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Abstract

Outlier detection in high-dimensional datasets poses new challenges that have not been investigated in
the literature. In this paper, we present an integrated methodology for the identification of outliers
which is suitable for datasets with higher number of variables than observations. Our method aims to
utilise the entire relevant information present in a dataset to detect outliers in an automatized way, a
feature that renders the method suitable for application in large dimensional datasets. Our proposed
five-step procedure for regression outlier detection entails a robust selection stage of the most
explicative variables, the estimation of a robust regression model based on the selected variables, and
a criterion to identify outliers based on robust measures of the residuals' dispersion. The proposed
procedure deals also with data redundancy and missing observations which may inhibit the statistical
processing of the data due to the ill-conditioning of the covariance matrix. The method is validated in

a simulation study and an application to actual supervisory data on banks’ total assets.

Keywords: Outlier detection; Robust regression; Variable selection; High dimension; Missing data;

Banking data

JEL classification codes: C18, C81, G21
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Non-technical summary

The analysis of high-dimensional data sets is very much affected by the presence of outliers which
may distort the conclusions reached when standard econometric methods are applied. On the other
hand, large datasets are becoming more and more common in banking and finance calling for the
adaptation of existing methods or the adoption of new approaches. In this context, outlier detection in
high-dimensional datasets poses new challenges, while offering new possibilities for enhanced outlier
detection methods which have not been investigated in the literature.

In this paper, we present an integrated methodology for the identification of outliers which is suitable
for 'fat' datasets i.e. high-dimensional data sets with attributes exceeding the number of observations.
A typical example of such dataset is represented by the supervisory statistics collected in the context
of the ECB Banking Supervision, whereby extremely granular information for banks’ activities, risks
and profitability is provided for the systemically significant and less significant institutions.

Our method aims to utilise the whole relevant information present in such a dataset to detect outliers
in an automatized way, a feature that renders the method suitable for application in high-dimensional
data sets. For example, when one tries to identify outliers in the variable “notional amount of
derivatives as a percentage of assets”, the variable “asset size” may provide critical complementary
information for the identification of outliers of the former variable. In fact, it may happen that the
value of one variable can be considered an outlier conditional on another one, but not in the univariate
sense. This fact keeps its validity if the conditioning variables are more than one. This type of outlier
detection, which is based on deviations from the regression hyperplane representing the bulk of the
data, can produce valuable insights as a by-product and inform further analytical work.

Our proposed five-step procedure for regression outlier detection entails a robust selection stage of the
most explicative variables, the estimation of a robust model based on the selected variables, and a
criterion to identify outliers based on robust measures of the residuals' dispersion. In addition, the
proposed procedure deals also with data redundancy and missing issues which may inhibit the
statistical processing of the data due to the ill-conditioning of the covariance matrix. The method is

validated in a simulation study and it is also applied to actual supervisory data on banks’ total assets.
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1. Introduction

Data quality is a prerequisite for any reliable, quantitative type of analysis and the large data sets
which are becoming more common present specific challenges to the task of monitoring and ensuring
data quality. One critical aspect of data quality monitoring is outlier detection i.e. the identification of
values which either are obviously mistaken or seem to be unjustified from a business side perspective.
Classical statistical methods, which underpin analytical tools supporting analysis of large data sets,
are sensitive to the presence of outliers and may be led, consequently, to present a distorted picture of
the reality due to the presence of outlier values leading to erroneous conclusions.

On the one hand, a challenge for outlier detection in large datasets is that the development of purely
automatized and efficient processes is required (see for example Macia-Pérez et al. 2015). While large
datasets present a number of challenges regarding data processing and analysis e.g. related to the
difficulty of examining the data, it offers also the possibility to utilise the richness of the dataset for
outlier detection. While the uncertainty of a large dataset may be larger compared to a smaller one
(except e.g. in the case of surveys, where larger data allow more precise answers to be obtained from
the data), the size of the dataset compels the development of methods which should make the optimal
usage of the existing data.

A strand of research has focused on outlier identification on dartums that comprise vectors of
numerical (or also categorical) attributes i.e. outliers when all dimensions of each datum are
considered (hereafter called ‘multi-dimensional outliers’). Indicative references from this vast
literature include Otey et al. (2006), Koufakou and Georgiopoulos (2010), and Kutsuma and
Yamamoto (2017).! However, the identification of multi-dimensional outliers presupposes a “clean”
dataset with respect to the individual values in the sense that large deviations of particular
observations of specific variables from their expected values represent the true behaviour of the
respective variables rather than outliers. In the opposite case, the detection of multi-dimensional

outliers will also be affected by distortions caused by outliers in individual values. Furthermore, in a

" See also the special issue of Data Mining and Knowledge Discovery (Volume 20, Issue 2, March 2010) which
is entirely devoted to the detection of multi-dimensional outliers.
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large-dimensional dataset, some of these outliers may not be detected by multi-dimensional methods
as they may be “hidden” within the granular dataset and not affect significantly the multi-dimensional
distance metrics used by the respective outlier detection method. Therefore, it is critical to address the
issue of outliers in single variables.

The contribution of this paper is to propose a multi-step “integrated procedure” for single variable
outlier detection which draws on the full information present in a multi-dimensional dataset
combining robust methods to generate insights about the nature of the detected outliers and the
structure of the dataset. The proposed method includes both a robust variable selection step and a
robust regression step. We formulate and implement an integrated approach in different variants
which differ with respect to the combination of the methods employed in these two key steps.
Furthermore, we perform a controlled assessment of its performance under different data features in
order to infer the optimal calibration of the method. In addition, we apply the method to a large
dataset of supervisory banking data from the largest European banks, collected by the European
Central Bank (ECB).

Furthermore, the paper formulates a generic methodology for detecting outliers in “fat” datasets,
while formalising the procedure to deal with practical problems such as data redundancy. The
procedure to deal with data redundancy uses a formal criterion to exclude variables, based on a
measure of the statistical ‘importance’ of each variable.

The simplest approach to detect outliers for one single variable uses distribution-based techniques.
However, such univariate approach which utilises only the sample values for a single variable may
not be sufficient in this specific context. The main reason is that outliers could remain unnoticed
because information contained in the values of some other related variables is not utilised. For
example, in an application to banking data, as will be presented below, when one tries to identify
outliers in the variable “notional amount of derivatives as a percentage of assets”, the variable “asset
size” may provide critical complementary information for the identification of outliers of the former
variable. If for example, a small bank’s balance sheet contains a relatively large percentage of
derivatives, this value may be considered to represent an outlier because in general it is mainly large

and complex banks that use derivatives extensively. Therefore, in such case the derivative amount
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value can be considered an outlier conditional on the asset size of the bank, even though neither the
derivative amount nor the asset size could be considered outliers in the univariate sense. In other
words, a variable conditional on a set of related variables can represent an outlier even though neither
of the variables individually represents an outlier. This type of outlier detection in the regression sense
can produce valuable insights as a by-product and inform further analytical work.

Therefore, there is clearly ground for regression-based outlier detection in high-dimensional datasets
in this sense, taking into account the properties of the empirical distribution for each variable, as well
as statistical information derived from an appropriately defined set of related variables. However,
when aiming to detect outliers in this manner, a number of new issues arise. First, the identification of
the explanatory variables should be automatized robustly given the large number of variables and the
impossibility of selecting the regressors based purely on economic criteria and expert judgment.
Second, this identification of relevant regressors necessitates the ‘cleaning’ of the initial data set from
highly correlated subsets of variables, a procedure which should also be automated. This approach
follows the research strand which incorporates machine learning techniques into economic analysis,
given the limitations of classical model-based econometric procedures to tackle large datasets (Varian
2014).

The existing literature has provided algorithms for regression outlier detection. However, these do not
seem to be particularly suited for high-dimensional datasets with attributes exceeding the number of
observations (“fat” data), especially if there are missing observations, collinear variables, or
observations with outstanding magnitude and variability.

The paper is structured as follows. Section 2 reviews the literature on outlier detection. Section 3
presents our proposed methodology for regression outlier detection in large dimensions. Section 4
conducts a simulation study against an appropriate set of benchmarks to assess the performance of the
proposed method in a controlled environment. Section 4 provides an application to a selection of ECB

supervisory data, presenting and discussing outlier detection results. Finally, Section 6 concludes.
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2. Related literature

Outlier detection is a critical step in the statistical analysis of large data sets. Hawkins (1980) provided
the definition of outlier, intended as ‘an observation which deviates so much from the other
observations as to arouse suspicions that it was generated by a different mechanism’. Barnett and
Lewis (1994) define outlier(s) as ‘an observation (or subset of observations) which appears to be
inconsistent with the remainder of that set of data’. These general definitions may be applied and
assume different meaning in various contexts. Many statistical branches include outlier detection as a

relevant topic, as widely described in Huber (2004).

2.1 Distribution-based methods

Most of standard non-robust statistical methods are based on distributional assumptions which are
strongly affected by the presence of outliers. For example, classical multivariate linear and non-linear
regressions, clustering, principal components, and factor analysis all are based on standard means,
covariance and correlation matrices, which are not robust against outliers. A point that is often missed
by researchers applying classical statistical or econometric methods is that the presence of outliers
affects the estimation of the model and cannot be conducted ex-post after a model has been estimated;
on the contrary, the ‘distorted” model may fit the data fairly well, but the insights it offers about the
underlying data have been irrevocably determined by the presence of outliers. Consequently, the
outlier detection stage should precede the statistical analysis of the data, or, alternatively, a robust

version of above mentioned methods should be used.

