in ODRL is expressed by an asset-tag. XrML provides a tag
called digitalWork. To implement the generic CoSa the two proprietary terms have to be
mapped to a generic term, here resource

127

- Potentially enforceable rights: these parts of electronic contracts
that specify usage rights for resources that are currently not en-
forceable but have a high potential to be enforced under certain
circumstances.

- Reliably enforceable rights: these parts of electronic contracts
that specify usage rights for resources, which can be reliably en-
forced as intended by contract parties with existing computer
technology.

In order to identify the different levels of enforceability of a given set
of rights, clear criteria are needed. Accordingly, the three criteria for elec-
tronic contracts to be enforceable are: availability of required information,
availability of appropriate technology, and implementation of a trusted en-
vironment.

Availability of required information in the system

The first criterion for the enforceability of an electronic contract is that all
required information can be recorded, and/or is available to the system.

Example: As the extensibility of digital rights languages and therefore the
range of expressions is limitless, there are no boundaries to informa-
tion in electronic contracts. The following right expression might not
be a common one, but it represents a possible clause in an electronic
contract. "The consumer may have access to my entire resources, after
s/he has invited my department for a discussion round." The precon-
dition "after s/he has invited my department for a discussion round"
is not enforceable, since the necessary information (receive invitation)
to check the precondition cannot be recorded by the system.

Control over the usage of resources

A second criterion is the availability of an appropriate technology that per-
mits controlling the specified usage rights for the resource format concerned.

Example: A specified usage right for a resource could be (in words): "The
consumer may show the digital video to a class once per semester."
We now have all relevant information required to enforce this rights
expression. However, in order to prevent the video from being shown
more than once per semester, a reliable enforcement technology is
needed that is capable of monitoring the usage rights of video formats.

128

The music industry is currently promoting the development of such
technology.

Availability of a trusted environment

The third criterion is the availability of a trusted, i.e. tamper-resistant
environment. The term "trusted" here refers to the point of view of the
rightsholder who anticipates a license conforming access to resources of the
consumer. Rights enforcement in a "trusted" environment is expected to be
reliable, i.e. in an non-trusted environment electronic tickets or contracts
can be modified, copied, or forged and are then longer enforced as intended.

~
Enforceable Non-

Reliably Potentially Enforceable
D Enforceable Enforceable

Information = available
Technology = available X
Environment = trusted

Information = available
Technology = not available X

Environment = trusted

All other cases X

Figure 4.15: The enforceability matrix

ExaJI1ple: Rights enforcement is easier to implement if the resources are
not delivered to the consumer but remain with the provider. The
consumer then receives "access rights" to the resource but physically
the goods remain stored on the providers' server. For example, when
consumers purchase access to an online newspaper, every time they
desire to access the latest news, they have to authenticate themselves
to the online newspaper. In this case, the system administrator of
the platform retains responsibility for access control of the resources.
Conversely, rights enforcement is hard to implement if the execution
of usage rights is managed by software on the client PC, because then
the management of access rights is not the responsibility of the de-
livery system. We classify the environment of the provider as rather

129

"trusted", and that of the consumer as rather "non-trusted", because
no 100-per cent "trusted environment" exists (Fed02]. Due to the
characteristics of certain goods it is difficult to provide a trusted,
tamper resistant system. For instance, as far as the distributing of
music, video, etc. is concerned there is a great amount of recording
technology that facilitates making unprotected copies of the resource.

The relation between these three criteria and the three levels of en-
forceability are represented in matrix form (see Figure 4.15). If all three
criteria are fulfilled the electronic contract is enforceable. The process for
the composition of tailored electronic contracts {see Section 4.5) respectively
the application-specific contract schema in Section 4.6 are means to ensure
the availability of all required contract information and facilitate electronic
rights enforcement. The DRM sample system (see Section 2.3), for exam-
ple, addresses the criteria available technology (e.g. secure viewers) as well
as the trusted environment (e.g. secure containers).

4.8 Contract Management Issues

When aiming at processing electronic contracts , a number of technical
challenges arise, such as representation of contracts in a machine readable
format {addressed in Chapter 3) or defining software objects that are able
to store contract information in a software program (addressed in Section
4.4.3). Besides the purely processing issues some managerial questions ap-
pear, such as "When is a contract valid?" or "How can I be sure that I
bought the content that I intended to buy?" This section aims at drawing
attention to these management issues and addressing some relevant ones
of them in detail. For the overall focus of this work the identified issues
are mainly derived from the access control environment. Figure 4.16 shows
the occurrence of some management issues that typically occur along the
four phases of the contract life cycle (see Section 4.1).8 All issues will be
addressed in the subsequent paragraphes in detail.

Managing Offer Placement

In the offer placement phase important management issues are content ad-
ministration, checking the offer validity, and checking the authorisation of
the seller.

8Please note that this sequence and allocation of issues is not universally valid.

130

Content Administration

Contract Signing

Contract Provision
Checking Contract Validity

• I • Checking Offer Validity

e Negotiation

• Defining Contract Validity

e Authenticating Beneficiary
• Error Management

Detennlnlng Archiving Format
• Changing Contract Status

I = Offer Placement 2 = Contract Conclusion 3 = Contract Fulfillment 4 = Archiving

Figure 4.16: Sample operations when managing electronic contracts

Content Administration

Creating an offer implies that the sellers have access to a list of their content.
This list should be sorted by sensible criteria, such as format, content type,
offer-already-created, etc. For resources on this list, sellers are allowed to
formulate offers. Offers should also be visible to the seller after they have
been formulated. To enable these features, metadata that describes the
content has to comprise the content criteria, and sellers have to be related
to their content and to the offers they have created.

Checking Offer Validity

Checking whether an offer is valid can comprise several activities and varies
depending on the concrete application. By all means the digital signature
of the offer has to be checked.

• Digital signatures provide several services, e.g. unique identification
of the offer signer. Generally, digital signatures are a technical means
to provide authentication, verification, non-repudiation and integrity
[Sch79]. The offer is only valid if the signature on the offer is verifiable
and unambiguously identifies the signer. Along with the signature,
sufficient information about the signature such as hash algorithm or
key length algorithm needs to be provided to technically facilitate the
signature verification.

131

• Besides verifying the signature it should also be checked whether the
contract content is sensible, e.g. if the offered goods are in stock, if
the terms and conditions are reasonable, etc.

• After the offer has been signed, the signature unambiguously identifies
the seller. Here it is an important management issue to check if the
signer is a person that has the authorisation to create and sign an
offer. For the offer to be valid, the signer needs to be a person who
owns property rights of the offered resource. Often the content creator
is such an authorised person, but sometimes retailers or second-hand
vendors have such rights as well.

Managing Contract Conclusion

In the contract conclusion phase of the contract life cycle the three issues
contract negotiation, contract signing and defining contract validity play an
important role.

Negotiation

On the way to reaching an agreement between buyer and seller concerning
terms and conditions of the contract, often a negotiation between contract
parties takes place. For example, contract party A offers certain conditions
to party B. B has the choice between agreeing and rejecting these conditions.
If the conditions are rejected, party B may state new conditions and present
them to party A. This process is called negotiation (depicted in Figure 4.2)
and needs to be technically facilitated in the conclusion phase of electronic
contracts.

Contract Signing

After the contract parties have agreed on the contract content, both parties
have to sign the offer. At this stage, one party has already signed the
electronic offer to make it legally valid. The subsequent signature of the
accepting contract party then is called offer confirmation and automatically
results in the conclusion of the contract. Like the offer signing, the contract
signing requires the respective environment. To facilitate digital signatures
and their verification in general, a public key infrastructure (PKI) has to
be provided. PKI (KL89] offers means to issue key pairs, issue and revoke
certificates, create and verify signatures, etc.

132

Defining Contract Validity

"When is a contract valid?" is a questions of great importance when process-
ing electronic contracts and brings up a lot of crucial issues: Is the contract
valid because all contract parties have signed it? How long is a contract
valid? Is the contract still valid after it has been processed by an access
control service? How can double spending of electronic contracts be avoided?
Guidelines for these issues should be well-defined in the contract conclusion
phase. These guidelines for contract validity have two main dimensions:
there are guidelines to make the contract legally binding, and others to
make it technically valid.

• Legal requirements. If an electronic contract is designed to be legally
binding, the signing certificates have to be qualified, and the electronic
signatures have to meet the nationally required security level [Eur99].
Legally binding electronic signatures have to

- be exclusively assigned to the signer,

- unambiguously identify the signer,

- be created with means that can be kept under the signer's control,

- ensure integrity of the signed data, and

- be based on a qualified certificate that has been created by tech-
nical components and practices that meet the security require-
ments of the national law and its regulations.

A qualified certificate can only be issued by a qualified certification
authority. Qualified certification authorities are nationally registered
authorities that have undergone a quality and security check by the
regulatory authority for electronic signatures.

• Technical requirements. First of all, some technical requirements are
predetermined by the legal requirements. The system that processes
electronic contracts has to provide technology that meets the legal re-
quirements. Besides the implementation of legal requirements a DRM
system usually has additional specifications for valid contracts, such
as

- the electronic contracts have to be written in a specific rights
expression language (see Chapter 3),

133

- the contracts need to comprise certain information for specific
usage scenarios (see Section 4.5),

- the objects (parties, resources, etc.) in electronic contracts have
to be uniquely identifiable by the system,

- the resources stated in the contract have to be available in the
system,

- the electronic contract must not have been revoked,

- the electronic contract must not be expired,

- if the electronic contract shall be processed by an access control
service, it must not have been processed successfully before (see
check contract statw in Section 4.8).

Managing Contract Fulfillment

This section addresses management issues in the contract fulfillment phase
of the contract life cycle, such as Contract Provision, Checking Contract
Validity, Authenticating Beneficiary and Error Management, leaving out
the technical issues, such as contract parsing, interpretation and processing.

Contract Provision

The contract fulfillment phase includes the execution of rights. First of
all, the contract that shall be executed has to be provided to the execut-
ing platform. There are two basic possibilities to provide contracts to a
platform:

1. Contract remains with platform. After the conclusion of a contract
the platform stores and administers the contract. Beneficiaries arrive
at executing their rights by authenticating themselves to the platform
and then receive access to resources and services according to their
contracts.

2. Ticket/Contract remains with the consumer. The consumers receive
the contract after its conclusion and are required to provide the con-
tract at the time they want to execute their rights.

In the second case, the following management issue arises: if several con-
tracts are in the contract repository of the consumer, who chooses the right
contract? Does the consumer need to know what the appropriate contract
is, like it is the case with x509 certificates? Or does the platform have the

134

intelligence to pick the right and valid contract from the contract reposi-
tory of the customer? This example names management issues that will
arise with the dispersion and frequent use of electronic contracts.

Checking Contract Validity

An electronic contract is valid if it meets the legal and technical require-
ments defined in the contract conclusion phase. Technical requirements
include the implementation of the legal requirements and the definition of
system-specific respectively application-specific requirements. For exam-
ple, checking contract validity may comprise the following steps: checking
the contract status, checking the contract signatures, identifying contract
objects, and checking resource availability.

• Checking Contract Status. As soon as the electronic contracts arrive at
the platform with the request to execute certain rights, the contract
processing platform has to check the contract status. This activity
includes the inspection of specific contract revocation lists in order
to identify expired and legally revoked (i.e. invalid) contracts and to
prevent duplication, respectively "double spending" (see e.g. [MN93]),
of digital contracts and the herein granted permissions. For example,
the "double spending" prevention procedure is necessary if a contract
defines a maximum number of uses for certain digital goods/services
and the contract has already been executed on the same or on another
platform.

To the best of my knowledge, there are no existing revocation lists
for electronic contracts yet. Such revocation lists, would have similar
functions as certificate revocation lists [KL89], such as identifying and
publishing expired, legally invalid, manipulated and forged contracts,
as well as publishing contracts that have already been fulfilled. Run-
ning contract revocation lists requires the unique identification of each
electronic contract in a closed system.

• Checking Contract Signatures. Before a contract is ready for process-
ing, this step verifies the digital signatures of the corresponding con-
tract to ensure the integrity of the contract and the authenticity of
the contract parties. This activity comprises all legally and techni-
cally required tasks as defined in the contract conclusion phase. In
this context the sustainability of electronic contracts is an important
issue.

135

As mentioned earlier electronic contracts signed with "qualified" cer-
tificates are legally binding. Digital certificates get a time stamp from
the qualified certification authority at the time they are issued and
have a certain validity period. After the time period has expired the
digital certificate is invalid and no longer suitable for the verification
of electronic signatures. To ensure the sustainability and verifiability
of digital certificates and thus of electronic contracts, additional time
stamp and naming services have to be applied. These services extend
the basic functions of digital signatures. The time stamp service af-
firms that a particular contract has been presented to the time stamp
issuer at a certain point in time. The naming service (of a certification
authority) handles the binding of signature keys to persons and con-
firms whether a certificate has been valid at a certain point in time
[BRB99]. To verify a signature from a certificate that has expired,
the naming service has to be questioned about wether the signature
on the respective contract was valid at the time of the time stamp.
Thus the verifiability of digital signatures can be provided. This is-
sue is also addressed in the work of Anagnostopoulos et al. [AGTOl],
which presents data structures that can support an infrastructure for
persistent authenticated dictionaries. Applications include credential
and certificate validation checking in the past (as in digital signatures
for electronic contracts), digital receipts, and electronic tickets.

• Identifying Contract Objects. To execute a contract as it is intended
by the contracting parties, all objects that occur in electronic con-
tracts have to be uniquely identified. Contract objects are for exam-
ple, resources, contract parties, etc. Here it is important to distinguish
between system-wide and world-wide, i.e. globally unique identifiers.
For some applications it might be satisfactory to uniquely identify the
contract objects system-wide. For example, it is adequate to identify
subscribers of an online newspaper only by their id, which is unique
on the online newspaper platform. In cases where contracts state the
royalties for authors and the contracts circulate on various different
platforms, an id is required that is globally unique. System identi-
fiers are generated and assigned to objects by the respective system,
whereas global identifiers are issued and assigned to objects by inter-
national initiatives. Examples of globally unique identifiers are the
digital object identifier (DOI) [NatOO] for the identification of digital
goods respectively resources and the uniform resource name (URN)

136

[BLFM98, Moa97] that globally and uniquely identifies a resource or
unit of information independent on its location. Also an IP address
[Pos81a] could serve for the identification of a certain resource, or the
X.500 distinguished name [IT93a] for the identification of a certain
individual.

• Checking Resource Availability. Prior to finally execute the electronic
contract, the system has to check on resource availability. Although
the contract can be valid otherwise, it can not be executed if the
resource, identified in the contract, is not available.

Authenticating Beneficiary

As referred to in the issue contract provision an authorisation of the benefi-
ciary is required for usage scenarios, such as access control. If the electronic
contract shall be used to grant access to electronic resources, the access
control service first and inevitably demands for the authentication of par-
ties. The system initiates the authentication process for the party that has
triggered a particular access request. Possible authentication mechanism
are e.g. a Kerberos-based service [SNS88], or an authentication infrastruc-
ture based on X.509-certificates [IT93b]. Authenticating the beneficiary
is relevant for access control services but not for other purposes, such as
accounting.

Error Management

From the previous paragraph one can conclude that electronic contracts
are sometimes not valid or not qualified to be processed in certain soft-
ware services. In cases where electronic contracts have been rejected to be
processed, in certain software services an error management needs to be
available. The error management defines how to proceed with rejected or
unemployable electronic contracts. Like in programming environments, the
error management should distinguish between error severity, error types,
and support error routines.

• Error Severity. The error management should distinguish different
grades of severity of errors. Some errors might be severe and cause
the rejection of the electronic contract, while others might not result
in the contract rejection but only throw a warning during processing.
Errors might be assessed as variably severe depending on the software

137

service that processes the contract. For example, the accounting ser-
vice rejects a contract if the contract does not include a monetary
obligation. As the access control service is not dependent on this in-
formation, the missing attribute does not even cause a warning.

• Error Types. The error management should distinguish various er-
ror types, for example invalid-signature, contract-expired, contract-
already-executed, object-identification-failed, contract-format-invalid,
resources-not-available, etc. The identification of error types is im-
portant for the further handling of errors. Depending on what error
type occurs the respective error routine is called.

• Error Routines. Error routines define activities that are executed on
the occurrence of a certain error type. For example, if the system is
checking an access request for a certain resource and the error type
invalid-signature occurs, the system would reject the access request.
The error type contract-already-executed would initiate a routine that
rejects the access request and additionally adds the electronic contract
to a public list of already "spent" contracts.

Managing Contract Archiving

The archiving of electronic contracts brings up the management issues
Changing Contract Status and Determining Archiving Format. These is-
sues deal with the consequences of contract completion and with proper
contract storage.

Changing Contract Status

If a contract has been completed and all rights have been executed, the con-
tract should officially get the status fulfilled. Ideally the electronic contract
is registered on a public list for fulfilled contracts that other DRM sys-
tems and platform may access. Such public lists reduce the risk of contract
double-spending (see e.g. [MN93)).

Determining Archiving Format

Electronic contracts that have been executed are often archived. However,
the national laws on electronic contracts have different statements for the

138

format of electronic contracts and their archiving. In Germany, for exam-
ple, solely electronic contracts that require to be stated in written form in
the non-electronic world have to be archived [Deu0l b]. The archiving pe-
riods for written and electronic contracts are the same and depend on the
contract type, such as purchase, insurance contract, etc. Such electronic
contracts have to be readable for all contract parties and also for third
parties, such as lawyers. A detailed treatment of legal issues of electronic
contracts would go beyond the scope of this thesis. To read more about
these issues in Europe, and particularly in Germany, please refer to the fol-
lowing EU-directives: directive of electronic commerce [Eur00], directive on
distant contracts [Eur97], and directive on electronic signatures [Eur99], re-
spectively the implementation into national German law Gesetz zum Elek-
tronischen Geschaftsverkehr (EGG) (Deu0la], Fernabsatzgesetz [Deu00a],
and Novelle des Signaturgesetzes [Deu00b].

The above-mentioned management issues occur during the life cycle of
electronic contracts. I do not claim that the list is complete, but it names
important issues that have been discussed during the development of this
work. In a concrete application some issues might become obsolete whereas
others might have to be added. The management issues heavily depend on
the respective usage scenario.

4.9 Related Work

This section discusses other approaches to modelling electronic contracts.
Some approaches include an introduction of their underlying data model
of electronic contracts [LDF+o2, KGV99, GHM00], which most times refer
to one special application rather than to a generic model for electronic
contracts . In most of the works a (proprietary) XML-based language for the
contract serialisation [NCL +03, SDN+oo, ZSOl] is used or at least proposed
[BJPW99].

Service Level Agreements

In the work of Keller et al. [KKL +02] a management architecture for speci-
fying, deploying, monitoring, and enforcing service contracts is proposed to
provide a basis for service level agreements. A service level agreement is a
contract that defines the technical support or business parameters that an
application service provider or other IT outsourcing firm offers its clients.
The agreement spells out measures for performance (i.e. quality of service

139

(QoS)) and consequences for failure. Keller at al. define object classes that
represent their contract model. Their contract model is tailored to the
needs of service level agreements, and thus contains other contract objects
than the contract model introduced in this work (see Section 4.6). However,
their model does contain the core contract objects that have been defined in
Section 4.4.1: provider and customer (i.e. parties), and service (specifying
permission and resources), as well as objects that represent the guaranteed
service parameters (i.e. constraints). In a later work Keller et al. (LDF+o2]
motivate the description of service level agreements in a standardised for-
mat, namely the web service level agreement (WSLA) language specifica-
tion. Keller et al. finally demonstrate the application of this language in
[KL02] for the dynamic e-Business. In this work and in the language spec-
ification Keller et al. explicitly state that the general structure of a service
level agreement can be described with three basic object types: parties,
service description, and obligations (see Figure 4.17).

Parties
Service

Description
Obligations

Figure 4.17: General structure of an service level agreement [LDF+o2]

Parties are, for example, service provider and service customer. Service
descriptions include the guaranteed service (e.g. stock quote service) and
the service parameters (e.g. availability and response time). The service
parameters can be seen as rights to a respective service (i.e. permissions).
Obligations define the appropriate actions (duties), e.g. payments to be
taken if a violation of a guaranteed service level has been detected. One
important difference from the licenses and contracts presented in this the-
sis is that service level agreements define not one but several different sets
of permissions and duties between the contract parties. All these sets are
bound to a condition. When executing the contract one of these conditions
is met and the respective set of permissions is granted. For example, the
service provider receives a basic fee for a service, e.g. a stock quote service.
li the service provider meets all conditions (constraints) that have been de-
fined in the service level agreement, the fee will be regularly paid. If the

140

service provider can not provide the promised conditions (e.g. availability
and/or response time) of the service, the payable fee will be reduced (as
specified in the agreement). The introduced rights expression languages are
not designed to support service level agreements. A subject of future work
is an analysis about whether the predominant RELs are or should be able
to express service level agreements.

The work of Meredith and Bjorg suggests using electronic contracts to
ensure quality of service in a technical environment where web services dis-
cover and interact with each other (MB03]. The work does not propose a
specific rights language but discusses, what such contracts should cover.

Rule XML

The Babel project aims at providing interoperability between inhomoge-
neous applications [ZS0l]. Babel supports the specification of related ap-
plications in terms of the functions they deliver and the data they expect
as input and produce as output. Furthermore, it enables the specification
of business rules for how these functions should be integrated, which can
be seen as a kind of agreement. The business rules are formulated in the
XML-based language Rule XML.

Trading Partner Agreements

Executable Trading Partner Agreements (TPA) (SDN+oo] are contracts
that trading partners in electronic commerce have agreed on. The agree-
ments are formulated in the XML-based trading partner agreements Markup
Language (tpaML) (Sac00]. The language specification has been submitted
to OASIS9 • TPAs additionally contain policy information for different lay-
ers in the protocol stack, whereas the contracts addressed in this work only
contain information of the application layer. The TPAs contain an agree-
ment on functionality and services that the trading partners offer to each
other. Rather than agreeing on usage rights over digital goods the partners
agree on predefined and implemented procedures, such as "reserve hotel"
that may be called by the remote trading partner.

9See: Organization for the Advancement of Structured Information Standards,
http://www.oasis-open.org/

141

Contract Aware Components

Beugnard et al. [BJPW99] introduce a general model of software contracts
that aims at increasing trust and reliability between software components.
To conclude contracts between components, every component publishes a
feature set to describe its services in a common language (e.g. CORBA
IDL). Contracts are established between a client and server component in
a negotiation phase in which the contract parties agree on certain services.
The work provides a basic interface description for the negotiation phase.
Beugnard et al. suggest an "XML-formatted description of the contracts"
that is applied for negotiation (i.e. interoperability) purposes.

Electronic Contracts Used for Workflow Management

Crossflow10 is a European Community research project into support for
cross-organisational workflow management in virtual enterprises. In the
project electronic contracts are used to define transactions between aut~
mated systems [KGV00]. The automated systems on both sides are Work-
flow Management Systems (WFMSs), extended with contract handling fa-
cility that supports outsourcing interaction. On the one side there is a con-
sumer WFMS that desires to outsource a process, on the other side there is
a provider WFMS that is capable of executing this process for the consumer.

(1, 1)

Enactment
Clause

1,1)

Process
Model

Figure 4.18: Simplified model of contracts applied in a WFWM [KGV99]

The contracts that are used in this project are designed to be deployed
in a workflow management application. Therefore, the five basic contract

10See: http://www.crossflow.org/

142

elements that are identified describe all aspects of automatic workflow (see
Figure 4.18): the concept model defines and assigns values to all objects that
can be parameterised in the contract; the process model describes the inter-
nal structure of the workflow process implementing the service; the enact-
ment model, describing details of the enactment; the usage model, defining
manners in which the contract can be used; the natural language descrip-
tion, being a piece of text that is not meant for electronic interpretation
but describes the service in an easily understandable way and refers to the
legal context of the transaction. These basic contract element differ greatly
from the general core contract objects identified in Section 4.4.1, because
they serve one specific application. Such specialised contracts are hardly
applicable in other usage scenarios (see Section 4.4.2). Within the scope of
the same project the states of such workflow contracts have been identified
(KGV99]. The identified states are: contract template, contract advertising
template, contract search template, contract instance, and partially filled
contract. These states occur in the first two phases of the contract life cy-
cle, defined in Section 4.1; contract execution and contract archiving are
not addressed in detail.

Legal Aspects of Electronic Contracts

The work of Gisler et al. (GSSG00] considers the business phases and the
legal phases of digital contracts. Considering the precedent actions between
the later contract parties and not addressing the archiving of electronic con-
tracts, their model results in four phases that differ from the approach pre-
sented in this thesis: Information Phase (Contract Conception), Intention
Phase (Contract Preparation), Agreement Phase (Contract Negotiation),
and Settlement Phase (Contract Fulfillment). The first two phases of their
model do not represent contract states that are legally relevant, and the
contract archiving is not considered. Therefore, I disagree with contract life
cycle approach.

Business Contracts

In a very early work Milosevic and Bond make an initial attempt to ad-
dress electronic contract issues [MB95]. They introduce a generic business
contract framework comprising the issues Contract Domain, Contract Tem-
plate, Contract Negotiation, Contract Validity, Contract Monitoring, and
Contract Enforcement, and apply these measures to contracts on the Inter-
net. As basic elements in contract templates they identify the roles of the
parties, the period of the contract, the nature of consideration (resource),

143

the obligations associated with each role, and the domain of the contract.
The generic business contract framework of Milosevic and Bond comprises
legal and technical issues which they do not clearly distinguish. The basic
contract elements are not described in detail and differ from the approach
shown in this thesis (see Section 4.4.1). Roles are considered as one means
for party identification, and the period is one of the several relevant con-
tract attributes. In contrast to this approach I regard the contract domain
as something that influences the contract content but is not part of the
contract.

In a later work Milosevic et al. address Business Contracts for B2B
[GHM00]. Here, they redefine the basic elements of business contracts, name
typical contract phases in the B2B business, and present some implementa-
tion experiences. In this work a contract modelling approach is introduced
that allows for the contract components: a preamble (involved parties), an
approval section (enumerating those who have approved the contract), dig-
ital signatures, contract clauses, and policy specifications. This approach
differs from my approach by formulating the entire basic contract infor-
mation in the policy specification. The policy specification comprises the
contract party information, contract permissions, duties, and constraints,
and relates this information to programming logic (instead of a markup
language). The formulation of the policy specifications has been influenced
by the Event-Condition-Action paradigm from active databases and the
ODP enterprise language. The latest work of Milosevic et al. introduces the
requirements for a Business Contract Language [NCL +03] and addresses
discretionary enforcement of electronic contracts [MJP02].

Chapter 5

Design of a Rights
Expression Exchange
Framework

145

This thesis has the objective to develop methods and tools that support
the exchange and processing of rights expressions (see Sectionl.3). Rights
expressions are valid instances of a rights expression language (see Section
3.1). Offers, contracts, and licenses formulated in a REL are specific rights
expressions, i.e. instances with certain semantics in the contract life cycle
(see Section 4.1). Whereas Chapter 4 has covered the contract (respec-
tively rights expression) content, and its tailored composition that support
later processing, this chapter focuses on the exchange practices of rights ex-
pressions. The first section introduces a general communication model and
deploys its principles to the exchange of rights expressions (Section 5.1)
which results in the rights expression communication model. A technical
design for the implementation of such a rights expression communication
model - the rights expression exchange framework - is presented in Sec-
tion 5.2. Here, the framework's functional and technical perspectives (see
Section 2.2.2) are discussed in detail.

