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Abstract

The paper considers estimation and inference in cointegrating polynomial regres-

sions, i. e., regressions that include deterministic variables, integrated processes and

their powers as explanatory variables. The stationary errors are allowed to be se-

rially correlated and the regressors are allowed to be endogenous. The main result

shows that estimating such relationships using the Phillips and Hansen (1990) fully

modified OLS approach developed for linear cointegrating relationships by incor-

rectly considering all integrated regressors and their powers as integrated regressors

leads to the same limiting distribution as the Wagner and Hong (2016) fully modified

type estimator developed for cointegrating polynomial regressions. A key ingredi-

ent for the main result are novel limit results for kernel weighted sums of properly

scaled nonstationary processes involving scaled powers of integrated processes. Even

though the simulation results indicate performance advantages of the Wagner and

Hong (2016) estimator that are partly present even in large samples, the results of

the paper drastically enlarge the useability of the Phillips and Hansen (1990) esti-

mator as implemented in many software packages.

JEL Classification: C13, C32

Keywords: Cointegrating Polynomial Regression, Cointegration Test, Environmen-

tal Kuznets Curve, Fully Modified OLS Estimation, Integrated Process, Nonlinearity
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1. Introduction

One motivation to consider cointegrating polynomial regressions (CPRs), using the ter-

minology of Wagner and Hong (2016), is the environmental Kuznets curve (EKC) lit-

erature that investigates a potentially inverted U-shaped relationship between measures

of economic development (typically proxied by GDP per capita) and pollution. This

literature grows at rapid pace since the seminal work of Grossman and Krueger (1995).1

Early survey papers, like Yandle et al. (2004), count more than 100 refereed publica-

tions already more than a decade ago. As an example of the relationship considered in

this literature consider the scatterplot between the logarithm of GDP per capita and

the logarithm of CO2 emissions per capita in Belgium over the period 1870–2009 in

Figure 1.

The estimation results also shown in this figure are obtained from estimating the rela-

tionship:

ln(CO2)t = c+ δt+ β1 ln(GDP)t + β2 ln(GDP)2t + ut, (1)

where the logarithm of Belgian GDP per capita is well-described as an integrated pro-

cess of order one, compare Wagner (2015). With a stationary error term, the above

relationship is a CPR relationship. An integrated process and its square cannot both

be integrated processes of order one (see, e. g., Wagner, 2012) and obviously there is

an exact deterministic relationship between the logarithm of GDP per capita and its

square. These basic observations lead Wagner and Hong (2016) to a reconsideration

and extension of the fully modified OLS (FM-OLS) estimator of Phillips and Hansen

(1990) from the linear cointegration setting to the CPR setting.2 The corresponding

1The term EKC refers by analogy to the inverted U-shaped relationship between the level of economic
development and the degree of income inequality postulated by Simon Kuznets (1955) in his 1954
presidential address to the American Economic Association.
Inverted U-shaped relationships are also prominent in other areas, including the so-called intensity-
of-use literature investigating the relationship between energy or material intensity and GDP per
capita, see, e. g., Malenbaum (1978) or Labson and Crompton (1993).

2As discussed in Wagner and Hong (2016), similar results are or could also be obtained under alternative
assumptions that partly need to be augmented to accommodate powers of integrated regressors, see,
e. g., Chan and Wang (2015), Chang et al. (2001), de Jong (2002), Ibragimov and Phillips (2008) or
Liang et al. (2016). A key difference between the results here and those of, e. g., Chang et al. (2001)
is that {ut}t∈Z is allowed to be serially correlated, in an MDS setting in Wagner and Hong (2016)
and in a linear process setting in this paper. Wang (2015) is an excellent monograph on asymptotic
theory for nonlinear cointegration in a regression framework.
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Figure 1: Estimated EKC for CO2 emissions for Belgium over the period 1870–2009;
variables in logarithms of per capita quantities. The curves result from inserting 140
equidistantly spaced observations from the sample range of ln(GDP), with trend values
given by t = 1, . . . , 140, in the estimated relationship (1). The solid line corresponds
to the FM-STD coefficient estimates and the dashed line to the FM-CPR coefficient
estimates.

estimation results, referred to as FM-CPR in this paper are displayed as the dashed line

in Figure 1.

The solid line also displayed in Figure 1 corresponds to how cointegration methods are

routinely used in the EKC literature: The estimates are derived from treating (1) as

if it were a linear cointegrating relationship with two integrated regressors, estimated

using, e. g., the FM-OLS estimator of Phillips and Hansen (1990). Both, log GDP per

capita and its square are thereby considered as integrated processes of order one that are

furthermore assumed to be not cointegrated. This estimator is referred to as FM-STD

estimator in this paper.

Given the differences between a linear cointegration relationship and a cointegrating

polynomial relationship it appears to be misguided to use the FM-STD estimator in a

cointegrating polynomial regression. However, the figure displays that the results are

very similar, an observation also made with data for 19 countries in Wagner (2015). This

paper provides an asymptotic explanation for such similar findings: The two estimators,

FM-CPR and FM-STD, have the same asymptotic distribution in the CPR case. This

result holds true for the general CPR case considered in Wagner and Hong (2016), with

multiple integrated regressors, arbitrary polynomial powers and general deterministic

components. A practical implication of this result is that one can use standard soft-
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ware package implementations of FM-OLS of Phillips and Hansen (1990) for estimation

and inference in cointegrating polynomial relationships by “formally” (for the software)

considering all integrated regressors and their powers as integrated regressors.3 The

only restriction for the result to hold is that the estimated relationship includes the first

powers of all integrated regressors. This restriction is directly related to the following

main observation, discussed in detail in Section 2.3: A key step in FM-OLS-type estima-

tion is an asymptotic orthogonalization of two Brownian motions to obtain a zero mean

Gaussian mixture limiting distribution. Given that Brownian motions are by definition

Gaussian, achieving independence is equivalent to achieving uncorrelatedness. The latter

is obtained by the first-step modification of the dependent variable not only of FM-CPR,

but also by the first-step modification of FM-STD, if the first powers of the integrated

regressors are all included in the regression. In a sense made precise below, FM-STD

thus contains and calculates superfluous quantities in the orthogonalization step (and

also in the bias correction step).

The second key ingredient, of independent interest also in other contexts, are weak

convergence results for kernel weighted sums (“long-run covariance estimators”) of –

properly scaled – processes involving powers of integrated processes. These arise in both

transformations that the FM estimation principle is based upon, in the modification of

the dependent variable and in the additive bias correction. Turning back to our example

equation (1), with full details and all definitions contained in Section 2.3, the dependent

variable, logarithm of CO2 emission per capita, yt for brevity, is changed to

y++
t = yt − [∆xt,∆x2t ]Ω̂

−1
wwΩ̂wu (2)

= yt − [∆xt, 2xt∆xt − (∆xt)
2]Ω̂−1

wwΩ̂wu

with xt denoting the logarithm of GDP per capita. Using wt = [∆xt, 2xt∆xt − (∆xt)
2]′,

the above transformation involves “long-run covariance” estimators involving (in the

quadratic case) not only a stationary process, ∆xt, but also xt∆xt. In this paper we

derive the weak limits of this type of “long-run covariance” estimators (after proper

scaling of the involved quantities). The limits obtained for this type of quantity exhibit

exactly the structure that is key for establishing asymptotic equivalence of FM-STD and

FM-CPR.

3For notational brevity we focus in the main text on the single integrated regressor case, which facilitates
reading and suffices to see all elements required for the results “in action”. In Appendix C we outline
the changes and modifications necessary for the multiple integrated regressor case.

6



The asymptotic equivalence of the estimators implies asymptotic equivalence also of

residual based cointegration test like, e. g., the Shin (1994) test. This test has been

extended to CPRs in Wagner and Hong (2016) and Wagner (2013), with critical val-

ues depending as usual in the cointegration literature upon the specification of the

cointegrating polynomial relationship. The EKC literature uses the FM-STD residu-

als (which is asymptotically valid), but in conjunction with the original Shin (1994)

critical values. This combination results in asymptotically invalid inference, as discussed

in Section 2.4.

The simulation results indicate that FM-CPR outperforms FM-STD in case of large

endogeneity and serial correlation of the errors despite asymptotic equivalence even in

large samples like T = 1000. In these cases the calculation of superfluous quantities

alluded to above and explained in more detail in Section 2.3 impacts the performance of

FM-STD detrimentally. The performance advantages occur in all considered dimensions,

estimator bias and RMSE, performance of parameter hypothesis tests, and performance

of cointegration tests. In case of data with little or no endogeneity and serial correlation

the differences between the estimators more or less vanish for the larger sample sizes

considered. Big differences occur for cointegration testing, even when the cointegration

test calculated from the FM-STD residuals is used in conjunction with the correct rather

than the Shin (1994) critical values.

The paper is organized as follows: In Section 2 we present the setting, the assump-

tions and the theoretical results. Section 3 contains a small selection of results from a

simulation study assessing the finite sample differences between the two asymptotically

equivalent estimators and test statistics based upon them. Section 4 briefly summarizes

and concludes. Three appendices follow the main text: Appendix A contains some aux-

iliary lemmata, Appendix B contains the proofs of the main results and Appendix C

illustrates how to modify the main arguments of the proofs to cover the general, multi-

ple integrated regressor case. Supplementary material available upon request contains

additional simulation results.

We use the following notation: Definitional equality is signified by :=, equality in distri-

bution by
d
=, weak convergence by⇒ and convergence in probability by

P
→. We use OP(1)

to denote boundedness in probability. With oP(1) and oa.s.(1) we denote convergence to

zero in probability and almost surely respectively. The integer part of x ∈ R is given

by ⌊x⌋ and a diagonal matrix with entries specified throughout by diag(·). For a vector

x = (xi)i=1,...,n we denote its Euclidean norm with ‖x‖ :=
(∑n

i=1 x
2
i

)1/2
. For a matrix A

7



the (i, j)-element is denoted with A(i,j), its j-th column is labeled by A(·,j), 0m×n denotes

an (m× n)-matrix with all entries equal to zero and enm denotes the m-th unit vector in

R
n. The Kronecker product is denoted by ⊗. We use E to denote expectation and L is

the backward-shift operator, i. e., L{xt}t∈Z = {xt−1}t∈Z. The first-difference operator is

denoted with ∆, i. e., ∆ := 1−L. Brownian motions, with covariance matrices specified

in the context, are denoted by B(r). Standard Brownian motion is denoted by W (r).

