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IRPsim: A techno-socio-economic energy system model vision for business
strategy assessment at municipal level

Fabian Schellera,∗, Simon Johanninga, Thomas Brucknera

aInstitute for Infrastructure and Resources Management (IIRM), University Leipzig

Abstract

Decision makers of municipal energy utilities responsible for future portfolio strategies are confronted with making
informed decisions within the scope of continuously evolving systems. To cope with the increasing flexibility of
customers, and their autonomous decision-making processes, determining newly established municipal energy-related
infrastructure has become a challenge for utilities, which are struggling to develop suitable business models. Even
though business portfolio decisions are already supported by energy system models, models only considering rational
choices of economical drivers seem to be insufficient. Structural decisions of different market actors are often related to
bounded rationality and thus are not fully rational. A combined analysis of sociological and technological dynamics
might be necessary to evaluate new business models by providing insights into the interactions between the decision
processes of market actors and the performance of the supply system. This research paper outlines a multi-model vision
called IRPsim (Integrated Resource Planning and Simulation) including bounded and unbounded rationality modeling
approaches. The techno-socio-economic model enables the determining of system impacts of behavior patterns of
market actors on the business performance of the energy supply system. The mutual dependencies of the coupled
models result in an interactive and dynamic energy model application for multi-year business portfolio assessment. The
mixed-integer dynamic techno-economic optimization model IRPopt (Integrated Resource Planning and Optimization)
represents an adequate starting point as a result of the novel actor-oriented multi-level framework. For the socio-
economic model IRPact (Integrated Resource Planning and Interaction), empirically grounded agent-based modeling
turned out to be one of the most promising approaches as it allows for considering various influences on the adoption
process on a micro level. Additionally, a large share of available applied research already deals with environmental and
energy-related innovations.

Keywords: Techno-socio economic modeling, Bounded and unbounded rationality, Business model assessment,
Empirically grounded agent-based modeling of innovation diffusion

1. Introductory remarks

Techno-economic optimization models are one of the main streams in modeling energy systems and supporting
informed decision making within the scope of continuously evolving systems. Sophisticated numerical energy system
models at the municipal level have to account for the current business portfolio, technological progress, customer
behavior, regulatory framework as well as the market environment. However, in a liberalized market, actors along
the energy value chain might assess challenges and opportunities from different actor perspectives and apply various
criteria, since every single consumer and operator, due to their positioning, contracts, and instruments, has a differing
technology-mediated relationship [1]. A successful introduction of innovative business models needs to be accompanied
by an appropriate pricing, distribution, and communication strategy [2]. Existing energy system models often neglect
the roles different actors play in an existing system architecture [3] and the resulting impact their characteristics,
attitude, and behavior might have on the consumer acceptance of specific diffusion processes.
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Thus, to valuate future strategies that include business model innovations, which might also have an effect on the
system infrastructure, it is crucial to account for the technological restrictions of system units. In addition to this,
business models should also encompass the dynamics of the market setting by including the commercial processes that
arise between multiple market participants in general and in particular those involving customers or more precisely
prosumers in order to determine newly established municipal infrastructure. Mental decision structures can be decisive
regarding the evaluation and acceptance of an innovation and for any consequences arising from it. A socio-economic
bounded rationality approach recognizes that individuals have incomplete knowledge, as well as limited information
gathering and processing abilities [4]. Consequently, coupled modeling of technical infrastructure and interacting
actors provides decision makers with a supportive analysis of commercial competition and technical counteraction
effects for future business models to be investigated [1].