5.1 Exchanging Rights Expressions

In the following sections an outline is given of the exchange of rights ex-
pressions between sender and receiver. Therefore, Section 5.1.1 introduces

146

the general communication model, which is later adopted to the communi-
cation via rights expressions (see Section 5.1.2). Section 5.2.1 describes the
component-based technical design of a rights expression exchange frame-
work. Finally, in Section 5.2.2, a check list of technical requirements for
such a rights expression exchange framework is provided.

5.1.1 The Communication Model

Basic components of communication can be found in the communication
model (Sch71] of Schramm illustrated in Figure 5.1. According to Schramm,
communication is the the sharing of an orientation toward a set of informa-
tional signs ... where both source and destination must share a field of ex-
perience. Constituents of Schramm's communication model are the source,
the encoder, the signal, the decoder, and the destination.

Source Destination

Figure 5.1: The communication model (Sch71]

• Source. According to Schramm's model, a message begins at a source.
The source can be a person or computer system that aims at sending
a message to a destination, where a person or a computer receives this
message.

• Encoder. The communication encoder is responsible for taking the
ideas of the source and putting them in code, expressing the source's
information in the form of a message. Therefore, the encoder has to
choose a coding language that is understandable for the destination.

• Signal. The signal is the encoded message, an instance of a language
that source and destination are familiar with, which is sent through a
communication channel towards the destination.

• Decoder. Like a source needs an encoder to translate the original
message into a transportable message, the destination needs a decoder
to retranslate. To decode the message the decoder needs to understand
the language in which the signal has been coded. After decoding, the
message is identical with the earlier-sent original.

147

• Destination. For a successful communication, there must be somebody
at the other end of the channel. This person or computer system can
be called the destination. After decoding, the destination is able to
understand and process the message, and possibly send a reply on the
message.

Schramm's communication model describes communication in general.
In the next section, Schramm's model is deployed to the exchange of rights
expressions between two computer systems.

5.1.2 The Rights Expression Communication Model

When exchanging rights expressions the communication between two coop-
erating computer systems corresponds to the basic communication model.
In this section the communication model is adopted to the communication
via rights expressions between two DRM system components, resulting in
the rights expression communication model. In the following, the required
steps are identified which facilitate the exchange of rights expressions be-
tween two computer systems. It is assumed that after exchanging the rights
expressions, each system is capable of processing them internally, for exam-
ple, in an access control service context, in which permissions are assigned
to parties or in an accounting service context, relating parties to monetary
duties.

Rights
Exprtssion

Sourct

ORM System Component

Rights
Expr,ssion
Dtstinalion

ORM System Component

Figure 5.2: The rights expression communication model

The rights expression communication model has five stages: the rights
expression source, the rights expression encoder, the message in form of a
rights expression, the rights expression decoder, and the rights expression
destination (see Figure 5.2). The communication takes place between two

148

DRM systems or DRM system components (see Section 2.3). A DRM com-
ponent in this case is a DRM subsystem, such as the DRM platform or the
DRM client (e.g. secure viewer).

• The Rights Expression Source. In the rights expression communica-
tion model a DRM system or a person is the origin of the the rights
information to be delivered, i.e. the rights expression source.

• The Rights Expression Encoder. This stage provides three tasks: the
message generation, the message wrapping, and the application of the
respective protocol stack:

- The Generator. The generator supports the coding of the rights
expression source into a rights expression. The rights expression
can either be generated by the DRM system or be provided by a
human actor (e.g. the content provider). The rights expression is
formulated in a rights expression language (see Chapter 3) that
has to be well-known by the receiving DRM component in order
to be understood.

- The Rights Expression Wrapper. As rights expressions comprise
sensitive information, they are usually not transmitted in plain
text and/ or without protection. The rights expression wrapper
"wraps" the rights expression and thus provides confidentiality
and integrity of the rights expression, as well as authentication
and verification of the rights expression issuer or signer. Here,
the term "wrapper" is not to be understood as the wrapper or
object adapter, described in (GHVJ94].

- The Protocol Stack Application. Referring to the TCP /IP pro-
tocol stack, the generator and wrapper are encodings on the ap-
plication layer. To be sent over a network (e.g. the Internet),
the protocols of lower layers, i.e. the transport layer (e.g. TPC
[Pos8lb] or UDP (Pos80]) and the internet layer (e.g. IP (Pos8la])
have to be applied to the rights expression. The protocol stack
to be applied depends on the actual network and on the com-
munication partner. Applying the protocol stack produces the
rights expression message.

• The Rights Expression Message. The rights expression message com-
prises a wrapped REL instance that is sent to the receiving DRM
component via a communication channel, i.e. the rights expression
massage is a transport format for the encoded rights expression source.

149

The message can be transported via any kind of network, e.g. the In-
ternet, a virtual private network (VPN), but also a smart card or
floppy disc.

• The Rights Expression Decoder. This stage provides three tasks: the
reverse application of the protocol stack, the message unwrapping,
and the message interpretation:

- The Reverse Application of Protocol Stack. This encoding task
makes the wrapped rights expression available for the application
layer, i.e. the unwrapper and interpreter.

- The Rights Expression Unwmpper. The rights expression un-
wrapper is the complementary component to the rights expres-
sion wrapper. It unwraps the rights expression. This component
also provides for the extrinsic checking of the digital contract,
such as checking the contract integrity and the contract signa-
ture.

- The Interpreter. The interpreter transforms the encoded rights
expression, formulated in the rights expression language, back
to the original rights information. This rights information can
then be processed in the receiving DRM system component in
various ways. The interpreter that has been implemented within
the scope of this thesis stores the original information in a generic
contract schema that is a means for flexible and open processing
of rights information. To read more about the generic contract
schema, please refer to Section 4.6.

• The Rights Expression Destination. The receiving DRM component
is the destination of the rights expression, where it can be processed
in various software services (see Section 4.4.2).

5.2 The Rights Expression Exchange Frame-
work

This section provides a general technical design for a rights expression ex-
change framework and a check list for its implementation. The rights ex-
pression exchange framework has been derived from the rights expression
communication model defined in Section 5.1.2. Such a framework facili-
tates the exchange of rights information between two dislocated computer

150

systems. The framework description is independent from a concrete techni-
cal implementation.

5.2.1 Technical Design

The rights expression exchange framework presented in this section is a
framework that facilitates the exchange of rights information between two
or more components, and is based on the rights expression communication
model (see Section 5.1.2). The framework design deploys a component-
based approach, i.e. a set of cooperating components that offer the neces-
sary functions for rights expression exchange. Each of the components is
autonomous and can be reused in other frameworks; new components can
be easily added. A rights expression exchange framework is intended as
additional module in a web server or application server and can be easily
integrated into an existing software environment. In general, we propose a
dynamically extensible component framework, as discussed in [GNZOO].

According to the rights expression communication model, the following
components that are required for a rights expression exchange framework
can be derived: the rights expression generator, the rights expression wrap-
per, the rights expression unwrapper, the rights expression interpreter, and
the mediator. The generator and the wrapper are designed to encode rights
expressions; the unwrapper and interpreter are designed to decode rights ex-
pressions (see Figure 5.3). Considering the four-layer protocol TCP /IP, the
four components are resident on the application layer. It is assumed that the
protocol stack below the application layer, such as TCP /IP [Pos81b, Pos81a]
is available to the framework. The framework interacts with other software
services, such as web servers or application servers, and reuses a data base
service for the (temporary) storage of rights expressions.

• Rights Expression Generator. The product of the rights expression
generator is a schema and specification-conforming instance of a rights
expression language. The rights expression generator has to know
the syntax and the semantics of each REL it is supposed to create
instances of. Coding is necessary for each new REL the generator
adopts. Rights expressions can be created by machines or by human
actors. Often rights expression, such as offers, licenses, contracts are
created by human actors. Therefore, the rights expression generator
component can be implemented as graphical user interface that guides
the user through the generation process. If rights expressions and
in particular electronic contracts undergo a tailored composition (see

151

Rights Expression Exchange Framework

Rights Rights Rights Rights
Expression Expression Expression Expression
Generator Wrapper Unwrapper Interpreter

I I

I
r Mediator I

Encoding I Generic-/Service Specific! Decoding
-r

I

I I
I

I I I DB Temporary Rights Software

Expression Repositorv Services

Figure 5.3: Components of a rights expression exchange framework

Section 4.5), the number and type of application-specific objects and
attributes are identified. A rights expression generator has to support
the creation of such tailored contract templates. Completed rights ex-
pressions and rights expression templates can be (temporarily) stored
in a database, the rights expression repository. The implementation
and usage of a rights expression generator is described in Section 6.2
respectively in Section 7.2.2.

• Rights Expression Wrapper. The rights expression wrapper compo-
nent is in charge of a further encoding of the rights expression that
has been created by the rights expression generator. The wrapper
applies technical means to the rights expression to provides various
security services (such as listed in Section 5.1.2). The required secu-
rity means to be applied (encrypting the rights expression or digitally
signing the rights expression) depend on the software service that later
processes the rights expression. Thus, the rights expression wrapper
has to be customised and possibly extended for its actual application.
The wrapper respectively all its methods that perform security appli-
cations can be controlled via its application programming interface.
The wrapper receives and returns the rights expression from/to the
mediator component (see below). The implementation and the usage

152

of a rights expression wrapper is described in Section 6.4 respectively
in Section 7.2.3.

• Rights Expression Unwrapper. The rights expression unwrapper com-
ponent is in charge of decoding all applied security means, and thus is
the reverse functionality of the wrapper component. Here, the rights
expression is decrypted and digital signatures are verified. Again, the
security checks that have to be applied depend on the software service
that processes the rights expression. Thus, also the rights expression
unwrapper has to be customised and possibly extended for its actual
application. The methods that the unwrapper provides can be called
via its application programming interface. The usage of the unwrap-
per API is performed by the mediator. The implementation and the
usage of a rights expression unwrapper is described in Section 6.4
respectively in Section 7.2.3.

• Rights Expression Interpreter. This component is in charge of de-
coding the rights expressions to the original rights information. The
rights expression interpreter has to know the syntax and the seman-
tics of each REL it is supposed to interpret instances of. Coding is
necessary for each new REL the interpreter adopts. After the in-
terpretation the rights information should be ready for processing in
software services. Therefore, the interpreter maps the rights expres-
sion to an application-specific contract schema (see Section 4.6.1).
The application-specific CoSa covers all attributes that are required
by later software services. The application-specific CoSa is queried
by the mediator via the generic CoSa API (see Section 4.6.3).

• Mediator. The mediator plays a central role in the rights expression
exchange framework: it coordinates or glues the functions of the re-
maining four components in the framework. The mediator interacts
with the framework components and other scenario-specific software
services, such as access control mechanism or web server. With the
knowledge of the APis of the remaining four framework components,
the mediator is able to coordinate them. By coordinating various
components via their API, the mediator controls the workflow be-
tween the framework and the software services. The mediator code
can be implemented as separate software class/program, or integrated
in existing software classes/programs. The mediator code is adapted
to the needs of a specific application. Very little of the mediator code
can be reused in other applications, therefore in most cases each new

153

application that uses the framework components requires a new me-
diator implementation.

5.2.2 Implementation Check List

The following technical requirements are necessary for the implementation
of a rights expression exchange framework:

1. Rights Expression Language. For the exchange of rights information a
respective language is required. There are a number of rights expres-
sion languages, which are usually freely available (see Section 3.4).
The cooperating DRM systems should agree on a rights expression
languages(s) and on REL application policies.

2. Implementation of a Generator. Each DRM component that aims at
encoding rights information requires a rights expression generator. If
DRM components run on different operating systems or platforms, a
generator has to be developed for every operating system, respectively
platform. The generator has to support a suitable interface. Offers
or contracts that are created by content providers usually require an
interface for the manual input of rights, license or contract informa-
tion. However, there might be applications that require an API for
the formulation of rights expressions. Furthermore, a generator might
require a database connection for the temporary storage of licenses,
because sometimes offers need to be restored for modification or fur-
ther processing by a different component, e.g. the mediator.

3. Implementation of a Parser. A parser is required for all DRM com-
ponents that receive rights expression messages. A parser usually
provides validating the rights expressions in terms of syntactic correct-
ness. A parser has to be available for the different operating systems
respectively platforms of the DRM components. For rights expres-
sion languages that are XML-based, a large number of XML parser
implementations are freely available on the Internet.

4. Implementation of an Interpreter. After a rights expression has been
parsed, an interpreter maps the rights expression to semantics. The
semantics are derived from REL in which the rights expression is
coded. Additionally, the interpreter provides the rights information
in a processable format. Again, an interpreter has to be available
for the different operating systems respectively platforms of the DRM
components. In this thesis a rights expression language interpreter for

154

ODRL (see Section 3.4.1) has been developed that is freely available
in the spirit of open source.

The development of rights expression language interpreters is at the
very beginning. Apart from the work at hand, no design or compre-
hensive implementation of a rights expression language interpreter is
available.

5. Secure Transportation Channel. The exchange of a rights expression
requires a secure transportation channel between two appointed DRM
components. The channel has to assure that the rights expression is
not deleted or modified during transportation. With the adequate se-
curity provided, the Internet or private networks are potential trans-
portation channels.

6. Concept for Runtime Presentation. After the message has been in-
terpreted the rights information is processed in software services. A
general runtime representation of the rights information has the ad-
vantage that it is suitable to serve various software services, such as
access control, accounting, and CRM services. The information in
such a general representation is usually accessed via a predefined ap-
plication programming interface. A generic schema for the represen-
tation of rights information as objects has been introduced in Section
4.6.

7. Temporary Storage. Rights expressions, in particular licenses and con-
tracts, undergo several phases in their life cycle (see Section 4.1). Very
often, such right expressions need to be temporarily stored. Depend-
ing on the current phase, different types of storage have to be pro-
vided. For example, prior to contract conclusion it is reasonable to
store a contract in software objects, an XML database, or a relational
database rather than as an XML document in the respective rights ex-
pression language, because it might be easier to restore the contract
information for modifications in the negotiation phase.

8. Framework Integration. Most systems have not been designed from
the beginning to handle rights expressions. A rights expression ex-
change framework often has to be integrated belatedly into application
servers. To enable an easy integration, the framework respectively all
its components should be coded in a suitable programming language
and provide a well-<lefined interface.

155

9. Mediator Implementation. The mediator does not provide a general
functionality, like the contract wrapper, unwrapper or the interpreter.
It combines given components for a specific usage scenario. Therefore,
a new mediator has to be implemented for each usage scenario. There
are mediator tasks that need to be performed in every usage scenario,
such as contract unwrapping and interpretation which follow a fixed
pattern. In contrast to these, scenario-specific mediator tasks are
differing in each application. A scenario-specific mediator task, for
example, implements all rights expressions from a given contract into
an access control mechanism. Another example of a scenario-specific
mediator task is gathering the purchased products from all concluded
contracts for the purpose of customer relationship management.

10. Security Means. To establish a reliable rights expression exchange
framework, a large number of security means have to be applied. At-
tacks on rights expressions and their reliable processing can have var-
ious facets. Attacks that are concentrated on the rights expression
message should be fended by the contract wrapper, respectively un-
wrapper. However, this provides neither yet tamper resistance of the
framework components nor prevention from internal attacks (e.g., per-
sonnel). Certainly, building real-world tamper resistant systems is a
complex task especially in open, distributed environments (see also
[LTM+oo, AK96])

Chapter 6

Implementing the Rights
Expression Exchange
Framework

157

The design steps of a rights expression exchange framework has been in-
troduced in Chapter 5. Originally derived from the basic communication
model (see Section 5.1.1), and adapted to the exchange of rights expres-
sions, the technical design of a rights expression exchange framework com-
prises five components: the rights expression generator, wrapper, unwrap-
per,interpreter, and mediator. A technical implementation of these compo-
nents will be described in this section. Section 6.1 presents the underlying
software architecture of the framework. The subsequent chapters describe
the implementation details of the five components (generator see Section
6.2, interpreter see Section 6.3, wrapper and unwrapper see Section 6.4,
and mediator see Section 6.5). Each of the components is implemented in
order to be used autonomously. The section concludes with related work in
the field of rights expression exchange, i.e. existing implementations of REL
interpreters or frameworks (see Section 6.7) .

6.1 Software Architecture

Figure 6.1 shows the software architecture of the rights expression exchange
framework. All components of the rights expression exchange framework
(i.e. the generator, the wrapper, the unwrapper, the interpreter, and the me-

158

diator) are coded in XOTcl (see Section 6.1.1). XOTcl is a suitable language
for the implementation due to its strength as glue code between components.
Additionally XOTcl facilitates the reuse of tools, such as OpenSSL, tDOM,
and MySQL.

Rights Expression Exchange Framework

Mediator

RE Generator t=:JB 1
RE Wrapper RE Unwrapper RE Interpreter

ActiWeb

XOTcl

MySQL II OpenSSL II OpenSSL l~l _tD_O_M_~

Figure 6.1: Technology used in the rights expression exchange framework

OpenSSL (see Section 6.1.5) as cryptographic library is used in the
wrapper- respectively unwrapper component, whereas the generator compo-
nent is supported by MySQL {see Section 6.1.4) and also uses the ActiWeb
package - a package implemented in XOTcl providing web technologies.
The rights expression interpreter uses tDOM, an open source XML proces-
sor, which implements the Document Object Model {see Section 6.1.3) and
allows the handling of XML documents. The mediator is a pure XOTel
implementation and is not reusing other software packages. The mediator
has a central function in the framework: it coordinates the remaining four
components. The subsequent sections describe the reused tools in more
detail.

6.1.1 The XOTcl Language

XOTel (eXtended Object Tel) (NZ00b] is an object-oriented scripting lan-
guage developed by Gustaf Neumann and Uwe Zdun, and which is based
on Object Tel (OTel) (WL95]. OTel itself extends Tel (Tool command
language) (Ous94] and provides for the following features: encapsulation,
{multiple) inheritance, method chaining, meta-classes, read/write intro-
spection, and dynamic extensibility. XOTel adds further functionality that

159

helps building and managing complex systems, namely dynamic aggrega-
tion, nested classes, assertions, meta-data, per-object mixins, per-class
mixins, filters, and dynamic component loading1 (see Figure 6.2).

XOTcl can be loaded into every Tel-compatible environment, such as
tclsh or wish, and can be embedded in C programs. XOTcl optionally pro-
vides its own shell, called xotclsh which is a tclsh with XOTcl preloaded.
This shell takes the commands (similar to tclsh) one by one from a file or
from the console. For that reason all Tel commands remain available and
are also applicable on the extension constructs. As Tel is equipped with
appropriate functions for the easy gluing of components, it is a well suited
language for the implementation of the components, in particular the me-
diator component, of a rights expression exchange framework.

Tel
- narnespaces
- introspection
- extensibility

OTcl:
- encapsulation,
- (multiple) inheritance,
- method chaining,
- meta-dasses,
- read/write introspection, and
- dynamic extensibility

XOTcl:
- dynamic aggregation,
- nested classes,
- assertions,
- meta-data,
- per--0bject mixins,
- per-dass mixins,
- filters, and
- dynamic component loading

other

extensions

Figure 6.2: Features of XOTcl, OTcl, and Tel

1 See also: http://www.xotcl.org/

160

6.1.2 ActiWeb

ActiWeb is a open source library of components for Internet applications
written in XOTcl (see Section 6.1.1), including implementations of HTTP
servers, HTTP clients, and mobile code [NZ00a], and the support to process
common internet formats (e.g. HTML or XML). The main components of
ActiWeb are (see Figure 6.3) :

Applications

Mobile Object System Active Web Objects
xoMOS xoAWO

Metadata Services Communication Services Persistence

lxoRDF I xoComm Service

lxoXML I I Http Access 11 Http Server I xoStore

XOTcl

Figure 6.3: Basic architecture of ActiWeb [NZ00a]

• xoComm. This component is an object-oriented, highly flexible and
configurable HTTP /LO [BLFF96] and HTTP /1.1 [FGM+99] server
and client access implementation. It supports client access to sev-
eral other common web protocols. Due to the component-based im-
plementation approach of ActiWeb, compatible components can be
substituted, e.g. xoComm can be exchanged for another HTTP im-
plementation providing the same interface.

• xoXML. This object-oriented implementation in XOTcl is part of the
metadata services supported by ActiWeb. It provides an environment
for parsing XML-files into an abstract syntax tree and vice versa.

• xoRDF. This implementation is the second of currently two metadata
services supported by ActiWeb. xoRDF is an XML/RDF2 parser/
interpreter environment for XOTcl.

2 See: http://www.w3.org/RDF/

161

• xoStore. This implementation provides a general, persistent store for
XOTcl objects which makes objects and their data transparently per-
sistent. xoStore is a wrapper for several database implementations.
The version in the current XOTcl distribution is based on several free
storage systems, such as GDBM3 •

• xoMOS. This component implements a mobile object system based on
HTTP and RDF.

• xoAWO. The XOTcl implementation of an active web object system
allows to easily build web applications with active web documents and
web facades to agents. For example, xoAWO enables an agent to use
a web representation, such as HTML.

For the implementation of the rights expression exchange generator the
xoComm component of XOTcl is used, because it is freely available and
provides all web server functionality that is needed to implement a wel>-
based user interface for the generation of rights expressions. A detailed
description of the integration of xoComm is given in Section 6.2.

6.1.3 Document Object Model (DOM) Implementation

The World Wide Web Consortium4 states that the

" ... Document Object Model (DOM) is a standard Application
Programming Interface (API) to the structure of documents; it
aims at making it easy for programmers to access components
and to delete, add, or edit their content, attributes and style
... The Document Object Model is a platform- and language-
neutral interface providing a standard set of objects for repre-
senting HTML and XML documents, a standard model of how
these objects can be combined, and a standard interface for ac-
cessing and manipulating them [Wor00]."

The document object model (DOM) can be used to process XML doc-
uments. It presents all elements of static XML (or HTML) documents as
a hierarchy of Node objects, such as Document, Element, Text, Comment
or Entity. Some types of nodes may have child nodes of various types (e.g.
Document, Entity, and Element), whereas others are leaf nodes that can-
not have anything below them in the document structure (e.g. Text and

3See: http://www.gnu.org/software/gdbm/
4 See: http://www.w3.org/

162

Comment). The representation of document objects results in an object
tree, also called DOM-tree that starts with a Document (root) element(see
Figure 6.4).

Figure 6.4: A general DOM-tree

To process an XML-based document, for example an electronic con-
tract written in ODRL, the DOM-tree of such a contract contains all el-
ements that are written in the contract instance represented by individ-
ual objects. The DOM-tree can than be easily queried or modified via
the DOM API or via XML-specific query language such as XPath (CD99]
for example. The DOM API contains methods such as hasAttributeC. .),

getElementsByTagName(. .), getTagName(. .), etc., with which elements (or tags)
of an XML document can be located and analysed.

DOM is designed at several levels:

• Level 1: This level concentrates on the actual core, HTML, and XML
document models. It contains functionality for document navigation
and manipulation.

• Level 2: This level includes a style sheet object model, and defines
functionality for manipulating the style information attached to a doc-
ument. It also enables traversals on the document, defines an event
model, and provides support for XML namespaces.

• Level 3: This level will address document loading and saving, as well
as content models (such as DTDs and XML schemata) with docu-
ment validation support. In addition, it will also address document

163

views and formatting, key events, and event groups. Public working
drafts, candidate recommendations, and one recommendation (valida-
tion) are available at the W3C5 •

tDOM6 is an open source implementation in C of the document object
model, providing a DOM binding to the Tel language and thus also to
XOTcl (see Section 6.1.1). The most recent tDOM release supports DOM
Level 2 and comprises the latest version of Expat, the XML parser of James
Clark7, including namespace and DTD support. In this thesis tDOM is
used by the rights expression interpreter implementation to parse and access
electronic contracts respectively rights expressions written in an XML-based
rights expression language. tDOM was chosen because it is freely available
and provides a DOM Level 2 implementation which comprises all required
functions for processing XML-based documents.

6.1.4 MySQL

The MySQL database server is a fairly popular open-source relational data-
base management system (RDBMS) that uses Structured Query Language
(SQL). SQL is a popular language for adding, accessing, and processing
data in a database. It is fully multi-threaded using kernel threads, provides
API for C, C++, Eiffel, Java, Perl, PHP, Python, and Tel, allows for many
column types, and offers full operator and function support in the SELECT
and WHERE parts of queries. MySQL currently runs on the Linux, Unix,
and Windows platforms.

In this thesis the MySQL database server distribution mysqltcl version
2.40 has been used8 • It has been applied in the implementation of the
rights expression generator (see Section 6.2) for the (temporary) storage of
generated rights expressions respectively electronic contracts. MySQL was
chosen because of its free availability and flexible nature; furthermore it
provides fast reliable database services.

6.1.5 OpenSSL

The Secure Sockets Layer (SSL) is a commonly-used protocol for manag-
ing the security of a message transmission on the Internet. In 1999, SSL

5See: http://www.w3.org/DOM/
6See: http://www.tdom.org/
7See: http://www.jclark.com/xml/
8See: http://www.xdobry.de/mysqltcl/

164

was succeeded by the open specification of Transport Layer Security (TLS)
protocol [DA99], which is based on SSL. SSL/TLS provides for the security
aspects integrity, confidentiality, and authenticity when transmitting mes-
sages over the Internet.

SSL/TLS uses a program layer between the application layer and the the
transport layer, i.e. SSL/TLS is located on top of the Transmission Control
Protocol (TCP) and therefore provides its services for application proto-
cols, such as HTTP, FTP, Telnet, etc. SSL was the de facto standard until
evolving into Transport Layer Security. SSL/TLS uses symmetric and asym-
metric cryptography and is an integral part of most web browsers (clients)
and web servers. If both web client and server support SSL/TLS, they can
perform the "SSL-Handshake" to establish a "secure channel". The secure
data transmission is then handled autonomously between client and server.

The high availability of SSL/TLS in common browsers has been achieved
by the open specification of SSL/TLS and a large number of open-source
implementations. The OpenSSL Project9 is a collaborative effort to develop
a robust, commercial-grade, full-featured, and open-source toolkit imple-
menting the SSL/TLS protocols as well as a general purpose cryptography
library. The project is managed by a worldwide community of volunteers
that are developing the OpenSSL toolkit and its documentation. OpenSSL
is used in this project for the implementation of the rights expression wrap-
per, respectively unwrapper, e.g. the wrapper uses a hash function and
asymmetric encryption to create digital signatures of rights expressions. The
unwrapper uses the same functions to verify digital signatures. OpenSSL
has been chosen because it is freely available and widely-used, and because
ActiWeb uses OpenSSL to establish secure HTTP connections.