2. Theory

2.1. Setup and Assumptions

As mentioned in the introduction, it suffices to consider a cointegrating polynomial

regression with only one integrated regressor and its powers:4

yt = D′
tδ +Xt

′β + ut, for t = 1, . . . , T, (3)

xt = xt−1 + vt,

where yt is a scalar process, Dt ∈ R
q is a deterministic component, xt is a scalar I(1)

process and Xt := [xt, x
2
t , . . . , x

p
t ]
′ ∈ R

p. Denoting with Zt := [D′
t, X

′
t]
′ ∈ R

q+p the

stacked regressor vector and with θ := [δ′, β′]′ ∈ R
q+p the parameter vector, equation (3)

can be rewritten more compactly as:

yt = Z ′
tθ + ut, for t = 1, . . . , T. (4)

Assumption 1. For the deterministic component we assume that there exists a sequence

of q × q scaling matrices GD = GD(T ) and a q-dimensional vector of càdlàg functions

D(s), with 0 <
∫ s
0 D(z)D(z)′dz < ∞ for 0 < s ≤ 1, such that for 0 ≤ s ≤ 1 it holds

that:

lim
T→∞

T 1/2GDD⌊sT ⌋ = D(s). (5)

4Clearly, not all consecutive powers of xt need to be included and in the multiple integrated regressor
case the included powers may differ across integrated variables. These changes only complicate “book-
keeping”. What is, however, important for asymptotic equivalence is that the integrated variable xt

itself is included in the regression, as discussed in detail at the end of Section 2.3. The initial value
x0 is allowed to be any well-defined OP(1) random variable.

8



For the leading case of polynomial time trends, i. e., Dt = [1, t, t2, . . . , tq−1]′, clearly

GD = diag(T−1/2, T−3/2, T−5/2, . . . , T−(q−1/2)) and D(s) = [1, s, s2, . . . , sq−1]′.5

The precise assumptions concerning the error process and the regressor are as follows:

Assumption 2. The processes {ut}t∈Z and {∆xt}t∈Z = {vt}t∈Z are generated as:

ut = Cu(L)ζt =
∞∑

j=0

cujζt−j , (6)

∆xt = vt = Cv(L)εt =
∞∑

j=0

cvjεt−j , (7)

with
∑∞

j=0 j|cuj | < ∞,
∑∞

j=0 j|cvj | < ∞ and Cv(1) 6= 0. Furthermore, we assume that

the process {ξ0t }t∈Z := {[ζt, εt]
′}t∈Z is independently and identically distributed with

E(‖ξ0t ‖
l) < ∞ for some l > max(8, 4/(1 − 2b)) with 0 < b < 1/3 and positive definite

covariance matrix Σξ0ξ0 .

The above Assumption 2 is stronger than the corresponding assumption in Wagner and

Hong (2016). To draw upon some of the results of Kasparis (2008) we replace the mar-

tingale difference sequence assumption of Wagner and Hong (2016) with a linear process

assumption and the moment assumption of Kasparis (2008).6 For univariate {xt}t∈Z

the assumption Cv(1) 6= 0 excludes stationary {xt}t∈Z, and has to be modified in the

multivariate case to det(Cv(1)) 6= 0, i. e., in the multivariate case (e. g. in the discussion

in Appendix C) the vector process {xt}t∈Z is assumed to be non-cointegrated.

For long-run covariance estimation we closely follow Jansson (2002) with respect to our

assumptions concerning kernel and bandwidth:

Assumption 3. The kernel function k(·) satisfies:

1. k(0) = 1, k(·) is continuous at 0 and k̄(0) := supx≥0 |k(x)| < ∞

2.
∫∞
0 k̄(x)dx < ∞, where k̄(x) = supy≥x |k(y)|

5In the EKC literature the deterministic component typically consists of an intercept and a linear trend;
with the latter intended to capture autonomous energy efficiency increases.

6Note that Kasparis (2008, Assumption 1(b), p. 1376) posits the condition l > min(8, 4/(1−2b)). In the
proof of his Lemma A1, however, at different places moments of order 4/(1− 2b) (p. 1391) and order
8 (p. 1395) are needed. Thus, we believe that the minimum should be replaced by the maximum.
Since we rely upon similar arguments in the proofs of our Lemma 4 we require moments of order
max(8, 4/(1− 2b)).
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Assumption 4. The bandwidth parameter MT → ∞ fulfills MT = O(T b), with the

same parameter b as in Assumption 2.

The bandwidth Assumption 4 implies limT→∞(M−1
T + T−1/3MT ) = 0, whereas Jansson

(2002) assumes limT→∞(M−1
T +T−1/2MT ) = 0, which corresponds to MT = O(T b), with

0 < b < 1/2. Thus, we require a tighter upper bound on the bandwidth. This stems

from the fact that in the asymptotic analysis of the FM-STD estimator kernel “long-run

covariance” estimators involving (properly scaled) powers of integrated processes need

to be analyzed. For these quantities we establish weak convergence results under the

more restrictive Assumption 4 on the bandwidth. In order to have uniform notation we

formally define:

Definition 1. For two sequences {at}t=1,...,T and {bt}t=1,...,T we define:7

∆̂ab :=

MT∑

h=0

k

(
h

MT

)
1

T

T−h∑

t=1

atb
′
t+h, (8)

neglecting the dependence on k(·), MT and the sample range 1, . . . , T for brevity. Fur-

thermore,

Ω̂ab := ∆̂ab + ∆̂′
ab − Σ̂ab, (9)

with Σ̂ab :=
1
T

∑T
t=1 atb

′
t.

Based on these quantities we furthermore define ∆̂+
ab := ∆̂ab − ∆̂aaΩ̂

−1
aa Ω̂ab and ω̂a·b :=

Ω̂aa − Ω̂abΩ̂
−1
bb Ω̂ba.

In case that {at}t∈Z and {bt}t∈Z are jointly stationary processes with finite half long-run

covariance ∆ab :=
∑∞

h=0 E(a0b
′
h), then under appropriate assumptions ∆̂ab is a consistent

estimator of ∆ab, with a similar result holding for Σab := E(a0b
′
0) and a fortiori for

Ωab :=
∑∞

h=−∞ E(a0b
′
h).

Remark 1. Note that in our definition of ∆̂ab in (8) we use the bandwidth MT (like,

e. g., Phillips, 1995) rather than T − 1 (like, e. g., Jansson, 2002) as upper bound of the

summation over the index h. For truncated kernels, with k(x) = 0 for |x| > 1, this

is of course inconsequential. It can also be shown (based on, e. g., Jansson, 2002) that

for “standard” long-run covariance estimation problems, consistency is not affected by

7The standard notation for half long-run covariances is ∆ and therefore we also use this letter. We are
confident that no confusion with the first difference operator, also labeled ∆, arises.
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the summation index choice, MT or T − 1, for untruncated kernels like the Quadratic

Spectral kernel either. In our setting, where the asymptotic behavior of ∆̂-quantities is

analyzed for (properly scaled) nonstationary processes (in Theorem 1 and Corollary 1),

the summation bound is important. A key result of this paper, given in Theorem 1

below, hinges upon summation only up to MT . More specifically, we rely upon the

summation bound MT in the proof of Lemma 4, which is related to Kasparis (2008,

Lemma A1, p. 1394–1396), where the summation bound MT is also used (in a slightly

different context).

Assumption 2 implies that the process {ξt}t∈Z := {[ut, vt]
′}t∈Z fulfills a functional central

limit theorem of the form:

1

T 1/2

⌊rT ⌋∑

t=1

ξt ⇒ B(r) =

[
Bu(r)

Bv(r)

]
= Ω

1/2
ξξ W (r), r ∈ [0, 1], (10)

with the covariance matrix Ωξξ of B(r) given by the long-run covariance matrix of

{ξt}t∈Z, i. e.,

Ωξξ :=

[
Ωuu Ωuv

Ωvu Ωvv

]
=

∞∑

h=−∞

E(ξ0ξ
′
h). (11)

Later we will also need the corresponding half (or one-sided) long-run covariance matrix

∆ξξ :=
∑∞

h=0 E(ξ0ξ
′
h) partitioned similarly as Ωξξ. As is well-known, for FM-type esti-

mation, estimates of the half long-run and long-run covariances ∆ and Ω are required.

With (9) holding by definition, we focus below on the estimation of ∆ and Σ. For actual

calculations furthermore the unobserved errors ut are replaced by the OLS residuals ût

from (3), defining ξ̂t := [ût, vt]
′.8

2.2. Fully Modified OLS Estimation

Wagner and Hong (2016) extend the fully modified OLS (FM-OLS) estimator of Phillips

and Hansen (1990) from the linear cointegration to the cointegrating polynomial regres-

sion (CPR) case. This estimator, briefly described next, is referred to as FM-CPR in

this paper.

8We keep using, e. g., Ω̂ξξ when using the observable ût instead of ut in long-run covariance estimation.
Infeasible estimation involving the unobserved errors ut is labeled with a tilde-symbol, e. g., Ω̃ξξ, see
Theorem 1 below.
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As in the linear cointegration case, FM-type estimation entails two modifications. The

first modification is exactly as in the linear case, with the dependent variable yt replaced

by

y+t := yt −∆xtΩ̂
−1
vv Ω̂vu. (12)

This transformation dynamically orthogonalizes the limit partial sum process of the

modified errors u+t := ut − vtΩ̂
−1
vv Ω̂vu, i. e., Bu·v(r) defined below, from the limiting

process corresponding to xt, i. e., Bv(r). In case of Gaussian limits, uncorrelatedness is

equivalent to independence, thusBu·v(r) is “automatically” also independent of powers of

Bv(r), also occurring in the asymptotic distributions in the CPR case. Consequently, the

modification to orthogonalize regressors and errors need not be changed when considering

FM-OLS estimation in the CPR setting rather than in the linear cointegration setting;

orthogonalization with respect to Bv(r) suffices.

The second modification, correcting for additive bias terms, depends upon the precise

form of the model considered. For specification (3) the bias correction term is given

by:

A∗ := ∆̂+
vu




0q×1

T

2
∑T

t=1 xt
...

p
∑T

t=1 x
p−1
t




, (13)

with ∆̂+
vu := ∆̂vu − ∆̂vvΩ̂

−1
vv Ω̂vu. Defining y+ := [y+1 , . . . , y

+
T ]

′ and Z := [Z1, . . . , ZT ]
′,

leads to the FM-CPR estimator of θ given by:

θ̂+ := (Z ′Z)−1(Z ′y+ −A∗). (14)

To state the asymptotic distribution of θ̂+ define

G = G(T ) := diag(GD(T ), GX(T )), (15)

with GX(T ) := diag(T−1, T−3/2, . . . , T−(p+1)/2) and J(r) := [D(r)′, Bv(r)
′]′, where

Bv(r) := [Bv(r), B
2
v(r), . . . , B

p
v(r)]′.

12



Wagner and Hong (2016, Proposition 1) show, as discussed under slightly weaker as-

sumptions than considered in this paper, that:

G−1(θ̂+ − θ) ⇒

(∫ 1

0
J(r)J(r)′dr

)−1 ∫ 1

0
J(r)dBu·v(r), (16)

with Bu·v(r) := Bu(r)−Bv(r)Ω
−1
vv Ωvu. The zero mean Gaussian mixture limiting distri-

bution given in (16) forms the basis for asymptotically valid standard (standard normal

or chi-squared) inference.