This paper outlines a multi-model vision called IRPsim (Integrated Resource Planning and Simulation) of sociolog-
ical and technological dynamics. A combination of an unbounded rationality model, as well as a bounded rationality
model, enables the simulation of feedback effects that decisions of market actors have on the performance of a certain
energy supply network as initially described by [5]. In addition to the existing techno-economic modeling approach
IRPopt (Integrated Resource Planning and Optimization), a socio-economic modeling approach called IRPact (Inte-
grated Resource Planning and Interaction) needs to not only consider the heterogeneity of behavioral patterns, but also
the communication and interaction structures of market participants [6]. Empirically grounded agent-based modeling
turned out to be one of the most promising approaches for socio-economic modeling as it allows for considering various
influences on the adoption on a micro level [7]. The multi-model vision is in line with the proposed energy policy
roadmap of [1] and the long-term objective of combining the various strands into a single assessment package.

This paper is organized as follows: Section 2 introduces the coupled techno-socio-economic model concept. Section
3 outlines theoretical foundations of the socio-economic modeling domains and introduces the concepts of empirically
grounded agent-based modeling of innovation diffusion. Section 4 gives an overview of suggested future work to
develop the multi-model vision. Finally, section 5 concludes with a recapitulation.

2. Techno-socio-economic model vision

Future energy-related business portfolio decisions should be supported by energy system models considering the
current business portfolio, technological progress, customer behavior, regulatory framework as well as the market
environment. The techno-economic mathematical optimization framework IRPopt (Integrated Resource Planning
and Optimization) [8] supports decision makers of municipal energy utilities regarding future portfolio management.
The mathematical optimization model allows for a policy-oriented, technology-based and actor-related assessment of
varying energy system conditions in general, and innovative business models in particular. The integrated multi-modal
approach is based on a novel six-layer modeling framework built on existing high-resolution modeling building blocks.

The optimization model, which has been implemented in GAMS/CPLEX (General Algebraic Modeling System),
allows for solving mixed-integer problems in a quarter-hourly resolution for perennial periods. The major objective is
to maximize revenues from different actor perspectives. Thereby, IRPopt provides a novel actor-oriented multi-level
optimization framework. This is achieved by an explicit modeling of municipal market actors on one layer and
state-of-the-art technology processes on another layer as well as resource flow interrelations and service agreements
mechanism among and between the different layers. Individual participating market actors and the spatially distributed
load, storage and generation technologies are modeled separately. Furthermore, multi-party cooperation is incorporated.
Individual actors hold bilateral contracts with each other that handle the business transactions. Due to the chosen
approach, decision making of different modeled market actors can be described using the term unbounded rationality
[4]. In mathematical programming systems, designers define rules and procedures to engineer outcomes. This falls in
line with the statement of [4] that ”the operational decisions of local utilities and large independent energy producers
are assumed to close to individually fully rational, because of the sophisticated software tools already used to support
these decisions. Within the approach presented here, operational decisions, therefore, are made using an optimization
model similar to the models applied by utilities.” Additionally, due to the novel framework, IRPopt permits to determine
the optimal operation dispatch and thus the optimal profitability index from different market actor perspectives, such as
prosumer households, and not only from the municipal utility.

With this in mind, the model-driven decision support system IRPopt will be valuable in the context of strategy
adjustments and business development processes of utilities. Potential use cases originate from the core business of its
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departments, supporting, in particular, the day-to-day business of the strategy and sales unit. Questions the model is
particularly suited to address are as follows:

• What effects of customer technology adoption on sales and margins are visible in terms of different scenarios?

• Which company-wide impact of a business model implementation, as well as customer migration flows, can be
determined?

• What are optimal community layouts in the context of decentralized autarky system trends and differing municipal
conditions?

• What is the value of flexibility regarding balancing and spot markets as well as peak load curtailment for different
participating actors?

Initial model applications and business model assessments of IRPopt are presented in [9, 10]. The focus has been on
decentralized autarky enhancement solutions like self consumption, direct consumption, direct marketing, demand
response, net metering and community storage systems.