6.2 The Rights Expression Generator

The generator is a part of the rights expression encoder (see rights expression
communication model in Section 5.1.2). It transforms the original rights
information that has been provided by ORM system component or a human
actor (e.g. a contract party) into a rights expression (see Section 5.1.2).
This rights expression is formulated in a rights expression language (see
Chapter 3). Therefore, the rights expression generator has to adopt the
syntax and semantics of a REL. The generator developed within this thesis,

9See: http://www.openssl.org/

165

with the kind assistance of Margit De Toma, is capable of transforming
rights information into instances of the open digital rights language (ODRL)
version 1.1 (see Section 3.4).

6.2.1 Functional Description

The rights expression generator is a web-based tool that provides among
other things a graphical user interface to formulate rights expressions (e.g.
offers, licenses, or contracts). The beneficiaries of this tool are e.g. con-
tracting parties that desire to state terms and conditions in the form of an
electronic contract. The web-based rights expression generator guides the
contracting parties through the process of contract creation. The process
starts with supporting rights holders to select a resource that is owned and/
or controlled by them. For this respective resource an offer can be created.
This offer usually comprises usage or access permissions and their terms and
conditions for the specific resource. Figure 6.5 shows the generator GUI that
offers the user the set of ODRL tags (e.g. offer, agreement, asset, permission,
etc.) that may be attached to the ODRL root element rights {displayed
with the term Rights expression in Figure 6.5 on the left). Each attached
ODRL element may have further sub elements. Each ODRL element se-
lected by the user is then added to an XML document. The document with
its tree structure is presented on the left hand side of the tool. Depending
on the element type that has been chosen in the tree, the top menu changes
and offers all sub elements that may be attached to that particular element
(according to ODRL version 1.1). Some elements, e.g. name, id, etc. of
the context element, require extra input of actual values, such as strings or
integers.

The data that is provided by the user of the generator tool is build into
a rights expression which is compliant to ODRL version 1.1. When the
option Show xmlfile is clicked the ODRL instance is displayed in a separate
window (see Figure 6.6). The storage location of the XML contracts can be
customised according to requirements of the actual application. Clicking on
Store Rights Expression in the database activates the storage of the rights
expression in the underlying MySQL data base in a format that resembles
the ODRL document structure. The storage in the data base facilitates
the reconstruction of the rights expression at any time. A reconstruction
is required if, e.g. if the generator tool shall support contract negotiation
(see Section 4.2) and the contracting parties desire to modify an offer until
an agreement has been found. Each user is able reaccess and delete his/her

166

Figure 6.5: Choice of ODRL tags

....
""' - ·

created rights expressions, i.e. if a content provider has created offers to
his/her resources, s/he is able to modify or delete those offers.

(qSl
~ONTRACT JNAlllEIJ

{.ERVER

<?xml version•" l ,O'' enoodmQ-"UTF-8'' ?>
- <o-ex:rights xm!ns :o-ex•"http:/ /adrl.net/1.1/00RL-EX" xmlns:o-

dd•"http://odrl.net/ 1.1/00RL · DO"
xmlns: orn:i.:•"h ltp: / /www.editeur.org/ unix/Referem:l'Ni'lfnf:'s"
xmlns:marc•"http: / /www.loc.oov/marc/"
xmlns:eb••"http:/ / w1•w.ebxwg.org/eboak/vocab/">

- <o-e;,,;:agreement>
- <o-ex:asset o-ek:r;ype•"item·· o-

ex: id•" oss et10708l S287Guth 1 ">
- <o-ex:rontext o-e>1 :id•"context1070815287Guthl ">

,o-dd :uid>lsbn: 072-234 S · 901</o-dd: uid>
<o-dd:name>XML.:A Managers Gulde</o--dd:name>

</o-.e><:oontext>
</o-e)(:asset>

- <:a-ex:permission>
<o-dd:print />

- <O-dd:displap,
- <o-e>-::ronstrainb

- <O-ddJndividual>
- <o-e:is:context o-

ex:id•''context1070815316Guth1 ">
<o-dd:uid:>sguth</o--dd:uid>

</0-9'1(.:COntexb
</o-dd:individual:>

</o..e"x:constralnb
</o-dd:display>

<:./o-ex:perm1s5ion>
</o--€x:agreement>

</o-e'!:i:riahts>

Figure 6.6: Display and store generated ODRL rights expression

167

The rights expression generator is a very flexible tool in terms of adding
new rights expression elements and adapting the graphical user interface.
Besides storing rights expressions, the underlying relational database is
also used to customise the generator. A large number of properties can
be set upon running the tool. To provide application or domain-specific
vocabulary for electronic contracts the ODRL data dictionary (see Section
3.4.1) can be extended by additional permission-, constraint-, requirement-
' condition- or context elements, i.e. XML tags and attributes. The gen-
erator implementation supports the extension by simply adding the new
vocabulary into the respective data base table. The help texts to all ODRL
elements can also be modified via the data base. Apart from handing an
extended ODRL data dictionary the generator supports the integration of
already existing namespaces (e.g. Dublin Core [DubOl] or LOM [IEE02]).

r lndi't'ldual

rgroup

--·
Figure 6.7: Choosing constraints via the customised generator GUI

ODRL is a very flexible language. On the one hand, this means that
rights expression composers can be very free and inventive when they for-
mulate rights expressions. On the other hand, the semantics of large and
multiply nested rights expressions is difficult to interpret. Therefore, the
generator allows to restrict the number and type of subelements which can
be customised via the underlying data base. Finally, the generator pro-
vides an interface to resource and user management, and thus can be easily
integrated into an existing platform.

168

6.2.2 Class Hierarchy

The rights expression generator reuses ActiWeb (see Section 6.1.2), a library
of components for Internet applications written in XOTcl. Among oth-
ers, the component xoComm of ActiWeb comprises the classes Httpd and
Place: : HttpdWrk which provide HTTP server functionality. For the rights
expression generator the two subclasses ODRLHttpd and ODRLHttpd: :Wrk
have been developed. They implement an extended HTTP server with
the functionality of the rights expression generator (see Figure 6.8). The
ODRLSQLWorker handles all data base transaction. In case a different data
base or storage mechanism shall be used, only this class and its methods
have to be adapted. The distinction between the generator application and
the data base access is a design decision that shall provide independence
from a specific data base product or mechanism.

1 -uses RLSQLWorker

ODRW- 1 -uses My$0L

-uses
-uses

Figure 6.8: Reused software packages in the rights expression generator

The classes ODRLUser and ODRLHttp: :Wrk receive all data base func-
tionalities of the ODRLSQLWorker class via per-class mi:cin10 . The class
ODRLUser is additionally used by the ODRLHttpd: : Wrk class. The class
ODRLUser is an abstraction of the user management. Thus, the generator
is able to show a personalised interface to each user. This is required, for
example, to show rights holders their resources for offer creation or to show
the users their history of created rights expressions, and finally to actually
allow the user to work with the generator.

The classes in Figure 6.9 represent all ODRL tags that are supported by
the generator. Each tag class receives common functions from the classes
ODRLStack, ODRLSafety, and ODRLTag. The ODRLStack and ODRLStack

10The per-class mixin is an object-oriented concept provided by XOTcl that enables
dynamically adding methods and instance variables of a second class to a first class at
runtime. Here, the class ODRLUaer dynamically receives all functionalities of the class
ODRLSQLWorker. To read more about per-class and per-object mixins, please refer to
[NZ99a, NZ99b)

169

ODRI..Safaty ODRLStack

LRlghtaHokler ODRLASNI RLRevoke

ODRI.Pllrty ODRLO!lw

DRLRequlniment DRI.Permlulon

Figure 6.9: Class hierarchy of ODRL specific elements

classes provide the methods push() and pop() for the handling of objects
in a stack. The class ODRLTag is mainly responsible for building the resulting
XML document, i.e. the ODRL instance. It provides the functionality to
create new elements according to the ODRL specification, as well as to
delete elements from the XML structure. Each subclass of ODRLTag, such
as ODRLPermission, ODRLParty, etc., has tag-specific methods and instance
variables for e.g. the creation or HTML representation of that specific tag
type.

6.3 The Rights Expression Interpreter

This section presents the implementation of a rights expression interpreter
component. The rights expression interpreter has been developed for this
doctoral thesis and is called xoREL (from: rights expression language inter-
preter component coded in XOTcl). This thesis has drawn special attention
to the development of the rights expression interpreter. This component
provides the interpretation of rights expressions, which is part of the decocl-
ing stage in the rights expression communication model (see Section 5.1.2).
xoREL implements the concept of the application-specific contract schema
(see Section 4.6). The interface to the contract schema is provided by the
CoSa API (see Sections 4.6 and 10.1) that has been fully implemented by
xoREL. The CoSa API ensures an easy access to rights expressions and its
processing in software services.

170

6.3.1 Functional Description

xoREL interprets REL instances for further processing. In other words,
rights expressions are transformed into the application-specific contract
schema (CoSa) developed in Section 4.5 which supports the usage scenarios
access control and accounting. I chose the usage scenario access control,
because in DRM systems rights expressions are processed mainly in access
control services, as exemplified in Section 2.3.3. There, rights expressions
(licenses) are delivered together with the content to the customer who de-
sires to access the content. A secure viewer is able to interpret the license
and interact with the access control mechanism and regulates access to the
content. The case study presented in Chapter 7 shows such processing of
rights expressions in an access control mechanism.

Abstraction Conttact Schema (CoSa)

Document Access Document Object Model (DOM) other

ODRL XrML dpaML other

Syntax Representation eXtensible Markup Language

Figure 6.10: Functional layers of XML-based rights expressions

The generic contract schema introduced in Section 4.6 is an abstract,
implementation-independent technology. In Figure 6.10 the generic con-
tract schema is related to current technology (respectively standards) for
expressing and processing rights. Very often XML is used for the syn-
tax representation of rights expressions (see Section 3.2) and therefore the
XML standard builds the basis of the hierarchy. Alternatively, other frame-
works for syntax representation can be used. For the definition of cer-
tain XML document types either a DTD [BPSMM00] or an XML schema
[TBMM0l, BM0l] can be used. ODRL, XrML respectively MPEG 21 REL
are defined in XML schema documents. Other present or future formats
for rights expressions can be used instead of the named RELs and are thus
not excluded from the CoSa concept. In our implementation the document
object model (DOM) (see Section 6.1.3) for the document access. How-
ever, other technologies can be used as well, e.g. XPath [CD99]. The CoSa
provides an abstraction layer for various representations, document types,
and access technologies for rights expressions. Each representation of rights

171

expressions can be mapped to CoSa if the respective interpreter is available.
CoSa enables a consistent processing of rights information. The mapping
from various formats to one generic representation provides a "contract
interface" that supports openness and interoperability. Applications that
process rights expressions are independent of the underlying rights expres-
sion representation.

A correct transformation of rights expressions requires the syntax and
semantics adoption of the respective rights expression language and the
contract schema that the REL instances shall be mapped to. For each
rights expression language and each application-specific contract schema
the according implementation work has to be provided. Details on the im-
plementation concept can be found later in this section. The specifications
and requirements of rights expression languages can have peculiarities that
have to be considered, for example, which mandatory elements exist in the
respective language or what the semantics of a certain element constella-
tion are. ODRL, for example, provides multiple ways to express one single
rights expression. Therefore, an interpreter of this language has to consider
these facts during the interpretation. Rights expression languages should
avoid ambiguity and inconsistency in REL instances. Since there are no
formal semantics for existing rights expression languages, there is definitely
no completely consistent and unambiguous REL today. When implement-
ing xoREL, several interpretation details that have not been clearly stated
in the REL specification had to be discussed with the REL specification
authors.

Figure 6.11: The interpretation process

Figure 6.11 depicts the interpretation process of XML-based rights ex-
pressions. First, an XML document interpreter (XML parser) is required

172

that reads out the elements of an XML document. For the XML parser it
is not relevant that the document semantically represents a contract and
simply identifies all XML elements. To build a DOM-tree the XML parser
at least needs to implement DOM level 1 (see Section 6.1.3}. The contract
interpretation is layered on top of the resulting DOM tree. In this step
the raw XML document elements are assigned to contract semantics. The
contract interpreter maps the elements from the XML document according
to the language specifications to the contract schema. This logic has to
be programmed for each rights expression language and for the respective
contract schema. The respective contract schema {here, application-specific
CoSa) then represents all contract information as objects in a flat contract
tree, i.e. a tree that has one root object and all other contract objects nested
below. The root object is the Contract object that "aggregates" all other
contract objects, such as Party, Resource, Permission, Constraint, Duty,
and Role on the next lower level. The contract schema can now be queried
{by the CoSa API) and further processed in software services. The CoSa
API is independent of the contract schema, i.e. in case objects are added
or deleted from the contract schema, the same API is used to query the
contract information. In Section 7 the processing of contract information
in various applications is exemplified.

6.3.2 xoREL Packages and Classes

xoREL is an implementation of the rights expression interpreter component
which supports the interpretation of ODRL instances. ODRL has been cho-
sen for this implementation because ODRL is an open source, freely avail-
able product and that has no licensing requirements. Furthermore, ODRL
has a straight forward simple approach to the expression of rights and is an
accepted REL in the research community.

The xoREL implementation consists of two XOTcl software packages:
the reinterpreter package and the contract package. The contract
package (see Figure 6.12} comprises all CoSa object types. Instances of
these object types store the information of the interpreted rights expres-
sions. All object types inherit instance attributes and methods from the
abstract class CoSaObject. The methods stdMsg(..) and print (..) fa-
cilitate a logging functionality respectively the printing of an object with
its name, attributes and attribute values. The attribute relations stores
all relations of the respective object in a list of (type cosaObject)-pairs {see
Section 4.6). Table 6.1 shows the possible relations of all CoSa objects.

173

contract:: CoSaOllject

-relations

••dMlg(aua c:ommenta)
+pkll(aua slap)

Q.

I I I
conlract: CoSaDuty l,ontract: ~ contract:: CoSal'enn- na .. 1-n--0bject value --- aaribute I

"'°"ract: CoSaContnlct cortract:: CoSaParty contract: eosa-- contract: Co8aCoMllaln1
uid -UID -Identifier na ..

-comment -FN -Tele -"" -digital-bcalion -ROI.E -°""""ion -value ---- -NOTE -Dale --• fconciuaion-<late -BDAY -Relation -type

-ntfe1911C8 -URL
-VERSION

Figure 6.12: Classes of the package contract

These relations have been derived from the application-specific contract
schema (respectively the data model developed in Section 4.5.2).

A CoSa contract at runtime comprises various related instances from
subclasses of CoSaObject, such as CoSaContract, CoSaParty,
CoSaResource, CoSaPermission, CoSaDuty, CoSaConstraint and CoSaRole.
Each of these classes provides definitions for its individual attributes. The
attributes of the classes CoSaResource and CoSaParty are determined by
the standards Doublin Core [Dub0l] respectively vCard [HF98] {this is the
reason for the different spelling of the attributes). The mapping of ODRL
elements to these attributes is shown in Section 6.3.3.

The package relnterpreter defines the CoSa API interface in the class
RELContract. Every subclass of RELContract, e.g. ODRLContract or
XrMLContract (see Figure 6.13), has to implement the abstract methods of
the CoSa APL Please find more information on the CoSa API in Section
4.6, and a detailed description of all methods in Appendix B (Chapter 10.1).

174

From To Relation Role (from) Role (to)
Party Resource contr. permission controLperm controlled_by
Party Permission is assigned to has_perm granted_to
Party Permission grants grants granted_by
Party Duty is assigned to has_duty duty_of
Party Role is assigned to has..role role_of

Permission Resource refers to refers_to reLperm
Permission Role is assigned to perm_of oLperm
Permission Constraint constraints has_constr constr_of

Role Constraint constraints constr_by reLconstr
Duty Constraint constraints with_constr oLduty

Contract Resource comprises agg_child agg_parent
Contract Party comprises agg_child agg_parent
Contract Permission comprises agg_child agg_parent
Contract Duty comprises agg_child agg_parent
Contract Role comprises agg_child agg_parent

Contract Constraint comprises agg_child agg_parent

Table 6.1: Possible role names in application-specific CoSa

In this thesis the 0DRLContract class has been implemented that pro-
vides an ODRL interpreter conforming to the ODRL version 1.1 [Ian02b]
and that implements the CoSa APL An instance of 0DRLContract, e.g. op
can receive extra functionality via per-object mixins. Here the instance
op receives the functionality of the classes vCard, DublinCore, and ACCoSa
that are also part of the relnterpreter package. The mixin of the two
classes vCard and DublinCore determines the mapping of ODRL elements
to vCard respectively DublinCore attributes in all CoSaParty respectively
CoSaResource instances. This means that the instance variables of CoSa
objects can be assigned dynamically and also other metadata standards e.g.
LOM could be used instead. XOTcl allows this dynamic assignment. There-
fore, the instance variables of the classes CoSaParty and CoSaResource
(shown in Figure 6.12) can change their names upon mixins. Furthermore,
the mixin of the class ASCoSa determines the application-specific contract
schema that the contract data shall be mapped to. In this implementation
the application-specific CoSa (respectively the class ASCoSa) handles the
usage scenarios accounting and access control. For a different application-
specific contract schema another class such as the ASCoSa has to be imple-
mented.

rootNode
invoker
init(aus rellnstanoel

relnterpretar:: RELConlnlc:t

tObjects(aus object-type : CoSaObjectl
tAelalions(aus coaaObject : CoSaObject, aus relation : xotcl = -1
AelatedObjecta(aus cosaObject: CoSaObject, aus relation: xotcl = "", aus object-type: xotcl = ··1
AeladonTypes(aus cosaClbjecl : CoSaObjectl

tAelObjectTypes(aus cosaObject : CoSaObject, aus relation : xotcl ~ -1
ha&Aelation(aus cosaObject: CoSaObject, aus relation: xotcll

tAIIAttributes{aus cosaObject : CoSaObject, aus relation : xotcll
tAttributeValue(aus cosaObject : CoSaObject, aus attribute : xotcll

selactObjects(aus Hat : CoSaObject, aus attribute : xotcl, aus value : xotcl = "")
!Contracts{)
tAssels(aus contract : CoSaContractl

aus cosaObject : CoSaObjactl
onsumars(aus contract : CoSaContractl

tAights(aus consumer : CoSaPartyl
tUn~ID(aua coaaObject : CoSaClbjecll

udes{aus party : CoSaPartyl
!Constrain aus nniSllion : CoSaPennission

IDOII relnterprater:: MPEGConlnlc:t

relnterpretar:: ODRLContract
contract

res
01trctPenna
assetlds
+init(aus od1lnstance)
+rer,sterContracl(aus od1_contract)
+ .. ()

+init{aus XrMLlnstancel

uses

par-object mixin per-object mixin par-d>ject mixin

Figure 6.13: Classes of the package reinterpreter

175

To interpret ODRL documents, xoREL uses tDOM [LA03]. The class
ODRLContract assumes that the rights expression to be interpreted is valid,
i.e. has successfully been unwrapped. An interpreter of another REL (e.g.
XrML respectively MPEG 21) can be added by writing a subclass of
RELContract that maps the respective REL instances to the contract schema.

176

6.3.3 Mapping ODRL Elements to the Contract Schema

In this section a detailed description of the mapping from the ODRL schema
to the contract schema is given. It also names the ODRL tags that are
currently not mapped onto the contract schema. xoREL currently handles
the below listed elements of the ODRL foundation model (see Appendix
A, Chapter 9). In the following, the ODRL elements are commented with
respect to their mapping onto the interpreter's contract schema:

• Context. The ODRL context element provides a large amount of con-
tract data. The context element describes ODRL parties, ODRL asset,
ODRL agreements, and ODRL offers in more detail. Depending on
which entity the contract element is assigned to, the context informa-
tion is handled differently. The context element is not represented by
an individual CoSa object, but rather fills the instance variables of a
large number of other CoSa objects. Please refer to Asset, Party, and
Agreement/Offer for the exact mapping.

• Asset. The context information of assets is mapped to the Dublin
Core (DubOl] vocabulary which then denotes the instance variables
of CoSaResource objects. For details, please confer to Table 6.2.
The comments in the table describe the Dublin Core semantics of the
respective element, and names possible values.

• Party. The context information of assets with the exception of role is
mapped to vCard[HF98] vocabulary which then denotes the instance
variables of CoSaParty objects. For role a CoSaRole object is cre-
ated; the value of role is written into the instance variable name of
this object and the CoSaRole object is related (via relations) to the
respective party. For details, please confer to Table 6.3. The com-
ments in this table describe the vCard semantics of the respective
element, and name possible values.

• Rights. The rights entity is not represented as a distinguished object.
The rights information can be found in CoSaPermission objects.

• Agreement/Offer. The context information of agreements, and offers
is mapped onto language-neutral vocabulary which form the instance
variables of CoSaContract objects. For details, please confer to Ta-
ble 6.4. The comments in this table describe the semantics of the
respective element, and name possible values.

177

• Permission. The ODRL term 'permission' is mapped to the 'opera-
tion' instance variable of CoSaPermission objects. A permission in
CoSa comprises the two instance variables operation and object. A
permission is always an (aperation - object} pair. The ODRL per-
mission term is mapped onto language-neutral vocabulary. Unfortu-
nately, no standard exists for the contract description.

• Rights Holder. The rights holder element is mapped to the instance
variable ROLE (contract role) of CoSaParty objects. It determines
the role of the ODRL party in the current ODRL instance (consumer
or rights holder). Note that ODRL does not provide the possibility to
nominate a beneficiary who is neither consumer nor rights holder.

• Constraint/Condition. ODRL distinguishes between constraints and
conditions. Conditions are the opposite of constraints. Conditions
specify exceptions that, if they become true, expire the Permissions
(see also 3.4.1). These constructs, however, are not supported by other
rights expression languages, e.g. XrML [Con00]. Therefore, in CoSa,
ODRL constraints and ODRL conditions are mapped onto instances of
the generic CoSaConstraint class that keeps the information about
whether it was an ODRL condition or constraint. The constraint
type has the instance variables name, operator, value, attribute and
type that facilitate to store both conditions and constraints. An ex-
ample object would comprise the following values: name = datetime,
operator = ">", value = "2004-12-31T00:00:00", and type = con-
straint (empty attribute). ODRL does not explicitly provide opera-
tors. Therefore, an expression such as the following has to be matched
to the generalised attributes shown above by the interpreter.

<datetime>
<end>2004-12-31TOO:OO:OO</end>

</datetime>

• Requirement. ODRL requirements are mapped to CoSaDuty objects.
The CoSaDuty class has the instance variables name, value and at-
tribute that facilitate the storage of one duty, such as name = prepay,
value = 200.0, attribute = €. Note that in the application-specific
CoSa, duties can be related to constraints, such as "payment until
31.12.2004", but the ODRL language has not designated conditions
for duties.

178

ODRL CoSaResource Comment
uid Identifier Formal identification systems in-

elude but are not limited to the
URI, URL, DOI, and ISBN.

name Title A name given to the resource.
remark Description An account of the content of the

resource, such as an abstract, table
of contents, etc.

date Date A date of an event in the life cy-
cle of the resource, such as creation
date.

reference Relation A reference to a related resource
(e.g. a string of a formal identifica-
tion system.)

Table 6.2: Mapping of ODRL asset context to CoSaResource objects

The occurrences in the document, i.e. the interrelations between the
ODRL entities is represented by the relation-€ntries in the relations at-
tribute of the CoSa objects. The ODRL sequencing and ODRL inheritance
functionalities are not provided in the current implementation. Whereas
ODRL inheritance does not supply additional expressiveness, the ODRL
sequencing mechanism can be useful and will be addressed in future ver-
sions of xoREL.

In the current implementation, all context elements that are not men-
tioned in the mappings are stored with the ODRL term as instance variables
of the respective CoSa object. The CoSa API allows to query these variables
and their values, but their semantics is not defined. This makes clear that a
rights language would improve its semantics by reusing existing description
standards for their entities, such as Dublin Core, vCard, etc., instead of
defining own context elements. In ODRL the context elements have differ-
ent and unclear meanings, depending on which entities they are assigned
to. The two ODRL elements Digital Signature and Encryption Digest/Key
are not yet mapped to CoSa objects. However, the interpreter "finds" the
elements. To interpret and process them, only the respective code exten-
sions and interfaces have to be provided.

179

ODRL CoSaParty Comment
uid um A value that represents a globally

(or in the closed domain) unique
identifier corresponding to the in-
dividual, such as x509 certification
serial number.

name FN A formatted text corresponding to
the name of the object the CoSa
object represents, such as Steffi
Graf.

remark NOTE To specify supplemental textual
information or a comment that is
associated with the CoSa object.

role ROLE To specify the contract role of
the individual, consumer or rights
holder.

date BDAY Specifies the birthdate of a
party.Please note that the date in
an ODRL context element is not
necessarily describing the birthday
of that party.

dLocation URL To specify a uniform resource loca-
tor associated with the individual.

version VERSION To specify the version of the vCard
specification used to format this
CoSaParty object.

Table 6.3: Mapping of ODRL party context to CoSaParty objects

6.4 The Rights Expression Wrapper and Un-
wrapper

Rights expressions have to be exchanged securely between partners. De-
pending on the practical applications various security services have to be
applied to the rights expression, such as integrity, authentication, or digital
signature verification. These services are provided by the rights expression
wrapper and unwrapper. The rights expression unwrapper is the comple-
mentary component to the rights expression wrapper. It unwraps the rights
expression does the extrinsic checking of the digital contract, such as check-

180

ODRL CoSaContract Comment
uid uid A value that represents a globally

(or in the closed domain) unique
identifier corresponding to the con-
tract.

remark comment A supplemental textual informa-
tion or a comment that is associ-
ated with the contract.

date conclusion-date Please note that the date in a con-
text element is not necessarily de-
scribing the birthday of that party.

dLocation digital-location The digital location where the con-
tract can be found, e.g. an URI,
URL, etc.

pLocation conclusion-location The physical location the digital
contract was concluded, e.g. name
of the city.

reference reference A link to additional information
about the contract, such as legal
information.

Table 6.4: Mapping of ODRL agreement/offer context to CoSaContract
objects

ing the contract integrity or the authentication of the rights expression
sender or verifying the digital signature of the rights expression (see Section
5.2).

6.4.1 Functional Description

In the current implementation the wrapper facilitates to digitally sign a
rights expression and the unwrapper facilitates to verify the digital signa-
ture of the wrapper. The wrapper and unwrapper reuse the open source
openssl implementation of the OpenSSL Project 11 that provides the cryp-
tographic functions required for the digital signature.

nsee: http://www.operu,sl.org/

181

6.4.2 Class Hierarchy and API

The two components, rights expression wrapper and rights expression un-
wrapper, are implemented as XOTcl software packages reWrapper and
reUnvrapper (see Figure 6.14). In the actual implementation the wrapper
simply includes the class Wrapper which provides among others the meth-
ods ini t (..) and vrap (..) . When creating a new Wrapper instance, the
method init(..) is called with one parameter. The parameter is the rights
expression that shall be wrapped. Calling the method vrap(..) invokes a
number of other methods that are necessary for wrapping the rights expres-
sion. In the current implementation, first a hash is created from the rights
expression, then the hash is signed and subsequently rights expression and
signature are packed in an archive. The actions can also be performed inde-
pendently of each other by calling the method names hash (..) , sign (..)
and pack (..) that are also defined in the class Wrapper.