Robust methods have been first developed to limit the effect of the presence of outliers for location
parameters estimation. The Huber estimator (or M-estimator, see Huber (1964)) was the seminal idea,
which opened the path to robust likelihood methods. Another seminal contribution is the Hampel
identifier which proposes a quantile-based outlier identification rule (Hampel 1968). The use of
distribution-based outlier detection methods is the most direct approach to univariate outlier detection.

Essentially, one needs to define a central value, which can be the mean (as in the case of 3-sigma rule)
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or the median (as in Hampel identifier). The box plot rule, flagging as outliers all the values being

more than 1.5 times the interquartile range, is often used.

Distribution-based methods can also be applied to the multivariate context when adjusted

appropriately. The analogous of 3-sigma rule in the multivariate context is the Mahalanobis distance

(Mahalanobis 1936) defined as D = \/(x — %)'S~1(x — X), where S is the covariance matrix, x is a
data vector and X is the mean vector. In order to robustify this distance, which may be conditioned by
outliers, the MCD (Minimum Covariance Determinant) estimator is computed (Rousseeuw and van
Driessen 1999), where only the 100(1 — a)%, a € [0,0.5], observations giving the smallest possible
determinant of S are kept. In this way masking or swamping problems can be effectively addressed.
MCD estimates can be computed by Fast-MCD, proposed in the same paper, or by an alternative

procedure called Bacon EEM algorithm (Beguin and Hulliger, 2008).

Hubert et al. (2008) proposes robust estimations of the mean vector and covariance matrix together
with y? approximation to obtain cut-off values. In Cerioli (2010) the size properties of the same
methodology are improved by using finite-sample distributional results for the definition of distances
and the cut-off values. Robust multivariate mean and covariance estimation has been recently
approached in an alternative way by Maronna and Zamar (2012) and Pena and Prieto (2012).

Maronna and Yohai (2016) provides a general overview on the topic.

2.2 Regression-based methods

Besides distribution-based methods, regression-model based methods can be used in a multivariate
context. Rousseeuw and Leroy (1987) provide a detailed description of outlier detection methods in
relationship to regression methods, highlighting two different approachs. First, there is the outlier
diagnostics approach which works with residuals produced by a standard OLS regression or a
standard OLS regression where some points have been omitted. Studentised residuals computed from
the leave-one-out approach (Weisberg 1985) or the application of the Cook distance and DFFITS can

be effective to detect influential objects, i.e. the observations which are affecting significantly the
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regression plane. In addition, the properties of the ‘hat” matrix H which transforms the observed

values to the predicted ones (¥ = Hy) can be investigated for outlier identification. For example, if a
: . . a9; . o .
diagonal element of H is ‘large’, meaning that a—i]}f is large (as defined by some criterion), then i is an
L

influential point (e.g. Henderson and Velleman 1981). Unfortunately, these methods are effective
when the number of outliers and observations is small (e.g. one or two outliers), however they become
computationally infeasible when the number of outliers is high. Therefore, the scope for their

application in a ‘fat’ large data set is very limited.

The second approach is to apply robust regression methods which are less sensitive to the presence of
outliers compared to the OLS. Several approaches have been proposed and their effectiveness can be
assessed using the concept of the ‘breakdown point’ i.e. the fraction of distorted points which can

have an arbitrarily large effect on the regression operator (see Hubert et al. 2008).

Three very well-known robust regression estimation methods are: 1) Least Trimmed Squares (LTS),
which estimates regression coefficients minimizing the trimmed squares of residuals (Rousseeuw and
Leroy 1987, 2006); ii) the MM-estimation, which is a 3-stage procedure, based on M-estimation,
ensuring at a given breakdown point much higher efficiency than LTS (Yohai, 1987); and iii) the GS-
estimation, which is based on the optimization of a generalized function of the residual scale,
guaranteeing minimum max-bias (Croux et al., 1994). In addition, Salibian-Barrera and Zamar (2002)
propose a bootstrap approach to robust regression. For a general overview on robust regression we

refer to Hubert et al. (2008) and Rousseeuw and Hubert (2011).

A rather different approach, described in Au et al. (2008), proposes a methodology for irregularity
detection in time series data by using a decomposition of time series, clustering of time series and
LASSO regression method for components selection. This approach has some similarities with this
paper, given that it can be used for large cross sections, however, it is assumed that there is a high
degree of homogeneity among the individual variables (time series), so that they can be conveniently
classified into clusters, which is not the case for supervisory data, because the degree of heterogeneity

among variables is extremely high.
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2.3 Methods for high-dimensional data

The emergence of high-dimensional datasets creates the need for the development of new data
analysis techniques. We know that ‘Big data’ are large datasets possessing the so called 5 Vs: volume,
velocity, variety, variability, veracity. They can also be viewed as data sets for which standard
statistical techniques are not effective and whose size poses logistical challenges for existing database
software tools. As Varian (2014) notes, the size of the data requires automated techniques for the
identification of subsets of variables which are statistically linked. In addition, high-dimensional data
sets may exhibit types of statistical relationships, such as highly correlated variables, which would
affect negatively the application of standard statistical techniques, for example by rendering
correlation matrices ill-conditioned. In such datasets, even in case they are not so high-dimensional to
be defined as ‘Big’, the procedures for eliminating statistically redundant information should be
automatized. For example, the decision to exclude one of two highly correlated variables should be
based on a specific computational criterion because it is not possible to decide by inspecting the
variables in question. Furthermore, ‘fat’ datasets require some kind of variable selection when
working in a multivariate context, since the number of potential regressors may be larger than the
number of observations. In this direction, and considering these practical issues, there is a need to
develop single-variable outlier detection methodologies in a multivariate context simultaneously
robust to the presence of missing data, high collinearity, innovation outliers and a dimension larger

than the sample dimension.

The most traditional method for variable selection is LASSO (Tibshirani, 1996): even if LASSO gives
the sparsest possible solution and has a certain protection from noise (see Xu et al., 2009, Yang and
Xu, 2013), it is not robust against corrupted measurements. For this reason, some variants of the
LASSO like the extended LASSO (Nasrabadi et al., 2011) and the fused LASSO (Kim et al., 2015)
have been proposed. In addition, there are alternative methods exploiting Huber penalty (Owen, 2007)

or minimum distance estimators (Lozano et al., 2016).
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A recent approach by (Yi and Huang, 2016) integrates Huber/quantile losses and the elastic net
penalty for robust regression estimation, thus encompassing both LASSO and ridge penalties. This
procedure is based on a semi-smooth Newton coordinate descent algorithm which provides regression
coefficients estimates, but no robust estimate of the residual scale. This happens because the objective
is not optimized via a reweighted least squares method. Consequently, this approach (from now
labelled “HQ”) will be used as the robust variable selection step to identify the most explicative
covariates, so that the usual robust regression methods like LTS, GS and MM may be subsequently

used to perform outlier detection.

A competitive family of regression outlier detection methods in high dimensions is based on the
optimization of a function which selects covariates and identifies outliers robustly at the same time.
These methods include the robust version of the Least Angle Regression (LARS) by Efron et al.
(2004), which was developed in (Khan et al., 2007), and SPARSE-LTS (Alfons et al., 2016), a
method which optimizes an objective composed by a trimmed sum of squares and an [ penalty.

SPARSE-LTS will be the main competitor of our integrated approach throughout the paper.

For the sake of completeness, we mention that there are several multivariate outlier detection methods
for high-dimensional data which do not employ multivariate regression. Among others we mention
Entropy Fast Detection (Liu et al., 2013), Local Search Algorithm (He et al, 2006), a rank-order
approach for high-dimensional databases (Texeira et al. 2008), a cluster-based similarity method
(Christy et al. 2015), and Cell-DROS method (Van Hieu and Meesad 2016). In the same context,
Todorov et al. (2011) and Templ et al. (2017) are two multivariate outlier identification methods for
datasets affected by missing values and structural zeros respectively. Despite that, our aim is to
identify the outliers in one variable, taking advantage of the knowledge of other related variables. For

this reason, we will not take into account this family of methods.

In this paper, our reference model setting has the distinctive feature that neither y nor x are directly
perturbed, while the regression coefficients 3 are. This case may be very common for banking data,

where the usual relationships among variables may be amplified or annihilated for specific banks. In
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addition, we allow for the presence of missing data, high collinearity, innovation outliers (i.e. outliers
with arbitrarily amplified innovation error) and a dimension p (i.e. the number of quantitative
variables or attributes) larger than the sample dimension n (i.e. the number of observations).
Therefore, it is of interest to study the behaviour of SPARSE-LTS and our integrated procedure under
these conditions. Our integrated approach takes successfully into account all these issues at the same

time being an “integrated” methodology for regression outlier detection.