Scenario and sensitivity analysis is applied to detect the consequences of parameter changes [11]. For this, uncertain
environmental conditions, prosumer operations as well as market developments represent a crucial aspect. Since the
quality depends on the procedure, a techno-economic multi-method approach seems useful to cover the issues raised.
In order to describe the economic boundary conditions, spot market and reserves market prices need to be consider
which might be determined or rather projected by employing the optimization model MICOES-Europe (Mixed Integer
Cost Optimization of Energy Systems) and the optimization model MICOES-Reserve. While the fundamental model
MICOES-Europe uses marginal costs to determine future spot market prices of selected European countries [12], the
fundamental model MICOES-Reserve uses opportunity costs to calculate future control power prices [13, 14]. In this
context, LICOES-Europe [15] is able to determine the possible future power plant park. Additionally, the investment
decision tool MicroGrid [16] might be applied to assess prosumer technology adoption behavior. An overview of the
interplay of different optimization models to parameterize IRPopt is outlined in Figure 1.

Techno-economic modeling can capture technological interactions, but it cannot endogenize the commercial
processes that arise between multiple market participants [1]. ”The structural decisions faced by local utilities,
independent energy producers, and house owners exhibit increasing levels of ambiguity and mathematical intractability.
The orthodox assumptions of unbounded rationality and perfect foresight reduce the set of potential behaviors that
require investigation to those that are defined as optimal in some sense. Bounded rationality, on the other hand,
introduces the challenge of extracting realistic behavior patterns from an almost unlimited set of possible alternatives.”
[4]. Different incentives can influence the heterogeneous market actors and might cause a change in their decision
behavior in a different way. If certain customers decide to invest in decentralized energy technologies or to shift
their load, this might influence the technical infrastructure and the system performance. Additionally, strategies of
competitors may also have a relevant effect on the decision behavior of customers. Even if the competitor is not directly
influencing the individual actors, their business offers may induce customers to change their provider or make an
investment. During the design and implementation of sustainable business portfolios, this can lead to synergy effects or
increasing peer pressure, which needs to be subject to closer examination.

In this context, it is important to understand how investment decisions of individual market actors are conducted,
since even good innovations might fail or diffuse at a slow rate [18]. For many companies it is hard to predict how
business model innovations will diffuse in the dynamic energy-economic environment, resulting in uncertainty about
whether an innovation is fit to become a sustainable business model. This may be to a large part because the adoption
of these innovations by the intended target groups is not always given, and as [19] shows, doesn’t just depend on the
qualities of the innovation. Instead, it takes place within a complex social system, in which the diffusion of the respective
innovations depends on many factors and mechanisms [20]. Business models and innovations need to encompass the
dynamics of the market setting by including the mental decision structures, such as personal characteristics, behavioral
attitudes as well as conscious and subconscious purchase decisions, of market participants in general and of customers
in particular. As [21] points out, ”[...] the diffusion of innovation paradigm postulates that markets are in fact dominated
by social influences [...].”

By extending the techno-economic model IRPopt with the socio-economic model IRPact (Integrated Resource
Planning and Interaction), it is possible to consider various energy-economic system drivers as a whole as shown by
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Figure 1: Overview of the interplay of various techno-economic energy system optimization models to parametrize the integrated multi-modal
modeling approach IRPopt (MICOES-Reserve [13, 14], MICOES-Europe [12, 14], LICOES-Europe [15], IRPopt [8, 17, 9, 10])

[4, 5]. Socio-economic modeling does not only account for the heterogeneity of bounded-rational mental behavior
patterns, which are not only based on economic thinking but also considers the social structures of market actors [6].
This approach makes it possible to simulate acceptance and diffusion of innovations by various customer types and
utilities considering different decision-making and network models, as well as the temporal and regional differences
in the diffusion process. The simulated adoption rate of individual market actors regarding energy-related business
models, in turn, directly affects the energy supply network and process technologies of the techno-economic system
model IRPopt. In contrast, the optimized profitability index of individual actors in terms of a given supply network can
be considered a single influencing aspect of the decision behavior of the socio-economic system model IRPact.

