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GÉRARD D’AUBIGNY * 

A Statistical Toolbox For Mining And Modeling Spatial Data 

Abstract 

Most data mining projects in spatial economics start with an evaluation of  
a set of attribute variables on a sample of spatial entities, looking for the existence 
and strength of spatial autocorrelation, based on the Moran’s and the Geary’s 
coefficients, the adequacy of which is rarely challenged, despite the fact that when 
reporting on their properties, many users seem likely to make mistakes and to foster 
confusion. My paper begins by a critical appraisal of the classical definition and 
rational of these indices. I argue that while intuitively founded, they are plagued by 
an inconsistency in their conception. Then, I propose a principled small change 
leading to corrected spatial autocorrelation coefficients, which strongly simplifies 
their relationship, and opens the way to an augmented toolbox of statistical methods 
of dimension reduction and data visualization, also useful for modeling purposes.  
A second section presents a formal framework, adapted from recent work in 
statistical learning, which gives theoretical support to our definition of corrected 
spatial autocorrelation coefficients. More specifically, the multivariate data mining 
methods presented here, are easily implementable on the existing (free) software, 
yield methods useful to exploit the proposed corrections in spatial data analysis 
practice, and, from a mathematical point of view, whose asymptotic behavior, 
already studied in a series of papers by Belkin & Niyogi, suggests that they own 
qualities of robustness and a limited sensitivity to the Modifiable Areal Unit 
Problem (MAUP), valuable in exploratory spatial data analysis. 

Keywords: duality diagram, spatial autocorrelation, Moran’index, Moran’s 
Eigenvector Maps, Laplace operator, spatial eigenfunction filtering 
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1. Introduction 

The results presented in this paper were established at the occasion of an 
exploratory data analysis project aimed to identify potential links existing between 
the partisan choices of French voters and a number of socio-demographic and 
economic attributes describing their living environment, through geo-referenced 
measurements: first, we had the scores achieved by each candidate to each of  
a series of polls, during the period 1980–2012, including French district and 
presidential elections and elections to the French and the European Parliaments, and 
measured at the commune level (source: the French Ministry of Interior Affairs); 
second, we had extractions of the 2010 census (source INSEE) at the commune 
level; and last, we had limited tax information, disaggregated at two scales: 
irregularly located rectangles with surface 1 km2 and a regular grid of squares of size 
200 m × 200 m (source INSEE), see d’Aubigny (2012) for more details.  

This clue of problems can be approached by adopting a Graph Data 
Mining formalism which expresses spatial dependence information through  
a (weighted) binary relation, and uses (weighted) graphs to describe the inter-
areas relationships. Let us illustrate the approach on a toy example. 

Figure 1. Toy example of a domain partitionned in six areas. The left figure shows the geographic 
shape of this domain, while the right one represents its topological structure in the form 
of a graph of neighboorhood (or contiguity) 

 
 

Source: Own calculation 

Let s
n
s R1== UD denote a domain in the plane, which is partitioned in  

n disjoined areas Ri (Rs ∩ Rt=Ø if s ≠ t) as illustrated by the left panel of Figure 
1. We drew in the right panel of this Figure, its translation in the language of 
graphs: here, we get a graph G=(V, E), with n=6 nodes s and m=7 edges (s, t). 
The topology of a graph G=(V, E) is classically described in algebraic terms by 
its adjacency (aka contiguity) matrix, 
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A is a symmetric n × n matrix, with general term ast=1 if nodes s and t are 
linked by an edge, and 0 otherwise. Two other symmetric n × n matrices, are 
deduced from the adjacency matrix A, namely 

  
Here, the diagonal matrix )( ++ = sadiagaD  has for general diagonal term 

∑ = +== n

1t sstss aad  where +sa is the outer degree weight of the node s of the 

graph G. As a consequence, ∑ ∑∑ = == +++ == n

s

n

t st

n

t s aaa
11 1

counts the total 

number of observed relations of neighbourhood (counted twice since A is 
symmetric) and is called the volume of the graph G. The matrix  is known as 
the combinatorial Laplacian (aka Graph Laplacian) matrix associated to the 
graph G. By definition, A−= +aA DL  see e.g. Bollobas (1990) or Bapat (2010) 

for more details. 
In a way to simplify the formulas used in the remainder of this paper, and 