3. Anintegrated outlier detection methodology

3.1. Outlier detection in supervisory data

As already explained, the literature has not paid sufficient attention to the development of integrated,
automatized methodologies which can deal with large datasets and perform multivariate outlier
detection in them. ‘Integrated’ here refers to the incorporation of all required steps for multivariate
outlier detection, including the preparation steps of the data set, such as standardisation, dealing with
completeness issues and ‘cleaning’ the data from redundant information. This paper aims to fill this
gap, focusing on ‘fat’ large datasets, and employing banking supervisory data to test the proposed
method. Our data set does not strictly possess the size which would lead to its characterisation as ‘Big
data’, however the techniques we develop are aimed for application in a ‘Big data’ context; given also
the increase in the supervisory data set that we use, which will growth significantly with time, as

banks submit an expanded data set at a quarterly frequency.

Zhang et al (2010) provide a survey of outlier detection techniques focusing on specific type of data,
namely data from wireless sensor networks. They point out that, in this specific field, the approaches
adopted for outlier detection neglect in various ways the properties which characterise the underlying
data; for example, the range of dependencies considered does not correspond to the actual
dependencies characterising the sensor data. In general, the development of integrated methodologies
should be customised for the type of data in which it will be applied. The dimensions, dependence
structures, range of values, and the statistical distributions properties all influence the optimal

selection of methods.
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Outliers in supervisory data can be succinctly defined as those data that significantly deviate from the
normal pattern of scaled data. This definition is based on the fact that supervisory data (e.g. the
various types of loans) when scaled by the banks’ size (total assets) are comparable across banks of
different sizes and represent the composition of the activities and corresponding risks that the bank is
undertaking. Differences in the composition of activities among subsets of banks may exist e.g.
because different banks follow different business models (Farn¢ and Vouldis, 2016). Furthermore,
there may be scale effects in the composition of activities, e.g. large banks with more complex
strategies may, for example, make more extended use of derivative instruments. Despite the existence
of such distinctive features which can characterise subsets of banks, and may lead to various reported
variables following distinct statistical distributions within such subsets, we expect that there is also an
aggregate statistical distribution for almost all reported items when they are standardised. The bulk of
these distributions (usually strongly skewed, as pointed out by Hubert and van der Veeken, 2008) is
expected to be located within a subset of [0,1], given the normalisation with respect to assets” and the
fact that most items are lower than the bank’s size — although a few variables, such as the notional

amounts of derivatives, may exceed unity i.e. their size may be higher than the bank’s total assets.

3.2. Problem definition

Our problem can be formulated in an abstract way as follows. Let X be a n X p matrix containing a
set of p variables with n observations. In our case, each observation index refers to a bank-reference
date combination, while the variables cover a wide range of aspects about the banks’ activities,
performance or risk-taking.
Each observation vector is denoted as

x; = (X Xip), i = 1,-,n.
Each observation can be thought of as referring to either a specific bank, in the case that our sample

contains observations for n banks, or a bank-date pair, in the case of panel data, when more than one

* The total asset value represents an upper bound for almost all the items present in banks’ balance sheets,
irrespectively of whether they represent assets, liabilities, off balance sheet items or flow components such as
profit. Some of these constraints are driven by accounting identities and some others by the business reality.
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reference date is present in the dataset. In the more general case, we could also have an unbalanced
panel of banks, i.e. a changing cross section of banks, if we have data from different reference
periods.
Each variable vector is denoted as

x) = (xg..%nj), ) = 1,+,p.
The present paper focuses on outliers for specific variables (see Farné and Vouldis (2016) for the
analysis of outlier data vectors). Consequently, our aim is to identify outlier data points meaning
specific data points x;; that come from another population compared to the other elements of the
vector x7.
The outlier detection process for a variable x/ takes as input a certain information set £2/. The
simplest approach is to use only the sample of variable x/ in order to identify the outliers within that
sample i.e. 2/ = x/. An alternative, which is explored here, is to extend the information set and
include also other “related” variables. The idea then would be to utilise statistical relationship(s)
between a relevant set of variables in order to define the outliers. For example, one could identify the
loan-to-assets ratio as being an outlier for a bank based solely on the sample distribution of loan-to-
assets for the whole set of banks. However, one could utilise additional information, e.g. trading
assets-to-assets in order to identify outliers, given that we would expect a negative relationship
between these two variables, and, therefore, a bank which is characterized by relatively high values
for both of these variables is an outlier. It is clear in this example, that an outlier detection algorithm
which utilises this additional information would identify values of dubious quality more reliably.
A salient feature of our approach is that it is suited for high-dimensional large data, such as those
collected under the ECB Banking Supervision institutional set-up, i.e. data where p > n. In other
words, the granularity of the data set is very large compared to the number of entities which are
reporting the supervisory data.
The manipulation of this information provides a challenge to develop robust methodologies for outlier
detection. Specifically, due to the large size of the data, the selection of relevant variables which could

be used to inform the outlier detection procedure for each specific variable is not straightforward and

ECB Working Paper Series No 2171 / July 2018 13



needs to be automatized. Consequently, we aim to identify outlier one-dimensional data points in this

large data set taking into account the relations which exist among the variables in this data set, while

automatizing all the steps in this procedure.

3.3.  Afive-step procedure

Our proposed methodology consists of five (5) steps, entailing robust covariates selection, estimation

of a robust model based on the selected variables and a criterion to identify outliers based on robust

measures of the residuals’ distribution. Statistically related information is therefore identified and then

utilised to spot outliers for each variable. This procedure can be applied consecutively to all the

variables of a data set, therefore enabling the identification of outliers for all variables.

Specifically, our proposed multivariate outlier detection methodology consists of the following steps,

which will be explained below in detail:

Step I: Standardization of variables or normalization (optional).

Step 2: Selection of “closely related” variables (“determinants”) using a procedure based on
the semi-smooth Newton coordinate descent algorithm for elastic-net penalized Huber loss
regression of Yi and Huang (2016) (HQ procedure). Such method estimates the regression
coefficients by minimizing a Huber loss plus a classical [; penalty. In this way, we can
identify the most relevant L determinants in a robust way.

Step 3: Using the selected set of variables we run a robust regression. In this step, three

possible alternatives could be utilised:

- least trimmed squares (LTS) estimation, which identifies the 100 X (1 — a)% most
concentrated observations and estimates the model on those;

- MM-estimator (Yohai, 1987), the most efficient estimator given a level of
breakdown, which minimizes a Huber function of the residuals and uses a robust

initialization of the coefficients B and the residual scale o;
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- GS-estimator (Croux et al., 1994), which estimates the residual scale minimizing a

Tukey biweight function of scaled residuals.
More details about these methods are provided below.
Step 4: Calculate in a robust way the dispersion of residuals.
Step 5: 1dentify outliers based on the calculated dispersion.

These steps are described in detail below.

Step 1: Standardisation (optional)

The aim of standardisation is to abstract from differences in the first two moments of the distributions
followed by the variables in the dataset. Standardisation is performed by subtracting a robust
estimator of the mean of each variable and then dividing the result by a robust measure of variance.
This step is optional. The main criterion for its application is whether we would like to retain or
abstract from the background (‘confounding’) characteristics of the Pvariables. Each of the described
methods has its natural standardization pre-processing step, which is used by default. In principle, our

outlier detection method could work with both standardized and non-standardized input data.

Step 2: Selection of determinants’ using results of LASSO estimations

This step aims to select, in an automatized way, the statistical determinants of the variable in question.
Specifically, for each variable x/, we would like to search within the set of remaining variables

V) ={x*:k =1,--,p; k # j}and select a subset of its “closely related” variables (“determinants”)
which can be used to predict the values of x/. Given the “fat” nature of the dataset, the aim here is to
select a relatively small number of ‘determinants’. This is accomplished by estimating the following

linear model with the set V/at the righthand side

xI=a+Vig+e

? The term “determinants” here does not imply causality in an economic sense but refers to the set of variables
which are statistically related to and can be used to estimate a statistically “plausible” value for the dependent
variable.
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using the semi-smooth Newton coordinate descent algorithm for elastic-net penalized Huber loss

regression (Yi and Huang, 2016):
min
n p
i )+ AX,_ : ),
B = Bdeonson; et + AThy s Bl
1 . . . .

where 1; = x;; — X _; -y ﬁk x;j and po(t) = 5{|t| + (27 — 1)t?} is the Huber weight function. This
minimization procedure performs robust variable selection and shrinkage at the same time. The
nonnegative regularization parameter A determines the weight given to exclude variables which do not
possess “explanatory” power over x/i.e. as A increases, the number of nonzero 8 ; components
decreases. Therefore, the HQ procedure allows to identify a parsimonious subset of variables which

are statistically relevant as predictors of x/ from the large data set V/.