2.3. “Standard” Fully Modified OLS Estimation

We now turn to the “standard” approach outlined in the introduction and referred to

as FM-STD in this paper. Considering (3) “formally” as a standard linear cointegrating

regression with p integrated regressors we arrive at:

yt = D′
tδ +X ′

tβ + ut,

Xt = Xt−1 + wt,

which defines

wt := ∆Xt =




∆xt

∆x2t
...

∆xpt



=




vt

2xtvt − v2t
...

−
∑p

k=1

(
p
k

)
xp−k
t (−vt)

k



, (17)

i. e., the j-th component of the vector wt is given by wt,j = −
∑j

k=1

(
j
k

)
xj−k
t (−vt)

k. The

correspondingly modified dependent variable is given by:

y++
t := yt −∆X ′

tΩ̂
−1
wwΩ̂wu, (18)

with Ω̂ww and Ω̂wu to be interpreted in the sense of Definition 1. The correction term

for FM-STD is given by:

A∗∗ :=

[
0q×1

T ∆̂+
wu

]
=

[
0q×1

T (∆̂wu − ∆̂wwΩ̂
−1
wwΩ̂wu)

]
(19)
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with ∆̂ww, ∆̂wu and ∆̂+
wu also interpreted in the sense of Definition 1. Having defined

all necessary quantities leads to the FM-STD estimator:

θ̂++ := (Z ′Z)−1(Z ′y++ −A∗∗), (20)

with y++ := [y++
1 , . . . , y++

T ]′. Denoting with û++ := [û++
1 , . . . , û++

T ]′, where û++
t :=

ut − w′
tΩ̂

−1
wwΩ̂wu, the centered and scaled FM-STD estimator can be written as:

G−1(θ̂++ − θ) =
(
GZ ′ZG

)−1 (
GZ ′u++ −GA∗∗

)
, (21)

with the scaling matrix G defined in (15).

It is clear that the first term, (GZ ′ZG)−1, is exactly the same for FM-CPR and FM-STD

(as well as for OLS). Thus, establishing the asymptotic behavior of FM-STD requires to

understand the quantities composing the second term in (21). Defining GW := GW (T ) =

diag(1, T−1/2, . . . , T−(p−1)/2) leads to:

GZ ′u++ = GZ ′(u−W Ω̂−1
wwΩ̂wu) (22)

= GZ ′u−GZ ′W Ω̂−1
wwΩ̂wu

= GZ ′u−GZ ′WGWG−1
W Ω̂−1

wwG
−1
W GW Ω̂wu

= GZ ′u−GZ ′W̃ Ω̂−1
w̃w̃Ω̂w̃u,

with W := [w1, . . . , wT ]
′, W̃ = [w̃1, . . . , w̃T ]

′ := WGW , where w̃t := [vt,
∆xt

T 1/2 , . . . ,
∆xp

t

T
p−1
2

]′.

In the above expression the first term, GZ ′u, is a well-understood component of the

centered and scaled OLS estimator (see, e. g., (A.3) in the proof of Proposition 1 in

Wagner and Hong, 2016). The re-scaling with GW leads to well-defined limits, derived

below, of GZ ′W̃ , Ω̂w̃w̃ and Ω̂w̃u.

The final term, GA∗∗, can be rewritten as:

GA∗∗ =

[
GD 0

0 GX

][
0q×1

T ∆̂+
wu

]
=

[
0q×1

GW ∆̂+
wu

]
=

[
0q×1

∆̂+
w̃u

]
, (23)

using GXT = GW .

A key result for deriving the asymptotic behavior of the FM-STD estimator is the asymp-

totic behavior of the “long-run covariance” estimators Ω̂w̃w̃, Ω̂w̃u and their half coun-

terparts ∆̂w̃w̃, ∆̂w̃u. The analysis proceeds in two steps. First, the results are shown

14



for ηt := [ut, w̃
′
t]
′ (Theorem 1) and then it is shown that the same limits also hold for

η̂t := [ût, w̃
′
t]
′ (Corollary 1), with ût the OLS residuals from (3).

Theorem 1. Under Assumptions 2 to 4 it holds for T → ∞ that

∆̃ηη :=

MT∑

h=0

k

(
h

MT

)
1

T

T−h∑

t=1

ηtη
′
t+h ⇒ ∆ηη :=



∆uu ∆uv ∆uvB

′

∆vu ∆vv ∆vvB
′

∆vuB ∆vvB ∆vvB̃


 , (24)

with

B :=

[
2

∫ 1

0
Bv(r)dr, . . . , p

∫ 1

0
Bp−1

v (r)dr

]′
(25)

and

B̃(i,j) := (1 + i)(1 + j)

∫ 1

0
Bi+j

v (r)dr (26)

for i, j = 1, . . . , p− 1.

Furthermore, it holds for T → ∞ that:

Σ̃ηη :=
1

T

T∑

t=1

ηtη
′
t ⇒ Σηη :=



Σuu Σuv ΣuvB

′

Σvu Σvv ΣvvB
′

ΣvuB ΣvvB ΣvvB̃


 . (27)

The above two results lead to:

Ω̃ηη := ∆̃ηη + ∆̃
′

ηη − Σ̃ηη ⇒ ∆ηη +∆′
ηη − Σηη =: Ωηη, (28)

with

Ωηη =



Ωuu Ωuv ΩuvB

′

Ωvu Ωvv ΩvvB
′

ΩvuB ΩvvB ΩvvB̃


 . (29)

Corollary 1. Let the data be generated by (3) under Assumptions 1 and 2 and let long-

run covariance estimation be performed under Assumptions 3 and 4. Then the results

of Theorem 1 also hold for η̂t in place of ηt, i. e., as T → ∞:
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∆̂ηη :=

MT∑

h=0

k

(
h

MT

)
1

T

T−h∑

t=1

η̂tη̂
′
t+h ⇒ ∆ηη (30)

Σ̂ηη :=
1

T

T∑

t=1

η̂tη̂
′
t ⇒ Σηη (31)

Ω̂ηη := ∆̂ηη + ∆̂′
ηη − Σ̂ηη ⇒ Ωηη (32)

Remark 2. In light of Remark 1 we continue to use standard notation for the limits,

i. e., Σηη, ∆ηη and Ωηη, but these are not long-run covariances of underlying stationary

processes. Only, by construction, the upper 2 × 2 blocks of these limits correspond to

the covariance matrix, half long-run and long-run covariance of {ξt}t∈Z.

It remains to characterize the asymptotic behavior of GZ ′W̃ .9

Lemma 1. Under Assumptions 1 and 2 it holds for the components of

GZ ′W̃ =

(
GDD

′W̃

GXX ′W̃

)
(33)

for T → ∞ that:

(
GD

T∑

t=1

Dtw
′
tGW

)

(·,1)

⇒

∫ 1

0
D(r)dBv(r), (34)

(
GD

T∑

t=1

Dtw
′
tGW

)

(·,j)

⇒ j

∫ 1

0
D(r)Bj−1

v (r)dBv(r) + j(j − 1)∆vv

∫ 1

0
D(r)Bj−2

v (r)dr

−

(
j

2

)
Σvv

∫ 1

0
D(r)Bj−2

v (r)dr, (35)

9Note that the first column, corresponding to the component vt of w̃t, of the limiting expression derived
in this lemma is well-known, compare Wagner and Hong (2016).
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for j = 2, . . . , p and

(
GX

T∑

t=1

Xtw
′
tGW

)

(i,j)

⇒ j

∫ 1

0
Bi+j−1

v (r)dBv(r) + j(i+ j − 1)∆vv

∫ 1

0
Bi+j−2

v (r)dr

(36)

−

(
j

2

)
Σvv

∫ 1

0
Bi+j−2

v (r)dr,

for i, j = 1, . . . , p.

Combining the results of Theorem 1, Corollary 1 and Lemma 1 allows to establish the

main result of this paper by exploiting the structure of the “long-run covariance” limits

(see the proof of the following Theorem 2 and Appendix C for the general case):

Theorem 2. Let the data be generated by (3) with Assumptions 1 and 2 in place. Fur-

thermore, let long-run covariance estimation be performed under Assumptions 3 and 4.

Then it holds for T → ∞ that:

G−1(θ̂++ − θ) ⇒

(∫ 1

0
J(r)J(r)′dr

)−1 ∫ 1

0
J(r)dBu·v(r). (37)

Thus, the FM-STD and the FM-CPR estimator have the same limiting distribution.

The above result implies that all hypothesis test statistics based on either of the two

estimators have the same asymptotic null distribution. This includes, of course, Wald-

type parameter hypothesis tests, but also the Wald- and LM-type specification tests

considered in Wagner and Hong (2016, Propositions 3 and 4).

The equivalence result of Theorem 2 hinges crucially upon the presence of xt in the

regression. To see (with some vagueness here, but with the details in the proofs) what

is going on, it is convenient to go back to the centered version of (12):

u+t := ut −∆xtΩ̂
−1
vv Ω̂vu (38)

= ut − vtΩ̂
−1
vv Ω̂vu.

With consistent long-run covariance estimation, the limit partial sum process version of

the above relation is given by

Bu·v(r) = Bu(r)−Bv(r)Ω
−1
vv Ωvu, (39)
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indicating in the notation, Bu·v(r) rather than, e. g., Bu+(r), that this transformation

leads (due to Gaussianity) to the conditional process and subsequently to independence

between Bu·v(r) and Bv(r). An alternative take on (39) is to recognize it as the popula-

tion equation for the regression error of the least squares regression of Bu(r) on Bv(r),

with the population regression coefficient, of course, given – with zero mean variables –

by covariance between dependent variable and regressor divided by regressor variance,

i. e., by Ω−1
vv Ωvu.

10

Now consider the transformation (18) performed in FM-STD from a similar perspec-

tive:

u++
t = ut −∆X ′

tΩ̂
−1
wwΩ̂wu (40)

= ut −
[
vt,∆x2t , . . . ,∆xpt

]
Ω̂−1
wwΩ̂wu

≈ ut −

[
vt,

2xtvt − v2t
T 1/2

, . . . ,
pxp−1

t vt −
p(p−1)

2 xp−2
t v2t

T
p−1

2

]
Ω̂−1
w̃w̃Ω̂w̃u,

with vt included only if xt is included in the regression and where for ∆xjt , j = 2, . . . , p

only the two (asymptotically relevant) leading terms are considered, compare (17).