without loss of generality, we have considered the matrix Q, obtained by the 

normalization ]1,0[∈=
++a

a
q st

st . Since the generic term 
++

+
+ =

a

a
q s

s  of the 

)( ++ = sq qdiagD  is also smaller than 1 and satisfies 1=∑ = +
n

s sq
1

, +qD  gets 

interpretable as a probability measure on the nodes of G. Notice too that 

QDWWIDQDIDQDL qqqqq
11 ),()( −

++
−

+++ =−=−=−=
def

0 , so that the 

generic term += sst
s
t qqw / of st

s
tw )(=W  is a positive quantity, such that 

1==∑ =+
n

1t

s
twsw  for all s in {1:n}. So, each row s of W is interpretable as  

a conditional probability measure on the set of nodes {1: n}, and is invariant by 
any renormalisation of the A matrix.  
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Definition (d’Aubigny 2006): Let G=(V,E) denote the contiguity graph 
associated to a partitioning of a spatial domain in n sub-areas s, and let X 
denote an attribute measured on these areas. Then, we call  

a) local mean of X in the neighbourhood of the area s, the quantity  

t

n

st 1,t

s
ts XwX ∑ ≠=

=
def~

; 

b) (local) image of X the variate X
~

 taking the value sX
~

 at site s.  

c) (local) anti-image of X the variate XX
~−=

def

X
(

 . 

So, the local image of X on the graph G: WXX =~
, associates to each 

area s the mean value of X on its neighborhood.  

Now, for any function f defined on D, and any embedding of the 
representation graph G in a n-dimensional real vector space F, let us denote by xi 
the representative of Ri in F and by f:Ri→Ri∈R a functional which affects the 
value if  to the node i of graph G. One way to control the smoothness of  

a function f consists in making as small as possible the squared differences 
2)ts f(f −  between adjacent nodes t~s  and globally, to minimize their sum 

over the m existing edges of the graph. But elementary algebra shows that:  

ffLf(f A
t

t ts 21))
~

2 =−=∑s
S(f  

So, )S(f  is an indicator of roughness of the functional f defined on the Graph 
G, which measures the variability of values of f on neighbor points, id est an 
index of local variation. 

1.1. Classical Moran and Geary spatial dependence coefficients 

The autocorrelation coefficient, proposed originally by Moran (1948) in 
the case of a sample of observations of a random variable X in n areas, spatially 
structured with a topology which is described by an adjacency matrice A writes 
in our notations: 
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where Z is a scaled version of X with s-th coordinate /S(X)XZ ss
&= , using the 

classical standardization calculated with help of the empirical moments  

 

From a geometric point of view, the n observations may be interpreted as 

forming the coordinates of a vector x of the Euclidean space ),( NF nℜ=   with 

metric nI
n

N
1=  ,  is interpreted as the length of the orthogonal projection of x 

on the support line of the vector of constants t
ι=(1,1, …, 1), and the sample 

variance of X may be written: 

 

with ιιι xxxHx
n

IH t
n −=







 −= 11 :
1

a  the centered vector induced by the 

metric N. These formulas show that both the mean and the variance of the 
variate X are evaluated by Moran under two implicit postulates about the process 
or the sampling design which generated the data: one of spatial independence, 
and one of equiprobability (or equal weighting of nodes). The same assumptions 
are in action in the a challenger index proposed by Geary (1954), and called the 
contiguity ratio, which is defined as 

 

Cliff and Ord (1981) extended both indices to the case where the weights 
qst are more general than mere descriptors of the topology of the graph G, and is 
supposed to measure the relative strength of any notion of proximity of areas  
s and t. Elementary algebra shows that IM writes with the preceding notations: 

 
This expression reveals the nature of difficulties met by this index in 

practice as well as in theory. First, except when G is a complete and regular 
graph, and contrary to what is often said, IM is not a linear correlation coefficient 
– it is not a cosine, and it does not vary in [-1,1] -. Second, it does not take the 
form of the ordinary least squares estimator of a slope parameter in linear 
regression. These denials result from the fact that the two systems of weights qs+ 
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and 1/n, respectively used in the numerator and the denominator of IM, are 
usually different. In fact, both IM and C suffer the same sources of troubles as 
can be made explicit by establishing the following monotone decreasing relation 
that exists between Moran’s I and Geary’s C indices: 

 
In fact, both indices IM and C suffer one and the same incoherence in the 

way the two first moments of the repartition of X are calculated in their numerator 
and their denominator. While less explicit in the formula, this inconsistency 
affects also all their distributional properties (used in statistical inference) as well 
as their geometric ones used in Exploratory Data Analysis (aka EDA) studies.  