A multi-model system called IRPsim (Integrated Resource Planning and Simulation) of an unbounded technical
infrastructure optimization and a bounded interacting actors simulation enables the determination of system impacts of
socio-economic behavior patterns of market actors on the techno-economic business performance of the energy supply
system. A schematic representation of the interplay of the two models is outlined in Figure 2. While IRPact includes
simulated adoption decisions of the individual market actors (adoption rate), IRPopt considers the optimized operation
dispatch (profitability index). This results in an interactive and dynamic energy multi-model application for multi-year
business portfolio assessment.

As outlined in Figure 2, IRPopt requires parametrization of the system infrastructure. Thereby, market actors and
corresponding engineering processes as well as resource flow interrelations and coordination mechanism among and
between them need to be defined. Additionally, market principles need to be specified to model realistic issues at the
municipal level. Since IRPact takes the same market actors into account as IRPopt, mental models and social dynamics
between them need to be parametrized first. Furthermore, the social network design, as well as the theoretical and
empirical grounding, is required for a realistic adoption behavior modeling. While optimization results of a certain
system infrastructure provide costs and revenues for each of the participating actors in terms of operational management,
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Figure 2: Schematic relation of the energy model vision IRPsim consisting of the techno-economic modeling approach IRPopt and the socio-economic
modeling approach IRPact 5



the simulation results of a certain social system shows the adoption rate for each of the participating actor. This, in
turn, affects the system infrastructure and changes the parametrization of IRPopt. At the same time, the reevaluated
profitability of the adoption decision influences the decision making of the participating actors and thus the adoption
process of IRPact. The integration layer of IRPsim provides the necessary interfaces and mechanisms to enable the
information exchange of the multi-model approach and allows to analyze the dependencies of the techno-economic and
socio-economic system dynamics. In this sense, a multi-model system of coordinated and matched components as
outlined above can demonstrate its great benefits and achievement of robust answers.

From a scientific point of view, the multi-model framework aims to analyze the interrelations between customer
behavior and system performance. It can give an answer to the question what synergy and competition effects certain
socio-economic customer structures evoke within a techno-economic energy system. The main focus of the research in
this context is how and to what extent the adoption behavior of different customer groups regarding innovative business
models show competition and counteraction effects on the current and emerging energy supply network. In practice,
achieving the vision will provide answer a number of management questions, such as:

• What costs and revenues for market actors occur in terms of business model implementation at the municipal
level?

• Which product attributes and market dynamics are necessary for customers to adopt business model innovations?

• What are the interrelations between the innovation diffusion among different customer types and the supply
network infrastructure?

• What feedback effects along the value chain of the company and its business units will the innovation initiate?

• Which business model innovations do both have a positive effect on the business performance and are adopted by
the customers?

3. Socio-economic modeling approach

Decision makers of municipal energy utilities responsible for product or service innovations are confronted with
making informed decisions about complex matters. Insights into the diffusion of innovations can help to detect weak
areas in business models and innovation marketing. Particularly quantitative socio-economic models of innovation
diffusion analysis that account for the social complexity of the modeled system might assist in the investigation of
potential measures and in the development of effective strategies. One promising socio-economic modeling approach
for describing diffusion processes is to employ empirically grounded agent-based models [7]. A general overview of
the covered research domains and relevant intersections is given in the following.

3.1. Innovation diffusion modeling

Although the roots of innovation diffusion research lie in the late 19th century, studying the diffusion of innovations
can generally be traced back to the seminal study of Ryan and Gross in the 1940s in rural sociology about the diffusion
of hybrid corn [20, 22]. This might be due to the fact that the ”study advanced theoretical exploration of the diffusion
process.” [22], or because the study ”[...] was driven by scholarly interest in the relative influence of economic versus
social factors in the adoption of a technological innovation.” [22].

A fundamental aspect of innovation diffusion Ryan an Gross identified was the interpersonal communication
between farmers. ”The hybrid corn study established diffusion as essentially a social process. A farmer typically
adopted the innovation because of interpersonal communication with other farmers who already had adopted it [...].”
[22]. Through this social process ”[...] subjective evaluations of an innovation spread from earlier to later adopters
rather than one of rational, economic decision making.” [22].