This corresponds in the limit partial sum process form (with details in the proofs) and

using Itô’s Lemma (see, e. g., Theorem 3.3., p. 149 in Karatzas and Shreve, 1991) to:11

Bu·v(r) = Bu(r)−

[
Bv(r), 2

∫ r

0
Bv(s)dBv(s) + rΩvv, . . . , (41)

p

∫ r

0
Bp−1

v (s)dBv(s) +
p(p− 1)

2
Ωvv

∫ r

0
Bp−2

v (s)ds

]
Ω−1
w̃w̃Ωw̃u

= Bu(r)−
[
Bv(r), B

2
v(r), . . . , B

p
v(r)

]
[

Ω−1
vv Ωvu

0(p−1)×1

]

= Bu(r)−Bv(r)Ω
−1
vv Ωvu,

10This is, clearly, not a new interpretation, but the very core of the FM-OLS approach.
11We use (40) as starting point as it highlights the relevant quantities for the asymptotic results. If one

is merely interested in the partial sum process and its limit it is easier to directly consider:

1√
T

⌊rT⌋
∑

t=1

u++
t =

1√
T

⌊rT⌋
∑

t=1

ut −
1√
T
X ′

⌊rT⌋GW Ω̂−1

w̃w̃Ω̂w̃u

⇒ Bu(r)−Bv(r)
′Ω−1

w̃w̃Ωw̃u
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with Bu·v(r) again appearing on the left hand side, because Ω̂−1
w̃w̃Ω̂w̃u

P
→ Ω−1

w̃w̃Ωw̃u =

Ω−1
vv Ωvue

p
1.

The interesting aspect of this result is that Ωw̃w̃ is not the second moment matrix of

Bv(r) and Ωw̃u is not the covariance between Bv(r) and Bu(r). Nevertheless, their

product still coincides with the population regression coefficient given by:

(
E(Bv(r)Bv(r)

′)
)−1

E(Bv(r)Bu(r)) =
(
E(Bv(r)Bv(r)

′)
)−1

E(Bv(r)(Bu·v(r) (42)

+Bv(r)Ω
−1
vv Ωvu))

=
(
E(Bv(r)Bv(r)

′)
)−1

E(Bv(r)Bv(r))Ω
−1
vv Ωvu

= Ω−1
vv Ωvue

p
1,

using independence of Bv(r) and Bu·v(r) and that the second expectation term in the

second line above is exactly equal to the first column of the matrix inverted in the first

expectation. This limit coincides with the limit Ω−1
w̃w̃Ωw̃u, since for these two quantities,

Ωw̃w̃ and Ωw̃ũ, an exactly similar “partial (first column) inversion” result as in (42)

applies, with, however, different (random) quantities appearing in the individual limits

(that cancel in the final result).

The second transformation, the additive bias correction, is also asymptotically equiva-

lent for FM-STD and FM-CPR because of the asymptotic properties of the “long-run

covariance” estimators. Equations (40) and (41) show that FM-STD invokes the com-

putation and usage of more quantities and “long-run covariance” estimates – that are

asymptotically not relevant – than FM-CPR, and thus is suffers from something like a

“degrees of freedom loss” compared to FM-CPR.

The above argument highlights why the equivalence of FM-CPR and FM-STD breaks

down when xt is not included in the regression. To see this also explicitly, consider the

simple example yt = x2tβ + ut, xt = xt−1 + vt. In this case straightforward (given the

results of the paper) derivations show that the FM-STD estimator does not converge to

the limiting distribution given in (16) or (37), but to:12

12The relevant terms for the specific case of (22) and (23) for the example considered are
given by GZ′W̃ ⇒ 2

∫ 1

0
B3

v(r)dBv(r) + 6∆vv

∫ 1

0
B2

v(r)dr − Σvv

∫ 1

0
B2

v(r)dr, Ω̂−1

w̃w̃Ω̂w̃u ⇒
1

2
Ω−1

vv Ωvu

(

∫ 1

0
B2

v(r)dr
)−1

∫ 1

0
Bv(r)dr and GA∗∗ ⇒ 2∆+

vu

∫ 1

0
Bv(r)dr.
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T 3/2(β̂++ − β) ⇒

(∫ 1

0
B4

v(r)dr

)−1(∫ 1

0
B2

v(r)dBu·v(r) (43)

+

∫ 1

0
Bv(r)drΩ

−1
vv Ωvu

[∫ 1

0
B2

v(r)dBv(r)

(∫ 1

0
Bv(r)dr

)−1

−

∫ 1

0
B3

v(r)dBv(r)

(∫ 1

0
B2

v(r)dr

)−1

−
Ωvv

2

])
.

The special case of the FM-CPR limit distribution (16) or (37) corresponding to this

example is given by the expression in the first line of (43). The terms in the second

and third line of (43) comprise the “orthogonalization” error that occurs when Bu(r) is

orthogonalized with respect to B2
v(r), which is not a Gaussian process, rather than with

respect to the Gaussian process Bv(r) and thus also with respect to powers of Bv(r).

2.4. Shin-Type Cointegration Testing

The asymptotic equivalence result established in Theorem 2 immediately implies that the

Shin (1994)-type test of Wagner and Hong (2016, Proposition 5) for the null hypothesis

of cointegration in the CPR setting can be based on the residuals of both FM-CPR or

FM-STD estimation. Both test statistics have the same asymptotic null distribution

given in the following corollary.

Corollary 2. Let the data be generated by (3) with Assumptions 1 and 2 in place and

let long-run covariance estimation be carried out under Assumptions 3 and 4. Denote

as before with û+t the FM-CPR and by û++
t the FM-STD residuals. Then it holds that

both:

CT+ :=
1

T ω̂u·v

T∑

t=1


 1

T 1/2

t∑

j=1

û+j




2

(44)

and

CT++ :=
1

T ω̂u·w

T∑

t=1


 1

T 1/2

t∑

j=1

û++
j




2

, (45)
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with ω̂u·v := Ω̂uu − Ω̂uvΩ̂
−1
vv Ω̂vu and ω̂u·w := Ω̂uu − Ω̂uwΩ̂

−1
wwΩ̂wu converge for T → ∞ to

∫ 1

0

(
W JW

u·v (r)
)2

dr, (46)

with

W JW
u·v (r) := Wu·v(r)−

∫ r

0
JW (s)′ds

(∫ 1

0
JW (s)JW (s)′ds

)−1 ∫ 1

0
JW (s)dWu·v(s), (47)

where JW (r) := [D(r)′,Wv(r),W
2
v (r), . . . ,W

p
v (r)]′. Under the stated assumptions both

ω̂u·v and ω̂u·w are consistent estimators of ωu·v := Ωuu − ΩuvΩ
−1
vv Ωvu, the variance of

Bu·v(r).

The limiting distribution given in (46) and (47) is nuisance parameter free since the

single integrated regressor case is, in the words of Vogelsang and Wagner (2014), of

full design, which allows for a bijection between functionals of Brownian motions and

standard Brownian motions.

In the multiple integrated regressor CPR case, full design need not necessarily prevail. In

this case the result of Corollary 2 still holds true, however, with the nuisance parameter

dependent limiting distribution given in Wagner and Hong (2016, eq. (22) and (23)). For

this case Wagner and Hong (2016, Proposition 6) propose a sub-sampling approach to

achieve a nuisance parameter free limiting distribution. Their Proposition 6, formulated

for the FM-CPR residuals, extends to the FM-STD residuals as well.

As outlined in the introduction, the EKC literature using the Shin (1994) test uses

the critical values corresponding to a specification with p integrated regressors, i. e.,

quantiles corresponding to a limiting distribution similar to (46) and (47) in format, but

with W
JWp
u·v (r) and JWp(r) := [D(r)′,W1(r), . . . ,Wp(r)]

′, where Wi(r) are independent

standard Brownian motions for i = 1, . . . , p, in place of W JW
u·v (r) and JW (r). In other

words the limiting distribution used is a function of p independent standard Brownian

motions rather than of p powers of one standard Brownian motion. Clearly, this makes

a difference, as seen in Table 1. The table illustrates that the differences become bigger

when the regression model becomes more complicated, i. e., when more powers of the

integrated regressor are included. Using the FM-STD residuals in conjunction with the

Shin (1994) critical values leads to invalid inference.
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Dt = ∅ Dt = 1 Dt = [1, t]′

α 10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A: Two Integrated Regressors/Quadratic Specification (p = 2)

Shin 0.624 0.895 1.623 0.163 0.221 0.380 0.081 0.101 0.150
CT 0.664 0.947 1.712 0.213 0.293 0.504 0.086 0.106 0.157

Panel B: Three Integrated Regressors/Cubic Specification (p = 3)

Shin 0.475 0.682 1.305 0.121 0.159 0.271 0.069 0.085 0.126
CT 0.561 0.804 1.473 0.204 0.281 0.490 0.081 0.101 0.150

Table 1: Critical values for the Shin (1994, Table 1) test for p integrated regressors and
for the CT test for cointegration in the single integrated regressor CPR model of degree p
from Wagner (2013, Table 4). The three block-columns correspond to the cases without
deterministic component (Dt = ∅), with intercept only (Dt = 1) and with intercept and
linear trend (Dt = [1, t]′).

3. Finite Sample Performance

For our simulations we use exactly the same data generating processes (DGPs) as Wag-

ner and Hong (2016, Section 3), i. e., we generate data for the quadratic cointegrating

polynomial regression model:

yt = c+ δt+ β1xt + β2x
2
t + ut, (48)

where the errors ut and vt = ∆xt are generated as:

ut = ρ1ut−1 + εt + ρ2et, u0 = 0,

vt = et + 0.5et−1,

with (εt, et)
′ ∼ N (0, I2). The parameter ρ1 controls the level of serial correlation in

the error term ut, and ρ2 controls the extent of regressor endogeneity. The parameter

values are set to c = δ = 1, β1 = 5 and β2 = −0.3. The values for β1 and β2 are

based on coefficient estimates obtained by applying the FM-CPR estimator to GDP

and CO2 emissions data for Austria (see Wagner, 2015). We present simulation results

for T ∈ {50, 100, 200, 500, 1000} and for ρ1 = ρ2 ∈ {0, 0.3, 0.6, 0.8}. The number of

replications is 10,000 in all cases and all tests are carried out at the nominal 5% level.