The model is estimated for a range of 4 values, and for each variable we select the estimated models
with maximum 3 determinants. Let us denote by Dlj , Dzj , and D3j the sets of determinant variables

for x/, with one, two and three members, respectively.4

Step 3: Calculation of statistical relationship between the examined variable and its predictors using

robust regression

After having identified subsets of variables which are linked statistically with x/, we estimate the
corresponding statistical models in a way which is robust to the presence of outliers. There is a
number of robust regression methods, which identify statistical relationships between variables
without being affected by the presence of outliers to the degree that this is the case for the standard
OLS regression. These techniques differ from the standard OLS with respect to the function that is
being minimised, which is not the sum of squared residuals but an alternative that is less sensitive to

extreme values. Specifically, the LTS estimator (Rousseeuw 1984) is given by

. h
nzn Z(rz)i:n
i=1

* See also Davidson and Tayi (2009) for an alternative approach.
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where (12);.,, denotes the squared lower residual from the set which remains after the lower i — 1
ones have been removed:(12) 1., < (r?) 3., < =+ < (r?),.n. Consequently, the above expression
contains the h lower residuals. The parameter h is critical for the outcome of the estimation; relatively
high values of h could be ‘permissive’ allowing outliers to influence the results, while relatively low
values of h could be excessively ‘strict’. The first case entails the risk of ‘masking’ leading to Type II
errors of the algorithm i.e. non-identification of existing outliers while the latter case could lead to

‘swamping’ i.e. Type I errors i.e. mislabeling of non-outlying data as outliers.

The computational complexity is also a significant factor when the method is intended to be applied to
a large data set. The FAST-LTS algorithm proposed in Rousseeuw and van Driessen (1999) provides

an efficient implementation of the LTS regression.’

Alternative robust regression methods tested in place of LTS are the MM and GS estimators. The MM
type is based on the following optimization problem:
min
ﬂ — {ﬂ]} 2?:1 p‘[(riz)a
where p,(t) is a Tukey bi-weight function with an efficiency level of 95%, initialized by M-estimates
of coefficients and residual scale at a breakdown point of 50%. The minimization problem is solved

via reweighted least squares. MM-estimator is proved to have much higher efficiency than LTS given

a specific breakdown point. For further details, we refer to Yohai (1987).

The GS type, instead, optimizes the residual scale based on the constraint that the sum of a bi-weight
function of rescaled residuals equals a particular value. In symbols: min o (), given that the
following equation holds:

)Y D) = (B)-(5)+1)/()

i<j

> The approach proposed in Zioutas et al. 2009 avoids the need to pre-define / but at an increased computational
cost.
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2 4 6
where hy, = (%p“) and p(t) = min (3%2 ~3E g %, 1) is the Tukey biweight error function with

c4

¢ = 0.9958. For further details, we refer to Croux et al. (1994).

As explained in Section 2, we compare the results of our proposed method to those of SPARSE-LTS

(Alfons et al., 2013), which is based on the following minimization objective:

Q(H,B) = Tienri® + any;|p;

b

where H is the subsample of length an, a € [0.5,1], producing the minimum for Q respect to . The
optimal £ is the sparse-LTS solution. The minimum is computed via a Sparse Fast-LTS algorithm,
which computes at each step the LASSO estimate on the 100 X (1 — a)% most concentrated
observations. We remark that SPARSE-LTS does not need any variable selection step like our Step 2,

because variable selection and robust model estimation are performed contemporaneously minimizing

Q(H, B).

Step 4: Robust estimation of residual dispersion

A robust calculation of the residuals dispersion should exclude the impact of outliers i.e. it should be
conducted by first assigning binary weights to the observations, assigning zero weights to the

observations which are deemed to be outliers from an initial dispersion estimate.

Specifically, the dispersion estimate is given by the standard consistent dispersion formula adjusted

with binary weights which exclude extreme values:

where the weights w; will be defined below and p/ is the number of explanatory variables in the

regression equation considered (i.e. 1, 2 or 3).

The weights w; are defined by utilising an initial estimate of the dispersion:

Gy = /mediani(fiz)/¢‘1(0.75)
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The above expression assumes that the residuals follow a normal distribution N (0, 2) (where o is the
real value of the dispersion). Consequently, following Ruppert (2010, p. 118) this expression provides

an estimation of the population dispersion. Rousseeuw and Leroy (2003, p. 202) propose in addition

. . . . 5
to multiply the second term with the finite-sample correction factor [1+n—_p].

Having calculated this initial dispersion, the weights can be defined at a pre-specified level e.g. 1%,

% < 2.5, and 0 otherwise.
0

considering our normality assumption for the residuals: w; = 1 if

Alternative considered methods have different estimation procedures for residual dispersion.
Concerning MM estimator, the i —th observation is flagged as a regression outlier if the estimated
robustness weight w; = 0. Robustness weights vary from 0 to 1, and are exploited to estimate the

residual scale. Concerning the GS type, robust Mahalanobis distances of the residuals are computed,
observations exceeding / Xi1-a /2 » @ = 0.05, are flagged as regression outliers, and the residual

scale is robustly estimated accordingly. SPARSE-LTS, instead, identifies regression outliers by a
reweighting step, which then provides final estimates of coefficients and residual scale, in a specular

way respect to LTS.

Step 5. Identification of outliers based on the estimated dispersion
With the dispersion estimation & in hand, the outliers can be specified at e.g. 1% level by the
condition |%| < 2.5. The underlying assumption in this step is that the set of residuals follow a

normal distribution with & as the standard deviation.

Chart 1 below illustrates graphically the different steps of the proposed algorithm, including the data

preparation phase which is presented in detail in Appendix A.
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Chart 1: Schematic representation of the proposed methodology

. initial .
Input: Data matrix X (n xpmmﬂl)

Calculate null rates and completeness rates Vj = 1..pi"i'i“’ Exclude degenerate

variables i.e. those for which null rate = completeness rate

)

. duced
Output: Data matrix X e (n xpmduced)

The rank of the ensuing data matrix can inform us about
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4. Simulation study

In this section we conduct a simulation study to test the validity of our method. Specifically, the three
variants of our integrated approach, namely the versions utilising LTS, MM, and GS in the third step
respectively (will be called HQ+LTS, HQ+MM, HQ+GS henceforth), are compared to each other and
also to two benchmark methods. The first benchmark method is a robust 3-sigma rule where location
and scale parameters are estimated in a robust way using logistic psi-functions.’ The second
benchmark is the SPARSE-LTS method.

Our generated n X p data matrix X contains p variables each with n observations, we assume that

p > n (i.e. “fat” data). The first column of X contains our response variable y of which we would like
to identify outliers, utilising also the additional information contained in X.

It is assumed that some of the remaining variables in X provide supplementary information which can
enhance the detection of outliers in y due to the existence of relevant statistical relationships.
Therefore, a number of L determinants is randomly selected across the remaining p — 1 variables.
We call L the set of “determinant” indices and X; refers to the matrix which contains the relevant
columns from X. A number of a X n outliers is randomly generated across the n observations. We
call O the generated set of outlier indices i.e. a set of indices in the set 1, ..., n of observation indices.
We call D the generated set of determinants indices and D' the generated set of non-determinants
indices in the set 2, ..., p of variable indices.

The simulation proceeds as follows. First, we generate the p — 1 covariates according to a
multivariate normal distribution MV N (0, 2) with the null vector as mean and %, a matrix with unitary
diagonal and all the off-diagonal elements equal to p, as covariance matrix. For the response variable
v, i.e. the first column of X, we set a linear model without intercept where the covariates are only the
L chosen determinants. In symbols:

Yi=XipB +e€,1 €0,

6 Using the MATLAB functions mloclogist and mscalelogist.

ECB Working Paper Series No 2171 / July 2018 21



where X; p,i & O, is the 1 X L vector of the chosen determinants for observation i, B3 is a generated L-
dimensional vector, ﬁqNU(ﬁmin,ﬁmax)» Vgq=1,..,L,and &~N(0,1),Vi=1,..,n.
Regression outliers in the response variable y are generated by multiplying the coefficients in § by an
amplifying term m randomly drawn from the set (mmin,mmax):
yi =mX;pP + &, 1 € 0.In order to test for the presence of multicollinearity in the data, we allow for
the possibility of the covariates to be correlated with a correlation coefficient py which is set to
belong to {0.3,0.7}. In order to test for the presence of sparsity in the data, we establish that a
prescribed percentage yy, within the range {0.3,0.7}, of the entries in X}, (the matrix containing as
rows all observations and as columns only the non-determinants) may be randomly set to 0. In
addition, we establish that a prescribed percentage yy, , within the range {0.3, 0.7}, of the rows in X},
(the matrix containing as columns only the determinants) may be randomly set to 0.
In the case where innovation outliers are allowed, the above equations become
yi=XipB+e€,i €0, g~N(0,1)
and
yi=mX;ppf +¢&,i €0, g~N(0,m).

Therefore, in the last equation, both regression and innovation outliers are present. We also
distinguish the case in which the coefficients § are allowed also to be negative. In that case, the sign
is decided by throwing a dice & before they are generated. Concretely, if £=1, then f~U(5,15) while
if £&=0 then f~U(—15,—5). We also set my,;, = 1, My, = 19.
We focus on the following simulation settings:

- case l:p=200,n=100,L = 3,2 = 0.1,px = 0,yx, = 0,yx = 0, Presence of innovation

outliers=NO, Mixed sign of coefficients=NO.
- case2:p=200,n=100,L =3, =0.1,px = 0,yx, = 0,yx = 0, Presence of innovation
outliers=YES, Mixed sign of coefficients=NO.
- case3:p=100,n=50,L =3,a =0.1,px = 0,yx, = 0,yx = 0.7, Presence of innovation

outliers=YES, Mixed sign of coefficients=YES.
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- cased:p=100,n=50,L=3,a=0.1,px =0, Yx, = 0.7,yx = 0.7, Presence of
innovation outliers=YES, Mixed sign of coefficients=YES.
- caseS5:p=200,n=100,L =3, =0.1,px = 0'3'VXL = 0,yx = 0.7, Presence of
innovation outliers=YES, Mixed sign of coefficients=NO.
- case 6:p =200,n =100,L =3,a = 0.1,px = 0.3,yx, = 0,yx = 0.7, Presence of
innovation outliers=YES, Mixed sign of coefficients=YES.
For each setting, a number of N = 100 replicates have been generated. For each simulation set-up, we
compute the following performance measures:
- masking rate, which is the rate of non-identified outliers over the true ones (type I errors);
- swamping rate, which is the rate of erroneously identified outliers over the recovered ones
(type 1l errors);
- aggregate error rate, which is the mean between masking and swamping rates.