The sequel of this paper is devoted to the proposal of fixes of the alleged 
incoherence in the definition of the Moran’s and Geary’s indices. This leads us 
first to highlight the special role played by the combinatorial Laplacian in the 
analysis of geo-referenced data. The next subsection presents our corrected 
versions of both coefficients: we show their strict statistical equivalence, and 
how the Laplacian plays a key tool in the elaboration of dimension reduction and 
visualization of spatial data. We report on the following subsection on the usage 
of methods developed by specialists of machine learning for the problem of 
approximation of points clouds by Riemannian manifolds, on the existence of 
infill convergence of the combinatorial Laplacian on a discrete set of n points to 
the Laplace Beltrami operator associated with the underlying Riemannian 
manifold, when n tends to infinity. We close the paper by a short discussion. 

2. Correction of the Moran's and Geary's coefficients 

The proposed correction applies the same geometric principle underlying 
the analysis of the algebraic duality that binds the nodes and either edges of  
a non-oriented graph or arcs in the case of oriented graphs. In both cases, we 
need to choose arbitrarily an orientation of edges, but this choice is mandatory 
only for technical reasons, and has no consequence on the results.  

Let us consider a network or weighted graph N=(G, Q) where G=(V, E) is 

supposed a simple graph (at most one edge can link two nodes), and contains no loop 

(no edge from one node to itself). The valuation q is defined on the set of existing 

edges VVE ×⊆ , and supposed real, positive and symmetric tsst qq =  Moreover, in 
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all this text Q is supposed normalized. As is usual in graph theory, see Bapat (2010), 

we associate to the graph G its incidence matrix . This is a rectangular matrix of 

order nm×  if nVcard =)(  and mEcard =)( , whose generic term is 

. As a consequence, m denotes the 

number of edges defining the neighborhood links existing in the graph G and so, 

 where  is the number of edges of a complete graph 

having n nodes. 

Now, as classical in the french school of Multivariate Data Analysis we 
interpret any data matrix, thus the incidence matrix  here, as inducing an 
algebraic duality between two representation spaces: one real vector space  of 
dimension m for columns of  (the n nodes here) and containing real functions 
operating on E(G); and one real vector space F of dimension n for rows of  (the 
m edges here) and containing real functions operating on V(G), see e.g. Cailliez 
& Pages (1975), Escoufier (1987), d’Aubigny (1989). For any x in F: 

 
 is called the difference matrix in mathematics, the incidence matrix in 

Graph theory, and the simple contrasts matrix in statistics. 

 
But, any visualization of points in a vector space requires the definition 

(implicit or explicit) of a geometry in a way to allow one to measure proximities 
between elements of this space, and the simplest one is the Euclidean one, defined 
by some symmetric matrix which is positive and semi-definite. So, the duality 
diagram above illustrates this setting where the definition of a geometrical model 
useful to represent the structure of G, as expressed in , necessitates to specify two 
Euclidean metrics (distances): first, one on F*, in a way to measure proximities 
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between nodes – denoted B in the duality diagram given above – and a second one 
on FFFF in a way to measure proximities between elements of this space, that is edges 
here. Most often, specialists of spatial econometrics ignore B  as a modeling 
opportunity and so, implicitly take it equal to the identity (B=In). When a weight 
matrix Q - symmetric and of order n× n – is given, one natural choice of metric on FFFF  
is the diagonal matrix of order m× m, denoted by DO on the diagram above. This 
setting may be summarized by writing the so-called statistical triple ( ODB,,∇ ), 

from which is all the elements of the duality diagram are deducible: ∇  is fixed by 
the data, while B and DO are specified by the analyst. Their specification relates to 
modeling activities. 