We only report results for the Bartlett kernel, with the results for the Quadratic Spectral

kernel, contained in supplementary material available upon request, qualitatively very

similar. With respect to the bandwidth we report results for three choices. These are
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ρ1, ρ2 Bias Ratio RMSE Ratio

And NW NWT And NW NWT

Panel A: T = 50

0.0 0.6475 1.9067 0.4405 0.9798 0.9920 0.9953
0.3 0.9575 1.1808 0.9847 1.0177 1.0207 1.0332
0.6 0.9838 1.0960 1.0272 1.0566 1.0662 1.0787
0.8 0.9952 1.0466 1.0245 1.0666 1.0715 1.0893

Panel B: T = 100

0.0 1.1342 1.1153 1.0193 1.0143 1.0123 1.0149
0.3 1.0410 1.1959 1.0245 1.0466 1.0382 1.0475
0.6 1.0159 1.0756 1.0396 1.0754 1.0689 1.0876
0.8 1.0226 1.0749 1.0268 1.0826 1.0773 1.0940

Panel C: T = 200

0.0 1.8361 1.9520 1.7630 1.0287 1.0226 1.0223
0.3 1.1629 1.3829 1.1087 1.0495 1.0399 1.0405
0.6 1.0504 1.1447 1.0424 1.0741 1.0699 1.0664
0.8 1.0920 1.1718 1.0253 1.0939 1.1044 1.0707

Panel D: T = 500

0.0 -13.7188 35.9936 17.6654 1.0251 1.0150 1.0133
0.3 1.1604 1.3262 1.1487 1.0351 1.0224 1.0208
0.6 1.0829 1.2659 1.0326 1.0500 1.0438 1.0359
0.8 1.2211 1.3725 1.0183 1.0811 1.1060 1.0442

Panel E: T = 1000

0.0 1.0984 1.1024 1.1868 1.0221 1.0153 1.0109
0.3 1.1090 1.2001 1.0678 1.0286 1.0216 1.0164
0.6 1.0979 1.3687 1.0221 1.0369 1.0357 1.0262
0.8 1.3381 1.5752 1.0134 1.0726 1.1110 1.0320

Table 2: Bias and RMSE ratios, FM-STD/FM-CPR, for β1.

the data-dependent rules of Andrews (1991) (labeled And) and Newey and West (1994)

(labeled NW), as well as a “simplified” sample size dependent version of the latter, i. e.,

MT = ⌊4(T/100)2/9⌋ (labeled NWT) that is widely-used. The parameter hypothesis test

results are “benchmarked” against OLS-based test results. We use textbook OLS in-

ference ignoring serial correlation and endogeneity altogether, labeled OLS later, which

is asymptotically invalid in the presence of serial correlation and endogeneity. Rejec-

tions for the Wald-type parameter tests performed are carried out using the chi-squared

distribution.13

13A large variety of additional results – as mentioned also for the Quadratic Spectral kernel – including
results for the other coefficients or t-tests also for the cubic and quartic specifications are contained
in supplementary material available upon request.
One important additional result from the simulations is that ω̂u·v (based on FM-CPR) exhibits much
better performance than ω̂u·w (based on FM-STD). The latter has partly substantially larger bias
and larger RMSE than the former. These differences are, in addition to the different performance
of the estimators, an important ingredient for the different performance of parameter hypothesis as
well as cointegration tests based on the two estimators.
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We start the discussion of the results by comparing bias and RMSE of the two estimators.

The results for β1 are given in Table 2 as ratios, with FM-STD divided by FM-CPR,

since we are primarily interested in the comparison of the two in this paper. The results

are very similar also for δ and β2. By definition, numbers larger than one (in absolute

value) indicate that FM-CPR outperforms FM-STD and with very few exceptions when

T = 50 and the Andrews (1991) bandwidth is used this is what happens.

Before turning to the relative performance of FM-STD and FM-CPR note that bias

and RMSE ratios are in many cases very close to one, especially when ρ1, ρ2 are large,

for NWT. This reflects that both FM-STD and FM-CPR use, by construction, exactly

the same bandwidth with this rule. In absolute terms, however, the bias resulting

from NWT is often larger than for the data-dependent bandwidth rules, especially for

the larger values of T and ρ1, ρ2. The Andrews (1991) and Newey and West (1994)

bandwidth rules lead to very similar biases. For RMSE the differences are very small

for all three bandwidth rules with no clear ranking. These observations hold for both

FM-STD and FM-CPR. Given the absolute disadvantage of NWT we focus below on the

two data-dependent rules.

With respect to the bias ratio one key observation is that the performance advantage of

FM-CPR over FM-STD increases with increasing sample size for large values of ρ1, ρ2.

For small values of ρ1, ρ2 the differences tend to get smaller with increasing T .14 The

RMSE ratios increase throughout for any given T with increasing ρ1, ρ2. The variability

of the RMSE results is, however, less pronounced than for bias. Roughly speaking, the

performance disadvantage of FM-STD relative to FM-CPR is less severe when using the

Andrews (1991) bandwidth than when using the Newey and West (1994) bandwidth.

From the estimator results the empirical null rejection results of the Wald-type tests

for the null hypothesis H0 : β1 = 5, β2 = −0.3 can to a certain extent already be

guessed, see Table 3 and Figure 2. For any given bandwidth choice, size distortions

are smaller for the test statistics computed from the FM-CPR estimates compared to

those calculated from the FM-STD estimates. Again the differences are sizeable even

for T = 1000 for the larger values of ρ1, ρ2. The table and figure also illustrate the

well-known result that OLS based test statistics do not lead to asymptotic chi-square

distributions in case of regressor endogeneity and/or error serial correlation, see, e. g.,

Hong and Phillips (2010, Theorem 2). In our setting the Andrews (1991) bandwidth

14The large negative values for the bias ratio for T = 500 and ρ1, ρ2 = 0 are driven by “base-effects”,
i. e., both the numerator and the denominator are very small, with the denominator by one order
smaller.
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ρ1, ρ2 OLS FM-STD FM-CPR

And NW NWT And NW NWT

Panel A: T = 50

0.0 0.0757 0.1944 0.2139 0.1638 0.1777 0.1762 0.1472
0.3 0.2184 0.2686 0.2918 0.2397 0.2241 0.2396 0.2036
0.6 0.5141 0.4171 0.4462 0.4037 0.3399 0.3684 0.3418
0.8 0.7853 0.6396 0.6734 0.6468 0.5569 0.5816 0.5927

Panel B: T = 100

0.0 0.0597 0.1370 0.1222 0.1183 0.1231 0.1018 0.1063
0.3 0.2066 0.1807 0.1868 0.1686 0.1545 0.1588 0.1434
0.6 0.5352 0.3067 0.3444 0.3075 0.2436 0.2645 0.2563
0.8 0.8164 0.5353 0.6049 0.5634 0.4272 0.4587 0.5120

Panel C: T = 200

0.0 0.0572 0.1070 0.0987 0.0859 0.0940 0.0836 0.0777
0.3 0.2045 0.1385 0.1450 0.1265 0.1176 0.1255 0.1136
0.6 0.5449 0.2224 0.2663 0.2497 0.1748 0.1941 0.2201
0.8 0.8279 0.4234 0.5102 0.5166 0.2974 0.3253 0.4854

Panel D: T = 500

0.0 0.0517 0.0848 0.0766 0.0673 0.0744 0.0663 0.0630
0.3 0.2022 0.1046 0.1123 0.0985 0.0886 0.0980 0.0882
0.6 0.5498 0.1469 0.1965 0.1803 0.1151 0.1248 0.1649
0.8 0.8380 0.2952 0.4016 0.4175 0.1787 0.1913 0.3974

Panel E: T = 1000

0.0 0.0520 0.0711 0.0641 0.0612 0.0645 0.0600 0.0587
0.3 0.2046 0.0840 0.0911 0.0839 0.0747 0.0866 0.0788
0.6 0.5560 0.1131 0.1611 0.1438 0.0904 0.0962 0.1363
0.8 0.8439 0.2166 0.3340 0.3464 0.1286 0.1400 0.3341

Table 3: Empirical null rejection probabilities of Wald-type tests for H0 : β1 = 5, β2 =
−0.3.
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Figure 2: Empirical null rejection probabilities of Wald-type tests for H0 : β1 = 5, β2 =
−0.3.
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Figure 3: Size-corrected power of Wald-type tests for H0 : β1 = 5, β2 = −0.3 for
T = 100. The two left graphs correspond to ρ1 = ρ2 = 0.3 and the two right graphs
to ρ1 = ρ2 = 0.6. Within these pairs the left graph corresponds to the Andrews (1991)
bandwidth and the right one to the Newey and West (1994) bandwidth.

rule leads mostly to slightly better results than the Newey and West (1994) rule. The

sample-size dependent bandwidth NWT performs – as expected – especially poor in

case of large serial correlation (and large sample sizes). Large correlation cannot be

adequately taken into account with the in such cases too small NWT bandwidth that is

independent of the second moment features.
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We now turn briefly to size-corrected power of the Wald-type test just considered under

the null by considering size-corrected power for a grid of (including the null) 21 points.

The values for β1 are chosen from the interval [5, 5.2] on an equidistant grid with mesh

0.01 and the values for β2 from the interval [−0.3,−0.28] on an equidistant grid with

mesh 0.001. Figure 3 displays results for T = 100 for ρ1, ρ2 = 0.3 in the left two graphs

and for ρ1, ρ2 = 0.6 in the right two graphs. Within these two graphs, the left graph

corresponds to the Andrews (1991) bandwidth and the right one to the Newey and West

(1994) bandwidth.

Figure 3 shows some very typical findings. First, size-corrected power is slightly higher

for OLS, which, however, has the highest size distortions under the null and leads to

invalid inference even asymptotically for ρ1, ρ2 6= 0. Second, size-corrected power is vir-

tually identical for FM-STD and FM-CPR. Third, the Andrews (1991) bandwidth leads

to marginally lower size-corrected power than the Newey and West (1994) bandwidth,

which has to be seen, however, in conjunction with the lower size distortions resulting

from using the Andrews (1991) bandwidth. Overall, the best performance for parameter

hypothesis testing is obtained with the bandwidth rule of Andrews (1991).

Let us now turn briefly to cointegration testing. We report the null rejection probabilities

in Table 4 for the tests discussed in Section 2.4. The three-block columns correspond to

the following variants: The first column, CT++
Shin, corresponds to the widespread empirical

practice of using the FM-STD residuals in conjunction with the (inappropriate) Shin

(1994) critical values. The third column, CT+, reports the results obtained using the

FM-CPR residuals and the critical values corresponding to the limiting distribution given

in (46) and (47); tabulated in Wagner (2013, Table 4); with all required critical values

also available in Table 1 in this paper. The second column, CT++, is a “hybrid” version

based on the asymptotic result given in Corollary 2. This test statistic is calculated from

the FM-STD residuals but uses the correct critical values.