All measures range from 0 to 1.

Table 1: masking, swamping and aggregate rates for cases 1-6 and each performed method (m = 19). Numbers
in bold show the lower values for each column.

Case 1 Case 2 Case 3
Masking Swamping Aggregate Masking Swamping Aggregate Masking Swamping Aggregate
HQ+LTS 0.01 0.10 0.05 0.14 0.10 0.12 0.17 0.13 0.15
HQ+GS 0.05 0.02 0.04 0.30 0.03 0.16 0.26 0.03 0.15
HQ+MM 0.01 0.06 0.04 0.16 0.08 0.12 0.18 0.13 0.16
SPARSE-LTS 0.01 0.02 0.02 0.29 0.06 0.18 0.28 0.10 0.19
Logistic 0.15 0.01 0.08 0.99 0.93 0.96 0.96 0.85 0.91
Case 4 Case 5 Case 6
Masking Swamping Aggregate Masking Swamping Aggregate Masking Swamping Aggregate
HQ+LTS 0.02 0.10 0.06 0.10 0.10 0.10 0.12 0.11 0.11
HQ+GS 0.23 0.01 0.12 0.26 0.03 0.15
HQ+MM 0.02 0.11 0.06 0.11 0.06 0.08 0.12 0.08 0.10
SPARSE-LTS 0.02 0.02 0.02 0.19 0.03 0.11 0.23 0.05 0.14
Logistic 0.03 0.61 0.32 0.98 0.79 0.88 0.93 0.57 0.75

We report in Table 1, masking, swamping and aggregate rates for each of the six cases and for each
method. As it can be observed, the HQ+LTS method is the best performer with respect to the masking
rate for all cases. Furthermore, HQ+GS performs best with respect to the swamping rate for all cases
but Case 4 among regression methods. At the same time, HQ+MM is often prevailing with respect to

the aggregate rate, even if relevant exceptions are Cases 1 and 4, when it is outperformed by
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SPARSE-LTS. The observed pattern is that for complex cases our integrated approach outperforms
the benhchmark methods, while the benchmark method SPARSE-LTS is the best performer when
only regression outliers are present and when the number of zero observations is very high.

We present the results in more detail below, showing how the two rates, relevant for assessing the
performance of the outlier detection methods, change while the disturbance parameter m increases.
The logistic method performs clearly worse than all other methods both with respect to swamping and
masking rates, therefore we do not include these results below.

In Figure 1 we report the masking rate for case 1. All variants of our method perform very well with
HQ+GS performing slightly worse. The swamping rate for case 1 is reported in Figure 2. We see that
among regression methods SPARSE-LTS and HQ+GS exhibit the best results regarding the
swamping rate, which is in both cases lower than 5%. On the contrary, HQ+LTS and HQ+MM are
characterised by larger rates. Therefore, if there are no innovation outliers, SPARSE-LTS has a
distinct advantage. We remark that variable selection works perfectly for both methods (HQ and
SPARSE-LTS), while the logistic method converges slowly to a masking rate of 15% and a swamping
rate smaller than 2% as the disturbance coefficient m increases. Therefore, the benchmark method
SPARSE-LTS proves to be the superior one in this simple case, showing an aggregate error rate
smaller than 2%.

Figure 1: Masking rate for case 1 (constant m in the x-axis). Dashed lines show the one standard deviation

intervals.
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Figure 2:

Swamping rate for case 1 (constant m in the x-axis). Dashed lines show the one standard deviation
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Case 2 introduces innovation outliers and the results as presented in Figures 3 and 4 show the

corresponding masking and swamping rates. Convergence is slower than before and now SPARSE-

LTS is not the best-performing method anymore, neither with respect to the masking nor and the

swamping rate. Instead HQ+LTS performs best with respect to the masking rate criterion, with a 15%

masking rate, followed by HQ+MM. From the swamping rate side, HQ+GS exhibit the better

performance, while HQ+LTS shows the worst at 10%. Covariate recovery is almost perfect, while the

logistic method goes completely wrong, with a masking rate close to 100%. Therefore, in this case

both the HQ+MM and the HQ+LTS variants of our proposed method seem optimal if the aggregate

measure is considered.

Figure 3: Masking rate for case 2 (constant m in the x-axis). Dashed lines show the one standard deviation
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Figure 4: Swamping rate for case 2 (constant m in the x-axis). Dashed lines show the one standard deviation

intervals.
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When sparsity is introduced (case 3), Figures 5 and 6 show that both HQ+LTS and HQ+MM feature a
masking rate below 20% and a swamping rate slightly above 10%. HQ+GS exhibits a more uneven
performance, with a higher masking rate and a very low swamping rate. SPARSE-LTS shows the
worst performance among regression methods, with a masking rate around 30% and a swamping rate
around 10%. The other benchmark method fails completely, exhibiting masking rates above 90%.

Figure 5: Masking rate for case 3 (constant m in the x-axis). Dashed lines show the one standard deviation

intervals.
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The average number of masked or swamped determinants is never above 0.1 both for HQ and
SPARSE-LTS. Overall, all three variants of our proposed approach are close with respect to the
aggregate performance and the optimal choice is determined whether the user is more ‘risk averse’

(i.e. aims to minimise the masking rate) in which case HQ+LTS or HQ+MM would be the preferred
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choices or more focused to avoid over-identification of outliers in which case HQ+GS would be the
preferred choice.

Figure 6: Swamping rate for case 3 (constant m in the x-axis). Dashed lines show the one standard deviation

intervals.
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Case 4 is designed to test how the presence of missing rows in the matrix of determinants affects
outlier detection. In that case, the GS method becomes completely infeasible, because the linear
system behind the procedure has not a unique solution. The reason is that the condition number of the
sample covariance matrix is close to infinity. On the contrary, the other regression methods are robust
to such perturbation, still showing satisfactory results. Specifically, Figures 7 and 8 show that the
masking rate is for all methods close to 0.

Figure 7: Masking rate for case 4 (constant m in the x-axis). Dashed lines show the one standard deviation

intervals.
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Figure 8: Swamping rate for case 4 (constant m in the x-axis). Dashed lines show the one standard deviation
intervals.
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The swamping rate is significantly better for SPARSE-LTS, standing at 2% against the 10% of
HQ+LTS and the 11% of HQ+MM. The same holds for the aggregate rate, which is equal to 2% for
SPARSE-LTS and 6% for HQ+LTS and HQ+MM. Variable selection is perfect for SPARSE-LTS,
while HQ shows an average number of masked determinants lower than 0.1. The logistic method
converges to a masking rate of 2% and a swamping rate of 60%, thus being completely ineffective.
If we combine a zeros rate of 0.7 and a correlation level of 0.3 among the covariates (case 5),
HQ+LTS and HQ+MM also converge to the lowest masking rates, in both cases around 10%, while
HQ+GS is again higher at 23% (Figure 9). However HQ+GS exhibits the lower degree of swamping
at 1%, while for HQ+MM swamping is around 6% and for HQ+LTS around 10% (Figure 10).
SPARSE-LTS shows a swamping rate around 3% and a masking rate around 20%. On aggregate,
HQ+MM shows the best overall error rate at around 8%, followed by HQ+LTS, SPARSE-LTS and
HQ+GS by a small margin. Variable selection is still almost perfect for both methods (HQ and

SPARSE-LTS).
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Figure 9: Masking rate for case 5 (constant m in the x-axis). Dashed lines show the one standard deviation

Figure 10:
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A similar pattern is shown if coefficients are allowed to have different signs (case 6), as exemplified

in Figures 11 and 12. Therefore, for cases 5 and 6 it turns out that HQ+MM is the optimal option if

one aims to minimise both the swamping and the masking rate with an equal weight, while HQ+MM

outperforms the other methods from the masking rate side and HQ+GS from the swamping rate side.
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Figure 11: Masking rate for case 5 (constant m in the x-axis). Dashed lines show the one standard deviation
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Figure 12: Swamping rate for case 6 (constant m in the x-axis). Dashed lines show the one standard
deviation intervals.
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To sum up, we can conclude that the performance of SPARSE-LTS gets worse as the degree of

sparsity and collinearity increases. As a consequence, for real data with a lot of zero entries or
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collinear variables, HQ+LTS and HQ+MM represent the best approaches, because they ensure a low

masking rate. In addition, in case of missing rows in the matrix of determinants, GS regression

becomes infeasible, while HQ+LTS shows also a lower swamping rate than HQ+MM. Furthermore, it

is observed that the performance of SPARSE-LTS improves considerably as sparsity, collinearity and

missing rows are present into the matrix of determinants. This occurs because in that case the impact

of innovation outliers is minimized.
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Note that if the fraction of outliers o increases, masking and swamping effects are amplified
accordingly without affecting the relative performance of competing methods. If both p and n are
increased, the performance is quite similar, and the detected patterns remain unaltered, given that the

ratio E remains the same. We remark that the computational cost of SPARSE-LTS increases

considerably, because it requires O(n?) iterations due to the cost of sorting squared residuals
(Rousseeuw and van Driessen, 1999). On the contrary, the HQ procedure only requires O(pn)
iterations (Yi and Huang, 2016), thus being much faster as both p and n are in the order of 103- What
is more, as p increases it is not easy to select a model with a prescribed number of determinants via
SPARSE-LTS, because the trimmed sum of squares is very sensitive to the value of A. On the

contrary, the HQ method is less affected by this drawback, due to the use of the Huber loss function.