The unwrapper in return, performs all actions that are necessary to
unwrap the packaged rights expression. The only class Unwrapper in this
package, includes among others the methods ini t (..) and unwrap (..) .
When creating a new U nwrapper instance, the method ini t (. .) is called
with one parameter. The parameter is the archive that shall be unwrapped.
Calling the method unwrap (..) invokes the unpacking of the rights expres-
sion and license from the archive, verifies the signature of the hash (i.e. is
the rights expression signed by a trusted party, here the wrapper), crates a
second hash from the rights expression, and finally compares the unpacked
hash with the newly created one. Again, all methods that perform the
various checks can also be called independently of each other by the names
unpack(..), verifySignature(..), hash(..), checkintegrity(..). For
a full description of this short wrapper interface, please refer to Appen-
dix B.(Section 10.3). The third package Utils does the binding to the
OpenSSL implementation and provides the wrappers with utilities that use
OpenSSL. As both wrapper components need to access these utilities, they
are arranged within a separate package.

The wrapper and unwrapper interface can be extended by adding meth-
ods of the Wrapper respectively Unwrapper classes. The methods in these
classes depend on the application fields of the rights expression exchange
framework. An actual framework implementation needs to support all func-
tionalities to check the contract (respectively rights expression) validity (see
Section 4.8). Accordingly, potential additional interface methods of the

182

n
openSSL utils:: SSLObject

+makaHash(aus In, aus out, aus file) . +slgnHash(aus In, aus out, aus kay, aus pwd, aus file) -isUsed
+wrttaOpenSSL(aus ssl, aus ou~ aus file)

~ +readOpenSSL(aus ssl, aus file) -
-I Used +gatPassPromt(aus file)

+getPromt(aus prompt, aus file)
+gatRaqPromt(aus file)
+verllySlgnature(aus slg, aus cert)

-uses ..,,.,nR..,. t{aus bin, aus reaflle, aus usrflle, aus cha) -uses

reUnwrapper:: Unwrapper reWrapper:: Wrapper

+lnlt(au1 archive) +lnlt(aus re)
+unwrap(aus cert) : boolean +wrap(aus key) : boolean
+ul"f)aCI<() : Contract +hash(aus re) : Hash
+verlfySlgnature(aus cert) : boolean +slgn(aus re, aus key, aus out) : Sig
+hash(aus re) : Hash +pack(aus re, aus hash, aus signature): Archive
+checklntagrity(aus re, aus slgnedHash) : boolean

Figure 6.14: Packages with wrapping respectively unwrapping functionality

wrapper are encrypt (..) , checkRELofEnoding(..) ,
checkResourceAvailabili ty (..) , etc.

6.5 The Mediator

As described in Section 5.2.1 the mediator is the "glue code" between the
framework components (or packages) and reused software, such as access
control mechanisms. For example, if a platform shall be prepared to un-
wrap contracts, interpret them, and implement their content to an access
control mechanism, the mediator has to combine the functionality of the
unwrapper, the interpreter, and the access control mechanism. Techni-
cally, here the mediator is an XOTcl class that imports other packages (via
package require) respectively classes, such as the Unwrapper class of the
reUnwrapper package, the ODRLContract class of the re Interpreter pack-
age, and the RightsManager class of the xoRBAC12 package (see Figure
6.15). The Mediator class initiates instances of all three services and uses
their API to unwrap the received contract (respectively rights expression),
to interpret it, and to transform the contract information into access control
information. Therefore, the execution of the Mediator class also determines

12xoRBAC is a role-based access control (RBAC) mechanism. It is introduced in
detail in Section 7 .1.

183

the work.flow of the usage scenario. The XOTcl code of such mediator is
shown in Section 7.2.4. A second mediator is necessary is a platform re-
quires to formulate and digitally sign rights expressions. In that case the
mediator has to intercede e.g. between the generator, the web server, a con-
tract database and the rights expression wrapper.

-tou=nw=-=~=r.::IIEX::COlllncl:::j~--u-_lJW_.£...C::~~~~
1 ,rn : RighlSMan-

han<loR-IQ

KOAIIAC :: RIG--

-US..OC

Figure 6.15: The mediator, using framework components and other packages

Each usage scenario requires an individual implementation of the media-
tor, i.e. the mediator implementation is application-specific. The generator
implemented in this work, for example, does not provide an API because it
is a web application. Still the wrapper functionality has to be integrated.
In this case the web application is extended by another ODRLHttpd: : Wrk
method (see class diagram in Figure 6.8) which handles the wrapping (sign-
ing) of licenses (see Chapter 7). This method represents the mediator.
Consequently, the framework implementation can not provide a generic me-
diator implementation, as the integration of components is individual. Still,
the framework includes a mediator template as well as mediator sample im-
plementations.

6.6 Implementation Assumptions

The implementation of the rights expression exchange framework assumes,
that the software that uses the framework components absorbs the respon-
sibility for ids. This includes mapping resource ids and user ids to the
respective objects and checking resource ids and user ids in terms of correct
spelling, etc. For example, the generator requires user and resource ids to
filter all offers and authorizations of a certain user respectively show to a
content provider his/her resources. Furthermore, the implementation im-
plies, that a public key infrastructure, and a reliable certificate handling is
given. This includes, that e.g. the wrapper signs the rights expressions with

184

a key, that is accepted by the partner DRM platforms. If the users do not
have certificates from accepted certification authorities, a certification au-
thority has to be installed and operated (e.g. to issue consumer certificates).
The implementation does not require a central server. Each computer that
runs the rights expression exchange framework is a technically equal peer
in a network of (cooperating DRM) systems.

When evaluating access requests, the implementation currently is able
to handle time constraints and constraints that refer to the IP address of a
network computer, i.e. the implementation facilitate to check environment
attributes. The checking of context constraints in our application is handled
by the access control mechanism xoRBAC that provides sensors to receive
the current time and IP address (see Section 7.1). To check constraints that
require information such as, "How often user X has used resource Y?", the
framework needs to be integrated into a DRM system. For the integration
either a mediator has to be implemented that queries the DRM database or
the access control mechanism is extended with sensors for the DRM data-
base.

The implementation facilitates rights expression exchange in the usage
scenarios access control and accounting, and assumes that the rights expres-
sions are formulated in ODRL [Ian02b]. If other usage scenarios or other
rights expression languages shall be supported, the code has to be extended.
Whereas the extensions for a different application-specific CoSa or for the
adoption of a different metadata standards are not very complex, the imple-
mentation of an interpreter for a different rights expression language (e.g.
MPEG REL) is fairly costly. For a technical check list please also refer to
Section 5.2.2.

6. 7 Related Work

This chapter introduces other implementations of rights expression inter-
preters and contract management systems. The closest related work is the
rights expression interpreter XrML SDK of today's second important rights
expression language XrML.

185

XrML SDK

The eXtensible rights markup language (XrML) [Con00] is a rights expres-
sion language developed by ContentGuard 13. XrML Version 2.0 was se-
lected by the moving picture experts group (MPEG) as the basis for devel-
opment of the MPEG 21 Part 514 standard. ContentGuard has released a
XrML Software Development Kit (SDK) that includes an example license
interpreter and an example condition validator.

• The license interpreter basically provides a single method: validate-
Goal{ PrincipalList, RightsList, ResourceList). This method fetches
all conditions from an XrML document that are linked to the triple
(principal, resource, right}. For example, if the respective XrML li-
cense contains the triple (Mary, hit.mp3, play} the method fetches all
conditions associated with this triple (e.g. a restriction to play the
music file for five times only). All conditions extracted via the vali-
dateGoal method are further processed by the condition validator.

• The condition validator checks if the corresponding conditions are
met, in the example mentioned above, it decides whether Mary may
play the hit.mp3 or not. For the time being, the XrML condition
validator is capable of checking two constraints: time interval and
exercise limit.

The XrML license interpreter and the condition validator are closely
coupled and are not designed to operate separately. The interpreter does not
provide additional functions to make contract information available to other
applications, such as access control services. Thus, the current version of
the XrML SDK is a proof-of-concept implementation that is focused on one
particular application of the rights expression language XrML. In contrast
to XrML SDK, in this thesis a general approach for the interpretation of
rights expression languages has been developed. The CoSa can be applied
to extend arbitrary applications (providing C or Tel linkage) with contract
processing abilities. Thus, the CoSa itself is independent of certain rights
expression languages and from the applications that use/process contract
data.

13See: http://www.contentguard.com/
14The ISO /IEC working group in charge of the development of standards for coded

representation of digital audio and video, http://www.chiariglione.org/mpeg/)

186

ODRL Implementation

Renato Iannella, the founder of the ODRL initiative, implemented at IPR
Systems15 an application-specific ODRL generator and ODRL interpreter
for the Colis 16 project [Ian03c). Not all elements, but a smaller profile
of ODRL [Ian02a) is supported by the implementation that allows users to
enter offers respectively allows the consumers to select content and gener-
ate agreements [Ian03a). According to the contract, an ODRL license and
the content are packaged together and downloaded by the user. In the
COLIS project, when the content is accessed by a user, a component (in-
cluding interpreter and access control mechanism) checks if a certain role is
assigned to this user before allowing access. Consequently, the Colis imple-
mentation is able to handle group constraints. Unlike as in this thesis, the
documentation of the implementation does provide a generic approach for
the processing of rights expressions. Furthermore, in this thesis all ODRL
elements are supported for the generation of rights expressions.

Others

Park and Sandhu propose a high-level model for the definition of usage con-
trol policies [PS02b). Usage control (UCON) works on the principle that
digital objects are encapsulated in a secure "digital container". Informa-
tion within such a digital container can only be accessed through specific
(tamper-resistant) soft- and/or hardware devices by feeding in a set of ac-
cess rights approved by the originator of the corresponding container. The
set of access rights can be regarded as a license or a contract between the
originator and the recipient/consumer. However, their model is, defined on
a high level of abstraction and must be refined before it can serve as a basis
for the definition of actual UCON policies. In [PS02a), Park and Sandhu
describe an approach to combine usage control and originator control. Orig-
inator control has already been mentioned in [Lan81]. It is a concept which
requires that recipients obtain the originator's approval prior to the re-
dissemination of digital objects. In Park and Sandhu's approach, "licenses"
are digitally signed certificates defining the usage rights for digital objects.
Users can access digital objects only according to their license. Tickets are
used to transfer "re-dissemination" rights for digital objects.

Shand and Bacon [SB02] present a contract framework that includes an
abstract contract protocol for contract exchange and an accounting language

15See: http://www.iprsystems.com/
16See: http://www.colis.mq.edu.au/

187

(based on the Python scripting language) for the specification of account-
ing policies. Contracts define the resources that are exchanged between
contracting parties, e.g. CPU time, network bandwidth, or money. Con-
tracts must be signed by all contract parties to be valid. A peculiarity of
their approach is that trust is treated as a special type of resource which
influences the conclusion of a contract. The trustworthiness of a certain
party is continuously adapted according to her /his contractual fidelity.

Chapter 7

Case Study of the Rights
Expression Exchange
Framework

189

This chapter presents the application of the rights expression exchange
framework that has been designed and implemented in this thesis (see Cha1r
ters 5 and Section 6). Normally, not all four components of the framework
are located on the same machine. Usually, the rights expression generator
and the wrapper are located on the sender's platform and the unwrapper
and interpreter are running on the receiver's platform. However, due to the
component-based approach of the rights expression exchange framework,
there can be scenarios where only the interpreter is used and the other
components are replaced by foreign components.

Generally, the framework is used for the exchange of rights expressions
which state use or access rights of people to digital goods or services. The
exchange of these rights expressions takes place between two or more inter-
operating (trusted) partners. There are various general scenarios in which
rights expressions need to be exchanged, for example:

1. A consumer has concluded a contract with the marketer X of certain
services (communication or multimedia). For example, the contract
allows to use different service providers for sending SMS, faxes, emails,
MMS, ring tones, logos, etc. via the Internet for a certain time, or to
access online platforms to play videos, music files, games, etc. within

190

the next month. Each time the consumer desires to access a service
s/he has to present the contract to the service provider. The service
providers only accept contracts that have been concluded with certain
marketers, e.g. marketer X. The rights expression exchange framework
can provide all functionalities that are necessary for this scenario: for-
mulating the contract and signing it is handled by the generator and
the wrapper that are running on the marketer's system. Each service
provider is runs the unwrapper and interpreter component to ver-
ify the marketer's signature on the contract in order to subsequently
interpret the consumer's access rights. The access to the communica-
tion respectively multimedia services is then either granted or denied,
accordingly to the rights expressions in the contract.

2. User A has certain access rights on platform A or system A (e.g. to the
Intranet of a company). Platform A starts a cooperation with Plat-
form B (e.g. a company merges with a second one). From this follows
that all users of platform A shall receive the same rights on platform
B. For all users electronic tickets (see Section 4.3.1) comprising their
personal access rights are issued and transmitted to platform B. Plat-
form B interprets the rights and implements them in their own access
control mechanism. In this case, it might be necessary to use a expres-
sion generator which is different form that implemented in this thesis,
e.g. one that generates rights expressions automatically. However, the
wrapper, unwrapper, and interpreter from my implementation could
be used for the remaining tasks of the rights expression exchange.

3. A person has a certain role in society or in a community, e.g. that
of a student or a pensioner. An commonly accepted institution (e.g.
a university or national office) certifies these roles to the respective
persons in form of an identification (e.g. a student or pensioner id).
Displaying this id entitles these people to receive certain access or us-
age rights, e.g. going to the library for free, or paying a reduced price
for theater tickets. The role in the (electronic) id and possibly some
constraints (e.g. expiration) are formulated and signed by the rights
expression generator respectively the wrapper running at the certifica-
tion institution. The providers that accept the ids need an unwrapper
and interpreter to verify authenticity of the id and to extract the role
from the id. Subsequently, each provider can grant different access
or usage rights to the id holders. Note that the extrinsic format of
such an id can be an x509 certificate and the rights expression can be
stored in the extension field of the certificate.

191

The above examples display some basic shapes of rights expression ex-
change scenarios. The rights expression exchange framework supports the
drawbacks of today's electronic commerce systems listed in Section 1.1,
e.g. the standardised representation of rights expressions, more precisely of
contracts, the usage of one contract at various platforms, the processing
of rights expressions in various software services, the expression and en-
forcement of new and rich usage variants for electronic goods, etc. Rights
expressions can be processed in various usage scenarios (see Section 4.4.2).
As the particular focus of this work is on the usage scenario access control,
Section 7.1 gives a short introduction to the processing of access requests
by an access control mechanism. The section also addresses the handling
of context constraints for usage rights (e.g. play video five times) that are
frequently used in new pricing models for electronic goods. Section 7.2,
describes the required rights expression exchange components and their in-
teraction in the technical realisation of the usage scenario access control
based on electronic tickets, i.e. the scenario 2 described above.

7 .1 Access Control with Context Constraints

A typical example of a rights expression that occurs in DRM systems is
"Person X may play the video Y five times on his/her own computer (IP
address 137.224.208.84) until the end of this year." To enforce such a rights
expression, the access control mechanism has to be able to handle context
constraints (in the following called constraints). Constraints narrow access
permissions, for example by time, location, individual, etc. (please confer
also to Sections 4.5 and 3.3.1). In the example the permission play the video
Yis constrained by location ("his/her own computer"), time ("until the end
of this year"), and the number of accesses ("five times").

Handling constraints requires the implementation of constraints and
their evaluation at the time of an access request. A constraint is a clause
that contains one or more context conditions. A constraint is satisfied iff all
its context conditions are met [Str03]. A context condition is a predicate
(a boolean function) that consists of an operator and two operands, e.g.
(date,<, 12/31/2004). Only if all conditions of a constraint hold, i.e. the
overall evaluation of conditions returns "true", the respective permission is
granted. Note that the first (or left) operand always represents a certain
context attribute (i.e. a property of the environment, such as date), while
the second operand may be either a context attribute (e.g. end-date) or a

192

constant value (e.g. 12/31/2004). To evaluate the expression in the previous
paragraph the access control mechanism requires the current date, the local
computer, and the number of times the video Y has already been played by
person X. For this purpose, the access control mechanism uses of sensors
that return current values for the context condition attributes. For the work
at hand, two categories of attributes are be distinguished; environmental at-
tributes and attributes administered by a ORM system database(also see
to Section 4. 7):

• DRM System Database. ORM systems observe all activities that are
relevant for the overall rights management in the ORM system data-
base, e.g. how many times a user has accessed a certain resource.
Context conditions that define a certain number of usages are very
common in ORM applications. To evaluate such conditions the sen-
sors that retrieve the relevant information and ORM system databases
have to be available.

• Environmental Attributes. Environmental attributes attributes whose
values are not administered by the ORM system. These attributes
exist independently of ORM systems, rights expressions or contracts.
Examples are time, date, IP address, weather conditions, etc. For
each required environmental attribute an adequate sensor has to be
available to the access control mechanism.

Both categories may include static and dynamic attributes, for example
IP address and date (environmental), respectively the user's birth date and
the number of access to a certain resource (ORM system knowledge). In
section 5.2.1 we have learned that after decoding, the rights expression is
available for processing. This section is focused on processing and enforcing
the rights expressions in an access control service. Note that the following
example is independent of any access control approach. Figure 7.1 depicts
the relevant steps that are performed when processing rights expressions in
the usage scenario access control:

1. Implement Rights Expression. In the first step, the rights expressions
are retrieved from the rights repository and "fed" to the access control
mechanism, i.e. the parties, permissions, and constraints (e.g. person
X; play video Y; five times, until the end of the year, on the computer
with the IP address 137.224.208.84) are mapped to corresponding poli-
cies rules that can be enforced by the access control mechanism. Tech-
nically, the permission "play video Y" and the subject X are created.

Rights Repository

DRMSystern
Database

Access Control Service

Decision ~!:=::t=::;;:
Component

comull -0
Sensors

Access Request

Environment
Attributes

Figure 7.1: Execution of an access request

193

The permission is assigned to person X. The three constraints (date,
IP address, maximum number of accesses) are created and assigned
to the permission "play video Y" of person X. The resulting access
control policy is depicted in Figure 7.2. This transformation is not
performed automatically, but has to be supported by a mediator (see
Section 6.5).

constraint
ldate <= 12/3tn004 l&lmax_accesses = 5 l&I IPaddress =137.224.208.841

L permission party

I play video y I - I person X I
Figure 7.2: Sample access permission with constraints

2. Access Request. Person X now aims at executing a certain permission
(e.g. play video Y) and triggers the respective access request. The
decision component has to evaluate the incoming access request and
either grant or deny it. First, the access control mechanism queries
the implemented policies for the permission play video Y of Person
X. If person X does not hold this permission, the decision component
denies the request. In the above example the permission play video Y
is available, but with related conditions.

194

3. Sensor Consultation. To verify time, location, and count conditions,
the decision component consults external sensors that are capable of
delivering values for the boolean functions (conditions). To ascertain
the current time, and the local IP address the decision component
consults the environment sensors. For the number of times, that the
video Y has already been accessed the ORM system database has to
be queried.

4. Provide State Information. The respective sensors return the required
context information, but do not make any decisions. Let us assume
that the current date is 11/11/2004, the IP address of person X's com-
puter is 137.224.208.84, and the video has not been accessed before.
Context functions [Str03] transform the received values into a readable
format for the access control decision component.

5. Return Evaluation Result. The decision component receives the con-
text information of the sensors and inserts them into the boolean func-
tions. With the state information received above all boolean functions
return true, and the access request can be granted. If one function
returns "false", the access to the video Y is denied.

The Access Control Mechanism xoRBAC

xoRBAC [NSOl, NS03a] is an access control mechanism that, among other
things, supports the handling of context constraints. It is used as ac-
cess control component in the subsequent framework application example.
xoRBAC provides a role-based access control (RBAC) service that can be
used on Unix and Windows systems in applications providing C or Tel link-
age. xoRBAC is well-suited to be used within a component framework.
While originally developed as an RBAC service, xoRBAC was extended to
provide a multi-policy access control system which can enforce RBAC-, as
well as DAC- (discretionary access control) or MAC- (mandatory access
control) based policies including conditional permissions. With respect to
this thesis, the dynamic constraint management subsystem is of central sig-
nificance. It comprises the environment mapping, which captures context
information via sensors, and the constraint evaluation, which checks if the
collected values match the context constraints associated with a certain con-
ditional permission. Thus, it allows for the definition and enforcement of
context constraints.

195

The subsequent paragraphs, describe features of xoRBAC that are nec-
essary to enforce the access control policies with context constraints as de-
scribed above. A context constraint is defined through the terms context
attribute, context function, and context condition:

lpermlsslon1 I lconstralnt1 I I constralnt2I

checkACceM

;-::i checkAcceaa

L~
•-• true

i:]evaluate
next

~ondltlon1! , ,.... I
avaluate

true :J condition
------- script

lcondltlon2f
iaSatlafled

l:rvaluate
true condition ------- script

-,
•" true next

I ...

r - next •-' tru -~
true •-• true ------

•

Figure 7.3: xoRBAC access control decisions with context constraints

• A context attribute represents a certain property of the environment
whose actual value might change dynamically (like time, date, or
session-date), or for different instances of the same abstract entity
(e.g. location, ownership, birthday, or nationality). Thus, context at-
tributes are a means to make (exogenous) context information explicit.

196

On the programming level each context attribute CA represents a vari-
able that is associated with a domaincA which determines the type
and range of values this attribute may take (e.g. date, real, integer,
string).

• A context function is a mechanism to obtain the current value of a
specific context attribute (i.e. to explicitly capture context informa-
tion). For example, a function date() could be defined to return the
current date. Of course a context function can also receive one or
more input parameters. For example, a function age(subject) may
take the subject name out of the (subject, operation, object) triple
to find out the age of the subject which initiated the current access
request, e.g. the age can be acquired from some database.

• A context condition is a predicate (a Boolean function) that com-
pares the current value of a context attribute either with a predefined
constant or another context attribute of the same domain. The cor-
responding comparison operator must be an operator that is defined
for the respective domain. All variables must be ground before eval-
uation. Therefore, each context attribute is replaced with a constant
value by using the according context function prior to the evalua-
tion of the respective condition. Examples for context conditions are
cond1 : date() ~ "2003/01/01", cond2 : date() == birthday(subject),
or conda : age(subject) > 21.

• A context constraint is a clause containing one or more context con-
ditions. It is satisfied iff all its context conditions are met. Otherwise
it returns false.

With respect to the terms defined above, a conditional permission is
a permission that is associated with one or more context constraints and
grants access only if each corresponding context constraints evaluates to
"true". Figure 7.3 shows a message sequence chart for access control deci-
sions in xoRBAC including conditional permissions. For a detailed descrip-
tion of xoRBAC see [NS0l, NS03a].

7.2 Access Control Decision Based on Elec-
tronic Tickets

The rights expression exchange framework usage exemplified in this section
handles the following scenario: Platform A generates and digitally signs a

197

license that grants certain access rights to user M. Strembeck on a various
platforms within a network, e.g. platform B. Platform A sends out the valid
license to M. Strembeck. If Mr Strembeck desires access rights on Platform
B he chooses the rights license and presents it to platform B to receive access
rights. Platform B unwraps and interprets the license and grants or denies
the user's access request accordingly to the permissions in the license." This
technical use case support a number of higher level applications, e.g. the
example, described as item 1 at the beginning of this chapter, but also the
following classical ORM application: A ORM platform issues a license that
grants access rights to a resource with certain constraints. The platform
delivers the license (with or without the resource) in a secure container (see
Section 2.3) to the consumer. The secure viewer receives the license and
subsequently handles the access request to the resource (that is either in
the container or locally stored) and, according to the rights in the license,
either renders the resource or not.

The subsequent sections apply the concepts and implemented compo-
nents of this doctoral thesis to the ORM scenario described above. Section
7.2.1 develops the application-specific CoSa that comprises all necessary
contract objects for the scenario. In Section 7.2.2 the adequate licens is
created with the rights expression generator. Subsequently, the license is
wrapped (see Section 7.2.3). The last section, Section 7.2.4 describes the
unwrapping, interpretation and processing of the license. Here, the unwrap-
per and interpreter that have been developed in this thesis are deployed as
well as the access control mechanism (xoRBAC).

7.2.1 Application-Specific CoSa

For the scenario mentioned above the required objects in the license are
Party, Resource, Permission and Constraint. It is assumed that the ORM
system is designed to operate with discretionary access control, as licenses
are rather issued to individuals than to roles. Therefore, the element Role
is not required in this ORM application, nor is the element Duty. There-
fore, for this ORM application the implemented CoSa is satisfactory, yet
only the subset of those shown in Figure 7.4 is used. The Party objects
basically require a unique id; additional attributes are optional. Similarly,
the Resource objects require a value in the attribute "Identifier". The Per-
mission objects must comprise the operation (e.g. display) and the object
(resource) the operation refers to. Each permission can be constrained by
one ore more conditions. Constraint objects comprise the instance variables
name, operator, value, attribute, and type (see also Section 6.3.3).

198

Contract

Constraint

Core Contract Objects R,--P-arty---,
has

cons ·nts ,_.
Resource

1-• refers to

Figure 7.4: The application-specific CoSa

Please note that the rights expression exchange framework is not respon-
sible for the attribute values, i.e. the data in the license. It is assumed that
the numbering systems for user ids and resource ids are aligned between
platform A and B and that stated access rights, as well as their constraints,
are either globally unique or well-understood by platform B. The possible
access rights are dependent on the capabilities of the rendering software
(e.g. the secure viewer). If the rendering software is able to process the
rights "display", "preview", and "copy", then a license comprising the op-
eration "give" will cause an error during rendering. The same is also true
for constraints.

7.2.2 Generating ORM-Specific Licenses

According to the developed CoSa, tailored license templates should be pro-
vided to the person who fills the license with data (see Section 4.5 and
4.5.3). With the rights expression generator implemented in this thesis, the
respective 'empty' templates could be created by the system administrator
and stored in the license repository. Users of the generator would restore
such licenses and fill them with ids, permissions, and constraints. Figure 7.5
shows, among other rights expressions, a predefined license template for the
operation display {license no. 2). Clicking on the modify link would restore
the license template and allow value entries by the current user. Storing it
again allows to store the copy under a different name {license no. 1).