2.1. Connection between the Laplacian and Spatial Regression Models 

Note first that under the hypothesis of independence of the sample of 
areas, one has , for any system p of weights of these areas, and then, 

 
But this definition of Q violates the postulate of absence of loops in simple graphs. 
It becomes verified when we change Q in . As a consequence, 
under the spatial independence hypothesis but without imposing a constraint of 
uniformity of weights, the Laplacian becomes: 

 

Thus, the combinatorial Laplacian which corresponds to independence is  
⊥= ιPDL PQ , where ( )p

t
nl DIP ιι−=  is the projector Dp-orthogonal on the space 

orthogonal to the subspace of constants on F. A natural choice of p is  p=q+ and 

we shall adopt the simplified notation )( +−= q
t

nq DIH ιι in the remainder of our 
text. By substitution and elementary algebra, we have proved the following 

Lemma 1: For any set of standardized outer degrees q+ associated to a graph, 
we have 

(E1):  Hq=HqHq(property of a Dq+-orthogonal projector); 

(E2): tHqDq+Hq = tHqDq+ = Dq+Hq=Dq+-q+
tq+ 

(E3): The empirical total ( )-variance of a variable X is 
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where  is the weighted mean of X in the observed sample. 

Observe too that one well known specification of models of spatial regression, 
that takes into account spatial auto-correlation is 

 

where as said above,  . But, for , 

 

and when ]1,0[∈α  this identity shows that α locates the data on a continuum 
between two baselines: the perfect spatial dependence induced by the 
(combinatorial Laplacian of the) graph G corresponding to α  near to 1, and 
independence corresponding to α  near to 0.  

2.1. Moran and Geary revisited 

One way to correct the inconsistency noticed above consists substituting the 
two first weighted moments to the unweighted ones in the scaling transformation 
of the observations  Xin the numerator as well as in the denominator of both 
indices: 

 
Modifying the repartition of weights changes in particular the centering 

process: the centered vector becomes the image of X by the Q-centering operator 

ιιι xxxHxDIH qq
t

nq
~:)(: −=− +++ a . The Q-centering operator Hq+ is 

symmetric while the usual H1 is In – symmetric only, and its role is to center the 

points cloud at its weighted barycenter ∑ +=
s ss XqX

~
. X

~
 reduces to 

a weighted mean in the case , and no more an arithmetic (unweighted) 
mean ιx . The sample variance induced by the differential weights is: 

 
This introduction of differential weights changes the centering and the 

scaling, and so it yields two new indices varying in : 
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Notice that some problems generated by  remain: since  is usually not 

semi-definite positive, the quadratic form  does not define an Euclidean 
norm on F, but the additive decomposition  induces for all : 

 since 

 
(1) 

where for any symmetric and positive semi-definite matrix N,  
designates the associated squared Euclidean norm of x specified by the metric N. 
This property is satisfied in spatial statistics for  and  but not for  !  

Finally, we get a more meaningful formula of decomposition of the total 
variance by applying equation (1) to any centered vector .  

Proposition1:  

Any centered vector  verifies: 

 
(2) 

The proof is immediate since the right term is a direct application of equation 
(1), and the first term of this addition results by substitution of Hq=I n-q+

t
ι  in the 

semi-metric N=tHqLQHq and use of LQι=1■  
The equation (2), proves that the two corrected spatial autocorrelation 

coefficients are basically complementary, since MIC
~

1
~ −=   

Note also that when the qst are interpretable as proximity indices, 2||||
QLx  

may be interpreted as a local variance coefficient (after Lebart (1969)),  2|||| +qDx  

is a measure of total variance, and txCOx is a measure of global variability, 

interpretable as a variance only when  is semi-definite and positive. Moreover, 

the second term of this addition is  txCOx, which generalizes the proposal of 

Griffith (2000): it is directly linked to the numerator of the classical Moran 

coefficient, while here, the centering is more general than in Griffith (2000, 

2003) since we use the centering projector in place of  which constrains  

 to be uniform:  for     
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2.2. Connections to the Laplace Beltrami operator and to Machine Learning  

The Statistical and Machine Learning communities develop powerful 
statistical methods useful for data mining under the assumption that the data lies 
on a manifold. Example going, research domains like image analysis often use 
sources of high-dimensional data, where the number of (redundant) features 
available is much higher than the intrinsic dimensionality of their support, while 
this one is highly nonlinear. In such a case, the analysis is complicated by the 
fact than in high dimension, one can trust only local distances, but not global 
ones. In the following, we show the relation existing between the statistical 
analysis based on the New Moran’s coefficient and the existing statistical 
learning methods which look for optimal decompositions of the type: 

Data = Riemannian Manifolds with a measure + Noise 

This goal generated a renewed interest for Non Linear Dimension Reduction 
(aka NLDR) methods which developed at the turn of the 21-th century, motivated 
by the following question: How to built faithful and low dimensional representations 
of data obtained by sampling a probability law distributed over a manifold? Given  

a set of n points }:1,{ nsRx p
s =∈ the problem is to find a set of n points 

}:1,{ nsRy d
s =∈ such that  and each  represents  with small 

residuals.  