5. An application to supervisory banking data

The methodology is applied using real data, specifically to the supervisory data submitted by the
European banks to the Single Supervisory Mechanism (SSM) operating within the European Union.
The broader context is the institutional changes at the European level, brought about by the financial
crisis leading to the harmonised supervision of large banks in Europe and the centralised collection of
their data by the European Central Bank (ECB) and specifically its supervisory function.

More broadly, during the last years, economic policy institutions, like international organisations,
finance ministries or central banks face the challenge to incorporate the newly emerging large data
sets into their mode of operation.” The challenges pertain both to the conceptual and the technical
dimensions. On the conceptual aspect, the sheer amount of information contained in large data sets
poses methodological questions such as the selection between theoretically grounded or a-theoretical,

data-driven approaches. A report from the Bank of International Settlements notes that “conventional

" For an overview, focusing on central banks, see Hammer, Kostroch, Quiros et al. (2017) and Nymand-
Andersen (2016). The workshops on big data organised by the European Central Bank in 2014
(https://www.ecb.europa.eu/pub/conferences/html/20140407_workshop_on_using_big_data.en.html) , the Bank
of England (see Bholat 2015 for a synopsis), and the Riksbank in 2015 (http://www.riksbank.se/en/Press-and-

published/Notices/2015/The-Riksbank-organises-a-workshop-on-big-data/) testify for this increasing interest in
the central banking community.
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structured data sources” appear to be ... more effectively mobilised than “new” big data sources”
highlighting the methodological exploration which takes place with respect to analysing such datasets
(Bank of International Settlements 2015). Moreover, on the technical front, the standard econometric
techniques for analysing data need to be extended, or new ones should be adopted, borrowed from
other data-rich fields, dictated again by the size of such data sets. See Varian (2014) for an overview
of techniques suited for big datasets.

At the European level, the assumption of the supervision of euro area banks by the ECB, starting from
2014, has as one of its implications, the collection of large sets of supervisory data from a number of
countries within one institution, a feature which is unique at a world scale. The supervisory data,
reported by the banks to the ECB, cover, with a high degree of granularity, the different activities
undertaken by the banks. A number of breakdowns are present in the data e.g. with respect to
counterparties, products, geographical areas, accounting portfolios, risk classes and types of risk. This
exceptional granularity is the distinctive feature of this particular dataset and is also present in big
datasets collected in other finance-related fields, for example in banking sector’s credit registry
datasets (where detailed profiles for each borrower are recorded) or behavioural data utilised by
insurers (where various dimensions of behaviour are aggregated, aiming to provide insights on
expected insurance claims) or finally data from over-the-counter derivatives (with many-attribute non-
standardised contracts).

Monitoring the quality of these supervisory data, from a statistical perspective (as opposed to a
compliance or regulatory perspective) is a task with critical implications for the quality of supervision.
Improved data quality enhances the reliability of analyses and supervisory decisions which are
informed using these data. This is a challenging task due to the sheer amount of these data and the
substantial heterogeneity contained therein. ®

Our sample consists of a cross section of 365 SSM banks. A subset of these institutions, specifically

124 of them, have been labelled as ‘Significant Institutions’ in the context of the SSM 1i.e. they

¥ Studies investigating the biases caused by outliers on the measurement of financial risk include Chatterjee and
Jacques (1994) and Grane and Veiga (2014). Seaver and Triantis (1995), Johnson and McGinnis (2008) and
Bellini (2012) investigate the impact of outlier points on technical efficiency measurement.
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possess systemic importance with respect to the European or their domestic banking sector i.e. based
on the consolidated group size or on their size at the individual SSM country level. The reference date
of the data is 2014 Q4.°

We analyse a selected set of FINREP templates which contains all basic breakdowns of the banks’
balance sheet, therefore providing very granular information on banks’ activities. ‘FINREP’ stands for
‘Financial Reporting’ and includes data on the prudential scope of consolidation (as opposed to the
accounting scope of consolidation) using IFRS accounting concepts. FINREP templates were initially
developed as a part of a guideline from the Committee of European Banking Supervisors (CEBS) in
2005. During the following years, the European Banking Authority (EBA) which superseded CEBS
continued to coordinate the development of the templates. In the context of the SSM, FINREP data
have a much more elevated status since they form part of the mandatory reporting framework, given
that there is a relevant legal requirement incorporated into European Law with the Capital

Requirement Regulation (CRR), No 575/2013, Article 99 on 26 June 2013.

The templates can be found at the EBA website.'® Henceforth, we will refer to each data point as F x.y
[rz,cw] where x, y, z, and w refer to the sheet numbering (the first two), row numbering and column

numbering, respectively e.g. F 1.1 [r380,c10] refers to the data point ‘Total assets’.

The selected templates contain information on the breakdown of the balance sheet across at least four
dimensions, namely accounting portfolios, instruments (e.g. debt, equity, derivatives), products (e.g.
types of loan products) and counterparties (e.g. governments, central banks, other financial
institutions, non-financial corporations). This granularity is present for both the asset and the liability
sides. The main accounting categories for assets which are included are as follows: i) Loans and
receivables & held-to-maturity assets (Loans and HtM); ii) Assets held for trading (HfT); iii) Assets at

Fair value through profit or loss (FVPL); iv) Available-for-sale assets (AfS). These categories differ

? The reference date is the first one in which FINREP was submitted, therefore a change in completion rates and
other characteristics of the submitted data may be present in subsequent submissions.

' The URL address is: https://www.eba.europa.eu/documents/10180/359626/Annex+111+-
+FINREP+templates+IFRS.x1sx/049e48a4-¢7¢2-44¢6-89b1-4086447bced9
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with respect to their valuation and to the extent that they affect the profits of the bank. Both liabilities

valued at amortised cost and FV liabilities are included.

Specifically, our input set consists of the following templates (in parenthesis their main contents): F
1.1 (overview of assets), F 4.1 (HfT assets), F 4.2 (FVPL assets), F 4.3 (AfS assets), F 4.4 (loans and
HtM assets), F 5.0 (loans and advances by product e.g. on demand, credit card, leases loans etc), F 8.1
(overview of liabilities), F 9.1 (off-balance sheet items e.g. loan commitments and guarantees), F 10.0

(derivatives — trading), F 11.1 (derivatives — hedge accounting).

The practical application of the multivariate outlier detection has to take into account two additional
issues: the data availability issue (missing data and differential completeness rates among variables)
and the existence of a number of (mainly linear) identities among the variables of the data sets. Both
these features are strongly present in our data set. These practical issues are generic enough to be of

wider interest for other applications, therefore their treatment is elaborated in the Appendix of our

paper.

5.1 Results and discussion

In this section, we present the results of our approach with respect to detecting outliers on the banks’
size (measured as the value of total assets). The five-step procedure that was formulated in Section 2.3
is applied to the data set of 433 variables which remain after the exclusion of degenerate and highly
correlated variables (see the Appendix for the details). The resulting data matrix has 77% of missing

data, while the mean absolute correlation coefficient is 0.051.

The histogram below shows the distribution of the log of banks’ size, expressed in millions. It
transpires that the median value of banks’ size is 11.3bn (the mean is 10.2bn) and the log of size
follows a distribution which is close to normal (as can be inferred from the p-value of the Jarque-Bera
test, which equals 0.43 and allows the non-rejection of the null hypothesis of a normal distribution).

The fact that the size follows a log normal distribution is intuitive, given the existence of a large
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number of small- and medium-sized banks, high variances (also reflecting the size dispersion of the

countries in the sample e.g. with respect to their GDP) and the non-negativity of the size variable.

Figure 13 allows us to spot immediately two outliers, at the left tail of the distribution, which imply
that the banks report total assets as equal to 1.8mn and 2.0mn respectively (two implausibly low
figures). Therefore, this first level check was able to identify two outliers, caused probably by the use
of a wrong unit e.g. values expressed in million euros, instead of euros as required. We now proceed
with second level checks for outliers based on the results of our proposed multivariate outlier

detection approach.

We perform HQ+LTS on our data matrix, following the assessment of the relative merits of the
different variants of our proposed method, as was presented in Section 3. We set L = 3. The matrix
of recovered determinants presents a mean absolute correlation equal to 0.67, a degree of sparsity of

35% and a percentage of missing rows of 20%.