199

list or,._ •• expressions CJN!td ~u .. r: Gulh

Llc.n .. tholt name AC110111

'display' license for mstram (ends 200-4-12-31)

license-template display

Figure 7.5: Provide license templates with the generator

The resulting ODRL rights expression contains a license, sometimes also
called digital ticket (see Section 4.3.1). The license that has been just formu-
lated with the rights expression generator has the following ODRL version
1.1 conform XML code1 :

<?ml version•"t.0" encoding2 11UTF-8 11 ?>
<o-e:ic: rights xmlns: o-ex•"http://odrl.net/1. 1/0DRL-EX"

:ml.ns:o-dd•"http://odrl.net/1.1/0DRL-DD">
<o-ex:aaset>

<o-ex:context>
<o-dd:uid>sguth-9999</o-dd:uid>
<o-dd:name>Ebook on the framework deaign</o-dd:name>

</o-ex:context>
</o-ex:aaset>
<o-ex:party>

<o-ex:context>
<o-dd:uid>mstrem</o-dd:uid>
<o-dd:name>M. Strembeck</o-dd:name>

</o-ex:context>
</o-e:ic:party>
<o-ex:permission>

<o-dd:display>
<o-ex:constraint>

<o-dd:datetime>
<o-dd:end>2004-12-31T00:00:00</o-dd:end>

</o-dd:datetime>
</o-ex:constraint>

</o-dd:display>
</o-ex:permission>

</ o-ex: rights>

10DRL is defined in two linked XML schemata, the ODRL grammar (prefix: o-H),
and the ODRL data dictionary (prefix:o-dd)

200

listing grants the rights display to the asset aguth-9999 with the title Ebook
on the framework design to the party M. Strembeck with the (locally) unique
id matrem. The operation display is narrowed by the following constraint:
display may only be executed if the current date one before 12/31/2004.

7.2.3 Wrapping DRM Licenses

Figure 7.5 shows two licenses in the current repository. License no. 1 is a
ready-to-use license (see XML serialisation above) that can now be wrapped
and transmitted to DRM platform B. In the very right section two actions
can be performed with the licenses: Modify and Sign. The sign action is
relevant for the license wrapping. The wrapping functionality is performed
by the rights expression exchange framework package reWrapper described
in Section 6.4 and is here provided to the user. To integrate the wrapper
functionality into the rights expression generator, the reWrapper package
has been included into the generator package. The mediator code in this
case is written in the extra method wrap(args) of the ODRLHttpd:Wrk that
uses an instance of the class Wrapper. The method restores the XML code
of the respective license from the repository, signs it with the private key
of platform A, packs the license into an archive, and (currently) stores it
in a folder, which the creator of the license has access to. Please note
that the method wrap(..) serves as a Facade [GHVJ94] for the rights
expression wrapper, which subsequently calls all wrapping functions that
are adequate for this application. The program in Figure 7.6 below shows
extracts from the mediator code within the generator package. The license
creator on Platform A sends the wrapped license to M. Strembeck via a
secure connection, i.e. HTTP over secure socket layer (SSL) [FKK96].

7.2.4 Unwrapping, Interpreting and Processing DRM
Licenses

Let us assume that some day M. Strembeck desires to access the resource
"Ebook on the framework design" that is stored on platform B. Therefore,
he authenticates himself to platform B with user id "mstrem" and password
via HTTP Basic Authentication [FGM+99, FHBH+99]. Then he uses an
HTML form to specify the resource he desires to access (e.g. display) and to
upload his license. Again, the the HTTP connection is secured by SSL. Now,
the license has to be processed and the access request has to be evaluated, i.e.
either granted or denied. According to the rights expression communication
model developed in Section 5.1.2, the processing of the license proceeds with

package provida r_:,reGenerator
package require r-::rewrapper

package require xotcl.: :actiwab: :webl>o~t
package require xotcl.: :actiwab: :html.Pl.•-

Cl.a•• ODIUJlttpd - • upercl.aa• Bttpd
Cl.a•• ODIUJlttpd: :Wrk - •upercl.aa• Pl.a-: :Bttpdlfrk

ODIUJlttpd: :Wrk in• tproc wrapLicenae id
•et fol.dar "l.icen• e• "
my in• tvar • ign-key
my in• tvar •tat-t

201

•et •tat-t w• el.ect Code from odrl..ODRLLicen• e • where OID •'$id';•
•et re• ul.t [my dbacce•• l
• et channel. [open $fol.der/odrl.-l.icen• e-$id.Jlllll. w+]
put• $re• ul.t
cl.o• e $channel.
Wrapper• $fol.der/odrl.-l.icen• -$id.xml.
• wrap $• ign-key

Figure 7.6: Mediator code combining generator and wrapper functionality

unwrapping and interpreting the license. All involved activities from the
rights expression exchange framework and environmental components are
sketched by the activity diagram in Figure 7. 7. The different actors are:

• The beneficiary, (or a corresponding client program) who requests a
service respectively the access to digital goods and presents a digital
license.

• In this case study the secure viewer is the mediator (see Section 6.5)
that coordinates and controls the beneficiary interaction, the rights
expression unwrapper and interpreter, as well as the access control
service.

• The rights expression unwrapper (see Section 6.4) that performs en-
coding and validity checks on the license.

• The rights expression interpreter (see Section 6.3) that parses and
interprets the license, and builds a runtime model of the application-
specific CoSa.

• The access control service which decides if the beneficiary may perform
the requested operations according to the permissions granted through
the presented license.

202

Beneficiary
Secure Viewer

(Mediator)

contract
lookup

OK

11D
--, unpack

, -<t-1 contract

--, c~eck contract
-<t-1 signature

_______ OK _______ _

Access Control
Service

--, parse
._i contract

build
;JcoSa

initializeAccessControlService

------------~-------------
checkAccessRe uest

OK

create
pennissions

evaluate

Figure 7.7: Sequence diagram with basic activities of the secure viewer

The contract processing procedure is triggered by the access request of
the beneficiary via the HTML form. An access request expresses the demand
to perform a specific operation/action on a particular object/resource. In
this case study approach, each access request consists of a method call with
four parameters (subject, operation, object, contract-location) where the
subject is mstrem, the operation is display, the object (requested resource) is
sguth-9999 and the contract-location states concrete location of the license
that has been uploaded by the beneficiary. The license is fetched by the
contract-id via the lookup procedure of the secure viewer. After the contract
has been loaded the unwrapper component performs the following activities:

• Unpack License: unpacks the license from the archive.

203

• Check Signature: verifies the digital signatures of the corresponding
license issuer, here platform A, to ensure its integrity and authenticity.
The public key of platform A and the information of the applied hMh
algorithm is required for the signature check. In this cMe study the
public key of platform A is the default key for signature verifications,
and the algorithm SHAl [EJOl] is used M default hMh algorithm by
the wrapper and unwrapper component.

Please note that the unwrapper serves M a Facade [GHVJ94] which
subsequently calls all unwrapping functions that are adequate for this ap-
plication (here: unpacking and signature verification). After the license hM
successfully pMsed all checks, it is considered to be valid (see Section 4.8)
and the wrapper returns the license in plain text. The license is now for-
warded to the rights expression interpreter. If the license fails one of the
unwrapper checks, the license is invalid and the access requests is automat-
ically denied.

The interpreter parses the license, extracts all relevant information, and
builds a runtime model of the application-specific CoSa. The runtime model
is shown in Figure 7.8. It consists of several objects, that are all aggregated
by the instance co01 which is of the Contracfl. The reminders of contract
objects are py01 (type Party), re01 (type Resource), p01 (type Permission),
and c01 (type Permission). The relations among the different runtime ob-
jects are expressed via the intrinsic attribute relations (see Section 4.6).
For example, the party py01 is related to the objects contract co01 and
permission p01 via the roles agg_parent and has_perm. WhereM the per-
mission p01 is related to the objects co01, py01, re01, and c01 via the roles
agg_parent, granted_to, refers_to, respectively has_constraint. For a
complete list of possible roles, please refer to Section 6.3.2.

The runtime model may then be queried for the contract objects and
their respective attributes, e.g. the unique ID of the beneficiary, his/her
roles, the resources, the granted permissions to these resources, the con-
straints that apply to the granted permissions, etc. In the next step, the
secure viewer component extracts the access control-relevant contract in-
formation from the runtime model of the contract to initialise the corre-
sponding access control service. Finally, the secure viewer calls the method
checkAccessRequest (..) to handle the access request of the beneficiary,
i.e. it evaluates whether the requested access rights (display the resource

2This allows to delete all contract objects if the contract itself is erased

204

- ll!)l : !:!!Dlrlli;t::Q0Si!P11rmi11&i!!n

. relations• (agg_parent co01J(granted_to py01J(relers_to re01J(has_constr c:01}
object = sguth-9999
opelation z display

1 coOl · !:!!l!lract;·C!lSi1C!!!!IC1!:1

--...- elations -(agg__child py01J(agg_child p(ltl(agg_chlld c011(agg_child re01}
11id- ""
~mment- ..
digital~ocation = -r ~clusion-location • •
~clusion-date ~ -

~

I rllference •" 1

A,
I I

1
llX!!l : !:!!Dlract··C!!Si1Pilllll reOl : !:Qntract·;CoSi!B!!ll!!Ur!:!1!

relations-(agg_parent co01J(has_perm p01} relations• (agg_parent co01J(rel_perm p01}
UID - msll8m Identifier = sguth-9999
FN = Mark Strembeck Title • EBook on REX
ROLE - consumer Description = "
NOTE-- Date-··
BDAY~ - Relation z ••

URL•• .
VERSION~ ..

!:01 : !:!!!1IC1!:1:;C11SaC!!!ll!CIIDI

relations- (agg_parten coOtl(constr_ol p01}
name = dateUme
operator-<
value= 2004-12-31TOO:OO:OO
attribute= -
type • constraint

Figure 7.8: Runtime model of the DRM CoSa objects

sguth-9999) are granted in the ODRL license. The implementation, uses
the xoRBAC access control service, which is described in Section 7.1. The
access control mechanism grants the access requests, and therefore the se-
cure viewer display the respective Ebook to M. Strembeck. The XOTcl code
that implements the unwrapping, interpreting, and processing of the ODRL
license is listed below.

#!/usr/local/bin/xotclsh

package require xoRBAC 0.6.1
package require rex::reinterpreter 0.1
package require rex::relContract 0.1
package require rex::reUnwrapper 0.1

Class SecureViever

SecureViever instproc requestAccess
{subject operation object contract-location} {

Unvrapper cc ${contract-location}
set contract [cc unpack]
set valid [cc verifySignature]

if {($valid •• "true")} {
ODRLContract op $contract
RightsManager rm
set contracts [op getObjects CoSaContract]
foreach c $contracts {

set assets [op getAesets $cl
set parties [op getRelatedObjecte $c agg_child CoSaParty]
set consumers [op eelectObjects $parties ROLE "consumer"]

foreach asset $assets {
eat assetid [op getAttributeValue $asset uid]

foreach con $consumers {
set conID [op getAttributeValue $con uid]
rm createSubject $conID
set rights [op getRelatedObjects $con rPerms]

foreach r $rights {
set right [op getAttributeValue $r name]
rm createPermission "$right $assetid"
1'111 subjectPermAssign "$conID" "$right $aasetid"
set constraints [op getRelatedObjects $r rConstr]

foreach constr $constraints {
set cname [op getAttributeValue $conetr name]
set cvalue [op getAttributeValue $constr value]
set cop [op getAttributeValue $constr operator]
if { $cname •• "datetime"} {
#this secure viever can only handle time constraints

1'111 createCondition $cname
rm setConditionLeftOperand $cname "LocalhostSensor"

"lhaClock" "XY-Y.m-1.dTXH:XM:XS"
rm setConditionOperator $cname $cop
rm setConditionRightOperandAsConstant $cname $cvalua
rm buildConditionScript $cname

rm createContextConstraint "${cname}_$cvalue"
rm addConditionToContextConstraint "$cnama" "${cname}_$cvalue"

205

rm addContextConstraintToPerm "${cname}_$cvalue" "$right $aasetid"
} else {

206

op stdMsg "Other constraints than datetime_end are not provided"
}}}}}}

set result [rm grantAccess $subject $operation $object]
if {$result•• 1} {
return 1

} else {
return 0

}
} else {

cc ErrMsg "Contract ${contract-location} is not valid!"
return 0

}
}

SecureViewer sv set granted [sv requestAccess "mstrem" "play"
"sguth-9999" .. /odrl-instances/ODRL-EbookNo2.xml]

Evaluation of the Case Study

The rights expression interpreter is coded in approximately 3000 lines of
XOTcl code, whereas the unwrapper component was implemented with ap-
proximately 500 lines of XOTcl code. Consequently, the be above 70 lines
represent the functionality coded into the 3500 lines of the unwrapper and
interpreter package (not including the xoRBAC code). The secure viewer
above was run with the following performance:

party user system real
elapsed time 0m0.310s 0m0.020s 0m0.359s

Here, the user time is the time the secure viewer is running, the system time
is the time spend in system calls and real time is the total time the secure
viewer has been running.

It is planned to make the source code of all components of the rights
expression exchange framework freely available at the XOTcl web site3 as
well as on the web site of the ODRL initiative4 • In terms of scalability,
the framework can be extended to support a different application-specific
CoSa and/or other metadata standards for resources and parties (e.g. LOM
instead of Dublin Core) at low expense. The support of another rights ex-
pression language such as XrML, in return, would be more costly. In order
to support the processing of more context constraints the mediator and/or
the sensors of the access control service have to be extended.

3See: http://www.xotcl.org/
4See: http://odrl.net/

207

As mentioned earlier, it was a challenge to read the detailed semantics
of the rights expression language ODRL from the written specification. Re-
nato Iannella, the founder of the ODRL initiative, was very supportive in
this matter. The development of rights expression language interpreters is
at the very beginning. Apart from the work at hand, no design or com-
prehensive implementation of a rights expression language interpreter or
rights expression generator is available. The most challenging issues of the
generator implementation were: to design a comfortable, intuitive user in-
terface, and to design a sensible policy for restricting the nestings of ODRL
expressions.

Chapter 8

Conclusion and Future
Work

209

As defined in Section 1.3, the goal of this doctoral thesis has been to de-
velop methods and tools for exchanging and processing XML-based rights
expressions, in particular electronic contracts. This section sums up the
findings the thesis at hand delivers to the research community in this field.
For details, please refer to the respective sections in the earlier chapters.

Methods for the exchange of rights expressions

The methods developed in the work at hand shall support the overall goal
of creating rights expressions that are easily exchangeable with respect to
their content. In other words, it is necessary to ensure that the receiver of
a rights expression can understand its content and semantics as it has been
intended of the sender. Within this thesis, the following methods have been
developed to support the processability of electronic contracts in software
services:

• Tailoring electronic contracts. The work provides an analysis of basic
information objects that occur in rights expressions and their rela-
tions. Analysing electronic contracts and their structure is important
for their reliable processing. Electronic contracts in particular can be
processed in various usage scenarios, such as access control, account-
ing, customer relationship management, etc. For each usage scenario

210

a specific agreement category has to be developed that describes ob-
jects that are relevant in this usage scenario. Accordingly, a process is
introduced, that supports the tailored composition of agreement cat-
egories and thus electronic contracts depending on their later usage(s).

• The generic Contract Schema (CoSa). For a standardised process-
ing of rights expressions and in particular of contracts, the concept of
the generic Contract Schema (CoSa) has been developed. The CoSa
serves as abstraction level for various rights expression languages or
other representations of rights expression respectively contracts. With
the concept of CoSa comes a generic API that allows to query all con-
tract information represented in the CoSa format. The CoSa API
stays consistent, also if the CoSa is application-specific.

• The contract life cycle. To build the bridge to the economic environ-
ment of exchanging and processing electronic contracts, the "contract
life cycle" has been defined corresponding to the legal phases of con-
tracts. With the help of the contract life cycle the developed methods
and tools, as well as the defined terms have been classified to the
respective life cycle phase. For example, the rights expression genera-
tor supports the negotiation phase of electronic contract, whereas the
rights expression wrapper supports the offer placement as well as the
offer confirmation, respectively the conclusion of the contract. Along
the phases of the contract life cycle additionally the management is-
sues are listed that are of importance, such as ' When is an electronic
contract valid?' or 'What technical means have to be applied, as soon
as the electronic contract is executed (to avoid double-spending)?'.

• The enforceability matrix that has been developed within this work
helps to classify which information in rights expressions can be en-
forced as intended by the issuer. Three general criteria have been
identified which facilitate the classification.

• The rights expression communication model. From Shannon's basic
communication model a rights expression communication model has
been derived that allows for particular needs of rights expression ex-
change. The developed model takes into account that rights expres-
sions are exchanged in a platform-independent format and require se-

211

curity means to be transmitted safely. The four resulting stages that
rights expression have to pass between sender and receiver are: rights
expression generator, - wrapper, - unwrapper, and - interpreter.

Besides the above mentioned methods a system has been developed for
the description and classification of DRM systems respectively their func-
tionality. Additionally the perspectives of DRM systems have been identi-
fied that help understanding the various impacts (e.g. legal, social, technical,
etc.) of DRM systems.

Tools for the exchange of rights expressions

The tools developed in this thesis implement the rights expression exchange
model mentioned above. The tools have been developed as software camper
nents that can be used autonomously or in combination as rights expression
exchange framework, comprising the four sub components (tools):

• The rights expression generator transforms original rights information
of a DRM component or actor (e.g. a contract party) into code, result-
ing in a rights expression message. This message is formulated in a
rights expression language. In return, the rights expression generator
adopts the syntax and semantics of the open digital rights language
(ODRL) version 1.1.

• The rights expression wrapper and -tJ,nwrapper. Depending on the us-
age scenario, various security services have to be applied to the rights
expression before transmitting it, e.g. digitally signing and packing the
rights expression in a secure container. These services are provided
by the rights expression wrapper. The rights expression unwrapper
is the complementary component to the rights expression wrapper.
It unwraps and also unpacks the rights expression after transmission
and provides for the extrinsic checking of the digital contract, such as
checking the contract integrity, authenticating the rights expression
sender, and verifying the digital signature of rights expression.

• The rights expression interpreter is an open and extensible tool for the
interpretation of rights expressions for subsequent processing. The
interpreter implements the concept of the generic CoSa. It is cur-
rently able to interpret ODRL instances and to transform them into
an application-specific CoSa. The application-specific CoSa can then
be queried for the rights information via the CoSa APL Thus, ODRL

212

rights expressions are machine readable, and processable in various
applications respectively usage scenarios.

Apart from this thesis, we are not aware of any other comprehensive
study that supports methods and tools for the entire exchange task of rights
expressions and for their subsequent processing. The developed methods
are of generic nature and independent of any particular technology (e.g.
a programming language or a rights expression language). The tools are
prototype implementations that are open and extensible. They have well
defined interfaces that assure its (re)use in various environments and ease
its integration into existing systems. The implementations are coded in an
appropriate programming language, reuse existing technology, and consider
all relevant standards. The tools prove the correctness and usability of the
introduced methods tailored contract composition, rights expression com-
munication model, CoSa, and enforceability.

Taking everything into account, I come to the conclusion that the intro-
duced methods and tools have the potential to bring forward current tech-
nology for the exchange of rights expressions (in particular the exchange of
electronic contracts) in order to improve the interoperability of digital rights
management systems and thus to quicken future electronic commerce.

Future Work

The work addresses a large number of subjects in the area of rights ex-
pression exchange and processing. Therefore, the future work to be done
is equally broad. In the following paragraphes the fields of future work are
mentioned that have my particular interest.

• The implementation of the rights expression interpreter has provided
a detailed insight to rights expression languages. Due to the special-
isation in certain applications respectively domains and to the few
current usages of both XrML respectively MPEG 21 REL and ODRL
they lack a well-defined data model for rights expressions and compre-
hensive, unambiguous, formal semantics. The lack of formal semantics
considerably restricts the clarity of all existing RELs. Furthermore,
today's RELs are not sufficiently designed for the later processing in
software services. Consequently, the development of comprehensive
formal semantics is a fundamental issue of future work in the field of

213

RELs. Also the introduced rights expression languages are not de-
signed to support service level agreements. A subject to future work
is an analysis, whether the predominant RELs are respectively should
be able to express service level agreements.

• My investigations in the field of RELs have resulted in a close cooper-
ation with Renato Iannella (founder of the ODRL initiative) and the
people from ContentGuard who are developing ODRL respectively
XrML. We intend to continue this fruitful cooperation in order to
develop more sophisticated RELs. My participation in the ODRL
initiative has resulted in the organisation of an international ODRL
workshop in April 2004 in Vienna, where the leading researchers in the
field of rights expression languages are going to meet to share their
research findings. The achievements of the workshop will certainly
have an impact on the next version of ODRL.

• Future work in this field will also be concerned with finding an ade-
quate transport medium for electronic contracts, e.g. x509 certificates
[IT93a]. Sandhu and Park have introduced smart certificates for at-
tribute services on the web [PR99]. They use the extension field of
X.509v3 certificates to bind attributes to a subject (party). In an
other contribution Sandhu and Park [PS99] present an implementa-
tion where the extension field of a X.509v3 certificate is used to assign
role information to a subject. Based on the subject's role information,
web servers use roles instead of a user's identity for access control pur-
poses. In my future work smart certificates, respectively the extension
field of x509 certificates shall be investigated as a transport medium
for electronic contracts with the help of a prototype implementation.

• This thesis addresses the perspectives of DRM systems and mentions
their interrelation. For example, intentional perspective of a DRM
system heavily influences its functions, respectively the technical im-
plementation. Therefore, I consider it necessary to now investigate the
concrete number of relations and their effect respectively the gravity
of dependencies between the six perspectives. For example, a cata-
logue could be helpful that guides strategic and technic DRM system
developers through system reengineering and change management.

214

• The thesis at hand addresses various security mechanisms that are
required in DRM systems respectively in a rights expression exchange
framework. Each of the security mechanism could be addressed and
implemented in more conceptual detail. For a rights expression ex-
change framework, for example, the tamper resistance of the distinct
components needs to be addressed for a concrete application. In this
context it is also important to address the processing of electronic
signatures in more detail. For example, for electronic contracts it has
to be assured that the right people have signed the contract in the
correct sequence.

• The most important challenge that future work should respond to is
the creation of a standardised respectively globally unique vocabu-
lary for rights and conditions, as they are available for individuals
(e.g. x509) or resources (e.g. DOI), to improve the explicit semantics
of rights expression languages. The MPEG 21 initiative is currently
working on a uniform framework for the expression of rights in the
course of developing part 6 of the MPEG 21 standard, a uniform data
dictionary for rights expressions.

• To make sure that the application of electronic contracts is an ab-
solute convenience for all future participant of e-commerce, is has to
be taken care of the privacy matter in this context. It is important
to design a process that ensures privacy for all contract parties, i.e.
that addresses the management of privacy issues throughout the en-
tire contract life cycle and covers the following issues: Who decides
on the contract content? Is the contract publicly available in whole or
part? etc.

• For the mapping from one rights expression language to the other,
simple tables have been used in this thesis. For mapping the semantics
from more than two rights expression languages a "rights ontology"
needs to be developed.

215

Chapter 9

Appendix A:

ODRL Foundation Model
and XML Schemata

This appendix comprises the data model and XML schemata of the Open
Digital Rights Language (ODRL) [Ian02b]. The first XML schema describes
the core language syntax of ODRL, the second XML schema is the standard
extension of the language syntax, defining the ODRL vocabulary.

9.1 ODRL Foundation Model

Figure 9.1 shows the ODRL foundation model. The model consists of the
three core entities assets, rights, and parties. With the reminder of entities,
such as permission, agreement, context, condition, the three core entities
can be described with more detail.

9.2 XML Schema of ODRL Syntax Version
1.1

<?Dll versio11•"1.0" encoding-"UTF-8"?>
<xsd: schema

216

Revoke

Constraint

OS Digital Encryption
Requirement Signature Digest/Key

Condition EX Rights A.et

EX
Agreement Context

EX
Offer

Figure 9.1: The foundation model of ODRL [Ian02b]

targetHamespacez"http://odrl.net/1.l/ODRL-EX"
mlns:o-ex="http://odrl.net/1.1/0DRL-EX"
mlns:xsd•"http://wwv.w3.org/2001/XMLSchema"
xmlns:dsa"http://wwv.w3.org/2000/09/mldsig#"
xmlns:enc="http://wwv.w3.org/2001/04/mlenc#"
elementFormDefault'""qualified" attributeFormDefault="qualified"

version•"1.1">
<xsd:import namespace="http://wwv.w3.org/2000/09/mldsig#"

schemaLocation•"http://wwv.w3.org/TR/2002/REC-xmldsig-core-20020212/
mldsig-core-schema.xsd"/>

<xsd:import namespace="http://wwv.w3.org/2001/04/mlenc#"
schemaLocation•"http://wwv.w3.org/Encryption/2001/Drafts/mlenc-core/

xenc-schema.xsd"/>
<xsd:element namem"rights" type="o-ex:rightsType"/>
<xsd:element name="offer" type="o-ex:offerAgreeType"/>
<xsd:element name•"agreement" type•"o-ex:offerAgreeType"/>
<xsd:complexType name="offerAgreeType">

<xsd:choice minOccursa"O" maxOccurs="unbounded">
<xsd:element ref•"o-ex:context" minOccurs="O"

maxOccurs="unbounded"/>
<xsd:element ref="o-ex:party" minOccurs•"O"

maxOccurs="unbounded" />

<xsd:element ref•"o-ex:asset" minOccurs•"O"
maxOccurs•"unbounded"/>

<xsd:element ref•"o-ex:permission" minOccurs•"O"
maxOccura•"unbounded"/>

<xad:element ref•"o-ex:conatraint" minOccura•"O"
maxOccura•"unbounded"/>

<xad:element ref•"o-ex:requirement" minOccura•"O"
maxOccura•"unbounded" />

<xad:element ref•"o-ex:condition" minOccurs•"O"
maxOccurs•"unbounded"/>

</xad:choice>
</xsd:complexType>
<xad:complexType name•"rightaType">

<xsd:complexContent>
<xad:extension base•"o-ex:offerAgreeType">

<xsd:choice minOccura•"O" maxOccura•"unbounded">
<xsd:element ref•"o-ex:revoke" minOccurs•"O"

maxOccura•"unbounded"/>
<xad:element ref•"o-ex:offer" minOccura•"O"

maxOccura•"unbounded"/>
<xad:element ref•"o-ex:agreement" minOccura•"O"

maxOccura•"unbounded" />
<xad:element ref•"ds:Signature" minOccura•"O"/>

</xsd:choice>
<xad:attributeGroup ref•"o-ex:IDGroup"/>

</xad:extension>
</xad:complexContent>

</xsd:complexType>
<xad:element name•"context" type•"o-ex:contextType"/>
<xad:element name•"contextElement" abatract•"true"/>
<xsd:complexType name•"contextType">

<xsd:choice minOccure•"O" maxOccure•"unbounded">
<xsd:element ref•"o-ex:context" minOccure•"O"

maxOccure•"unbounded"/>
<xsd:element ref•"o-ex:contextElement" minOccure•"O"

maxOccure•"unbounded" />
</xsd:choice>
<xed:attributeGroup ref•"o-ex:IDGroup"/>

</xsd:complexType>
<xsd:complexType name•"partyType">

<xsd:choice minOccure•"O" maxOccurs•"unbounded">
<xsd:element ref•"o-ex:context" minOccure•"O"/>
<xed:element ref•"o-ex:rightsholder" minOccure•"O"

maxOccure•"unbounded"/>
<xsd:element ref•"o-ex:party" minOccure•"O"

maxOccurs•"unbounded"/>
<xsd:element ref•"o-ex:container" minOccurs•"O"

maxOccurs•"unbounded" />
<xsd:element ref•"o-ex:asset" minOccure•"O"

maxOccurs•"unbounded"/>

217

218

</xsd:choice>
<xsd:attributeGroup ref•"o-ex:IDGroup"/>

</xsd:complexType>
<xsd:element name•"party" type="o-ex:partyType"/>
<xsd:element name•"rightsholder" type•"o-ex:rightsHolderType"/>
<xad:element name•"rightaHolderElement" abatract•"true"/>
<xsd:complexType name•"rightsHolderType">

