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GERARD D’AUBIGNY *

A Statistical Toolbox For Mining And Modeling Spatial Data

Abstract

Most data mining projects in spatial economics tsteith an evaluation of
a set of attribute variables on a sample of spatitities, looking for the existence
and strength of spatial autocorrelation, based be Moran's and the Geary's
coefficients, the adequacy of which is rarely @vaded, despite the fact that when
reporting on their properties, many users seenylitemake mistakes and to foster
confusion. My paper begins by a critical appraisélthe classical definition and
rational of these indices. | argue that while ititély founded, they are plagued by
an inconsistency in their conception. Then, | pegpa principled small change
leading to corrected spatial autocorrelation cogénts, which strongly simplifies
their relationship, and opens the way to an augeektdolbox of statistical methods
of dimension reduction and data visualization, alseful for modeling purposes.
A second section presents a formal framework, a&daftom recent work in
statistical learning, which gives theoretical supgpm our definition of corrected
spatial autocorrelation coefficients. More spegifig, the multivariate data mining
methods presented here, are easily implementablbeexisting (free) software,
yield methods useful to exploit the proposed ctioes in spatial data analysis
practice, and, from a mathematical point of viewhose asymptotic behavior,
already studied in a series of papers by Belkin igolji, suggests that they own
gualities of robustness and a limited sensitivity the Modifiable Areal Unit
Problem (MAUP), valuable in exploratory spatial danalysis.

Keywords: duality diagram, spatial autocorrelation, Morandex, Moran’s
Eigenvector Maps, Laplace operator, spatial eigenfion filtering

" Professor at the University of Grenoble-Alpes,nEea Jean-Kuntzmann Laboratory, e-mail:
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1. Introduction

The results presented in this paper were estalliahéhe occasion of an
exploratory data analysis project aimed to idergifyential links existing between
the partisan choices of French voters and a nurabeocio-demographic and
economic attributes describing their living envirent, through geo-referenced
measurements: first, we had the scores achievedably candidate to each of
a series of polls, during the period 1980-2012Juthng French district and
presidential elections and elections to the Framchthe European Parliaments, and
measured at the commune level (source: the Freriolsthy of Interior Affairs);
second, we had extractions of the 2010 censuscesdMISEE) at the commune
level; and last, we had limited tax informationsatigregated at two scales:
irregularly located rectangles with surface ¥ lamd a regular grid of squares of size
200mx 200m (source INSEE), see d’Aubigny (2012) for more itieta

This clue of problems can be approached by adomin@raph Data
Mining formalism which expresses spatial dependeimdermation through
a (weighted) binary relation, and uses (weightedplys to describe the inter-
areas relationships. Let us illustrate the appraerch toy example.

Figure 1. Toy example of a domain partitionned inig areas. The left figure shows the geographic
shape of this domain, while the right one represestits topological structure in the form
of a graph of neighboorhood (or contiguity)

Source: Own calculation

Let D=UY, R ,denote a domain in the plane, which is partitiomed

n disjoined areaR; (RsN R=@ if s# 1) as illustrated by the left panel of Figure
1. We drew in the right panel of this Figure, itanislation in the language of
graphs: here, we get a gra@(V, E), with n=6 nodess andm=7 edges(s, 9.
The topology of a grap®=(V, E) is classically described in algebraic terms by
its adjacencydkacontiguity) matrix,
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A is a symmetric x n matrix, with general terra;=1 if nodess andt are
linked by an edge, and 0 otherwise. Two other sytrima x n matrices, are
deduced from the adjacency mattixnamely

=Y

1

2 01000 2 -1 -1 0 0 o0
02 0000 -1 2 -1 0 0 0

p |0 03000 , |-1 -1 3 -1 0 0
a+~ (0 01 3 0 0] ™4 0o 0 -1 3 -1 -1
00 00 2 0 O 0 0 -1 2 0

0 0 00 0 2 o 0 -1 -1 0 2

Here, the diagonal matrib, = diag(a,,) has for general diagonal term

d, = ZTzlast =a,, Wherea, is theouter degreaveight of the nods of the

graph G. As a consequencey,, :z: a :z::lzn a, counts the total

=1 st t=1 st
number of observed relations of neighbourhood (tEdirtwice since A is
symmetric) and is called thelumeof the graphs. The matrixL, is known as
the combinatorial Laplacian(aka Graph Laplaciap matrix associated to the

graphG. By definition, L, =D,, — A seee.g.Bollobas (1990) or Bapat (2010)

for more details.
In a way to simplify the formulas used in the rendair of this paper, and
without loss of generality, we have considered riagrix Q, obtained by the

a a
normalization g, = —= [J[0]1] . Since the generic terng,, =—= of the

D,. =diag(qy,) is also smaller than 1 and satisfi§;1q5+ =1, D,, gets

interpretable as a probability measure on the naafe&. Notice too that
def

L, =D, -Q=D, (I =D, " Q) =D,.(I -W),W =D,"Q, so that the

generic termw; =g, /q,, of W =(w;), is a positive quantity, such that

w; =lewf =1 for all s in {1:n}. So, each rovs of W is interpretable as

a conditional probability measure on the set ofasofl: n}, and is invariant by
any renormalisation of th& matrix.
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Definition (d’Aubigny 2006): Let G=(V,E) denote the contiguity graph
associated to a partitioning of a spatial domainrinsub-areas s, and let X
denote an attribute measured on these areas. Tregall
a) local mean of X in the neighbourhood of the asgtne quantity

~ def

— n s .
Xs = Zt:l,t¢swt Xes

b) (local) image oK the variate X taking the vaIU(—\)Zs at site s.