The simulation results can be summarized as follows: First, the null rejections of the

CT++
Shin-test are adversely affected throughout, also for large sample sizes. The over-

rejections that stay substantial even for T = 1000 reflect that wrong critical values are

used. The hybrid CT++-test exhibits a performance very similar to the CT++
Shin-test. This

is partly not surprising, since the same test statistic is used and the critical values differ

only marginally in the considered specification (0.101 or 0.106) and thus the findings

cannot differ too much. Another reason for the poor performance of CT++ is that

it suffers from the poor performance of the estimator ω̂u·w mentioned in Footnote 13.
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ρ1, ρ2 CT++
Shin CT++ CT+

And NW NWT And NW NWT And NW NWT

Panel A: T = 50

0.0 0.0332 0.1050 0.0321 0.0319 0.1015 0.0303 0.0389 0.0769 0.0400
0.3 0.0640 0.1368 0.0614 0.0614 0.1336 0.0589 0.0600 0.1139 0.0722
0.6 0.1368 0.2265 0.1419 0.1334 0.2210 0.1372 0.0792 0.1928 0.1660
0.8 0.2270 0.3745 0.3249 0.2198 0.3669 0.3178 0.1135 0.2849 0.3734

Panel B: T = 100

0.0 0.0411 0.0518 0.0442 0.0368 0.0447 0.0379 0.0421 0.0472 0.0450
0.3 0.0646 0.0955 0.0717 0.0577 0.0876 0.0646 0.0630 0.0965 0.0728
0.6 0.1280 0.2415 0.1529 0.1151 0.2248 0.1399 0.0768 0.1568 0.1556
0.8 0.2892 0.4932 0.4031 0.2687 0.4756 0.3812 0.0867 0.2449 0.4181

Panel C: T = 200

0.0 0.0480 0.0517 0.0534 0.0413 0.0441 0.0437 0.0465 0.0480 0.0485
0.3 0.0677 0.0968 0.0878 0.0581 0.0865 0.0784 0.0654 0.0926 0.0815
0.6 0.1198 0.2282 0.2073 0.1078 0.2129 0.1886 0.0752 0.1267 0.1952
0.8 0.2928 0.4755 0.5467 0.2673 0.4518 0.5152 0.0712 0.1715 0.5323

Panel D: T = 500

0.0 0.0535 0.0537 0.0570 0.0461 0.0459 0.0487 0.0492 0.0487 0.0493
0.3 0.0679 0.0917 0.0850 0.0581 0.0782 0.0753 0.0625 0.0845 0.0763
0.6 0.1012 0.2035 0.1773 0.0870 0.1842 0.1548 0.0666 0.0850 0.1590
0.8 0.2282 0.4392 0.4859 0.2042 0.4169 0.4530 0.0597 0.1105 0.4597

Panel E: T = 1000

0.0 0.0582 0.0602 0.0604 0.0488 0.0511 0.0514 0.0518 0.0507 0.0530
0.3 0.0705 0.0914 0.0857 0.0599 0.0786 0.0740 0.0621 0.0809 0.0748
0.6 0.0957 0.1847 0.1576 0.0814 0.1669 0.1384 0.0648 0.0760 0.1401
0.8 0.1856 0.3882 0.4258 0.1637 0.3628 0.3905 0.0582 0.0866 0.3959

Table 4: Empirical null rejection probabilities of cointegration tests. The block-column
CT++

Shin reports the results from using the test statistic (45) and the Shin (1994) critical
values. The block-columns CT++ and CT+ report the results from using (45) and (44)
and the corresponding critical value tabulated in Wagner (2013, Table 4). For the consid-
ered specification the 5% critical values are 0.101 (Shin) and 0.106 (Wagner) respectively,
compare also Table 1.
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This effect results in poor performance even when comparing the statistic with the

correct critical values. The performance of the CT+-test is substantially better, with

a performance margin that widens for the large values of ρ1, ρ2. In these comparisons

as before the sample size dependent bandwidth NWT has to be considered separately,

with again poor performance in case of large ρ1, ρ2 and all values of T . For the two

data-dependent bandwidths better – partly substantially better - results are obtained

with the Andrews (1991) bandwidth.

4. Summary and Conclusions

This paper establishes asymptotic equivalence of the FM-CPR estimator of Wagner

and Hong (2016) and the “standard Phillips-Hansen FM-OLS” estimator – used in the

way described – in cointegrating polynomial regressions (CPR). As mentioned, standard

FM-OLS is routinely used in a CPR context in, e. g., the environmental Kuznets curve

(EKC) and related literatures. This result has the convenient implication, from an

asymptotic perspective, that the standard FM-OLS estimator of Phillips and Hansen

(1990) implemented in many software packages can be used for estimation in inference

– in the way described in this paper – not only for cointegrating linear regressions but

also for cointegrating polynomial regressions. Asymptotic equivalence of the estimators

immediately implies also asymptotic equivalence not only of parameter hypothesis tests

but also of the Shin (1994)-type cointegration tests based on either the FM-STD or

FM-CPR residuals. In this respect, however, it is important to use appropriate critical

values that differ from those of Shin (1994). The usage of the latter leads to invalid

inference even asymptotically.

One key ingredient for deriving asymptotic equivalence of the estimators are weak conver-

gence results for kernel weighted sums (“long-run covariance” estimators) for processes

involving properly scaled powers of integrated regressors (i. e., for η̂t in the notation of

the paper).

A very important restriction for the equivalence results to hold is that the integrated re-

gressor xt itself is – or all components of the integrated regressor vector xt are – included

in the regression. This stems from the fact that only in this case orthogonalization be-

tween Bu(r) and Bv(r) can be performed by the first stage modifications of the two fully

modified type estimators, as discussed in Section 2.3.
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The finite sample simulations indicate performance advantages along all considered di-

mensions of FM-CPR over FM-STD that occur in the case of large endogeneity and

error serial correlation even for T = 1000. Smaller levels of endogeneity and error serial

correlation the asymptotic equivalence lead to smaller performance differences through-

out.

The results and observations of this paper immediately lead to the following questions:

(i) do the results extend to other modified least squares estimators like D-OLS of Saikko-

nen (1991) or Stock and Watson (1993) or IM-OLS of Vogelsang and Wagner (2014); and

(ii) do the equivalence results also hold in more general nonlinear cointegration settings?

With respect to (i), back-of-the-envelope calculations indicate that it may be substan-

tially easier to extend the results to IM-OLS than to D-OLS. With respect to (ii), in

order to use ready-made software where Phillips and Hansen (1990) FM-OLS is imple-

mented, the relationship has to be linear in parameters. Linearity in parameters need of

course not be enough, since, e. g., nonlinear functions involving I-regular rather than H-

regular functions (in the terminology of Park and Phillips, 2001), including polynomials

as considered in this paper, lead to limiting distributions that involve local times. In

such contexts simple asymptotic orthogonality results need not be available. Altogether,

many intriguing questions remain for future research.
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APPENDIX A: Auxiliary Lemmata

This appendix contains some auxiliary lemmata, required for showing the main results

of the paper. The following Lemmata 3 and 4 draw upon some ideas used in the proofs

of Kasparis (2008, Lemma A1). The first lemma, Lemma 2, is identical to Kasparis

(2008, Lemma A1(i)).

Lemma 2. Under Assumption 2 it holds for 0 ≤ b < 1/3 that:

sup
r∈[0,1]

T−1/2
T b∑

h=0

|v⌊rT ⌋+h| = oa.s.(1).

Lemma 3. Under Assumptions 2 to 4 it holds for all integers 0 ≤ p and 1 ≤ q that:

∣∣∣∣∣

MT∑

h=0

k

(
h

MT

)
1

T

T−h∑

t=1

( xt

T 1/2

)p [(xt+h

T 1/2

)q
−
( xt

T 1/2

)q]
vtvt+h

∣∣∣∣∣ = oP(1).

Proof. Consider f(x) := xq, x ∈ R. The mean value theorem states that f(y)− f(x) =

f ′(ζ)(y− x), i. e., yq − xq = qζq−1(y− x), with x < y and x < ζ < y. Therefore, it holds

that

(xt+h

T 1/2

)q
−
( xt

T 1/2

)q
= q

(
xht
T 1/2

)q−1
xt+h − xt

T 1/2
=

q

T 1/2

(
xht
T 1/2

)q−1 h∑

m=1

vt+m,

with xht = xt + γt
∑h

m=1 vt+m and some 0 < γt < 1. Using this representation it follows

that

MT∑

h=0

k

(
h

MT

)
1

T

T−h∑

t=1

( xt

T 1/2

)p [(xt+h

T 1/2

)q
−
( xt

T 1/2

)q]
vtvt+h

=
q

T 1/2

MT∑

h=0

k

(
h

MT

)
1

T

T−h∑

t=1

( xt

T 1/2

)p( xht
T 1/2

)q−1 h∑

m=1

vtvt+mvt+h.

The assertion is hence equivalent to showing that

1

T 1/2

MT∑

h=0

k

(
h

MT

)
1

T

T−h∑

t=1

( xt

T 1/2

)p( xht
T 1/2

)q−1 h∑

m=1

vtvt+mvt+h = oP(1).

In the course of the proof it is helpful to resort to strong approximations, obtained

from the Skorohod representation theorem, see Pollard (1984, p. 71–72) or Csörgo
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and Horváth (1993, p. 4). For a discussion of this issue in a nonlinear cointegra-

tion context see, e. g., Park and Phillips (1999, Lemma 2.3) and Park and Phillips

(2001). Since we are concerned with weak convergence results in this paper, we can

w.l.o.g. use a distributionally equivalent version of T−1/2x⌊rT ⌋, X
∗
T (r) say, that fulfills

supr∈[0,1] |X
∗
T (r)−Bv(r)| = oa.s.(1), with Bv(r) the Brownian motion given in (10). For

convenience we continue to use xt and T−1/2x⌊rT ⌋ also when working with the distribu-

tionally equivalent version. Setting C̃ := supr∈[0,1] |Bv(r)|+ 1/2, it holds that

sup
r∈[0,1]

T−1/2|x⌊rT ⌋| ≤ C̃ + oa.s.(1). (A.1)

Furthermore, it holds that

sup
r∈[0,1]

sup
0≤h≤MT

T−1/2|x⌊rT ⌋+h − x⌊rT ⌋|

= sup
r∈[0,1]

sup
0≤h≤MT

T−1/2|
h∑

m=1

v⌊rT ⌋+m| ≤ sup
r∈[0,1]

T−1/2
MT∑

m=1

|v⌊rT ⌋+m|

and thus it follows from Lemma 2 that

sup
r∈[0,1]

sup
0≤h≤MT

T−1/2|x⌊rT ⌋+h − x⌊rT ⌋| = oa.s.(1). (A.2)

This implies

sup
r∈[0,1]

sup
0≤h≤MT

T−1/2|x⌊rT ⌋+h|

≤ sup
r∈[0,1]

sup
0≤h≤MT

T−1/2|x⌊rT ⌋+h − x⌊rT ⌋|+ sup
r∈[0,1]

T−1/2|x⌊rT ⌋| ≤ C + oa.s.(1),

with C := supr∈[0,1] |Bv(r)|+ 1 and also

sup
r∈[0,1]

sup
0≤h≤MT

T−1/2|xh⌊rT ⌋| ≤ C + oa.s.(1). (A.3)
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Using the triangular inequality and the bounds given in (A.1)–(A.3), the following in-

equalities hold:

∣∣∣∣∣
1

T 1/2

MT∑

h=0

k

(
h

MT

)
1

T

T−h∑

t=1

( xt

T 1/2

)p( xht
T 1/2

)q−1 h∑

m=1

vtvt+mvt+h

∣∣∣∣∣

≤

(
M3

T

T

)1/2
1

MT

MT∑

h=0

∣∣∣∣k
(

h

MT

)∣∣∣∣
1

T

T−h∑

t=1

∣∣∣∣∣
( xt

T 1/2

)p( xht
T 1/2

)q−1
∣∣∣∣∣ |vtvt+h|

∣∣∣∣∣
1

M
1/2
T

h∑

m=1

vt+m

∣∣∣∣∣

≤

(
M3

T

T

)1/2

k(0)Cp+q−1 1

MT

MT∑

h=0

1

T

T−h∑

t=1

|vtvt+h|

∣∣∣∣∣
1

M
1/2
T

h∑

m=1

vt+m

∣∣∣∣∣+ oP(1),

with k(0) = supx≥0 |k(x)| as defined in Assumption 3. Similar arguments as given imply

due to strict stationarity of {vt}t∈Z that

sup
s∈[0,1]

sup
t=1,...,T

∣∣∣∣∣∣
1

M
1/2
T

⌊sMT ⌋∑

m=1

vt+m

∣∣∣∣∣∣
≤ C∗ + oa.s.(1),

where C∗ d
= C̃. Consequently,

∣∣∣∣∣
1

T 1/2

MT∑

h=0

k

(
h

MT

)
1

T

T−h∑

t=1

( xt

T 1/2

)p( xht
T 1/2

)q−1 h∑

m=1

vtvt+mvt+h

∣∣∣∣∣

≤

(
M3

T

T

)1/2

k(0)Cp+q−1C∗ 1

MT

MT∑

h=0

1

T

T−h∑

t=1

|vtvt+h|+ oP(1). (A.4)

Assumption 2 implies that

E

(
1

MT

MT∑

h=0

1

T

T−h∑

t=1

|vtvt+h|

)
≤

1

MT

MT∑

h=0

1

T

T−h∑

t=1

(
E[v2t ]E[v

2
t+h]

)1/2
≤ 2Σvv < ∞.