The procedure finds (see Table 2) that the optimal determinants of the (normalized by the maximum
value) size variable is the (normalized by each bank’s assets) amortised cost of debt securities issued,
the carrying amount reported for hedging derivatives at the asset side, and the notional amount of total
hedging derivatives.'' This is an intuitive result since these variables contain basic information about

the use of debt securities and derivatives and these instruments is more widely used by large banks.

Figure 13: Histogram of the size of banks in logs (there is no x-axis values to ensure data anonymization).
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Source: Supervisory data, authors’ calculations

' {.e. data points F 10.0 [r10,c10], F 10.0 [r320, ¢30] and F 11.0 [r500,c30].
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Table 2: Estimated equation linking banks’ size with the three top covariates.

Dependent variable: log- Estimated coefficients

size

Constant 18.4521
(156.418)

Hedge Derivatives 104.9235 ™

(Carrying amount) (5.522)

Assets

Debt securities 6.1278 **

(Amortised cost) (5.548)

Hedge derivatives 3.7063 "

(Notional amount) (5391

Total hedging

R’=0.4644

Note: The table reports the Least Trimmed squares estimation results. The t-statistic is reported in parenthesis. The asterisks *,** and ***

indicate statistical significance at 10%, 5% and 1% respectively.

Using the fitted values of the estimated equation we identify the outliers, following the Step 5 of
Section 2.3. The two outliers which were identified by simply plotting the histogram of values are still
identified i.e. outliers with a clear innovation outlier component (using the terminology of Section 3).
In addition, based on the estimated relationship between size and its covariates, we also identify 14

additional outliers.

Figure 14 provides a comparison between the histograms of log-size in the non-outlier and the outlier
set. It can thus be observed that detected outliers are large-sized banks: among those 14, only 3 have

total assets below the general mean over all the 365 banks.

ECB Working Paper Series No 2171 / July 2018 36



Figure 14: Histograms of log-size in the non-outlier (left) and the outlier set (right).
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Figure 15: Histogram of the estimated standardized residuals in the outlier set
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Figure 15 provides the histogram of the estimated standardized residuals in the outlier set, providing
information on the size of each bank relative to what would be expected by the size determinants. The
only bank with a positive residual presents a very large value of total assets compared to the relatively
small values of the three covariates, or in other words, does not utilise the instruments represented in
the set of covariates to the extent that would be expected by its size. On the contrary, eleven of the
remaining banks show a value for notional amounts of hedge derivatives larger than 0.5, and seven of
them show a value larger than 0.5 for debt securities at amortised cost. Six banks possess a relatively
high amount of debt securities and notional amounts of hedge derivatives. Four banks even show a
notional amount of hedge derivatives larger than 1. In general, the 13 banks with a negative residual

contain more hedging derivatives than expected by their total assets.
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When the HQ+MM method is used, 19 outliers are identified, instead of 16 as with the HQ+LTS
method. This difference in the number of identified outliers is consistent with our simulation study of
Section 3 and the generally higher swamping rates characteristic of HQ+MM compared to the
HQ+LTS when sparsity increases (as in case 4 of Table 1). Importantly, the outliers are in almost all

cases (except from one) common among the two methods.

The insights offered by our proposed methodology are illustrated further by comparing the histograms
of recovered covariates for non-outlier banks and for the set of outliers comparatively (see Figure 16).
This comparison is used to delineate the nature of the identified outliers. It is clear that the outlier set
contains extreme values for all the determinants, showing completely different distributions compared
to the whole sample. The values are much higher with respect to those expected from the sample
distributions, leading to the negative residuals presented in Figure 15. The outlier discrimination
capability of the proposed procedure, with respect to uncovering unusual relationships between log-
size and the identified set of determinants, is well illustrated via these graphs.

Overall, it is important to stress that the proposed outlier detection technique generates useful insights
about the nature of the identified outliers: the analysis is able to offer a richer explanation why the
specific value represents an outlier, offering value added to the data quality analysis.'*

Figure 16: Notional and carrying amounts of hedge derivatives, debt securities at amortised cost: histograms

comparing the distributions of non-outlier and outlier banks.
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"2 One could investigate further whether the reported values are indeed justifiable, maybe due to idiosyncratic
features of their strategy, or they represent simply wrong data. A statistical check for data quality can be
formulated starting from our procedure, aimed at testing data reliability.
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6. Conclusion

In this paper, we address the problem of outlier detection in a high-dimensional context by presenting
an integrated, automatized procedure involving a preparatory phase and a multi-step outlier detection
algorithm. The procedure is suitable for application to high-dimensional datasets, i.e. datasets with a
very large number of variables compared to the number of observations for each variable. In addition,
the proposed procedure can be easily adapted for the purpose of pattern recognition in high-

dimensional datasets.

The proposed integrated outlier detection algorithm is a five-step procedure, which incorporates, data
standardisation, data selection (via the heuristics of Yi and Huang (2016)), estimation of a robust
regression model based on the selected variables (via the Least Trimmed Regression), robust
calculation of dispersion and finally a criterion to identify outliers. The methodological advance lies

in the effective combination of these techniques which is shown through a simulation study to be
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particularly useful for collinear and sparse “fat” data, performing better than some robust alternatives

with respect to minimising both swamping and masking rates.

The above procedure is then applied to a supervisory dataset, consisting of balance sheet data, which
are submitted by the Euro Area banks in the context of the ECB Banking Supervision. Algebraic data
redundancy measures, such as the rank of the correlation matrix, point to the need to address the dense
correlation structure present in the raw data set. In addition, it is found that the high number of
accounting identities leads to a concentration of pairwise correlation values close to 1. As a result, the
data redundancy procedure led to the removal of a significant amount of variables from the initial
dataset. Application of the determinants’ identification regression to the resulting dataset finds that
variables related to the use of debt securities and derivatives represent the most closely related subset
of variables for explaining the size variable. Consequently, the outlier criterion identified outlier size
values by detecting the banks showing unexpected relationships between size and derivatives-based
variables. This test case shows that this type of outlier detection analysis is a promising way to both

enhancing the quality monitoring and identifying patterns in high-dimensional data sets.

An important aspect to be considered is the interdependence of the various steps. The interaction of
the different steps is important in similar decision making and signal processing algorithms. Further
work exploring the possibility to develop a one-step method for regression outlier detection in

presence of missing data, collinearity and outlying variances would be of great interest.
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Appendix A: Data preparation

Data completeness and data redundancy

Each of the ten (10) FINREP templates of our input data set is essentially a large matrix with its rows
corresponding to different banks and the columns to different variables. The first step of our statistical
analysis is the aggregation of the individual FINREP templates, containing all the banks in rows and
all the variables in consecutive columns. A matching step of the banks in different templates to align

the rows (banks) in all templates is performed before applying the outlier detection techniques.

This section will describe the data completeness analysis per template, and the approach followed.
The results of this step possess an interest of their own because the differential data completeness per
template and per data point reflect the significance of the respective templates and data points and
provide insights for a business analysis; therefore, it is a procedure which provides value added for
data sets with a similar structure. Subsequently, the data redundancy reduction step has been

performed in the aggregated matrix.

We now present the completeness analysis and the procedure we follow to exclude redundant
information from our data set. Each template k is a matrix containing p(k) columns (variables) and
n(k) rows (banks). The dimensions of each template are presented in first two rows of Table A-1. As
it is apparent the different ‘blocks’ (i.e. templates) of our data set seem to be heterogeneous with
respect to their dimensions. In addition, heterogeneity is present with respect to the submission rate of
each template by the different banks; some templates have been submitted by fewer banks, reflecting
that their contents are not as relevant for the whole set of banks under examination. Specifically, the
number of banks across templates ranges from 207 to 365. As expected, the templates F 1. 1, F 4.4,
and F 8.1 which present the basic items for each bank (asset composition, loans and liabilities) are
reported from all banks. On the other hand, the template F 4.2 containing assets assessed using “fair
value via profit and loss” (FVPL) is reported from only 207 banks. The number of numeric variables

for a single template ranges from 31 to 215. The overall number of variables is 1039.
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The issue of data completeness is critical, especially for data sets with a large cross-sectional
dimension in which heterogeneity is expected regarding the availability of information for the
different entities. In our case, we take into account the convention underpinning the submission of
supervisory data in the SSM context, namely that banks are required to report all required data (e.g. in
contrast to household surveys where the different cross-sectional units are not usually required to
respond to all questions) and interpret all missing data as zeros i.e. that the bank does not have any

activity in the respective category.