_ def _

c) (local) anti-image of X the variatX = X — X .

So, the local image oX on the graplG: X =WX, associates to each
area s the mean value of X on its neighborhood.

Now, for any functionf defined onD, and any embedding of the
representation graph in a n-dimensional real vector spdedet us denote by;
the representative d®; in F and byf:R—RUR a functional which affects the

valuef, to the nodei of graphG. One way to control the smoothness of
a functionf consists in making as small as possible the sdudiféerences
(f.— f,)® between adjacent nodest and globally, to minimize their sum
over them existing edges of the graph. But elementary alyebows that:

S(F) =2, (.= f)° =2 L1

So, S(f) is an indicator of roughness of the functiohalefined on the Graph
G, which measures the variability of valuesfabn neighbor pointsd estan
index of local variation.

1.1. Classical Moran and Geary spatial dependenceefficients

The autocorrelation coefficient, proposed origyndly Moran (1948) in
the case of a sample of observations of a randoiabla X inn areas, spatially
structured with a topology which is described byadiacency matric& writes
in our notations:

1 ..
2 4 Zst astX sX t

2
Iy = =24 =1 auz.2,
1 o N2 2
ﬁZs(Xs) st
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whereZ is a scaled version of X with s-th coordinate = X _/S(X), using the
classical standardization calculated with helphefémpirical moments

_ 1 1 .z . _
X= ;sz, SZ(X):EZ(XS) , X =X,-X
5 5

From a geometric point of view, the n observatioray be interpreted as
forming the coordinates of a vectoof the Euclidean space = (0", N) with

metric N = 1 |, ,X is interpreted as the length of the orthogonajgatmn ofx
n

on the support line of the vector of constam$l,1, ..., 1), and the sample
variance oX may be written:

1 .2
S2(X) =;Z(Xs) = tx tH Hx = 'xHx
s

n

metric N. These formulas show that both the mean and thanee of the
variateX are evaluated by Moran under two implicit postidabout the process
or the sampling design which generated the data:ddrspatial independence,
and one of equiprobability (or equal weighting ofies). The same assumptions
are in action in the a challenger index propose&bgry (1954), and called the
contiguityratio, which is defined as

MZ;: ag (X — X, )?

dna -1) 1
c=Tl =000 aw@ — 2, )
st(xs) st

with Hl:(ln -1/‘/j;XH H Xx=X-X1 the centered vector induced by the

Cliff and Ord (1981) extended both indices to theecwhere the weights
gst are more general than mere descriptors of thddgp®f the graplG, and is
supposed to measure the relative strength of atigmof proximity of areas
s andt. Elementary algebra shows thatwrites with the preceding notations:

2?=1 QS+XSXS
o ()2

This expression reveals the nature of difficultrast by this index in
practice as well as in theory. First, except wiis a complete and regular
graph, and contrary to what is often saijgis not a linear correlation coefficient
— it is not a cosine, and it does not vary in [}1,1Second, it does not take the

form of the ordinary least squares estimator oflagpes parameter in linear
regression. These denials result from the factttfetwo systems of weightg.

IM=
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and 1h, respectively used in the numerator and the demaboi of Iy are
usually different. In fact, both, andC suffer the same sources of troubles as
can be made explicit by establishing the followingnotone decreasing relation
that exists between Moran'’s | and Geary’s C indices

—1 (3" qss (Xs)?
Cznn {215_1Q's+( s) _ IM}

n Is1=1(Xs)2

In fact, both indicesy, andC suffer one and the same incoherence in the
way the two first moments of the repartitionXofire calculated in their numerator
and their denominator. While less explicit in trenfula, this inconsistency
affects also all their distributional properties€d in statistical inference) as well
as their geometric ones used in Exploratory Datalysis @kaEDA) studies.

The sequel of this paper is devoted to the propafséikes of the alleged
incoherence in the definition of the Moran’s andafy&s indices. This leads us
first to highlight the special role played by thembinatorial Laplacian in the
analysis of geo-referenced data. The next subsegtiesents our corrected
versions of both coefficients: we show their stistatistical equivalence, and
how the Laplacian plays a key tool in the elaboratf dimension reduction and
visualization of spatial data. We report on thdofeing subsection on the usage
of methods developed by specialists of machineniegrfor the problem of
approximation of points clouds by Riemannian mddgpon the existence of
infill convergence of the combinatorial Laplaciam & discrete set of points to
the Laplace Beltrami operator associated with timeledying Riemannian
manifold, whem tends to infinity. We close the paper by a sh@tussion.