Rogers defines the diffusion of an innovation as ”[...] the process in which an innovation is communicated through
certain channels over time among the members of a social system.” [18]. This definition exemplifies the four major
elements, namely innovation, communication channels, time, and the social system. Each one of these elements is
identifiable in nearly every diffusion research or diffusion campaign [18]. In other words, diffusion can be seen as a
”special kind of communication in which the messages are about a new idea. [...] Diffusion is a kind of social change,
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defined as the process by which alteration occurs in the structure and function of a social system.” [18]. Thereby, ”[a]n
innovation is an idea, practice or object that is perceived as new by an individual or other unit of adoption.” [18]. The
perception of newness matters, but not the absolute newness as described by [23]. “Adoption is a decision to make full
use of an innovation as the best course of action available. Rejection is a decision not to adopt an innovation.” [18]. The
units of adoptions could be individuals, households, institutions or other entities. A summary of operational definitions
of presented key concepts is outlined in Table 1.

Table 1: Key concepts of innovation diffusion modeling

Concept Definition

Product
innovation

“Innovation is an idea, practice, or object perceived as new by an individual or other unit
of adoption. It can also be an impulse to do something new or bring some social change.”
[18]. In this work, a perception of newness matters, but not the absolute newness [23].

Innovation
adoption

“Adoption is a decision to make full use of an innovation as the best course of action
available. Rejection is a decision not to adopt an innovation.” [18]

Innovation
diffusion

Innovation diffusion is “the process by which an innovation is communicated through
certain channels over time among the members of a social system.” [18]

Starting from the 1960s, innovation diffusion processes have been investigated using models, which aim at empirical
generalizations of prototypical diffusion patterns at aggregate levels [21]. As Ryan and Gross stress, social contacts,
social interaction and interpersonal communication are important influences on the adoption of new behaviors. Kiesling
emphasizes that innovations are not evaluated objectively, but instead, the dynamic formation of attitudes and subjective
perceptions are transmitted through communication at disaggregated levels [21].

A large amount of aggregated innovation diffusion models are refined versions of the Bass model [24], a parsi-
monious, aggregated innovation diffusion model, based on models of epidemiological spread. The Bass model as
described in [24] is theoretically based in (epidemiological) contagion models and is based upon the assumption that
the timing of initial purchases is related linearly to the number of previous buyers. The goal of the model is to develop
a theory of timing of initial purchases for new classes of products. Its key characteristic is that the adoption behavior
of imitators is influenced in timing through social pressure. In this context, the following sentence characterizes the
theory: ”The probability that an initial purchase will be made at T given that no purchase has been made is a linear
function of the number of previous buyers.” [24]. Thus, the Bass model intends to formalize literary analysis of Rogers
in terms of the the likelihood of the number of purchases P(T ) at time T given that no purchase has yet been made.
On the one hand, this is dependent on the constant p at T = 0 which represents the probability of an initial purchase
(coefficient of innovation). On the other hand, the number of purchases is dependent on the product ( q

m ) times Y(T ).
This product reflects the pressures operating on imitators in terms of an increasing number of previous buyers. Thereby,
( q

m ) represents a scaling constant (where m is the number of total initial purchases and q the coefficient of imitation)
and Y(T ) represents the number of previous adopters. If Y(0) = 0, the constant p and thus the probability of an initial
purchase remains. All in all, P(T ) can be calculated as follows:

P(T ) = p +
q
m

Y(T )

From this, Bass [24] derives the sales S (T ) at time T as follows:

S (T ) = P(T )(m − Y(T )) =
(
p + q

∫ T

0
S (t)

dt
m

)(
m −

∫ T

0
S (t)dt

)
= pm + (q − p)Y(T ) −

q
m

(Y(T ))2

This adoption behavior exemplifies the exponential growth of initial purchases to a peak, followed by exponential
decay. This form shows the aggregated nature of the model, which describes total adoption or rather adoption per time
period in a closed form and aggregates the agents into a ’macro’ variable.
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Despite their popularity, these aggregate models have several shortcomings [20, 21]. The most fundamental short-
comings of aggregated innovation diffusion models are their assumption of a homogeneous population. Furthermore,
aggregate models cannot differentiate between the social network of one potential adopter and the other, so they have
to impose the assumption of a fully connected social network. Additionally, these models require information about
events they ought to predict, and lack predictive power.