<xad:choice minOccurs•"O" maxOccurs•"unbounded">
<xsd:element ref•"o-ex:context" minOccurs•"O"/>
<xad:element ref•"o-ex:rightsHolderElement" minOccurs•"O"

maxOccura="unbounded"/>
<xsd:element ref•"o-ex:container" minOccurs="O"

maxOccura•"unbounded"/>
</xsd:choice>
<xsd:attributeGroup ref•"o-ex:IDGroup"/>

</xsd:complexType>
<xad:complexType name•"assetType">

<xsd:choice minOccurs="O" maxOccurs="unbounded">
<xsd:element ref="o-ex:context"/>
<xsd:element ref•"o-ex:inherit"/>
<xsd:element name•"digest">

<xad:complexType>
<xsd:choice minOccurs•"O" maxOccurs="unbounded">

<xad:element ref•"ds:DigestMethod"/>
<xsd:element ref•"ds:DigestValue"/>

</xsd:choice>
</xsd:complexType>

</xsd:element>
<xsd:element ref•"ds:Keylnfo"/>

</xsd: choice>
<xsd:attributeGroup ref .. "o-ex:IDGroup"/>
<xsd:attribute name="type">

<xsd:simpleType>
<xsd:restriction base="xsd:NMTOKEN">

<xsd:enumeration value•"work"/>
<xsd:enumeration value="expression"/>
<xsd:enumeration value•"manifestation"/>
<xsd:enumeration values"item"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:complexType>
<xsd:element name•"asset" type•"o-ex:assetType"/>
<xad:complexType name•"inheritType">

<xsd:choice minOccurs•"O" maxOccurs•"unbounded">
<xad:element ref•"o-ex:context" minOccurs•"O"

maxOccura•"unbounded"/>
</xsd:choice>
<xsd:attribute name="override" type•"xsd:boolean" default="false"/>
<xsd:attribute name•"default" type="xsd:boolean" default•"false"/>

</xsd:complexType>
<xsd:element name•"inherit" typa-"o-ex:inheritType"/>
<xsd:element name•"permission" type•"o-ex:permissionType"/>
<xsd:element name•"permissionElement" abstract•"true"/>
<xsd:complexType name•"permissionType">

<xsd:choice minOccurs•"O" muOccurs•"unbounded">
<xsd:element ref•"o-ex:context" minOccur11•"0"

muOccurs•"unbounded"/>
<xsd:element ref•"o-ex:permissionElement• minOccurs•"O"

muOccurs•"unbounded"/>
<xsd:element ref•"o-ex:container" minOccurs•"O"

muOccurs•"unbounded" />
<xsd:element ref•"o-ex:constraint" minOccurs•"O"

muOccurs•"unbounded" />
<xsd:element ref•"o-ex:sequence" minOccurs•"O"

muOccurs•"unbounded"/>
<xsd:element ref•"o-ex:requirement" minOccurs'""O"

muOccurs•"unbounded" />
<xsd:element ref•"o-ex:condition" minOccurs•"O"

muOccurs•"unbounded" />
<xsd:element ref•"o-ex:asset" minOccurs•"O"

muOccurs•"unbounded"/>
</xsd:choice>

219

<xsd:attribute name•"exclusive" type•"xsd:boolean" use•"optional"/>
<xad:attributeGroup ref•"o-ex:IDGroup"/>

</xsd:complexType>
<xsd:element name•"constraint" type•"o-ex:constraintType"/>
<xsd:element name•"constraintElement" abstract•"true"/>
<xsd:complexType name•"con11traintType">

<xsd:choice minOccurs•"O" muOccurs•"unbounded">
<xsd:element ref•"o-ex:constraint" minOccurs•"O"

muOccurs•"unbounded" />
<xsd:element ref•"o-ex:constraintElement" minOccurs•"O"

muOccurs•"unbounded" />
<xsd: element ref"'"o-ex: container" minOccurs•"O"

muOccurs• "unbounded"/>
<xsd:element ref•"o-ex:sequence" minOccurs•"O"

muOccur11•"unbounded"/>
<xsd:element ref•"o-ex:context" minOccurs•"O"

muOccurs•"unbounded"/>
</xsd:choice>
<xsd:attributeGroup ref•"o-ex:IDGroup"/>
<xsd:attribute name-"type" type•"xsd:anylJRI"/>

</xsd:complexType>
<xsd:element name•"requirement" type•"o-ex:requirementType"/>
<xsd:element name•"requirementElement" abstract•"true"/>
<xsd:complexType name•"requirementType">

<xsd:sequence minOccurs•"O" maxOccurs•"unbounded">
<xsd:element ref•"o-ex:context" minOccurs•"O"

muOccurs•"unbounded"/>

220

<xsd:element ref•"o-ex:requirementElement" minOccurs="O"
maxOccurs•"unbounded"/>

<xsd:element ref•"o-ex:container" minOccurs•"O"
maxOccurss"unbounded"/>

</xsd:sequence>
<xsd:attributeGroup ref•"o-ex:IDGroup"/>

</xsd:complexType>
<xsd:element namea"condition" type•"o-ex:conditionType"/>
<xsd:element name•"conditionElement" abstract="true"/>
<xsd:complexType name•"conditionType">

<xsd:sequence minOccurs•"O" maxOccurs•"unbounded">
<xsd:element ref•"o-ex:context" minOccurs•"O"

maxOccurs•"unbounded"/>
<xsd:element ref•"o-ex:conditionElement" minOccurs'""O"

maxOccurs="unbounded" />
<xsd:element ref•"o-ex:parmission" minOccursa"O"

maxOccursa"unbounded"/>
<xsd:element ref•"o-ex:constraint" minOccurs•"O"

maxOccurs•"unbounded"/>
<xsd:element ref="o-ex:container" minOccurs="O"

maxOccursc"unbounded" />
<xsd:element ref•"o-ex:sequence" minOccurs="O"

maxOccurs• "unbounded"/>
</xsd:sequence>
<xsd:attributeGroup ref="o-ex:IDGroup"/>

</xsd:complexType>
<xsd:complexType name""revokeType">

<xsd:sequence minOccurs="O" maxOccurs="unbounded">
<xsd:element ref•"o-ex:context" minOccurs="O"

maxOccurs="unbounded" />
</xsd:sequence>
<xsd:attributeGroup ref="o-ex:IDGroup"/>

</xsd:complexType>
<xsd:element name•"revoke" type•"o-ex:revokeType"/>
<xsd:complexType name•"sequenceType">

<xsd:sequence>
<xsd:element ref•"o-ex:seq-item" maxOccursa"unbounded"/>

</xsd:sequence>
<xsd:attribute name•"order" default•"total">

<xsd:simpleType>
<xsd:reatriction base="xsd:NMTOKEN">

<xsd:enumeration value•"total"/>
<xsd:enumeration value•"partial"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:complexType>
<xad:element name•"sequence" type="o-ex:sequenceType"/>
<xsd:complexType name•"containerType">

<xsd:cboice minOccurs•"O" maxOccurs•"unbounded">

<xsd:element ref•"o-ex:container" minOccursa"O"
maxOccurs•"unbounded" />

<xsd:element ref•"o-ex:permission" minOccurs•"O"
maxOccurs•"unbounded" />

<xsd:element ref•"o-ex:permisaionElement" minOccursa"O"
muOccura•"unbounded"/>

<xsd:element ref•"o-ex:constraintElement" minOccurs•"O"
maxOccura•"unbounded"/>

<xad:element ref•"o-ex:conditionElement" minOccurs•"O"
maxOccura•"unbounded"/>

<xad:element ref•"o-ex:requirementElement" minOccura•"O"
maxOccura•"unbounded"/>

<xad:element ref•"o-ex:rightaHolderElement" minOccura•"O"
maxOccura•"unbounded" />

<xad:element ref•"o-ex:conetraint" minOccuraa"Q"
maxOccurs• "unbounded"/>

<xad:element ref•"o-ex:condition" minOccura•"O"
muOccura•"unbounded" />

<xsd:element refa"o-ex:sequence" minOccurs•"O"
mu Occurs• "unbounded"/>

</xsd:choice>
<xsd:attribute name•"type" default•"and">

<xad:aimpleType>
<xad:reatriction baae•"xad:NMTOKEN">

<xsd:enumeration value•"a.nd"/>
<xad:enumeration value•"in-or"/>
<xsd:enumeration value•"ex-or"/>

</xad:restriction>
</xsd:aimpleType>

</xad:attribute>
<xad:attributeGroup ref•"o-ex:IDGroup"/>

</xsd:complexType>
<xsd:element name•"container" type•"o-ex:containerType"/>
<xad:complexType name•"aeqltemType">

<xad:choice minOccura•"O" maxOccura•"unbounded">
<xad:element ref•"o-ex:container" minOccura•"O"

maxOccura•"unbounded"/>
<xad:element ref•"o-ex:permiaaion" minOccura•"O"

muOccura•"unbounded" />
<xad:element ref•"o-ex:permisaionElement" minOccura•"O"

maxOccura• "unbounded"/>
<xad:element ref•"o-ex:constraintElement" minOccura•"O"

maxOccura•"unbounded" />
<xad:element ref•"o-ex:conditionElement" minOccura•"O"

muOccura•"unbounded"/>
<xad:element ref•"o-ex:requirementElement" minOccurs•"O"

maxOccura•"unbounded"/>
<xad:element ref•"o-ex:rightaHolderElement" minOccura•"O"

muOccura•"unbounded"/>
<xad:element ref•"o-ex:conetraint" minOccurs•"O"

221

222

maxOccurs'""unbounded"/>
<xsd:element ref•"o-ex:condition" minOccurs•"O"

maxOccurs•"unbounded" />
<xsd:element ref•"o-ex:sequence" minOccurs=-"0"

maxOccurss"unbounded"/>
</xsd:choice>
<xsd:attribute name•"number" type•"xsd:integer" use•"required"/>

</xsd:complexType>
<xsd:element name•"seq-item" type="o-ex:seqltemType"/>
<xsd:attributeGroup name•"IDGroup">

<xsd:attribute name•"id" type=-"xsd:ID"/>
<xsd:attribute name•"idref" type•"xsd:IDREF"/>

</xsd:attributeGroup>
</xsd:schema>

9.3 XML Schema of ODRL Data Dictionary
Version 1.1

<?xml version•"1.0" encoding-"UTF-8"?>
<xsd:schema targetNamespace•"http://odrl.net/1.1/0DRL-DD"

xmlns:o-ex="http://odrl.net/1.1/0DRL-EX"
xmlns:o-dd .. "http://odrl.net/1.1/0DRL-DD"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
elementFormDefault•"qualified" attributeFormDefault•"qualified"

version,."1.1">
<xsd:import namespace•"http://odrl.net/1.1/0DRL-EX"

schemalocation•"http: //odrl.net/1.1/0DRL-EX-11. xsd" />
<!-- Declare all the Permission Elements-->
<xsd:element name•"display" type'""o-ex:permissionType"

substitutionGroup="o-ex:permissionElement"/>
<xsd:element name•"print" type="o-ex:permissionType"

substitutionGrouJ)"'"o-ex:permissionElement"/>
<xsd:element name•"play" type•"o-ex:permissionType"

substitutionGroup-"o-ex:permissionElement"/>
<xsd:element name•"execute" type•"o-ex:permissionType"

substitutionGroup-"o-ex:permissionElement"/>
<xsd:element name•"sell" type•"o-ex:permissionType"

substitutionGroup="o-ex:permissionElement"/>
<xsd:element name="lend" type•"o-ex:permissionType"

substitutionGroup=-"o-ex:permissionElement"/>
<xsd:element name•"give" type•"o-ex:permissionType"

substitutionGroup'""o-ex:permissionElement"/>
<xsd:element name•"lease" type•"o-ex:permissionType"

substitutionGrouP'""o-ex:permissionElement"/>
<xsd:element name•"modify" types"o-ex:permissionType"

substitutionGroup-"o-ex:permissionElement"/>
<xsd:element name .. "excerpt" type•"o-ex:permissionType"

223

substitutionGroup-"o-ex:permiBBionElement"/>
<xsd:element name•"aggregate" type•"o-ex:permissionType"

substitutionGroup-"o-ex:permissionElement"/>
<xsd:element name•"annotate" type-"o-ex:permissionType"

sub11titutionGroup-"o-ex:permi1111ionElement"/>
<xsd:element name•"move" type•"o-ex:permissionType"

substitutionGroup-"o-ex:permissionElement"/>
<xsd:element name•"duplicate" type•"o-ex:pel'lllissionType"

substitutionGroup-"o-ex:permissionElement"/>
<xsd:element name•"delete" type•"o-ex:permissionType"

substitutionGroup-"o-ex:permiBBionElement"/>
<xsd:element name•"verify" type•"o-ex:permissionType"

sub11titutionGroup-"o-ex:permi1111ionElement"/>
<xsd:element name•"baclrup" type•"o-ex:permissionType"

substitutionGroup-"o-ex:permiBBionElement"/>
<xsd:element nams•"restore" type•"o-ex:permissionType"

substitutionGroup-"o-ex:permissionElement"/>
<xsd:element name•"install" type-"o-ex:permi1111ionType"

substitutionGroup-"o-ex:permissionElement"/>
<xsd:element name•"uninstall" type•"o-ex:permissionType"

substitutionGroup-"o-ex:permillsionElement"/>
<xsd:element name•"save" type•"o-ex:permissionType"

substitutionGroup-"o-ex:permiaaionElement"/>
<!-- Declare the Payment Element (used in Requirements)-->
<xsd:element name•"payment">

<xsd:complexType>
<xsd:sequence>

<xsd:element name•"amount">
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base•"xsd:decimal">

<xsd:attribute name~"currency"
type•"xsd:NMTOKEN" use•"required"/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>
</xsd:element>
<xsd:element name•"taxpercent" minOccurs•"O">

<xsd:complexType>
<xsd:simpleContent>

<xad:extenaion base•"xad:decimal">
<xad:attribute name•"code"

type•"xsd:NMTOKEN" us-"required"/>
</xsd:extenaion>

</xad:aimpleContent>
</xad:complexType>

</xad:element>
</xad: sequence>

</xad:complexType>
</xsd:element>

224

<!-- Define the dataTypes used for Requirements using Payment element-->
<xsd:complexType name•"feeType">

<xsd:complexContent>
<xsd:extension base•"o-ex:requirementType">

<xsd:sequence>
<xsd:element ref•"o-dd:payment"/>

</xsd: sequence>
</xsd:extenaion>

</xsd:complexContent>
</xsd:complexType>
<I-- Declare all the Requirements Elements-->
<xsd:element name•"prepay" type•"o-dd:feeType"

substitutionGroupm"o-ex:requirementElement"/>
<xsd:element name•"postpay" types"o-dd:feeType"

substitutionGroups"o-ex:requirementElement"/>
<xsd:element name•"peruse" type•"o-dd:feeType"

substitutionGroups"o-ex:requirementElement"/>
<xsd:element name•"accept" types"o-ex:requirementType"

substitutionGroup=""o-ex:requirementElement"/>
<xsd:element name•"register" type•"o-ex:requirementType"

substitutionGroup=""o-ex:requirementElement"/>
<xsd:element name•"attribution" type•"o-ex:requirementType"

substitutionGroups"o-ex:requirementElement"/>
<xsd:element name•"tracked" type•"o-ex:requirementType"

substitutionGroup=""o-ex:requirementElement"/>
<!-- Declare all the RightsHolder Elements-->
<xsd:element names"fixedamount"

substitutionGroup="o-ex:rightsHolderElement">
<xsd:complexType>

<xsd:complexContent>
<xsd:extension base•"o-ex:rightsHolderType">

<xsd:sequence>
<xsd:element refs"o-dd:payment"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

</xsd:element>
<xsd:element name•"percentage"

substitutionGroup=""o-ex:rightsHolderElement">
<xsd:simpleType>

<xsd:restriction base•"xsd:decimal">
<xsd:minlnclusive values"O"/>
<xsd:maxlnclusive value="lOO"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<!-- Declare all the Context Elements-->
<xsd:simpleType name•"uriAndOrString">
<xsd:union memberTypes•"xsd:anyURI xsd:string"/>

</xad:aimpleType>
<xad:element name•"uid" type-"o-dd:uriAndOrString"

aubatitutionGroup-"o-ex:contextElement"/>
<xsd:element name•"role" type•"xsd:anyURI"

substitutionGroup-"o-ex:contextElement"/>
<xsd:element name•"name" type•"xsd:string"

substitutionGroup-•o-ex:contextElement"/>
<xsd:element name•"remark" type•"xsd:string"

substitutionGroup-"o-ex:contextElement"/>
<xsd:element name•"event" type•"xsd:string"

substitutionGroup-"o-ex:contextElement"/>
<xsd:element name•"pLocation" type•"xsd:string"

substitutionGroup-•o-ex:contextElement"/>
<xsd:element name•"dLocation" type•"xsd:anyURI"

substitutionGroup-"o-ex:contextElement"/>
<xsd:element name•"reference" type•"xsd:anyURI"

substitutionGroup-"o-ex:contextElement"/>
<xsd:element name•"vereion" type•"xsd:etring"

eubstitutionGroup-"o-ex:contextElement"/>
<xed:element name•"transaction" type•"xed:etring"

eubstitutionGroup-"o-ex:contextElement"/>
<xsd:element name•"eervice" type•"xsd:anyURI"

11ub11titutionGroup-"o-ex:contextElement"/>
<xed:element name•"date" type•"o-dd:dateType"

subetitutionGroup-"o-ex:contextElement"/>
<I-- Declare all the Constraint Elements-->

225

<xed:element name•"individual" type•"o-ex:constraintType"
eubstitutionGroup-"o-ex:constraintElement"/>

<xsd:element name•"group" type•"o-ex:conatraintType"
eubstitutionGroup-"o-ex:conatraintElement"/>

<xsd:element name•"cpu" type-"o-ex:constraintType"
subatitutionGroup-"o-ex:conatraintElement"/>

<xed:element name•"netvork" type•"o-ex:constraintType"
11ub11titutionGroup-"o-ex:con11traintElement"/>

<xsd:element name•"screen" type•"o-ex:constraintType"
subatitutionGroup-•o-ex:conatraintElement"/>

<xsd:element name•"storage" type•"o-ex:conatraintType"
subatitutionGroup-"o-ex:conatraintElement"/>

<xsd:element name•"memory" type•"o-ex:conetraintType"
eubetitutionGroup-"o-ex:conetraintElement"/>

<xed:element name•"printer" type•"o-ex:conatraintType"
eubatitutionGroup-•o-ex:conatraintElement"/>

<x11d:element name•"eoftvare" type•"o-ex:conetraintType"
eubetitutionGroup-"o-ex:constraintElement"/>

<x11d:element name•"hardvare" type•"o-ex:con11traintType"
eubstitutionGroup-"o-ex:conatraintElement"/>

<xsd:element name•"11patial" type-"o-ex:conatraintType"
substitutionGroup-"o-ex:conatraintElement"/>

<xad:element name•"quality" type-"o-ex:conatraintType"
eubetitutionGroup-"o-ex:conatraintElement"/>

226

<xsd:element name•"format" type="o-ex:constraintType"
substitutionGroulP"o-ex:constraintElement"/>

<xsd:element name=-"unit" type="o-ex:constraintType"
substitutionGroup-"o-ex:constraintElement"/>

<xsd:element name•"watermark" type•"o-ex:constraintType"
substitutionGroup-"o-ex:constraintElement"/>

<xsd:element name•"purpose" type-"o-ex:conetraintType"
substitutionGroup-"o-ex:constraintElement"/>

<xsd:element name•"induetry" type•"o-ex:conetraintType"
substitutionGroup-"o-ex:constraintElement"/>

<xed:element name•"count" type•"xsd:positivelnteger"
substitutionGroup-"o-ex:constraintElement"/>

<xad:element name•"range" substitutionGroup-"o-ex:constraintElement">
<xed:complexType>

<xed:complexContent>
<xed:extension base•"o-ex:constraintType">

<xsd:sequence>
<xed:element name•"min" type""xsd:decimal"

minOccurs"'"O"/>
<xed:element name="max" type•"xsd:decimal"

minOccurs="O"/>
</xsd:sequence>

</xsd:extenaion>
</xsd:complexContent>

</xed:complexType>
</xed:element>
<xad:element name•"datetime" type="o-dd:dateType"

subatitutionGroup-"o-ex:constraintElement"/>
<xed:eimpleType name•"dateAndOrTime">

<xed:union memberTypes•"xed:date xsd:dateTime"/>
</xsd:simpleType>
<xed:complexType namea"dateType">

<xsd:complexContent>
<xsd:extension base="o-ex:constraintType">

<xsd:choice>
<xsd:sequence>

<xsd:element name•"start" type•"o-dd:dateAndOrTime"
minOccurs="O"/>

<xsd:element name•"end" type•"o-dd:dateAndOrTime"
minOccurs="O"/>

</xsd:sequence>
<xsd:element namea"fixed" type•"o-dd:dateAndOrTime"

minOccurs="O"/>
</xsd:choice>

</xsd:extension>
</xsd:complexContent>

</xed:complexType>
<xsd:element name•"accumulated" type="xsd:duration"

substitutionGroup-"o-ex:constraintElement"/>
<xsd:element name="interval" type•"xsd:duration"

227

substitutionGroup-"o-ex:constraintElement"/>
<xsd:element name•"recontext" type'""xsd:boolean"

eubstitutionGroup-"o-ex:constraintElement"/>
<I-- Transfer Permission is defined as a ContainerType to enable complete
expression of rights in the Constraint -->
<xsd:element name•"transferPerm" substitutionGroup-"o-ex:container">

<xsd:complexType>
<xsd:complexContent>

<xsd:exteneion baeea"o-ex:containerType">
<xed:attribute name•"dovnstream" defaults"equal">

<xsd: simpleType>
<xsd:restriction base-"xsd:NMTOKEN">

<xsd:enumeration value•"equal"/>
<xed:enumeration value•"lees"/>
<xed:enumeration value•"notgreater"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

</xed:element>
</xsd:schema>

229

Chapter 10

Appendix B

10.1 CoSa Application Programming Inter-
face

This chapter describes the application programming interface of the generic
contract schema (CoSa). xoREL (see Section 6.3) is an implementation
of the CoSa APL For each method, an individual description is provided,
including its name, arguments, return value, and a short functional de-
scription. Remember that the abstract class RELContract actually provides
the CoSa API and serves as Facade for xoREL. Therefore, the methods de-
scribed below are the API methods of each implementation of the RELContract

class, e.g. DORI.Contract (see Section 6.3). Thus, the method prefix cosa rep-
resents an instance of any RELContract subclass (e.g. DORI.Contract).

cosa getObjects object-type

• Arguments:

- object-type: The name of any class that is a subclass of CoSaDbject.

The class has to be defined in the currently used contract schema.

• Description: This method returns all instances of the class object-type
that are existing in the current runtime CoSa.

• Return: List of fully-qualified objects that are instances of Class-
Name, or -1 if current runtime CoSa does not comprise any instances
of the class ClassN ame.

230

• XOTcl-Example: Defining a variable allContracts and initialising
it with (a list of) instances of the class CoSaContract in the current
runtime CoSa (value of allContracts e.g. : : contract001).

set allContracts [cosa getObjects CoSaContract]

cosa getRelatedObjects cosaObject ?relation? ?object-type?

• Arguments:

- cosaObject: The name of a fully-qualified CoSa object, from
which related objects shall be retrieved.

- relation: The way (i.e. role name) how the required objects stand
in relation with the cosaObject.

- object-type: The name of any class that is a subclass of CoSaObject.

The class has to be defined in the currently used contract schema.

• Description:
This method returns all instances related to cosaObject. The related
instance can be optionally filtered by either the relation, or by the
object-type of the related instance, or both.

• Return: List of fully-qualified _objects where the specified conditions
(subject ?predicate?
?object-type?) hold or -1 if no related objects are found, that meet
the specified conditions.

• XOTcl-Example: Set the value of allConstraints to all CoSa ob-
jects that are related to a certain permission object
(e.g. ::permission001) in the constraint_by manner:

set allConstraints [cosa ::permission001 constraint_by]

Get all objects related to the permission object:

set allObjects [cosa ::permission001]

Get all objects related to the permission object that are of the CoSa
type CoSaConstraint.

set allRelations [cosa ::permission001 1111 CoSaConstraint]

Get all objects related to the CoSaContract object ::contractOOl in
the agg_child manner that are of the CoSa type CoSaResource.

set allResources [cosa ::contract001 agg_child CoSaResource]

cosa getRelations cosaObject ?relation?

• Arguments:

231

- cosaObject: The name of a fully-qualified CoSa object, from
which related objects shall be retrieved. The object has to be
existent in the current runtime CoSa.

- relation: The name of a relation (e.g. has_perm) between two
CoSaObjects. All allowed relations can be found in the rdf-
description of the contract schema.

• Description:
This method returns the content of the relations attribute of of
cosaObj ect. The content is a list of list of {relation-type cosaObject)-
pairs. If the argument relation is specified, all pairs are returned
where relation equals relation-type.

• Return: List of {relation-type, related-cosaObject)-pairs, optionally
filtered by relation. If no relations are available or no fitting pair
can be found -1 is returned.

• XOTcl-Example: Defining a variable allRelations and initialising
it with all relations of the object : : contract001}.

set allRelations [cosa getRelations ::contract001]

cosa getRelationTypes cosaObject

• Arguments:

- cosaObject: The name of a fully-qualified CoSa object. The ob-
ject has to be existent in the current runtime CoSa.

• Description: This method returns a list of (all) relation-types of
cosaObject.

• Return: List of relation-types (e.g. has_perm). If no relations are
available -1 is returned.

• XOTcl-Example: Defining a variable all Types and initialising it with
all relation-types of the object : : contract001).

set allTypes [cosa getRelationTypes ::contract001]

232

cosa getRelObjectTypes cosaObject ?relation?

• Arguments:

- cosaObject: The name of a fully-qualified CoSa object. The ob-
ject has to be existent in the current runtime CoSa.

- relation: The name of a relation (e.g. has_perm). All allowed
relations can be found in the RDF-description of the contract
schema.

• Description: The method returns the object-types (classes) of all
CoSa objects related to cosaObject optionally filtered for a given
relation.

• Return: A list fully-qualified CoSa class names (e.g. : : CoSaResource)
-1 is returned if no relation, respectively no adequate relation has been
found in the current runtime CoSa.

• XOTcl-Example: Defining a variable getROTypes and initialising it
with all object-types related to : : contract001 in the agg_child-
manner).

set types [cosa getRelObjectTypes ::contract001 agg_child]

cosa hasRelation cosaObject relation

• Arguments:

- cosaObject: The name of a fully-qualified CoSa object. The ob-
ject has to be existent in the current runtime CoSa.

- relation: The name of a relation (e.g. has_perm). All allowed
relations can be found in the RDF-description of the contract
schema.