Table A-1: Completeness statistics per template

() © (10)
F9l | F100 F111

Template

Number of banks 365 254 207 347 365 362 365 357 329 272
Number of variables 58 31 33 76 168 60 215 24 177 197
Mean completion 50% 38% 39% 42% 35% 59% 21% 67% 29% 26%
rates
6% 14% 18% 11% 11% 8% 8% 7% 7% 14%
Null rate
7 45% 50% 54% 49% 60% 22% 74% 16% 58% 76%
€ro rate
Number of degenerate 20 1 1 6 33 0 89 0 54 64
points
Percentage of 34% 3% 3% 7% 19% 0% 41% 0% 30% 32%
degenerate points
Percentage of banks 1% 20% 48% 8% 6% 9% 1% 10% 1% 12%
with no missing
values
Final number of
variables, after 38 30 32 70 135 60 126 24 123 133
excluding degenerate
points
Rank of the 29 27 26 46 76 54 90 21 97 80
correlation matrix

Source: Supervisory data, authors’ calculations

The data completeness analysis involves the computation of descriptive statistics both with respect to
variables and banks. Specifically, we compute for each variable the completeness rate, defined as the
percentage of non-missing values respect to the number of banks, and the percentage of non-zeros
both respect to the number of non-missing values and to the overall number of banks. Moreover, we

compute for each template the proportion of banks having complete records (i.e. no missing values).
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We perform checks on missing data, both row-wise and column-wise. Firstly, for each variable we
compute the number of missing and non-missing values and the completion rate is derived as the ratio

between the non-missing values and n(k) (see third row of Table A-1).

It is noted that the higher degree of completeness is found in template 8, a template containing the
asset side balance sheet items, followed by the loans and receivables items (template 5) and the asset
breakdown overview (template 1). Templates 1 and 5 contain the most fundamental items of the asset
side in banks’ balance sheet, therefore it is expected that the majority of banks will report most of
these items. In addition, template 8 is the smallest one as regards its size (only 24 variables) and the
off-balance sheet contains items common to many banks, hence its high completeness rate. On the
other hand, the lowest degree of completeness is found in the liability breakdown (template 7). The
overall mean completeness rate across all data-points is 33.34%. The minimum is 2.43%, while the
maximum completeness rate (100%) is reached only by seven (7) data points out of 1039 (see Table
A-2). As it can be observed, this set of points contains some fundamental asset items which one would

expect exist for every bank.

Table A-2: List of points with a 100% completeness rate

Data point in ITS template Content

F 1.1 [r10,c10] Cash, cash balances at central banks and other demand deposits
F 1.1 [r270,c10] Tangible assets, like property, plant and equipment

F 1.1 [r360,c10] Other assets

F 1.1 [r380,c10] Total assets

F 4.2 [r190,c10] Financial assets designated at fair value through profit and loss
F 4.3 [r190,c30] Available for sale financial assets

F 5.0 [r80,c30] Loans and advances to credit institutions

Besides completeness rates which measure the percentage of missing elements we also quantify the
percentage of zero elements within the subset of non-missing data, which we call the null rate.

Specifically, we compute for each variable contained in the input templates the number of zero values,
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from which we can derive the rate of zero elements as the ratio between zeros and the number of non-
missing elements. Consequently, we derive the null rate as the ratio between the number of zero and
the total number of data points. We report the average null rate and zero rate across templates in Table

A-1.

The null rate is considerably smaller than the zeros rate, and this difference is related to the degree of
completeness rate. The mean null rate across templates is 10% (minimum=0% and maximum=31%).
The templates on “Held for trading” (HfT) assets (F 4.1), FVPL assets (F 4.2) and derivatives for
trading (F 10.0) exhibit the largest percentage of zeros across the set of templates. The mean zeros
rate is 61% and gets its maximum values in templates containing liabilities (F 08.1) and derivatives in
hedge accounting (F 11.1). Overall the template on derivatives for hedge accounting is the one which
is the most sparsely populated, reflecting the lack of use of complex financial instruments from many

small banks.

If the number of zero and non-missing values coincide, we flag that data point as degenerate one i.e.
this data point always has the value of zero when it is filled, consequently it is an activity which is not
undertaken by any bank. So, the degenerate variables are the only ones having the null rate coinciding

with the completeness rate, i.e. having a zeros rate equal to 1.

The number and percentage of degenerate variables across templates are presented in Table A-1 (sixth
and seventh rows). The percentage is highest for the general templates of the asset and liability side
(templates 1 and 7) meaning that there are some specific items in these templates which are not used
by any of the reporting banks. We can see that templates with the product breakdown of loans (F 5.0)
and off-balance sheet items (F 9.1) have no degenerate variables. Both of these templates are
relatively small, refer to subsets of banks’ core business and they do not contain extremely specialised
items. It is also noted that the mean percentage of degenerate points is equal to 17% and there is a
quite polarised situation: templates F 4.1, F4.2, F 4.3, F 5.0, F 9.1 are much below the average with
respect to the percentage of degenerate points, while the templates F 1.1, F 8.1, F 10.0, F 11.1 are well

above the average. The last two templates contain derivative items with a very detailed breakdown,
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and therefore it is not surprising that some of these specialised derivative instruments are not found in

any of the reporting banks. The total number of degenerate variables for all templates is 268.

The following variables have a completeness rate equal to unity and no zero elements: F 1.1
[r010,c010] (Cash balances), F 1.1 [r270,c10] (Tangible assets) F 1. 1 [r360,c10] (Other assets) and F
1.1 [r380,c10] (Total assets). Given the fundamental nature and the wide use of these items this comes

as no surprise.

A specific analysis concerning missing values can be performed also row-wise, i.e. on the banks. The
percentage of banks being complete (i.e. having no missing values) is computed for each template and
the percentage of complete records for each template is reported in Table A-1. In general, it is
observed that the row-wise completeness is not directly related to the column-wise completeness. The
reason is that these completeness rates are driven by various factors. While the column-wise
completeness is mainly driven by the degree of use of the activities contained in each template, the
row-wise completeness is driven by the degree of diversification of each bank with respect to the
different activities. The percentages of banks with no missing variables within each template is
generally lower than 10% reflecting that most banks do not possess a degree of diversification which

corresponds to the granularity of the templates.

Given that for all data points in our input set, the rule is that banks do not report them if the respective
item is not present in their balance sheets, we set all missing values equal to 0." At the same time, we
exclude all the degenerate variables. The number of data-points which can be used in the analysis,

after this step, becomes thus equal to 1039-268=771.

The second-to-last row of Table A-1 presents the number of variables remaining in each template

after the degenerate points are excluded. This number can be interpreted as the “volume” of

1> Of course it may be the case that a bank has not reported a data point by mistake, but we ignore this effect,
given that it is also in the interest of the bank to report complete data. Regarding the handling of missing values
and their substitution with zeros, our approach differs from that usually applied in statistical datasets. This
approach is justified of course given the institutional context of these data within the SSM framework.
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information contained in each template (without any inference about their economic significance)

since it abstracts from non-actually-existing information corresponding to degenerate data points.

Data selection

The aggregated dataset that remains after degenerate variables are excluded is not yet ready to be used
for the multivariate outlier detection approach. The reason is that many variables are involved in
(accounting) identities, therefore presenting a correlation which is very close to unity. We calculate
the rank of the modules after the exclusion of degenerate variables (see last row of Table A-1) and
this testifies to the existence of a number of redundant variables (as the rank is always lower than the
number of the remaining variables, in some cases to a large degree). Figure 1 presents the histogram
of correlation values among the variables in this set. It can be observed that there is a large
concentration of values in ranges close to 1 and to -0.8 (more extreme values are present at the

positive upper bound, reflecting the existence of accounting identities).

Therefore, an automatic procedure for dealing with this dense structure of high correlated variables by
excluding those which provide redundant information has to be applied. The procedure aims to keep
the more “fundamental” variables of the data set, i.e. those variables which are related to a relatively
large number of other variables. For example, if there is a choice between keeping a more general
category e.g. “loans and advances to households” and one of its subcategories e.g. “loans and
advances to households — real estate collateralized loans”, we would prefer to keep the more general
one, on the condition that it is strongly related with more of the remaining variables. However, this

procedure has to be automatized given the large number of variables.

In order to automatize this selection process, we define a measure of the “importance” of each
variable within the data set. We re-condition the sample correlation matrix applying the shrinkage
estimate of Schéfer and Strimmer, 2005, which is able to drastically reduce the numerical instability
of the raw correlation matrix. We define the “importance” I (j)of each variable j as the linear

combination of the correlation absolute values with the other variables of a data set:
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1(j) = Xk=1,--p,Corr(j, k).

k+j

Consequently, we order the variables in a non-increasing order based on their 1(j). We define a level
of correlation C*, which triggers the need to select one of two correlated variables (e.g. 0.7) and then

apply the following selection algorithm:

1 begin
2fork=j+1to N

3 if Corr(j,k)> C” then

4 if 1(/)<I(k) then

5 delete variable ] from the dataset
6 else

7 delete variable & from the dataset
8 endif

9 endif

10 end;

11 end;

A remarkable number of variables are eliminated, and the final set consists of 433 variables. This

large number of variables removed is expected, given the correlation values distribution that

presented in Figure A-1.

Number of pairs
v

0.5

(-)1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Correlations among variables

Source: Supervisory data, authors’ calculations

Figure A-1: Histogram of correlation values (after degenerate points are excluded)
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The above procedure is able to identify a number of identities that are present in the data. These
identities consist in relationships of more than two data points, for example the breakdown of
“Intangible Assets” into “Goodwill” and “Other Intangible Assets”. One important advantage of the
proposed approach is that the identities among variables located in different templates, a feature
which is very important when validation rules for big data sets, such as those contained in FINREP

and COREP, have to be formulated.
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