Originally, research carried on the case when the }:1,{ nsRx p
s =∈ were 

directly observed (aka manifest): then, prototypical examples of LDR dimension 
reduction methods are Principal Component Analysis (aka PCA) and Multiple 
Correspondence Analysis (aka MCA) respectively for the case where the 
measurements of p numerical (resp. categorical) variables are available. In both 

cases, the }:1,{ nsRy d
s =∈  derive from the d first eigenvectors of the Gramian 

matrix induced by the measurements }:1,{ nsRx p
s =∈ . 

Then, the researchers got interested in the case when the 

}:1,{ nsRy d
s =∈ are latent, and known in an indirect way through sufficient 

statistics or maximal invariants, such as scalar products (kernel methods), Euclidean 
distances (distance-based methods) and more generally by some form of proximity 
measure. In the last two cases, one often used way to operate – especially in ecology 
– consists in substituting a Principal Coordinate Analysis (aka PCoA or Classical 

Scaling) to PCA in a way to built the }:1,{ nsRy d
s =∈ , see e.g. Torgerson 

(1952), Gower (1966), or d’Aubigny (1989, 2009). 
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These methods offer three examples of the Linear Dimension Reduction 
(aka LDR) approach, while during the last 20 years, the challenge for Statistical 
Learning specialists has consisted in extending these methods to the curvilinear 
manifold setting. Such developments required the adoption of mathematical 
formulations relevant to differential geometry, and we shall show in the following 
that one such formalization may be useful for spatial statistics because it is related to 
the new (corrected) Moran’s and Geary’s coefficients: it consists in using graph 
theory to express the neighborhood information contained either in the adjacency 
matrix or its close relative the Laplacian of a graph to explore or integrate the 
topology of this graph, in modeling spatial dependencies. Moreover, this approach 
may be extended to the case when topology does not exhaust the available 
information, because the analyst also disposes of inter-area proximity measurements, 
in the form of an edge-weighting function.  

The approach promoted by Belkin et al. (2001, 2003) seems to us to provide 
an illuminating framework looked for, which bears tite links with the foundations 
of our new measures of spatial dependence for spatial modeling. 

While dominant for spatial analysis in ecology and in spatial econometrics, 
the Spatial Filtering method is not devoid of difficulties, and weaknesses which 
seem generally underestimated by its proponents, e.g. Griffith (2003) or Legendre 
& Legendre (2012). Its general principle is based on the spectral analysis of the 
connectivity matrix C  =tH1 Q H1 which is the source of opacity of the results 
since it results in a liberal application of PCoA to an often non semi-definite 
matrix , see d’Aubigny (1989, 2009). As a matter of fact we are still looking for 
explicit optimality criteria for this method, more generally satisfied than in the 
very special case where  satisfies the constraints ensuring the Euclideanicity of  
a metric defined on F.  

d’Aubigny (1989, 2009) considers methods of analysis of proximity data 
based on an analogy to the modelling of electric networks adopted by Doyle & 
Snell (1984), and expressed in terms of the combinatorial Laplacian of a graph, 
see also Bollobas (1991). But, while the presentation of Belkin & Niyogi (2001, 
2003) leads to the same formalism, it is mathematically much more grounded and 
more detailed. Belkin and co-workers call this formalism the Laplacian Filtering 
approach. Its three main qualities are: first, it preserves optimally (in a given 
sense) the local neighborhood information; Second, the representation of spatial 
entities obtained by the algorithm may be interpreted as a discrete approximation 
of a smooth map derived from the intrinsic geometry of the underlying manifold; 
and this approximated map is the solution of a classical Heat equation problem, 
expressed with help of the Laplace Beltrami Operator (LBO) to provide an 
optimal embedding of the manifold. The connection between the LBO and the 
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Laplacian of a Graph is well known to geometers and specialists of spectral graph 
theory, see Chung (1997).  