• Description: The method determines whether cosaObject has a re-
lation to a specific other instance or not.

• Return: This method returns a boolean value (either 1 or 0). 1 is
returned if cosaObject is related to other objects in the relation-
manner. If no objects of this relations are available O is returned.

• XOTcl-Example: Defining a variable has..relation and initialising it
with all relation-types of the object : : contract001).

set has..relation [cosa hasRelation ::contract001 agg_child]

cosa getAUAttributes cosaObject

• Arguments:

233

- coaaObject: The name of a fully-qualified CoSa object. The ob-
ject has to be existent in the current runtime CoSa.

• Description: This method returns all attributes of cosaObject.

• Return: A list of attribute names (e.g. uid, name, etc.). Returns an
empty list if the cosa object does not comprise any variables.

• XOTcl-Example: Defining a variable allAtts and initialising it with
all variable names of the object : :resource001).

set allAtts [cosa getAllAttributes ::contract001]

cosa getAttributeValue cosaObject attribute

• Arguments:

- cosaObject: The name of a fully-qualified CoSa object. The ob-
ject has to be existent in the current runtime CoSa.

- attribute: The name of an instance attribute (e.g. uid, name,
relation). All valid instance variable names can be found in the
RDF--description of the contract schema.

• Description: The method returns the value(s) of the attribute of
cosaObject. For example,

• Return: Returns the value of the respective instance attribute or -1 if
the attribute is not available with the respective cosaObject.

• XOTcl-Example: Defining an attribute uniqueID and initialising it
with the value of the attribute uid of the cosa object : :party001).

set uniqueID [cosa getAttributeValue ::party001 uid]

cosa selectObjects list attribute ?value?

• Arguments:

- list: A list of fully-qualified CoSa object names. The objects
have to be existent in the current runtime CoSa.

234

- attribute: The name of an instance variable (e.g. uid, name,
ROLE). All valid instance variable names can be found in the
RDF--description of the contract schema.

- value: A possible value of variable (e.g. isbn-12344566, "S.
Guth", "consumer").

• Description: With this method a list of cosa objects can be filtered
with respect to a certain attribute, respectively its value.

• Return: Returns a list of cosa objects that hold variable {with op-
tionally the respective value). An empty list is returned if no cosa
object in list can be found that meets these conditions.

• XOTcl-Example: Defining a variable consumers and initialising it
with all cosa objects that have the instance variable ROLE with the
value consumer.

set consumers [op selectObjects $parties ROLE consumer]

10.2 Extended CoSa Application Programming
Interface

Although all contract information can be retrieved with the generic API, it
might be desirable to extend the API by methods that cover some specific,
frequent queries. The following methods have been added to the CoSa
APL All methods are implemented with the core API described above, thus
additional API methods can be coded easily.

cosa getContracts

• Arguments: -

• Description: Within a rights expression several contracts can be avail-
able. That is, for example, if an ODRL document comprises several
<agreement> tags, respectively an XrML document comprises several
<grant> tags. This method goes through the document and returns all
contracts.

• Return: List of fully-qualifies CoSaContract objects, or -1 if actual
CoSa does not comprise any contract objects.

cosa getAssets contracts

• Arguments: -

235

- contracts: list of fully-qualified contract objects (e.g. ::odrlcOOl
::odrlc002)

• Description: This method returns all assets that are subject to a
contract in the list of contracts.

• Return: List of fully-qualifies CoSaResource objects, or -1 if actual
CoSa does not comprise any assets that are aggregated to the respec-
tive contract object(s).

cosa getConswners contract

• Arguments:

- contract: a single, fully-qualified contract object (e.g. ::odrlc0Ol)

• Description: Get list of all consumers that are related to the contract

object

• Return: List of all fully-qualified CoSaParty object names, that are
related to contract with the role "consumer".

cosa getRightsholders contract

• Arguments:

- contract: a single, fully-qualified contract object (e.g. ::odrlcOOl)

• Description: Get list of all rightsholders that are related to the contract

object

• Return: List of all fully-qualified CoSaParty object names, that are
related to contract with the role "seller" .

cosa getName anyObject

• Arguments:

- anyObject: fully-qualified object name of any class that has been
derived from the CoSaObjact class.
(e.g. ::odrlc00l, ::odrlcOOl::permission00l)

236

• Description: Get the value of the instance variable name of anyObject.

• Return: Name of instance variable name, e.g. print or John Doe.

cosa getUniqueID anyObject

• Arguments:

- anyObject: fully-qualified object name of any class that has been
derived from the CoSaObject class.
(e.g. ::odrlc00l, ::odrlc001::permission001)

• Description: Get the value of the instance variable uid of anyObject.

• Return: Name of instance variable uid, e.g. an URN, ISBN, or DOI.

cosa getConstraints permission

• Arguments:

- permission: fully-qualified object name of a CoSaPermission ob-
ject that has been derived from the CoSaObject class.
(e.g. ::odrlc001::permission001)

• Description: Get all CoSaConstraint objects that are related to
permission

• Return: List of CoSaConstraint objects.

cosa getDuties party

• Arguments:

- party: fully-qualified object name of a CoSaParty object that has
been derived from the CoSaObject class. (e.g. ::odrlc001::party001)

• Description: Get all CoSaDuty objects that are related to party

• Return: List of CoSaDuty objects.

cosa getPermissions party

• Arguments:

237

- party: fully-qualified object name of a CoSaParty object that has
been derived from the CoSaObject class. (e.g. ::odrlc00l::partyOOl)

• Description: Get all CoSaPermission objects that are related to
party

• Return: List of CoSaPermission objects.

10.3 Wrapper / U nwrapper Application Pro-
gramming Interface

This chapter describes the application programming interface of the rights
expression wrapper respectively unwrapper component (see Section 6.4).
For the methods, an individual description is provided, including its name,
arguments, return value, and a short functional description. The class
Wrapper and Unwrapper serves as Facade for the reWrapper respectively
reUnwrapper component. Thus, the method prefix w and unw represents an
instance of a Wrapper respectively Unwrapper class.

w init re

• Arguments:

- re: the rights expression that shall be wrapped.

• Description: Creates a new wrapper instance and initiated it with a
rights expression.

• Return: -

• XOTcl-Example:
Wrapper w $re-location

w wrap ?key?

• A7Yuments:

- key: the private key which shall be used for the digital signature
if not the default key (e.g. platform key) is taken.

238

• Description: Invokes all methods, that are required to wrap the rights
expression for a secure transport.

• Return: Returns true, if wrapping was successful.

• XOTcl-Example:

w $sign-key

w hash re

• Arguments:

- re: the rights expression of which a hash shall be created. The
default hash algorithm is SHAl.

• Description: Create a hash of the document that was given as para-
meter re.

• Return: Returns a SHA! hash.

• XOTcl-Example:

w hash $re

w sign ?key?

• Arguments:

- key: the private key which shall be used for the digital signature
if not the default key (platform key) is taken.

• Description: Digitally signs the rights expression.

• Return: Returns the digital signature.

• XOTcl-Example:

w sign $re

239

w pack re hash signature

• Arguments:

- re: the rights expression that shall be exchanged.

- huh: the hash of the rights expression given as parameter re.

- signature: the digital signature or the rights expression given as
parameter re.

• Description: Packs rights expression, hash, and signature in a zip
archive.

• Return: Returns the archive including rights expression, hash, and
signature.

• XOTcl-Example:
w $re $hash $sig

unw init archive

• A1!Juments:

- archive: the zip archive including rights expression, signature,
and hash that shall be unwrapped.

• Description: Creates a new unwrapper instance and initiated it with
the zip archive given as parameter archive.

• Return: Returns true if the instance was successfully created.

• XOTcl-Example:
Unwrapper unw $archive

unw unwrap ?cert?

• A1!Juments:

- cert: the certificate, including the public key, with which the
digital signature shall be verified (if not the default certificate
(e.g. platform certificate) is taken.

• Description: Invokes all methods, that are required to unwrap the
rights expression for further processing.

240

• Return: Returns true, if the unwrapping was successful.

• XOTcl-Example:
unw unwrap $cert

unw unpack

• Arguments: -

• Description: Unpacks the rights expression, the hash an the digital
signature from the zip archive. The zip archive is retrieved from an
instance variable of the current unwrapper object.

• Return: Returns the rights expression in plain text, and stores the
signature and the hash as instance variables of the current unwrapper
object.

• XOTcl-Example:
unw unpack

unw verify-Signature ?cert?

• Arguments:

- cert: the certificate, including the public key, with which the
digital signature shall be verified (if not the default certificate
(e.g. platform certificate) is taken.

• Description: Verifies the digital signature of the rights expression.

• Return: Returns true if the signature is valid.

• XOTcl-Example:
unw verifySignature $cert

unw hash ?re?

• Arguments:

- re: the rights expression of which a hash shall be created. The
default hash algorithm is SHAl.

241

• Description: Creates a hash of the rights expression that was given
as parameter re. The rights expression can also be retrieved from an
instance variable of the current unwrapper object.

• Return: Returns a SHAl hash.

• XOTcl-Example:
unw hash $re

unw verify Integrity re signedHash

• Arguments:

- re: the rights expression of which the integrity shall be verified.

- aignedH11.Bh: the hash that has been delivered within the zip archive.

• Description: Creates a new hash from the rights expression given in
parameter re and compares it with the hash that has been delivered
within the zip archive.

• Return: Returns true if the two hashes are identical, i.e. the integrity
has been approved.

• XOTcl-Example:
unw verifySignature $re $hash

243

Bibliography

[AGTOl] A. Anagnostopoulos, M.T. Goodrich, and R. Tamassia. Persis-
tent Authenticated Dictionaries and Their Applications. Lec-
ture Notes in Computer Science, 2200:379 f, 2001.

[AK96] R. Anderson and M. Kuhn. Tamper Resistance - a Caution-
ary Note. In Proceedings of the 2nd USENIX Workshop on
Electronic Commerce, November 1996.

[Ame0l] American Bar Association (ABA). Click-Through Agree-
ments: Strategies for Avoiding Disputes on Validity of Assent.
White Paper, Business Law Section Working Group on Elec-
tronic Contracting Practices, http://www.abanet.org/, 2001.

[ASBA99] C. Avgerou, J. Siemer, and N. Bjorn-Andersen. The academic
field of information systems in europe. European Journal of
Information Systems, 8:2:136-153, 1999.

[AssOO] Association of American Publishers, Inc. Digital Rights Man-
agement for Ebooks: Publisher Requirements. Technical Re-
port, http://www.publishers.org/digital/drm.pdf, 2000.

[Bak98] Y. Bakos. The Emerging Role of Electronic Marketplaces on
the Internet. Communications of the ACM, 41 (8), August
1998.

[BBF+o2] M. Bartel, J. Boyer, B. Fox, B. LaMacchia, and E. Simon.
XML-Signature Syntax and Processing. W3 Consortium Rec-
ommendation, http://www.w3.org/TR/xmldsig-core/, Feb-
ruary 2002.

244

[BG00] D. Brickley and R.V. Guha. Resource description framework
(RDF) schema specification 1.0. http://www.w3.org/TR/rdf-
schema/, March 2000. W3 Consortium Candidate Recommen-
dation.

[BirOlJ S. Bird. Machine-Readable Rights Information. White Paper,
http://www.ldc.upenn.edu/sb/, October 2001.

[BJPW99] A. Beugnard, J.M. Jezequel, N. Plouzeau, and D. Watkins.
Making Components Contract Aware. IEEE Computer Mag-
azine, 32(7), July 1999.

[BKKM97] H.U. Buhl, W. Koenig, H. Krcmar, and P. Mertens. Ger-
man Perspectives on Information Systems: Research Topics,
Methodological Challenges, and Patterns of Exchange with IS
Practice. In International Conference on Information Systems
{ICIS), pages 529-530, 1997.

[B194] T. Berners-Lee. Universal resource identifiers in www. In-
ternet Engineering Task Force (IETF), RFC 1630, http://
www.w3.org/ Adressing/rfc1630.txt, June 1994.

[BLFF96] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Trans-
fer Protocol - HTTP /1.0. Internet Engineering Task Force
(IETF) RFC 1945, Standards Track, http://www.ietf.org/
rfcs/rfc1945.txt, May 1996.

[BLFM98] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Re-
source Identifiers (URI): Generic Syntax. Internet Engineer-
ing Task Force {IETF) RFC 2396, Standards Track, http://
www.ietf.org/rfcs/rfc2396.txt, August 1998.

[BM0l] P.V. Biron and A. Malhotra. eXtenisble Markup Language
(XML) Schema Part 2: Datatypes. W3 Consortium Rec-
ommendation, http://www.w3.org/TR/xmlschema-2/, May
2001.

[Bor02J J. Bormans. MPEG-21 Requirements Version 1.3.
Technical Report ISO/IEC JTC 1/SC 29/WG 11/
N5232, Moving Pictures Expert Group (MPEG), http:/
/mpeg.telecomitalialab.com/, Oktober 2002.

245

[BPSMMOO] T. Bray, J. Paoli, C.M. Sperberg-McQueen, and E. Maler.
eXtenisble Markup Language (XML) 1.0 (Second Edi-
tion). W3 Consortium Candidate Recommendation, http:/
/www.w3.org/TR/XML/Core/, October 2000.

(BR02]

(BRB99]

(CCL+03]

[CD99]

(CM03]

[ConOO]

(Cox94]

(CSW97]

(DA99]

C. Barias and G. Rust. MPEG 21 Part 6: Rights Data
Dictionary. Technical Report ISO/IEC JTC 1/SC 29/
WG 11/N4943, Moving Pictures Expert Group, http://
mpeg. telecomitalialab.com/, July 2002.

A. Bertsch, K. Rannenberg, and H. Bunz. Sicherheitsin-
frastrukturen Grundlagen, Realisierungen, Rechtliche As-
pekte, Anwendungen, chapter Nachhaltige Uberpriifbarkeit
digitaler Signaturen, pages 39-50. Vieweg Verlag, Wiesbaden,
1999.

C.N. Chong, R. Corin, Y.W. Law, S. Etalle, and P.H. Hartel.
LicenseScript - A Novel Digital Rights Language. In Proceed-
ings of the International Workshop for Technology, Economy,
Social and Legal Aspects of Virtual Goods, May 2003.

J. Clark and S. DeRose. XML Path Language (XPath). http:/
/www.w3.org/TR/xpath, November 1999. W3 Consortium
Recommendation.

E. Christiaanse and M.L. Markus. Participation in Col-
laboration Electronic Marketplaces. In Proceedings of the
36th Hawaii International Conference on System Sciences
(HICSS), Hawaii, USA , January 2003.

ContentGuard Inc. Extensible rights Markup Language
(XrML) Version 2.0. Technical Specification, http://
www.xrml.org/, 2000.

B. Cox. Superdistribution? Wired Magazine, September 1994.

S.Y. Choi, C.O. Stahl, and A.B. Whinston. The economics
of electronic commerce. Macmillan Technical Publishing, IN,
USA, 1997.

T. Dierks and C. Allen. The Transport Layer Security
(TLS) Protocol, Version 1.0. Internet Engineering Task Force
(IETF) RFC 2246, Standards Track, http://www.ietf.org/
rfcs/rfc2246.txt, January 1999.

246

(Dav89]

(Deu00a]

[Deu00b]

(Deu0la]

[DeuOlb]

F.D. Davis. Perceived usefulness, perceived ease of use, and
user acceptance of information technology. MIS Quarterly,
pages 319 - 340, September 1989.

Deutsches Bundesministerium der Justiz. Bii.rgerliches Geset-
zbuch (BGB) 1., chapter Fernabsatzgesetz (FernAbsG), pages
897-909. 2000.

Deutsches Bundesministerium der Justiz. Bii.rgerliches Geset-
zbuch (BGB) 1., chapter Novelle des Signaturgesetzes (En-
twurf eines Gesetzes iiber Rahmenbedingungen fiir elektronis-
che Signaturen und zur Anderung weiterer Vorschriften), page
876. May 2000.

Deutsches Bundesministerium der Justiz. Gesetz zum Elektro-
nischen Geschaftsverkehr (EGG). Bundesgesetzblatt, 70:3721,
December 2001.

Deutsches Bundesministerium der Justiz. Gesetz zur An-
passung der Formvorschriften des Privatrechts und anderer
Vorschriften an den modernen Rechtsgeschaftsverkehr. Bun-
desgesetzblatt, Juli 2001.

(Dig03] Digital World Services, LLC. The ADo2RA System. White Pa-
per, http://www.dwsco.com/ps..adora.html/, January 2003.

[DK0l] J. Duhl and S. Kevorkian. Understanding ORM Sys-
tems. White Paper, IDC. Technical White Paper, http://
www.intertrust.com/, 2001.

[DubOl] Dublin Core Metadata Initiative. Doublin Core Metadata
Element Set, Version 1.1. http://dublincore.org/documents/
<lees/, 2001.

[DWW03] T. DeMartini, X. Wang, and B. Wragg. MPEG 21 -
Part 5, Rights Expression Language. http://mpeg.tilab.com/
workingdocuments/mpeg-21/rel/, March 2003.

[EJ0l] D. Eastlake and P. Jones. Secure Hash Algorithm (SHAl).
Internet Engineering Task Force (IETF) RFC 3174, Standards
Track, http://www.ietf.org/rfcs/rfc3174.txt, September 2001.

[Eri0l] J.S. Erickson. Information Objects and Rights Management.
A Mediation-based Approach to ORM Interoperability. D-Lib
Magazine, 7:4, 2001.

247

[Eri02] J.S. Erickson. OpenDRM: A Standards Framework for Dig-
ital Rights Expression, Messaging and Enforcement. Tech-
nical Report, Hewlett Packard, http://xml.coverpages.org/
EricksonOpenDRM200020902. pdf, 2002.

[Eur97] European Union. Directive 97 /7 /EC of the European Parlia-
ment and of the Council on the protection of consumers in
respect of distance contracts. Official Journal of the European
Communities, May 1997.

[Eur99] European Union. Directive 1999/93/EC of the European Par-
liament and of the Council on a Community Framework for
Electronic Signatures. Official Journal of the European Com-
munities, December 1999.

(EurOO] European Union. Directive 2000/31/EC of the European Par-
liament and of the Council on certain legal aspects of informa-
tion society services, in particular electronic commerce, in the
Internal Market {Directive on electronic commerce). Official
Journal of the European Communities, June 2000.

(Fed02] H. Federrath. Scientific evaluation of drm systems. In Digi-
tal Rights Management (DRM) Conference, Berlin/Germany,
January 2002.

[FFSS0l] J. Feigenbaum, M.J. Freedman, T. Sander, and A. Shostack.
Security and privacy in digital rights management. In Proceed-
ings of ACM CCS-8 Workshop DRM: Privacy Engineering for
Digital Rights Management Systems, pages 76-106, 2001.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Ma.sinter,
P. Leach, and T. Berners-Lee. Hypertext Transfer Protocol
- HTTP /1.1. Internet Engineering Task Force (IETF) RFC
2616, Standards Track, http://www.ietf.org/rfcs/rfc2616.txt,
June 1999.

[FHBH+99] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence,
P. Leach, A. Luotonen, and L. Stewart. HTTP Authentica-
tion: Basic and Digest Access Authentication. Internet Engi-
neering Task Force {IETF) RFC 2617, Standards Track, http:/
/www .ietf.org/rfcs/rfc2617. txt, June 1999.

[FKK96] A.O. Freier, P. Karlton, and P.C. Kocher. The SSL Protocol,
Version 3.0. Internet Draft, March 1996.

248

[FKT+99) K. Fujimura, H. Kuno, M. Terada, K. Matsuyama, Y. Mizuno,
and J. Sekine. Digital-ticket---controlled digital ticket circula-
tion. In Proceedings of the 8th USENIX Security Symposium,
Washington D.C./USA, page 229238, August 1999.

[FNS99) K. Fujimura, Y. Nakajima, and J. Sekine. Xml-ticket:
Generalized digital ticket definition language. NTT Infor-
mation Sharing Platform Laboratories, http://www.w3.org/
DSig/signed-SML99 / pp% slashNTT ..xmLticket.html, 1999.

[Fra99] U. Frank. Wirtschaftsinformatik und Wissenschaftstheo-
rie: Bestandsaufnahme und Perspektiven., chapter Zur Ver-
wendung formaler Sprachen in der Wirtschaftsinformatik:
Notwendiges Merkmal eines wissenschaftlichen Angspruchs
oder Ausdruck eines i.ibertriebenen Szientismus?, pages 127-
160. Wiesbaden: Gabler, 1999.

[FS92] J. Farrell and G. Saloner. Converters, Compatibility, and the
Control of Interfaces. Journal of Industrial Economics, 40:1:9-
35, 1992.

[FSG+Ol] D.F. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn, and
R. Chandramouli. Proposed NIST Standard for Role-Based
Access Control. ACM Transactions on Information and Sys-
tem Security, 4(3), August 2001.

[GHM00] A. Goodchild, C. Herring, and Z. Milosevic. Businesss Con-
tracts for B2B. In Proceedings of the 9th International Confer-
ence Information Systems {!SD), Kristiansand, Norway, Au-
gust 2000.

[GHVJ94] E. Gamma, R. Helm, J. Vlissides, and R. Johnson. Design
Patterns: Elements of Reusable Object Oriented Software. Ad-
dison Wesley Longman, Inc., October 1994.

[Gil93] G. Gilder. Metcalfe's law and legacy. Forbes ASAP, September
1993.

[GK02] S. Guth and E. Koeppen. Electronic Rights Enforcement in
Leaning Media. In Proceedings of the IEEE International Con-
ference on Advanced Learning Technologies, Kazan/Russland,
September 2002.

249

(GNZ00] M. Goedicke, G. Neumann, and U. Zdun. Design and Im-
plementation Constructs for the Development of Flexible,
Component-Oriented Software Architectures. In Proceeding
of the Second International Symposium on Generative and
Component-Based Software Engineering, Erfu,rt, Gennany,
2000.

[GP03] E.E. Grandon and J.M. Pearson. Perceived Strategic Value
and Adoption of Electronic Commerce: Am Empirican Study
of Small and Medium Sized Businesses. In Proceedings of
the 36th Hawaii International Conference on System Sciences
(HICSS}, January 2003.

[GSSGOO] M. Gisler, K. Stanoevska-Slabeva, and M. Greunz. Legal As-
pects of Electronic Contracts. In Proceeding of the Conference
for Infrastructures for Dynamic B'll,Siness-to-B'/1,Siness Service
Outsourcing (IDSO'00}, Stockholm, Sweden, June 2000.

[GSSS00] M. Greunz, B. Schopp, , and K. Stanoevska-Slabeva. Sup-
porting Market Transaction through XML Contracting Con-
tainers. In Proceedings of the Americas Conference on Infor-
mation Systems (AMC/SJ, August 2000.

[GSZ03] S. Guth, B. Simon, and U. Zdun. A Contract and Rights
Management Framework Design for Interacting Brokers. In
Proceedings of the 36th Hawaii International Conference on
System Sciences {HICSS), January 2003.

[Gut03] S. Guth. Digital Rights Management: Technological, Econom-
ical, Legal, and Political Aspects, chapter A Sample DRM Sys-
tem, pages 150-161. Springer, November 2003.

(GWWOl] C. Gunter, S. Weeks, and A. Wright. Models and Languages
for Digital Rights, Technical Report. White Paper, Intertrust
Star Lab, 2001.

[HE96] L.M. Hitt and E.Brynjolfsson. Productivity, business prof-
itability, and consumer surplus: Three different measures of
information technology value. MIS Quarterly, pages 121 -
142, June 1996.

(HF98] T. Howes and F.Dawson. vCard MIME Directory Profile.
http://www.ietf.org/rfc/rfc2426.txt, September 1998. Inter-
net Engineering Task Force {IETF), RFC 2426.

250

[Hol99]

[Ian0lj

[Ian02a]

[Ian02b]

[Ian03a]

[Ian03b]

[Ian03c]

[IBD95]

[IBM02]

[IEE02]

[ISO86]

A. Holl. Wirtschaftsinformatik und Wissenschaftstheorie:
Bestandsaufnahme und Perspektiven., chapter Empirische
Wirtschaftsinformatik und evolutionare Erkenntnistheorie,
pages 163 - 207. Wiesbaden: Gabler, 1999.

R. Iannella. Digital Rights Management (DRM) Architectures.
D-Lib Magazine, 7 /7, June 2001.

R. Iannella. Colis ODRL Metadata Profile. Technical Report,
IPR Systems, http://www.iprsystems.com/, August 2002.

R. Iannella. Open Digital Rights Language (ODRL), Version
1.1. Technical Specification, ODRL Initiative, http://odrl.net,
August 2002.

R. Iannella. ANTA LOX Technical Functional
Requirements. Technical Report, IPR Systems,
http://www.iprsystems.com/, September 2003.

R. Iannella. Mobile Digital Rights Management. Technical
Report, IPR Systems, http://www.iprsystems.com/, October
2003.

R. Iannella. Trading Learning Objects. In Proceedings of the
EDUCAUSE in Australasia Conference, Adelaide/Australia,
May 2003.

A.L. Iacovou, I. Benbasat, and A. Dexter. Electronic data
interchange and small organizations: Adoption and impact of
technology. MIS Quarterly, pages 465-485, December 1995.

IBM Corporation. Emms software suite. White Paper, http:/
/www.ibm.com/software/data/emmsash, November 2002.

IEEE Learning Technology Standards Committee (LTSC).
Draft Standard for Learning Object Metadata (LOM), Final
Draft, IEEE 1484.12.1-2002. http://ltsc.ieee.org/doc/wg12/
LOM_l484_12_LvLFinal..Draft.pdf, July 2002.

ISO - International Organisation for Standardization. Inter-
national Standard ISO 8879, Information Processing - Text
and office systems - Standard Generalized Markup Language
(SGML). available at: http://www.iso.ch/, June 1986.

251

[ISO92] ISO - International Organisation for Standardization. Inter-
national Standard IS 2108: 1992, International Standard Book
Numbering (ISBN). available at: http://www.iso.ch/, 1992.

[ISO95] ISO - International Organisation for Standardization. Interna-
tional Standard IS 1117!}-5, Information Technology Specifi-
cation and Standardization of Data Elements, Part 5: Naming
and Identification Principles for Data Elements. available at:
http://www.iso.ch/, 1995.

[ISO98] ISO - International Organisation for Standardization. Inter-
national Standard IS 3297:1998, International Standard Serial
Number (ISSN). available at: http://www.iso.ch/, 1998.

[IT93a] ITU-T. ITU-T Recommendation X.500: Information
Technology-Open Systems Interconnection-The Directory:
Overview of Concepts, Models and Services, 1993.

[IT93b] ITU-T. ITU-T Recommendation X.509: Information Tech-
nology - Open Systems Interconnection - The Directory: Au-
thentication Framework, 1993.

[Kap96] M.A. Kaplan. IBM Cryptolopes, SuperDistribution and Digi-
tal Rights Management. Technical Report, IBM Corporation,
1996.

[KF02] G. Kerscher and J. Fruchterman. The Soundproof Book:
Exploration of Rights conflict and Access to Commer-
cial EBooks for People with Disabilities. White Paper,
DAISY Consortium and Benetech Initiative, available at:
http://www.abanet.org/, August 2002.