To overcome these limitations, many approaches employ disaggregate models, most notably agent-based models.
Disaggregated models are models that avoid aggregating model entities individually. They focus on micro behavior
instead of macro behavior and are grounded in complexity science. In contrast to macro simulations, where the entire
system is described directly and ‘phenomenologically’, societal phenomena of interest are modeled bottom-up based
on the underlying processes. The phenomena then emerges from the behavior and micro-level interactions of the agents
[21].

3.2. Agent-based modeling

As the name suggests, agent-based models are conceptualized from the perspective of disaggregated units, so-called
agents or actors1, instead of modeling the system on the aggregate level. As noted in [25], no single universally
accepted definition of an agent exists. Instead Wooldridge [25] enumerates abilities actor entities need to exhibit in
order to be called agents. In their general definition, agents need to exhibit four abilities: autonomy, social ability,
reactivity, and pro-activeness. In this, autonomy is the ability to act without being directly controlled or manipulated by
humans or others, as well as having some control over their actions and internal state. Social ability means the use of an
agent-communicative language to interact with other agents, where reactivity represents the perception of and response
to their environment. Finally, proactiveness is the ability to take initiative in goal-directed behavior instead of solely
responding to stimuli [25]. Most crucially, agent-based models allow for modeling heterogeneity of potential adopters.
Since this approach describes actors on the level of their entity, actors can be designed differently from one another.
The characterization of agents is proposed which considers interaction between agents but also puts interaction with
and immersion in an environment at the heart of the models [26]. A summary of operational definitions of presented
key concepts is outlined in Table 2.

Table 2: Key concepts of agent-based modeling

Concept Definition

Software
agent

“An agent is a computer system that is situated in some environment, and that is capable of
autonomous action in this environment in order to meet its design objectives.” [25].

Multi-agent
model

“A multi-agent system is one that consists of a number of agents, which interact with one
another [. . . ]. [T]he agents in a multi agent system will be representing or acting on behalf
of users or owners with very different goals and motivations.” [27].

Model
procedure

Model procedures poses step-wise guidelines for the designing and modeling of complex
systems in terms of scientific purposes. This covers activity lists, building blocks, structural
items, best practices, design choices, methodological issues as well as functional protocols
and frameworks.

Model
component

Model components represent the functional elements of complex systems. Master cate-
gories are model strategies, model entities and model dynamics [21].

3.3. Empirically grounded modeling
The level of detail with respect to the data and information incorporated into agent-based simulations varies from

”Picasso” to ”Photograph” models [28]. ”An obvious difference relates to the representation of space, ranging from

1Many publications from the sociological, ecological or socio-economic perspective use the term agent to refer to these units, publications in
computer science often try to avoid this term, since it might be confused with the concept of software agents, and rather use the term actor. In this
publication, they will be used interchangeably, and where the distinction between actors and software agents is meaningful, this will be made explicit.
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empty and simple artificial landscapes [...] to very detailed, realistic representations of the environment.” [28]. At first,
more abstract models (so-called ”Picasso” models) were widely used to show general mechanisms rather than to make
exact predictions. Since IRPact aims to predict innovation diffusion processes, the following research needs to focus on
detailed models (so-called ”Photograph” models).