Let us go back to the minimization of the penalty criterion S(f)  usable for 
smoothing a functional f defined on the set of nodes of a graph. A way to control 
the smoothness of a function f defined on a discrete set of points which belong 
to some Riemannian manifold MMMM consists in minimizing a roughness penalty 
criterion, such as the sum of squared differences (fs – f t)

2 between neighbor 
points , over the m existing edges of the graph: 

 
So, the Roughness S(f) of a functional f on MMMM  is controlled by the 

combinatorial Laplacian LA. The properties of LA and of its close relatives are 
discussed in detail in Chung (1997). Belkin & Niyogi (2003), inspired by the past 
working in mathematical physics, see e.g. Rosenberg (1997), consider the formal 
analogue of this problem in a continuum of points describing a differentiable 
manifold MMMM when the analyst ultimately wants to embed this smooth compact 
Riemannian manifold     MMMM  in a linear d-dimensional vector space F. In such a case, 
the Riemannian structure on     MMMM  is induced by the one on F, and the authors notice 

that if one attaches a roughness penalty in any point Fxi ∈  defined in its vicinity 

specified by a small ball of radius δ, the gradient  of the function f (supposed 
twice differentiable) satisfies: 

 
But, differential geometry theory says that for any point x of MMMM, the tangent 

space of MMMM at point x, noted TMMMMx, is an Euclidean linear subspace of F equipped 
with a natural scalar product <u, v> MMMM . The gradient )(xf∇  is a vector of  TMMMMx 

such that given another vector v∈  TMMMMx, one has df(v)=< )(xf∇ ,v>MMMM    . Thus, the 
total penalty in F is shown to be a function of the Laplace Beltrami operator (aka 
LBO), which is defined as 

 

Namely, one has: 

                           (3) 

Equation (3) shows that the LBO L is a symmetric semidefinite operator 
whose spectrum is discrete: its eigenvalues are conventionally numbered in 
increasing order , and we shall note fi the 
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eigenfunction associated to λi Specifically, one may verify that f0=ι is the 
constant function of coordinates uniformly equal to 1. 

LBO L has been often studied in mathematics and physics, because of its 
role in the modeling of the Heat flows, i.e. the diffusion of heat over space and 
time. Let u(x,t) be the heat distribution at time t∈R, with initial distribution 

 Then, the heat equation writes ( )txu
dt

d
txu ,),( =∆  and its 

solution is obtained by convolution of  with the heat kernel : 

 

When we take the limit of the derivative of the solution of the heat 
equation for  we get: 

),( txu∆  may be approximated by  from any 
sample of n empirical data. Belkin & Niyogi (2001, 2003) demonstrated the 
convergence (in the infill asymptotics sense) of the structure of the induced 

approximate combinatorial Laplacian nQL  to the structure of the underlying 

manifold  induced by its latent Laplace Beltrami operator, when its number n 
of sampled vertices grows to infinity under various sampling schemas and 
Belkin et al. (2009) extend these results to the case of points clouds. From  
a practical point of view, these theorems are important because they provide 
objective arguments to assert the existence of a relative stability of the empirical 
embedding obtained by the spectral analysis of the combinatorial Laplacian and 
its expectable robustness against the Modifiable Areal Unit Problem (MAUP). 

2.3. How to extract manifold structures from data? 

The link between LB0 and the combinatorial Laplacian may be explicited 
in taking: 

 
(4) 
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This choice gives ∑ =+ −= n

j jijiiiQ xfqxfqxfL
1

)()()(  and induces the index 

of spatial smoothness we looked for: 2

1~
))()((2 j

n

j iijO
t xfxfqffL −= ∑ . This 

is precisely the numerator of the modified Moran’s coefficient.  

Of practical interest for the analyst, Belkin & Niyogi (2003) point out that it 
is necessary to restrain consideration to pairs of points close enough (say less than 
a fixed ) in order to ensure the positive semi-definiteness of the approximation 
matrix LQ. So they propose to compute the graph Laplacian by the local formula:  

 

This restriction of the retained edges to close neighbors has been 

progressively advised in ecology, as a statement of experience and the object of 

simulation results. In fact, ecologists often extend the use of the Gaussian kernel 

(4) to )4/exp( 2 tdq ijji −=  where ijd  is any dissimilarity index which is chosen 

on thematic arguments. As far as I know, the theoretical consequences of this 

relaxation on optimality properties of the method are not known yet. 

Whatever this choice is, the evaluation and analysis of the spatial 
dependence constitutes only a preliminary step, which, in econometrics, is most 
often followed by the specification and validation studies of some linear model 
controlled for some form of spatial autocorrelation operating, either on the 
residuals – as in the Simultaneous Autoregressive Error model (SAR), cf. Whittle 
1954) – or on the response – as in the Conditional Autoregressive model (CAR), 
cf. Besag 1974) – see also Anselin (1988, 1995, 2014). 