[KGV99) M. Koetsier, P. Grefen, and J. Vonk. Contract Model. Tech-
nical Report, CrossFlow - EC Research Project, http://
www.crossflow.org/public/pubdel/D4b.pdf, August 1999.

[KGV00] M. Koetsier, P. Grefen, and J. Vonk. Contracts for Cross-
Organizational Workflow Management. In Proceedings of the
1st International Conference on Electronic Commerce and
Web Technologies, London, UK, pages 110-121, 2000.

[KHvP95) W. Koenig, A. Heinzl, and A. von Poblotzki. Die
zentralen forschungsgegenstiinde der wirtschaftsinformatik.
Wirtschaftsinformatik, 37, 1995.

252

[KKK+95] H. Krcmar, W. Koenig, K. Kurbel, D. B. Pressmar, A. Scheer,
and W. Stucky. Panel: Current Research and Practice in Infor-
mation Systems in Germany. In Third European Conference on
Information Systems, Athens,Greece, pages 1295-1297, 1995.

[KKL +02] A. Keller, G. Kar, H. Ludwig, A. Dan, and J.L. Hellerstein.
Managing Dynamic Services: A Contract Based Approach to a
Conceptual Architecture. In Proceedings of the 8th IEEE/IFIP
Network Operations and Management Symposium {NOMS),
April 2002.

[KL89] S. Kent and J. Linn. Privacy enhancement for internet elec-
tronic mail: Part II - certificate-based key management; RFC
1114. Internet Request for Comments, (1114), 1989.

[KL02] A. Keller and H. Ludwig. Defining and Monitoring Service
Level Agreements for dynamic e-Business. In Proceedings of
the 16th System Administration Conference (LISA), Philadel-
phia, USA, November 2002.

[KM00] D. Konstantas and J.H. Morin. Agent-based Commercial Dis-
semination of Electronic Information. Computer Networks.
The International Journal of Computer and Telecommunica-
tions Networking, pages 753-765, May 2000.

[Kop99] 0. Koppius. Dimensions of Intangible Goods. In Proceedings of
the 32nd Hawaii International Conference on System Sciences
(HICSS), January 1999.

[KS94] M.L. Katz and C. Shapiro. System competition and network
effects. Journal of Economic Perspectives, 8:2:93-115, 1994.

[LA03] J. Loewer and R. Ade. tDOM (DOM Implementation). avail-
able at: http://www.tdom.org/, 2003.

[Lan81] C.E. Landwehr. Formal Models for Computer Security. ACM
Computing Surveys, 13(3), September 1981.

[LDF+o2] H. Ludwig, A. Dan, R. Franck, A. Keller, and R.P. King.
Web Service Level Agreement (WSLA) Language Specifica-
tion. Technical Report, IBM Corporation, July 2002.

[LesOl] L. Lessig. The Future of Ideas. Random House, Inc., 2001.

253

(LHM95] F. Lehner, K. Hildebrand, and R. Maier. Wirtschaftsinfor-
matik: Theoretische Grundlagen. Hanser, 1995.

(LMSZ00] A.L. Lederer, D.J. Maupin, M.P Sena, and Y. Zhuang. The
technology addeptance model and the World Wide Web. De-
cision Support Systems, 29:269-282, 2000.

(LS99) 0. Lassila and R.R. Swick. Resource description framework
(RDF) model and syntax specification. http://www.w3.org/
TR/REC-rdf-syntax/, February 1999. W3 Consortium Rec-
ommendation.

(LTM+oo) D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural Support for Copy
and Tamper Resistant Software. In Proceedings of the 6th In-
ternational Conference on Architectural Support for Program-
ming Languages and Operating Systems, November 2000.

(MAR03) MARC Advisory Committee. MARC Code List for Relators,
Sources, Description Conventions. http://www.loc.gov/marc/
relators/, January 2003.

(MB95) Z. Milosevic and A. Bond. Electronic Commerce on the Inter-
net: What is Still Missing? In Proceedings of the 5th Conj.
of the Internet Society, Honolulu, USA, pages 245--254, June
1995.

(MB03] L.G. Meredith and S. Bjord. Contracts and Types. Commu-
nications of the ACM, 46:10:41-47, October 2003.

(MH02) P. Mertens and L.J. Heinrich. Entwicklungen der Betrieb-
swirtschaftslehre, chapter Wirtschaftsinformatik - Ein inter-
disziplinares Fa.ch setzt sich <lurch, pages 476-489. Schaffer-
Poeschel Verlag Stuttgart, 2002.

(Mic03] Microsoft Corporation. Understanding how Windows
Media Rights Manager Works. White Paper, http://
msdn.microsoft.com/library /, 2003.

(MJP02] Z. Milosevic, A. Jsang, and M.-A. Patton. Discretionary En-
forcement of Electronic Contracts. In Proceedings of the 6th
IEEE International Enterprise Distributed Object Computing
Conference {EDOC) Lausanne, Switzerland, August 2002.

254

[MN93] G. Medvinsky and C. Neuman. NetCash: A Design for Practi-
cal Electronic Currency on the Internet. In Proceedings of the
ACM Conference on Computer and Communications Security
(CCS), November 1993.

[Moa97] S. Moats. Urn syntax RFC 2141. IETF, Network Working
Group: Standards Track, May 1997.

[MSM0l] M. Morciniec, M. Salle, and B. Manahan. Towards Regulat-
ing Electronic Communities with Contracts. White Paper,
Hewlett Packard Laboratories Bristol, May 2001.

(Nat00] National Information Standards Organization (NISO). Syn-
tax for the Digital Object Identifier. http://www.niso.org/
standards/, December 2000.

[NCL +03] S. Neal., J. Cole, P. F. Linington, Z. Milosevic, S. Gibson, and
S. Kulkarni. Identifying requirements for Business Contract
Language: a Monitoring Perspectiv. In Proceedings of the 1th
IEEE International Enterprise Distributed Object Computing
Conference (EDOC), Brisbane, Australia, September 2003.

[NeyOl] E. Neylon. First Steps in an Information Commerce Economy.
D-Lib Magazine, 7, January 2001.

(NJRWOl] H.A. Napier, P.J. Judd, O.N. Rivers, and S.W. Wagner. Cre-
ating a Winning E-business. Course Technology, Cambridge,
MA, USA, 2001.

[Nok0l] Nokia Mobile Phones. Digital Rights Management and Su-
perdistribution of Mobile Content. White Paper, http://
www.nokia.com/, 2001.

[NS0l] G. Neumann and M. Strembeck. Design and Implementation
of a Flexible RBAC-Service in an Object-Oriented Scripting
Language. In Proceedings of the 8th ACM Conference on Com-
puter and Communications Security (CCS), November 2001.

[NS03a] G. Neumann and M. Strembeck. An Approach to Engineer
and Enforce Context Constraints in an RBAC Environment.
In Proceedings of the 8th ACM Symposium on Access Control
Models and Technologies (SACMAT), June 2003.

[NS03b]

[NZ99a]

[NZ99b]

[NZOOa]

[NZOOb]

[oAPIOl]

[Oct02]

[OLP02]

[Ous94]

[Pet03]

255

G. Neumann and M. Strembeck. An approach to engineer
and enforce context constraints in an rbac environment. In
Proceedings of 8th ACM Symposium on Access Control Models
and Technologies (SACMAT), Como, Italy, June 2003.

G. Neumann and U. Zdun. Enhancing object-based sys-
tem composition through per-object mixins. In Proceedings
of Asia-Pacific Software Engineering Conference (APSEC),
Takamatsu/Japan, December 1999.

G. Neumann and U. Zdun. Implementing object-specific de-
sign patterns using per-object mixins. In Proceedings of Sec-
ond Nordic Workshop on Software Architecture (NOSA), Ron-
neby/Sweden, August 1999.

G. Neumann and U. Zdun. High-Level Design and Architec-
ture of an HTTP-Based Infrastructure for Web Applications.
World Wide Web Journal, 3(1), 2000.

G. Neumann and U. Zdun. XOTcl, an Object-Oriented Script-
ing Language. In Proceedings of Tcl2k: 7th USENIX Tcl/Tk
Conference, February 2000.

Association of American Publishers Inc. Digital Rights Man-
agement for Ebooks. http://www.publishers.org/, January
2001.

Octalis S.A. Custom Digital Rights Language (CORL), Ver-
sion 2.6. Technical Specification, http://octalis.com/R+D/
rd.htm, June 2002.

A. Osterwalder, S.B. Lagha, and Y. Pigneur. An ontology for
developing e--business models. In Proceedings of the Interna-
tional Conference on Decision Making and Decision Support
in the Internet Age {DSiage), Ireland, July 2002.

J.K. Ousterhout. Tel and the Tk Toolkit. Addison-Wesley,
1994.

F.A.P. Petitcolas. Digital Rights Management: Technological,
Economical, Legal, and Political Aspects, chapter Digital Wa-
termarking, pages 81-92. Springer, November 2003.

256

(PJ02]

(Pos80]

[Pos81a]

(Pos81b]

(PR99]

(PS99]

(PS02a]

(PS02b]

(RB99)

(Rig02]

(Rig03]

A. Powell and P. Johnston. Guidelines for implementing
Dublin Core in XML. Technical Report, Dublin Core Meta-
data Initiative, http://dublincore.org/, December 2002.

J. Postel. User Datagram Protocol (UDP). Internet Engineer-
ing Task Force (IETF), Internet Requests for Comments, No.
768, August 1980.

J. Postel. Internet Protocol (IP). Internet Engineering Task
Force (IETF), Internet Requests for Comments, No. 791, Sep-
tember 1981.

J. Postel. Transmission Control Protocol (TCP). Internet
Engineering Task Force (IETF), Internet Requests for Com-
ments, No. 793, September 1981.

J.S. Park and R.Sandhu. Smart Certificates: Extending X.509
for Secure Attribute Services on the Web. In Proceedings
of 22nd National Information Systems Security Conference
(NISSC), October 1999.

J.S. Park and R. Sandhu. RBAC on the Web by Smart Cer-
tificates. In Proceedings of the A CM Workshop on Role-Based
Access Control, October 1999.

J. Park and R. Sandhu. Originator Control in Usage Control.
In Proceedings of the 3rd International Workshop on Policies
for Distributed Systems and Networks, June 2002.

J. Park and R. Sandhu. Towards Usage Control Models: Be-
yond Traditional Access Control. In Proceedings of the 7th
ACM Symposium on Access Control Models and Technologies
(SACMAT}, June 2002.

G. Rust and M. Bride. The <indecs> Metadata
Model. Technical Specification, MUZE - EDitEUR, http://
www.editeur.org/, July 1999.

Rightscom Ldt. A Standard Rights Data Dictionary.
White Paper, The <indecs>rdd Consortium, http://
www.rightscom.com/, May 2002.

Rightscom Ldt. The MPEG-21 Rights Expression Language.
Technical Report, http://www.rightscom.com/, July 2003.

257

(Riv97] L.R. Rivest. Financial Cryptography, chapter Electronic Lot-
tery Tickets as Micropayments, page 307314. Springer Verlag,
November 1997.

(RTM02] B. Rosenblatt, B. Trippe, and S. Mooney. Digital Rights Man-
agement: Business and Technology. M&T Books, New York/
USA, 2002.

[RvdV04] S. Royer and R. van der Velden. Economics, E-Commerce
and Strategy Development - Resources and Rent Creation for
Digital Good Providers in the Internet. International Journal
of Management and Decision Making, 2004.

(SacOO] M. Sachs. Electronic Trading-Partner Agreement for E-
Commerce. Pre-submission Draft, Version: 1.0.3. IBM
T. J. Watson Research Center, USA, http://www.ibm.com/
developer/xml/tpaml/tpaspec.pdf, January 2000.

(San96] R.S. Sandhu. Roles versus Groups. In Proceedings of ACM
Workshop on Role-Based Access Control, Part I, MD, USA,
1996.

(SB02] B. Shand and J. Bacon. Policies in Accountable Contracts. In
Proceedings of the 3rd International Workshop on Policies for
Distributed Systems and Networks, June 2002.

(SCFY96] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman.
Role-based access control models. IEEE Computer, 29(2},
February 1996.

[Sch71] W. Schramm. The Nature of Communication Between Hu-
mans. In: The Process and Effects of Mass Communication.
University of Illinois Press, 1971.

(Sch79] B. Schneier. Applied Cryptography, volume Second Edition.
John Wiley & Sons, 1979.

(Sch03] C. Schinagl. Erfinderleitfaden: Hinweise fiir Entwickler und
Erfinder in der angewandten Forschung und Enticklung zum
Thema Patentrecht und Patentrecherchen. Technical Report,
Johanneum Research, http://www.joanneum.at/, September
2003.

258

[SD00] P. Samualson and R. Davis. THE DIGITAL DILEMMA: A
Perspective on Intellectual Property in the Information Age.
In Proceedings of the 28th Annual Telecommunications Policy
Research Conference, Virginia, USA, September 2000.

[SDN+oo] M. Sachs, A. Dan, T. Nguyen, R. Kearney, H. Shaikh, and
D. Diaz. Executable Trading-Partner Agreements in Elec-
tronic Commerce. Technical Report, IBM Cooperation, http:/
/www.ibm.com/developer/xml/tpaml/tpapaper.pdf, 2000.

[Sha48] C. E. Shannon. A mathematical theory of communication.
Bell System Technical Journal, 27:379-423, and 623--656, July
and October 1948.

[SNS88] J.G. Steiner, C. Neuman, and J.I. Schiller. Kerberos: An
Authentication Service for Open Network Systems. In Proc.
of the USENIX Winter Conference, February 1988.

[SPOO] G.P. Schneider and J.T. Perry. Electronic Commerce. Course
Technology, Cambridge, MA, USA, 2000.

[SS02] G. Saloner and A.M. Spence. Creating and Capturing Value,
Perspectives and Cases on Electronic Commerce. Wiley, NY,
USA, 2002.

[SS03] A.R. Sadeghi and M. Schneider. Digital Rights Management:
Technological, Economical, Legal, and Political Aspects, chap-
ter Electronic Payment Systems, pages 113-137. Springer,
November 2003.

[Ste97] M. Stefik. Shifting the Possible: How digital property rights
challenge us to rethink digital publishing. Berkley Technology
Law Journal, 12:137-159, 1997.

[Str03] M. Strembeck. Engineering and Enforcement of Role-Based
Access Control Policies with Context Constraints. PhD thesis,
Vienna University of Economics and BA, Department of Infor-
mation Systems, New Media Lab, Austria, September 2003.

[Sun02] Sun Microsystems, Inc. Digital Rights Management: Man-
aging the Digital Distribution Value Chain. White Paper,
http://www.sun.com/, 2002.

259

[Sup03] Supply-Chain Council (SCC). Scor 6.0. Technical Report,
http://www.supply-chain.org/, August 2003.

[SV99] C. Shapiro and Hal R. Varian. Information Rules. Harvard
Business School Press, 1999.

[Sza02] G. Szabo. A Formal Language for Analyzing Contracts. White
Paper, http://szabo.best.vwh.net/, 2002.

[TBMMOl] H.S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn.
eXtenisble Markup Language (XML) Schema Part 1: Struc-
tures. W3 Consortium Recommendation, http://www.w3.org/
TR/xmlschema-1/, May 2001.

[vWT03] B. von Walter and T.Hess. iTunes Music Store - eine innova-
tive Dienstleistung zur Durchsetzung von Property-Rights im
Internet. Wirtschaftsinformatik, 45:5:541-546, 2003.

[WBK03]

[Wid96]

(WIP02]

[Wis94]

[WL95]

[WorO0]

[Zhu0l]

T. Weitzel, D. Beimborn, and W. Konig. An lnfivid-
ual View on Cooperation Networks. In Proceedings of the
36th Hawaii International Conference on System Sciences
(HICSS}, Hawaii/USA, Januar 2003.

H. Widdowson. Linguistics. Oxford University Press, 1996.

WIPO - World Intellectual Property Organization. Intellectual
property on the internet: A survey of issues. Technical Report,
http://www.wipo.org/, December 2002.

Wisschenschaftskommission Wirtschaftsinformatik (WKWI).
Beschluss der Wissenschaftskommission Wirtschaftsinfor-
matik (WKWI) vom 06.10.1993. Wirtschaftsinformatik, l :80
ff, October 1994.

D. Wetherall and C.J. Lindblad. Extending Tel for dynamic
object-oriented programming. In Proceedings of the Tcl/Tk
Workshop, July 1995.

World Wide Web Consortium (W3C). Document Object
Model (DOM), http://www.w3.org/DOM/. W3C Technology,
November 2000.

K. Zhu. Internet-based distribution of digital videos: the eco-
nomic impacts of digitization on the motion picture industry.
Electronic Markets, 11 (4), December 2001.

260

[ZSOl) H. Zhang and E. Stroulia. Babel: Representing Business Rules
in XML for Application Integration (Research Demonstra-
tion). In Proceedings of the 23 rd International Conference
on Software Engineering, Toronto, Canada, pages 831-832.
IEEE Computer Society Press, May 2001.

Index

Access control, 72
Accounting, 72
Agents, 45
Agreement category, 73
Application-specific objects, 73

Business information systems, 22
Business model, 23, 30
Business to business, 19, 45
Business to consumer, 19, 45

Combined Delivery, 43
Component framework, 104
Constraints, 132
Contract, 17, 63
Contract object, 70
Contract right, 66
Contract schema, 82, 88
Cryptolope, 46
Customer relationship management,

73

Document object model, 112
DRM, 34

E-Commerce, 17, 63
Electronic contract, 17, 63
Electronic ticket, 67

Facade, 138,140,157

IPR, 73

License, 35, 68

Mediator, 105, 126

Operation, 50

Pricing model, 18, 30

RDF, 20
RE generator, 46, 104, 114
RE interpreter, 46, 105, 118
REL application policies, 52, 75
REL instance, 49
REL lexis, 50
REL syntax, 50
REL vocabulary, 50
Rights data dictionary, 52
Rights enforcement, 47
Rights expression, 49
Rights locker, 45

Scenario-specific objects, 73
Secure container, 38
Secure viewer, 18, 37, 42, 103
Separate Delivery, 43
Separation of space, 51
Separation of time, 51
Service level agreement, 46, 97
Software methods, 75
Software service, 20, 75
Superdistribution, 42, 43
Supply chain, 18, 45

261

262

TCP/IP, 114
tDOM, 113, 122
Token, 37, 43

Voucher, 46, 67

Watermarks, 38, 40
Wirtschaftsinformatik, 21

XML, 20, 54
XML Parser, 56, 106
XML Validator, 56

Band

Band 2

Band 3

Band 4

Band 5

Band 6

Band 7

Band 8

Band 9

Band 10

Band 11

Band 12

Band 13

Band 14

Band 15

Forachungaergebnlue cler Wlrtacheflaunlveraltit Wien

Herausgeber: WirtschaftsunlversitAt Wien -
vertreten durch a.o. Univ. Prof. Dr. Barbara Sporn

Stefan Felder: Frequenzallokatlon in der Telekommunikation. Okonomische Analyse der
Vergabe von Frequenzen unter besonderer BarOckslchtigung der UMTS-Auktlonen. 2004.

Thomas Haller: Marketing Im liberalisierten Strommarkt. Kommunlkatlon und Produklpla-
nung Im Prlvatkundenmarkt. 2005.

Alexander Stremltzer: Agency Theory: Methodology, Analysis. A Structured Approach to
Writing Contracts. 2005.

Gunther Sedlacek: Analyse der Studiendauer und des Studienabbruch-Risikos. Unter Ver-
wendung der statlstlschen Methoden der Erelgnlsanalyse. 2004.

Monika KnassmOller: Unternehmensleitbilder Im Vergleich. Sinn- und Bedeutungsrahmen
deutschsprachiger Unternehmensleitbilder - Versuch einer empirischen (Re-)Konstruk-
tlon. 2005.

Matthias Fink: Erfolgsfaktor Selbstverpflichtung bei vertrauensbasierten Kooperatlonen.
Mil elnem emplrischen Befund. 2005.

Michael Gerhard Kraft: Okonomie zwischen Wissenschaft und Ethik. Eine dogrnenthistori-
sche Untersuchung von Llk>n M.E. Walras bis Milton Friedman. 2005.

Ingrid Zechmeister: Mental Health Care Financing In the Process of Change. Challenges
and Approaches for Austria. 2005.

Serah Meisenberger: Strukturierte Organisatlonen und Wissen. 2005.

Anne-Katrin Neyer: Multinational teams In the European Commission and the European
Parliament. 2005.

Birgit Trukeschltz: Im Dienst Sozialer Dienste. Okonomische Analyse der Beschlftigung In
sozlalen Dlenstlelstungselnrichtungen des Nonprofit Sektors. 2006

Marcus KOiiing: lnterkuiturelies Wissensmanagement. Deulschland Ost und Weal 2006.

Ulrich Berger: The Economics of Two-way Interconnection. 2006.

Susanne Guth: Interoperability of DAM Systems. Exchanging and Processing XML-based
Rights Expressions. 2006.

Bernhard Klement: Okonomische Krlterien und Anreizmechanismen fur eine efflzlente
FOrderung von induslrieiler Forschung und Innovation. Mil elner empirischen Quantiflzie-
rung der Hebeleffekte von F&E-FOrderinstrumenten in Osterreich. 2006.

www.peterlang.de

C
C1J
~
ta
.c u
"' C
C1J
"' "' ·-3:

-I.,
~
I.,

C1J
.c u
"' ·-:ca
a. e
:::,
w

Klaus Lodigkeit

Intellectual Property Rights
in Computer Programs in the
USA and Germany
Frankfurt am Main, Berlin, Bern, Bruxelles, New York, Oxford, Wien, 2006.
116 pp.
ISBN 3-631-54039-6 / US-ISBN 0-8204-7734-6 · pb. € 24.50*

The author provides an overview and comparison of software protection
law in two countries whose technological expertise had important influence
on the digital information age - the United States and Germany. The book
shows software protections under trade secrets, copyright law and patent
law in the USA and Germany and also the interaction of these laws in
both countries. It is a contribution to the field of comparative computer
software law and will be helpful to lawyers who advise software owners
and developers for the German and American markets. It is also helpful to
lawyers unfamiliar with intellectual property law in general, who wish to
understand the fundamental concepts of these laws for computer software.

Contents: Software protections under trade secrets · Copyright law and
patent law in the USA and Germany · Interaction of these laws in both
countries · Comparison of intellectual property laws of both countries

Frankfurt am Main · Berlin · Bern · Bruxelles · New York · Oxford · Wien
Distribution: Verlag Peter Lang AG
Moosstr. 1, CH-2542 Pieterlen
Telefax 00 41 (0) 32 / 376 17 27

*The €-price includes German tax rate
Prices are subject to change without notice

Homepage http://www.peterlang.de

	Cover
	Acronyms
	List of Figures
	List of Tables
	1 Motivation
	1.1 Introduction
	1.2 The Impact of Standardised Contracts to Electronic Commerce
	1.3 Objectives of this Doctoral Thesis
	1.4 Classification into Research Theory
	1.5 Structure of this Doctoral Thesis

	2 Digital Rights Management Systems
	2.1 Trading Digital Goods
	2.1.1 Characteristics of Digital Goods
	2.1.2 Business Models for Digital Goods

	2.2 Digital Rights Management (DRM)
	2.2.1 DRM Definition
	2.2.2 Perspectives of DRM

	2.3 A Sample Digital Rights Management System and its Functions
	2.3.1 DRM System Functions
	2.3.2 A Sample DRM System
	2.3.3 A Sample DRM Process
	2.3.4 Commercial DRM Products and DRM System Variants

	2.4 The Role of Rights Expression Languages in DRM

	3 Rights Expression Languages (RELs)
	3.1 Definition of Terms
	3.2 Requirements of RELs
	3.3 Characteristics of RELs
	3.3.1 REL Syntax
	3.3.2 Rights Data Dictionary (RDD)

	3.4 Existing Rights Expression Languages and Initiatives
	3.4.1 Open Digital Rights Language (ODRL)
	3.4.2 eXtensible rights Markup Language (XrML)
	3.4.3 MPEG 21
	3.4.4 LicenseScript

	3.5 Current Market Situation and Trends

	4 Electronic Contracts
	4.1 Contract Life Cycle
	4.2 Contract States
	4.3 Execution of Rights
	4.3.1 Electronic Contracts, Electronic Tickets, and Licenses
	4.3.2 Ticket-Driven Rights Execution
	4.3.3 Hybrid Rights Execution

	4.4 Contract Objects and Contract Use
	4.4.1 Core Contract Objects
	4.4.2 Sample Usage Scenarios for Electronic Contracts
	4.4.3 Scenario-Specific Contract Objects

	4.5 Contract Modelling and Creation
	4.5.1 Required Information for Specific Software Services
	4.5.2 Modelling Scenario-Specific Contracts
	4.5.3 Scenario–Specific Contract Composition

	4.6 The Generic Contract Schema
	4.6.1 Definition of Terms
	4.6.2 Application–Specific CoSa Example
	4.6.3 The CoSa API
	4.6.4 CoSa Serialisation

	4.7 Enforceability of Electronic Contracts
	4.8 Contract Management Issues
	4.9 Related Work

	5 Design of a Rights Expression Exchange Framework
	5.1 Exchanging Rights Expressions
	5.1.1 The Communication Model
	5.1.2 The Rights Expression Communication Model

	5.2 The Rights Expression Exchange Framework
	5.2.1 Technical Design
	5.2.2 Implementation Check List

	6 Implementing the Rights Expression Exchange Framework
	6.1 Software Architecture
	6.1.1 The XOTcl Language
	6.1.2 ActiWeb
	6.1.3 Document Object Model (DOM) Implementation
	6.1.4 MySQL
	6.1.5 OpenSSL

	6.2 The Rights Expression Generator
	6.2.1 Functional Description
	6.2.2 Class Hierarchy

	6.3 The Rights Expression Interpreter
	6.3.1 Functional Description
	6.3.2 xoREL Packages and Classes
	6.3.3 Mapping ODRL Elements to the Contract Schema

	6.4 The Rights Expression Wrapper and Unwrapper
	6.4.1 Functional Description
	6.4.2 Class Hierarchy and API

	6.5 The Mediator
	6.6 Implementation Assumptions
	6.7 Related Work

	7 Case Study of the Rights Expression Exchange Framework
	7.1 Access Control with Context Constraints
	7.2 Access Control Decision Based on Electronic Tickets
	7.2.1 Application-Specific CoSa
	7.2.2 Generating DRM-Specific Licenses
	7.2.3 Wrapping DRM Licenses
	7.2.4 Unwrapping, Interpreting and Processing DRM Licenses

	8 Conclusion and Future Work
	9 Appendix A
	9.1 ODRL Foundation Model
	9.2 XML Schema of ODRL Syntax Version 1.1
	9.3 XML Schema of ODRL Data Dictionary Version 1.1

	10 Appendix B
	10.1 CoSa Application Programming Interface
	10.2 Extended CoSa Application Programming Interface
	10.3 Wrapper / Unwrapper Application Programming Interface

	Bibliography
	Index