In this context, different aspects as actor heterogeneity can enter agent-based innovation diffusion models through
different values of characteristics such as income or preference [28], various sources of knowledge [29], different
types of agents that differ in decision rules and interaction with other agents and the environment [28]. This is due to
the fact that the behavior of the modeled agents ”[...] can be empirically informed using a combination of different
kinds of data (e.g. qualitative and quantitative) and data collection methods [...] that support multiple approaches
to represent actor decision making in an agent (e.g., heuristic decision trees, utility functions).” [26]. Through this
they ”[...] can go beyond the typical representation of a population or average individual in EBMs [equation based
models] and capture the heterogeneity of individual actors, their characteristics, and decision-making structures.” [26].
Thus, empirically grounded agent-based models of innovation diffusion can reproduce and explain complex non-linear
diffusion patterns observed in the real world as a result of simple local micro-level interactions [21]. A summary of
operational definitions of presented key concepts is outlined in Table 3.

Table 3: Key concepts of empirically grounded modeling

Concept Definition

Grounded
theory

Grounded theory is defined as “discovery of theory from data systematically obtained from
social research.” [30]. The derived constructs constitute the grounding of the models. In
this work, it refers to theoretical grounding as well as empirical grounding.

Theoretical
grounding

Theoretical grounding describes the characterization of the model. It “aims at surfacing
the intended model as an artifact: qualifying its contours and interfaces.” [31].

Empirical
grounding

Empirical grounding describes the parametrization of the model. It “aims at connecting
model and target system, through giving values to the set of parameters in order to enable
simulation.” [31].

Micro-level
approach

Micro-level approach describes a “bottom-up” or “microscopic” modeling [6]. “Rather
than describing the whole system directly and phenomenologically, macro-scale dynamics
in [system models] are emergent phenomena that arise from micro-level interactions
between agents when the model is executed.” [7].

Case-based
applications

Case-based applications “have an empirical space-time circumscribed target domain. [. . . ]
The goal [. . . ] is to find a micro-macro generative mechanism that can allow the specificity
of the case [. . . ]. [32]. They are usually built “to provide forecasts, decision support, and
policy analysis [. . . ].” [7].

3.4. Empirically grounded agent-based case studies

Given the advantages, the described models are losing their niche character and gaining importance as a valuable
methodology for describing diffusion processes [7]. Since empirically grounded agent-based models are foremost
applied to reflect real market issues, papers with real-world case studies to support decision makers are increasing
[33]. Case-based applications “have an empirical space-time circumscribed target domain.” [32]. They are usually
built “to provide forecasts, decision support, and policy analysis [. . . ].” [7]. In this context, the application domain of
empirically grounded agent-based models of innovation diffusion is very versatile. With respect to various relevant
research papers, the approach has been applied to the following major substantive domains: mobility and logistics,
consumption and retail, energy and utilities, nature and environment as well as public and education. An overview of
reviewed and classified papers is given in Table 4.
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Table 4: Identified application domains of empirically grounded agent-based models

Domain Example Source

Mobility and
logistics

[34] “introduce an empirically grounded, spatially explicit,
agent-based model, InnoMind (Innovation diffusion driven
by changing MINDs), to simulate the effects of policy inter-
ventions and social influence on consumers’ transport mode
preferences.”

[35], [36], [37], [38], [39],
[40], [41], [42], [43], [44],
[2], [34]

Consumption and
retail

[45] aim “to gain insights on how social influences can
affect the market inequalities in the motion picture market.”

[46], [47], [48], [45], [49],
[50], [51], [52]

Energy and
utilities

[53] “propose an agent-based model to simulate how
changes to the Italian support scheme will affect the dif-
fusion of PV [photovoltaic] systems among single- or two-
family homes.”

[54], [37], [55], [56], [57],
[58], [59], [53]

Nature and
environment

[56] “develop an agent-based simulation model linked to
Geographic Information System (GIS) data in order to inves-
tigate the spatial–temporal diffusion of agricultural biogas
plants, given constraints on the local availability of feed-
stock resources.”

[60], [61], [62], [63], [64],
[65], [66], [67]

Public and
education

[28] apply “a data-driven case study [. . . ] of residential
mobility [in a medium-sized town in Germany] to system-
atically explore the role of model detail on model perfor-
mance.”