With some variants induced by the specificities of the questionings central 
to both disciplines, an analogous methodology has developed in ecology, with 
greater dynamism and under various names: by now it is promoted under the 
name of distance-based Moran’s Eigenvector Map (db-MEM), see e.g. Borcard 
& Legendre (2002), Dray et al. (2006), Legendre & Legendre (2012, Ch. 14). 

One technical question remains in practice: how to choose the threshold 
? The fashionable practice in ecology consists in a minimum spanning tree of 

the graph G, in a way to fix ε=l t, where l t is the length of the longest edge of this 
spanning tree. In the next steps of the analysis process, one can retain only edges 
closer than ε=l t, see Legendre & Legendre (2012, Ch. 14). 

A challenger methodology may be practiced in coherence with the use of 
the corrected autocorrelation coefficients presented in this paper since, 
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maximizing the corrected Moran’s coefficient is equivalent to minimizing the 
corrected Geary’s. This minimum is realized by v1, the smallest solution Dq+-
orthogonal of the generalized eigenvector problem defining the spectral analysis 
of the combinatorial Laplacian LQ, associated to a non-null eigenvalue: 

 
(5) 

This process may be repeated sequentially under the constraints of Dq+-
orthogonality of the solution vectors and as is classical in multivariate analysis, 
the solution of dimensionality k is given by the Dq+ -orthogonal generating 

system of eigenvectors { })1(;...,,, 21 −≤ nkvvv k  satisfying 

{ }kjifvDv k
q

jt ≠=+ 0  and associated to the corresponding eigenvalues 

ordered as the corresponding eigenvalues: λ0= 0 ≤ λ1 ≤ λ2 ≤ …≤ λn. The 
introduction of the metric N=Dq+ on F is noticeable here, since then a point  
i accounts especially in the spectral decomposition of LQ if it has more (and closer) 
neighbors, in proportion to its participation in the definition of spatial structures. 

Notice also that the solutions of the eigenvector problem (5) differ from 
those of db-MEM and of Spatial Filtering in two respects: i) the centering are 
not the same, and ii) here, orthogonality must be understood in the metric Dq+  
that is as Dq+ - orthogonality. Finally, when we explicit the role of Q in (3), we 
get an eigenequation different from the db-MEM and Spatial Filtering ones: 

LQvs =  λs Dq+ v
s ⇔ Q vs = (1 - λs) Dq+ v

s                         (6) 

This equation defines a Laplacian Filtering Analysis, whose resulting 
eigenvectors and eigenvalues are in fact solutions of the Eigenmap Algorithm 
due to Belkin & Niyogi (2001). These specialists of machine learning do not 
make reference to spatial data analysis, but their work justifies the use of the 
Laplacian in this context by an argument of approximation – through the spectral 
decomposition (5) of the weighted Laplacian - of the geometric structure of the 
underlying manifold    MMMM ,attached to the corresponding Laplace Beltrami operator 
L. Let us also point out that Lebart (1969) initiated related work motivated by 
applications to spatial data analysis, and named Local Analysis. 

3. Conclusion and discussion 

In starting the work reported here, I wanted to deepen our understanding of 
formulas giving the Moran’s and Geary’s coefficients of spatial autocorrelation, and 
their relationships to other indices discussed in Getis & Ord (1992). Over time,  
I found that part of their complexity is due to an incoherence in the distributional 
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assumptions made in defining their numerator and their denominator. As explained 
above, we did use geometric arguments to correct the problem and then,  
I discovered that it simplified considerably their relationship derived in books like 
Cliff & Ord (1980) or Tiefelsdorf (2000), in a way which makes closer the ties 
between geostatistics and statistical methods adapted to the analysis of areal data. In 
terms of methodological contributions, the geometric justification used for the 
proposed changes, formalized in the framework of the of Multivariate Exploratory 
Data Analysis in the French tradition – see Cailliez & Pages (1976) or Escoufier 
(1987) – also resulted in the proposal of series of new methods – not discussed here 
– that I consider as close relatives of the dominant existing ones, like db-MEM in 
ecology and Spatial Filtering proposed by Griffith in geography and econometrics. 
Their advantage when compared to these established method lies in the fact that they 
are free of the problems induced by the use of non definite-positive weight matrices 
Q, and that, as proved in the machine learning literature, they are supported by  
a well known theoretical model of physics: the Heat Equation. I must add that the 
spectral decomposition used in the Laplacian Filtering method presented above, did 
generate in the twenty years a huge literature in Machine learning, mainly motivated 
by applications in image analysis. Its use in clustering is becoming dominant in that 
setting because of repeated successes in applications – in particular for big data – 
and good and specific theoretical qualities, see e.g. Shi & Malik (2000), Qiu & 
Hancock (2007), or Saerens et al. (2004). It is likely to spread in the community of 
geographers and economists formed to multivariate spatial statistics. 