The Markov inequality, see e. g., Billingsley (2012, p.294), implies that:

1

MT

MT∑

h=0

1

T

T−h∑

t=1

|vtvt+h| = OP(1). (A.5)

Finally, the assertion is an immediate consequence of M3
T /T → 0 by Assumption 4, and

the remaining terms contained in the expression in (A.4) being OP(1). �
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Lemma 4. With Assumptions 2 to 4 in place it holds for all integers 0 ≤ p that:

∣∣∣∣∣

MT∑

h=0

k

(
h

MT

)
1

T

T−h∑

t=1

( xt

T 1/2

)p
(vtvt+h − E[vtvt+h])

∣∣∣∣∣ = oP(1). (A.6)

Proof. In the proof of Lemma A1(iv) in Kasparis (2008) it is shown that

∣∣∣∣∣
1

MT

MT∑

h=0

k

(
h

MT

)
1

T

T−h∑

t=1

( xt

T 1/2

)p h∑

m=1

(vtvt+m − E[vtvt+m])

∣∣∣∣∣ = oP(1)

by showing that

sup
0≤h≤MT

∣∣∣∣∣
1

T

T−h∑

t=1

( xt

T 1/2

)p h∑

m=1

(vtvt+m − E[vtvt+m])

∣∣∣∣∣ = oP(1). (A.7)

The left-hand side of (A.6) can be written as

∣∣∣∣∣
1

MT

MT∑

h=0

k

(
h

MT

)
1

T

T−h∑

t=1

( xt

T 1/2

)p
MT (vtvt+h − E[vtvt+h])

∣∣∣∣∣ .

Using similar arguments as Kasparis (2008, p. 1394–1396) to show (A.7), corresponding

incidentally to his Equation (A.7), it follows that

sup
0≤h≤MT

∣∣∣∣∣
1

T

T−h∑

t=1

( xt

T 1/2

)p
MT (vtvt+h − E[vtvt+h])

∣∣∣∣∣ = oP(1),

which implies the claim of this lemma, since

∣∣∣∣∣
1

MT

MT∑

h=0

k

(
h

MT

)
1

T

T−h∑

t=1

( xt

T 1/2

)p
MT (vtvt+h − E[vtvt+h])

∣∣∣∣∣

≤ k̃

∣∣∣∣∣
1

T

T−h∑

t=1

( xt

T 1/2

)p
MT (vtvt+h − E[vtvt+h])

∣∣∣∣∣ ,

with k̃ := k(0) + 1. Since we use arguments of Kasparis (2008), the same moment

and bandwidth assumptions are required and therefore contained in our Assumptions 2

to 4. �
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APPENDIX B: Proofs of the Main Results

Proof of Theorem 1. First, the (1, 1)-element of ∆̃ηη is given by

(
∆̃ηη

)

(1,1)
=

MT∑

h=0

k

(
h

MT

)
1

T

T−h∑

t=1

utut+h,

cf. Remark 2. For i ∈ {1, . . . , p} it holds that

(
∆̃ηη

)

(i+1,1)
=

MT∑

h=0

k

(
h

MT

)
1

T

T−h∑

t=1

∆xit

T
i−1

2

ut+h,

(
∆̃ηη

)

(i+1,2)
=

MT∑

h=0

k

(
h

MT

)
1

T

T−h∑

t=1

∆xit

T
i−1

2

vt+h,

i. e., for the first and second columns (and rows) exactly the same arguments apply due

to the assumptions on {ut}t∈Z and {vt}t∈Z. Therefore, it is sufficient in the subsequent

discussion to consider the (i+1, j+1)-element for i, j ∈ {1, . . . , p} of the estimator ∆̃ηη,

which is given by

(
∆̃ηη

)

(i+1,j+1)
=

MT∑

h=0

k

(
h

MT

)
1

T

T−h∑

t=1

∆xit

T
i−1

2

∆xjt+h

T
j−1

2

.

Note that

∆xit
T (i−1)/2

= −
1

T (i−1)/2

i∑

k=1

(
i

k

)
xi−k
t (−vt)

k

= i
( xt

T 1/2

)i−1
vt −

i∑

k=2

(
i

k

)
(−1)k

( xt

T 1/2

)i−k ( vt

T 1/2

)k−2 v2t
T 1/2

.

From Lemma 2 we know that T−1/2v⌊rT ⌋ = oa.s.(1). Additionally, it holds that T
−1/2|x⌊rT ⌋| ≤

C + oa.s.(1). From E[T−1/2v2⌊rT ⌋] = T−1/2Σvv → 0 for all r ∈ [0, 1] we conclude that

∆xit
T (i−1)/2

= i
( xt

T 1/2

)i−1
vt +OP(T

−1/2).

The kernel is bounded and MT = o(T 1/3) by assumption, hence it follows that
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(
∆̃ηη

)
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= ij
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)
1
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T 1/2

)i−1 (xt+h

T 1/2

)j−1
vtvt+h + oP(1).

For i = j = 1 the above term converges in probability to ∆vv, cf. Remark 2 again. Next,

consider i > 1 and j = 1, i. e.,

MT∑

h=0

k

(
h

MT

)
1

T

T−h∑
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( xt

T 1/2

)i−1
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It follows from Lemma 4 that
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)
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)
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Now we show that
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−
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T 1/2

)i−1
∣∣∣∣∣ (B.1)

is oP(1). From Assumption 2 we get
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)∣∣∣∣ |E[v0vh]|h+ oP(1).

Similar arguments as in the proof of Jansson (2002, Lemma 6) imply that 1
T

∑MT
h=0

∣∣∣k
(

h
MT

)∣∣∣ |E[v0vh]|h
is o(1). Thus, it follows that
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)
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Therefore, we obtain
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h=0
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(
h

MT

)
1
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∆xit
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(
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T 1/2
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)

+ oP(1).

For the first term it holds that

MT∑

h=0

k

(
h

MT

)
E[v0vh] → ∆vv.

Hence, using Slutsky’s Theorem, cf. e. g., Davidson (1994, Theorem 18.10, p. 286), we

obtain
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1

T
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( xt

T 1/2
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0
Bi−1
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We turn to the case i > 1 and j > 1, i. e.,
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vtvt+h.

Using Lemma 3 we obtain
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Now we are in the same setting as for j = 1 and can therefore immediately conclude

that

MT∑

h=0

k

(
h

MT

)
∆xit
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∆xjt+h

T
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2
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∫ 1
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v (r)dr.

�

Proof of Corollary 1. The OLS residuals are given by ût = ut−Z ′
t(θ̂−θ), with θ̂ denoting

the OLS estimator of the parameters in (3). Similar to the proof of Theorem 1 consider

for j ∈ {1, . . . , p} the term

(
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.

The first term converges in distribution to (∆ηη)(1,j+1) by Theorem 1. Therefore, it

remains to show that the second term is oP(1). Similar arguments as in the proof of

Theorem 1 imply that
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vt+h + oP(1), (B.2)

with G defined in (15). Up to the constant j, expression (B.2) can be further rewritten

as
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)
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Finally, we show that
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Using Lemma 3 it holds that
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Observe that
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)∥∥2 ≤ CD + o(1) for a finite constant CD by Assumption 1.

This implies that
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with K := CD +
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2l, such that
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Similar to (A.5) one can show that

1
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1

T
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|vt+h| = oP(1).

Hence, the expressions (B.3) and, consequently, (B.2) are oP(1), which implies that
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from which the claim follows. �
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Proof of Lemma 1. We start with considering the first column of GX

T∑
t=1

Xtw
′
tGW . Ac-

cording to Wagner and Hong (2016, Proposition 1) the limit of this term is given for

i = 1, . . . , p and j = 1 by:

(
GX

T∑

t=1

Xtw
′
tGW

)

(i,1)

=
1

T 1/2

T∑

t=1

( xt

T 1/2

)i
vt

⇒

∫ 1

0
Bi

v(r)dBv(r) + i∆vv

∫ 1

0
Bi−1

v (r)dr. (B.4)

Consider now again i = 1, . . . , p, but j > 1:

(
GX

T∑

t=1

Xtw
′
tGW

)

(i,j)

=
1

T 1/2

T∑

t=1

( xt

T 1/2

)i
(
−

j∑

k=1

(
j

k

)
xj−k
t (−vt)

k

T (j−1)/2

)

=
1

T 1/2

T∑

t=1

j
( xt

T 1/2

)i+j−1
vt

−
1

T 1/2

T∑

t=1

(
j

2

)( xt

T 1/2

)i+j−2 v2t
T 1/2

−
1

T 1/2

T∑

t=1

j∑

k=3

(
j

k

)( xt

T 1/2

)i+j−k (−vt)
k

T (k−1)/2
. (B.5)

The first term on the right-hand side converges similarly to (B.4) to

j

∫ 1

0
Bi+j−1

v (r)dBv(r) + j(i+ j − 1)∆vv

∫ 1

0
Bi+j−2

v (r)dr.

For the second term in (B.5) we use the identity v2t = Σvv + (v2t − Σvv) and consider

both resulting terms separately. First,

(
j

2

)
Σvv

T

T∑

t=1

( xt

T 1/2

)i+j−2
⇒

(
j

2

)
Σvv

∫ 1

0
Bi+j−2

v (r)dr.

Second, using Lemma 4 it holds for the remaining term that

(
j

2

)
1

T

T∑

t=1

( xt

T 1/2

)i+j−2 (
v2t − Σvv

)
= oP(1).
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All additional terms in (B.5) converge to zero being OP(T
−1/2) at most. The result for

the elements of GD

T∑
t=1

Dtw
′
tGW follows analogously. �

Proof of Theorem 2. Consider the two terms given in the last line of (22). From the

proof of Wagner and Hong (2016, Proposition 1) it is known that

GZ ′u ⇒

∫ 1

0
J(r)dBu(r) + ∆vu

(
0q×1

M

)
, (B.6)

with M := [1,B′]′. The asymptotic behavior of GZ ′W̃ has been established in Lemma 1.