[68], [69], [70], [71], [72],
[28]

It is obvious that a large share of the surveyed research papers deal with environmental and energy-related
innovations. Product innovations are analyzed ranging from hybrid or electric cars [34, 36, 40, 38] to biofuels [2]
and photovoltaic panels [59]. Moreover, smart meter diffusions have also been analyzed [37]. One reason might
be the high societal relevance of these innovations. Promoting consumer choices with respect to environmental
technologies is crucial to meet the challenge of climate change and its associated impacts since the adoption of
such environmental-friendly products generally only occurs slowly [36]. This also falls in line with the statement
of [34] that environmentally-friendly technologies require influencing the demand side to diffuse on a larger scale.
Another reason is the need for an individually-based modeling approach. They claim that “the key strength of
agent-based-models is that they overcome the homogeneity assumption of traditional aggregate diffusion models.”
[7]. Environmental innovations oftentimes polarize and divide consumers between proponents and opponents. To
overcome this homogeneity assumption, agent-based models seem to be appropriate in environmental and energy-
related innovations. Because of this, basing IRPact on empirically grounded agent-based models seems to be the natural
choice due to the focus of IRPsim on energy and environmental assessments.

4. Future research

In view of the key question how energy utilities can and need to shape their business portfolio to manage and
survive in a highly dynamic environment, the system model vision IRPsim aims to provide managers with a multi-model
decision support system for innovative business model assessments of differing system conditions of interest like
business portfolio, legal framework as well as customer behavior and market environment. The model environment
intends to match highly stylized modeling for theoretical inquiries as well as highly specific modeling for practical
applications.

In this context, IRPact aims to investigate the level of adoption of business model innovations and detect success
factors by including mental and social dynamics. The development of a case-based empirically grounded agent-based
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model allows for depicting the heterogeneous agents and social dynamics and to examine their interactions in various
scenarios. While IRPopt is already in a mature state, the focus of the research needs to be on designing and developing
IRPact in order achieve the outlined multi-model vision. For this, the following objectives need to be addressed:

• Examine and determine the innovation environment and the agent structure: Examine and structure the market,
products, and actors and identify the main characteristics of the environment and the innovation chosen.

• Analyze and characterize the behavior of agents: Theoretical and empirical analysis of the mental and social
dynamics in terms of the factors that drive adoption and diffusion of innovations by households and business
enterprises.

• Model and implement the recursive socio-economic simulation software as ”experimental lab“: Model and
implement the multi-agent model based on interacting agents with mental decision structures, social dynamics
and respective environmental influences.

• Integrate the socio- and techno-economic energy system model approach: Determine interfaces and combine the
techno-economic model with the socio-economic model using a technical integration layer.

• Identify innovative business models and derive implications for business units: Simulate and evaluate market
scenarios using an agent- and optimization-based modeling approach and derive suggestions.

5. Concluding remarks

Business portfolio decisions should be supported by energy system models considering the current business
portfolio, the customer base, the regulatory framework as well as the market environment. The combination of
sociological and technological dynamics within the energy system simulation IRPsim might provide some unique
benefits for both theory and practice. In addition to the existing techno-economic modeling approach IRPopt, a
socio-economic modeling approach called IRPact would not only consider the heterogeneity of behavioral patterns but
also the communication and interaction structures of market participants [6]. An empirically grounded agent-based
model makes it possible to simulate acceptance and diffusion of innovations by various customer types and municipal
utilities considering different decision-making and network models, considering the temporal and regional differences
in the diffusion process [21].

The presented combination of the multi-model approach enables the simulation of feedback effects that decisions
of market actors have on the performance of a certain energy supply network [5]. Thus, the realization of the suggested
research roadmap might further yield insights into how policy measures are applied regarding different techno-economic
and socio-economic structures of municipalities. In this context, the development process of IRPact should be guided
by a number of existing case-based models. Before and after coupling, the models ought to be applied to real-world
scenarios at the municipal level in order to provide decision support.
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