A second possible generalization of the methods presented in this paper is 
the coupling of two (or several) data tables. It has been the subject of numerous 
studies in ecology because of the combinatorics of possible variants, see e.g. 
Dray et al. (2003). In this setting one considers two triples (X, MXX, N)  and (Y, 
MYY, N)  where  X and Y are two data tables containing the measurements of the 
two sorts of variables on the same set of geographical entities. Then X (resp. Y) 
permit to represent the spatial entities in an Euclidean space EX (resp. EX). One 
can analyze separately each triple by one of the methods discussed above, but 
we may also want to study them simultaneously. This is in fact easily possible: 
Chessel & Mercier (1993) show that one can find two vectors u1∈EX and  such 
that for any distribution N=Dv, the covariance COV(a,b)=taNb be maximum for 
a1=XMXXu

1  and b1=XMXXv
1. In fact, an elementary proof shows that the us and vs 

are eigenvector solutions (s=1:n)  of the analysis of the triple (S, MXX, MYY) , where 
S=tYNX. The method is very general as argued by Dray et al. (2003) the solutions 
optimize COV(a,b)=COR(a,b)×STD(a) ×STD(b), a mixed criterion. The question 
Here is how to take space into account? What arguments justifies the choice by the 
authors of N=Dq+ here? I noticed too that the same statistical arguments can apply 
to the triples of simple contrasts (∇ X, MXX, N=DO)  and (∇ Y, MYY, N=DO), with 
equal formal justification, and the advantage to explicitly introduce the spatial 
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structure in the formulation of the model. I observed with interest that in this case, 
the solution is built by a PCA of the triple, (T, MXX, MYY) where T=t(∇ Y)DO∇ X= 
tYLOX. So, the solution depends on the combinatorial Laplacian. 

Clearly, this line of research has a lot to teach us yet! 
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Streszczenie 
 

NARZĘDZIE STATYSTYCZNE DO ANALIZY EKSPLORACYJNEJ 
ORAZ MODELOWANIA DANYCH PRZESTRZENNYCH 

 
Wiekszość analiz eksploracyjnych danych przestrzennych rozpoczyna się od oceny 

próby jednostek przestrzennych, pod względem występowania oraz siły autokorelacji 
przestrzennej dla zbioru zmiennych, stanowiących atrybuty jednostek przestrzennych. 
Trafność aplikacji najbardziej cenionych narzędzi weryfikacji autokorelacji przestrzennej – 
współczynników Morana oraz Geary’ego jest rzadko kwestionowana, pomimo faktu, że  
w przypadku opisywania ich własności wielu użytkowników zdaje się popełniać błędy oraz 
wprowadzać nieład. Artykuł rozpoczyna się od krytycznej oceny klasycznej definicji 
indeksów. Założono, że pomimo intuicyjnej konstrukcji, koncepcja indeksów boryka się  
z brakiem spójności w przypadku wielu ich składowych. Następnie zaproponowano korektę 
współczynników autokorelacji przestrzennej, która upraszcza ich relacje, i otwiera drogę 
do włączenia statystyk do zestawu narzędzi statystycznych, modelowania oraz wizualizacji.  
W drugiej części zaprezentowano teoretyczne przesłanki konstruowania wielowymiarowych 
narzedzi statystycznych, uwzględniających skorygowane definicje współczynników 
autokorelacji przestrzennej, zaczerpnięte z ostatnich prac w dziedzinie statystyki. Przedstawione 
metody eksploracyjnej wielowymiarowej analizy danych charakteryzują się łatwością 
zastosowania oraz oprogramowania z wykorzystaniem dostępnych, darmowych pakietów. 

 
Słowa kluczowe: analiza wielowymiarowa, graf dualności, autokorelacja przestrzenna, 
współczynnik Morana, mapa wektora własnego statystyki Morana, operator Laplace'a, 
funkacja własna filtracji przestrzennej 