The first column, corresponding to the first component vt of w̃t, of this limit is given by

GZ ′v ⇒

∫ 1

0
J(r)dBv(r) + ∆vv

(
0q×1

M

)
, (B.7)

which is also a well-known result, compare again Wagner and Hong (2016, Proposition 1).

The reason that only the first column is needed is the following result concerning the

limit of Ω̂−1
w̃w̃Ω̂w̃u. In the single integrated regressor case with Ωvv scalar, it is clear that

Ωw̃w̃ = ΩvvΠv, with

Πv :=

[
1 B′

B B̃

]
, (B.8)

and B and B̃ defined in (25) and (26), respectively. From Theorem 1 and Corollary 1

we know that Ω̂w̃w̃ ⇒ ΩvvΠv and Ω̂w̃u ⇒ ΩvuΠve
p
1, which implies

Ω̂−1
w̃w̃Ω̂w̃u

P
→ Ω−1

vv Ωvue
p
1. (B.9)

Combining the terms we arrive at:

GZ ′W̃ Ω̂−1
w̃w̃Ω̂w̃u ⇒

∫ 1

0
J(r)dBv(r)Ω

−1
vv Ωvu +∆vvΩ

−1
vv Ωvu

(
0q×1

M

)
. (B.10)

It remains to consider GA∗∗, for which we find

GA∗∗ =

[
0q×1

∆̂+
w̃u

]
⇒ ∆+

vu

[
0q×1

M

]
, (B.11)
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which follows from

∆̂+
w̃u =∆̂w̃u − ∆̂w̃w̃Ω̂

−1
w̃w̃Ω̂w̃u (B.12)

⇒∆vu

[
1

B

]
−∆vvΩ

−1
vv Ωvu

[
1 B′

B B̃

][
1

0(p−1)×1

]

=∆+
vu

[
1

B

]
= ∆+

vuM.

Combining all terms from (22) we arrive at

GZ ′u−GZ ′W̃ Ω̂−1
w̃w̃Ω̂w̃u − ∆̂+

w̃u ⇒

∫ 1

0
J(r)dBu(r) + ∆vu

(
0q×1

M

)
(B.13)

−

∫ 1

0
J(r)dBv(r)Ω

−1
vv Ωvu −∆vvΩ

−1
vv Ωvu

(
0q×1

M

)
−∆+

vu

(
0q×1

M

)

=

∫ 1

0
J(r)dBu·v(r),

from which the result follows by rearranging terms and using the definition ofBu·v(r). �

Proof of Corollary 2. That the limiting distributions of (44) and (45) coincide follows

directly from the asymptotic equivalence of the estimators in turn implying the same

limit partial sum processes for both residual processes. It therefore only remains to show

that ω̂u·w is also a consistent estimator of ωu·v, which follows directly from Theorem 1

and Corollary 1:

ω̂u·w = Ω̂uu − Ω̂uwΩ̂
−1
wwΩ̂wu (B.14)

= Ω̂uu − Ω̂uw̃Ω̂
−1
w̃w̃Ω̂w̃u

⇒ Ωuu − ΩuvΩ
−1
vv Ωvue

p
1
′ΠvΠ

−1
v Πve

p
1

= Ωuu − ΩuvΩ
−1
vv Ωvu = ωu·v.

�
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APPENDIX C: The Multiple Integrated Regressor Case

We now briefly discuss how the proofs and results of Theorems 1 and 2 and Corollary 1

have to be modified when considering a multiple integrated regressor CPR. All assump-

tions are exactly as in the main text, with Assumption 2 in its multivariate version

commented upon in the main text (with cointegration in the now m-dimensional xt ex-

cluded). We also use the same notation as in the main text with most (implicit) changes

immediate and the non-trivial changes explained.

To be precise, the considered setting is given by:

yt = D′
tδ + x′tβ +

m∑

j=1

X ′
jtβXj + ut, for t = 1, . . . , T, (C.1)

= D′
tδ +X ′

tβX + ut

= Z ′
tθ + ut

xt = xt−1 + vt,

where yt is a scalar process, Dt ∈ R
q, xt := [x1t, . . . , xmt]

′, Xjt := [x2jt, . . . , x
p
jt]

′,

Xt := [x′t, X
′
1t, . . . , X

′
mt]

′, Zt := [D′
t, X

′
t]
′ ∈ R

q+mp, βX := [β′, β′
X1

, . . . , β′
Xm

]′ and

θ := [δ′, β′
X ]′ ∈ R

q+mp.

The above equation is similar to Wagner and Hong (2016, eq. (1), p. 1292), with the only

difference being a different ordering of the regressors. Wagner and Hong (2016) order the

variables in groups that include all powers of the different integrated regressors, whereas

here we consider all first powers separately in xt. This is to collect the components

of, e. g., ∆̂w̃w̃ with standard limits in in the upper left blocks (with therefore a similar

structure as in the single integrated regressor case considered in the main text).

As discussed at the end of Section 2.3, we need all elements of xt included in the CPR

to have asymptotic equivalence of FM-CPR and FM-STD. The assumption that the

same powers 1, . . . , p are included for all integrated regressors is merely for notational

convenience and is, of course, not required. Also, not all consecutive powers need to be

included, compare again Wagner and Hong (2016).
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The limiting distribution of the FM-CPR estimator of the above equation follows – with

the reordering already taken into account – from the result given in Wagner and Hong

(2016, eq. (6), p. 1296), i. e.,

G−1(θ̂+ − θ) ⇒

(∫ 1

0
J(r)J(r)′dr

)−1 ∫ 1

0
J(r)dBu·v(r), (C.2)

withG := diag(GD, T
−1Im, Im⊗diag(T−3/2, . . . , T− p+1

2 )), J(r) := [D(r)′, Bv(r)
′,B∗

v
(r)′]′,

with Bv(r) := [Bv1(r), . . . , Bvm(r)]
′, B∗

v
(r) := [B2

v1(r), . . . , B
p
v1(r), B

2
v2(r), . . . , B

p
vm(r)]

′

and Bu·v(r) := Bu(r)−Bv(r)
′Ω−1

vv Ωvu, where Bv(r) is now m-dimensional.

In the considered setting the multiple integrated regressor version of wt := ∆Xt is given

by

wt :=
[
v1t, . . . , vmt,∆x21t, . . . ,∆xp1t, . . . ,∆x2mt, . . . ,∆xpmt

]′
(C.3)

and the corresponding scaling matrix GW to arrive at w̃t := GWwt is now given by:

GW := diag
(
Im, Im ⊗ diag

(
T−1/2, . . . , T−(p−1)/2

))
. (C.4)

The results of Theorem 1 and Corollary 1 can be generalized to the multiple integrated

regressor case using similar arguments as detailed in the earlier proofs. The main differ-

ence is that also products of first differences of powers of different integrated regressors

occur. More precisely, for η̂t := [ût, w̃
′
t]
′ it can be shown that:

∆̂ηη ⇒




∆uu ∆uv1 . . . ∆uvm ∆uv1B
′
1 . . . ∆uvmB

′
m

∆v1u ∆v1v1 . . . ∆v1vm ∆v1v1B
′
1 . . . ∆v1vmB

′
m

...
...

. . .
...

...
. . .

...

∆vmu ∆vmv1 . . . ∆vmvm ∆vmv1B
′
1 . . . ∆vmvmB

′
m

∆v1uB1 ∆v1v1B1 . . . ∆v1vmB1 ∆v1v1B̃11 . . . ∆v1vmB̃1m

...
...

. . .
...

...
. . .

...

∆vmuBm ∆vmv1Bm . . . ∆vmvmBm ∆vmv1B̃m1 . . . ∆vmvmB̃mm




(C.5)

=

[
∆vv ∆′

B

∆B ∆
B̃

]
,
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with

Bi :=

[
2

∫ 1

0
Bvi(r)dr, . . . , p

∫ 1

0
Bp−1

vi (r)dr

]′
, i = 1, . . . ,m, (C.6)

(
B̃ij

)

(k,l)
:= (1 + k)(1 + l)

∫ 1

0
Bk

vi(r)B
l
vj (r)dr, i, j = 1, . . . ,m; k, l = 1, . . . , p− 1. (C.7)

As in the single integrated regressor case it holds that Σ̂ηη := 1
T

T∑
t=1

η̂tη̂
′
t ⇒ Σηη, with Σηη

of similar structure as ∆ηη given just above in (C.5). Both results together by definition

lead again to Ω̂ηη ⇒ Ωηη.

Based upon these results, a crucial step is to show that a “first-column” result of the

form (B.9) holds again, with the first column now a block-column composed of m rows.

Specifically it holds that

Ω̂−1
w̃w̃Ω̂w̃u

P
→ ep1 ⊗ Ω−1

vv Ωvu. (C.8)

The above result follows from

Ωw̃u = Ωw̃w̃(e
p
1 ⊗ Ω−1

vv Ωvu), (C.9)

shown next. By definition it holds that

Ωw̃u :=
[
Ω′
vu,Ωv1uB

′
1, . . . ,ΩvmuB

′
m

]′
. (C.10)

Now consider the first block-row composed of the first m rows of the expression on the

right hand side of (C.9):

[
Ωvv Ω′

B

]

 Ω−1

vv Ωvu

0m(p−1)×1


 = Ωvu. (C.11)

Now turn to any, say the i-th, of the remaining m block-rows of the product. As before,

because of the zero-blocks in ep1⊗Ω−1
vv Ωvu, only the first m columns of the corresponding

block-row of Ωw̃w̃ have to be considered, leading to:

(em′
i Ωvv ⊗ Bi)Ω

−1
vv Ωvu = em′

i ΩvuBi = ΩviuBi. (C.12)
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This shows (C.8) and leads together with a well-defined limit of GZ ′W̃ to the multiple

integrated regressor version of (B.10). The result for the limit of the first block-column

in GZ ′W̃ is already contained in the proof of Wagner and Hong (2016, Proposition 1)

for the multiple integrated regressor case (without the reordering considered here). It

thus has to be shown, extending the result of Lemma 1, that the other block-columns

have well-defined limits as well; the details are available upon request. To arrive at the

multiple integrated regressor version of (B.13) – to show asymptotic equivalence of FM-

STD and FM-CPR – the limit of GA∗∗ remains to be analyzed, which extends (B.12).

Here we get, using similar arguments as just above, that:

∆+
w̃u = ∆w̃u −∆w̃w̃Ω

−1
w̃w̃Ωw̃u (C.13)

= ∆w̃u −∆w̃vΩ
−1
vv Ωvu

=




∆vu

∆v1uB1

...

∆vmuBm



−




∆vvΩ
−1
vv Ωvu

∆v1vΩ
−1
vv ΩvuB1

...

∆vmvΩ
−1
vv ΩvuBm



,

which corresponds up to the reordering with the term ∆+
vuM given below Equation (A.1)

in Wagner and Hong (2016, p. 1312).

As in the main text, with estimator equivalence established, the subsequent results

concerning the parameter hypothesis and cointegration tests all follow.
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