2. Correction of the Moran's and Geary's coefficiets

The proposed correction applies the same geonpiriciple underlying
the analysis of the algebraic duality that binds tlndes and either edges of
a non-oriented graph or arcs in the case of oriegtaphs. In both cases, we
need to choose arbitrarily an orientation of eddpes,this choice is mandatory
only for technical reasons, and has no consequamdtee results.

Let us consider a network or weighted graysH{G, Q whereG=(V, E) is
supposed a simple graph (at most one edge camiinkodes), and contains no loop

(no edge from one node to itself). The valuatiois defined on the set of existing

edgesk OV xV , and supposed real, positive and symmejjc= q,, Moreover, in
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all this textQ is supposed normalized. As is usual in graph sheee Bapat (2010),
we associate to the graghits incidence matri>y. This is a rectangular matrix of

order mxn if card(v)=n and card(E)=m, whose generic term s

Vi=+life=(st)and —1ife=(t5) As a consequence, m denotes the

number of edges defining the neighborhood linkstieg in the graph G and so,

m=m% n(n—1)/2 wheresi is the number of edges of a complete graph

havingn nodes.

Now, as classical in the french school of Multiaéei Data Analysis we
interpret any data matrix, thus the incidence mafihere, as inducing an
algebraic duality between two representation spames real vector spade of
dimension m for columns (¢ (the n nodes here) and containing real functions
operating on E(G); and one real vector sgacé dimension n for rows ¥ (the
m edges here) and containing real functions opeyatn V(G), see.g.Cailliez
& Pages (1975), Escoufier (1987), d’Aubigny (1989)r anyx in F:

X1 — X2

X1 X1—X3
X3 :

: X1~ Xn

x=|y |2 Vx= : EF

s :

: Xs — Xt
Xn :

Xn-1 — Xn

V is called thedifference matrixn mathematics, thancidence matrixn
Graph theory, and tr@mple contrasts matrix statistics.

II;;I

£

@ Lo, D, i
F — F o~ [

But, any visualization of points in a vector spaequires the definition
(implicit or explicit) of a geometry in a way tol@av one to measure proximities
between elements of this space, and the simplesisdhe Euclidean one, defined
by some symmetric matrix which is positive and sdefinite. So, theduality
diagramabove illustrates this setting where the definitid a geometrical model
useful to represent the structureGfasexpressed ii¥, necessitates to specify two
Euclidean metricgdistances): first, one oR*, in a way to measure proximities

B B-:}
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between nodes — denotBdn the duality diagram given above — and a secoed o
onF in a way to measure proximities between elementkigfspace, that is edges
here. Most often, specialists of spatial econor®tijnoreB as a modeling
opportunity and so, implicitly take it equal to tiientity B=I,). When a weight
matrix Q - symmetric and of orderx n — is given, one natural choice of metriclon
is the diagonal matrix of ordenx m, denoted byD, on the diagram above. This

setting may be summarized by writing the so-caditadistical triple (U, B, D),
from which is all the elements of the duality degrare deduciblel] is fixed by

the data, whild8 andD, are specified by the analyst. Their specificatelates to
modeling activities.

2.1. Connection between the Laplacian and Spatialdgression Models

Note first that under the hypothesis of independeat the sample of
areas, one had = p@p, for any system p of weights of these areas, lae, t

n

s+ = Z pspe = ps(1—pg) = Dq+ = Dp - Dé

t=1,t#s
But this definition of Q violates the postulateatisence of loops in simple graphs.

It becomes verified when we change QWr= pP@p — DZ. As a consequence,
under the spatial independence hypothesis but wtitmyposing a constraint of
uniformity of weights, the Laplacian becomes:

Lo =Dg+ —Q =(Dp— D) — (p® —Df) =D, —p®p =D, —p‘p

Thus, the combinatorial Laplacian which corresportdsindependence is
L, =DxP", where R :(ln -/t/Dp) is the projectoD,-orthogonal on the space
orthogonal to the subspace of constants on F. &aathoice of p isp=g. and
we shall adopt the simplified notatidr, =(I, =/'D,.)in the remainder of our
text. By substitution and elementary algebra, weshmoved the following

Lemma 1:For any set of standardized outer degreesgpociated to a graph,
we have

(E1): H=HHq(property of a Q.-orthogonal projector);
(E2): HyDg+Hq = 'HeDq+ = Dg+Hg=D -0 G
(E3): The empirical total?=+)-variance of a variable X is
S = ) qur (e =2 =N Hx I, = 1 x 13
5

q+-q+ tq+
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where¥ = ¥ 4-+*: is the weighted mean of X in the observed sample.

Observe too that one well known specification ofdeds of spatial regression,
that takes into account spatial auto-correlation is

Y=aWY+XB+e &, —aW)Y =X +¢
. W =D;1
where as said abovc, "*Q. But, for@ € R,

a(Dgr — Q) + (1 — )Dyy = (Dgs — aQ) = Dyy (I, — aW)

and when@ U[01] this identity shows tha€! locates the data on a continuum
between two baselines: the perfect spatial depeedenduced by the
(combinatorial Laplacian of the) graph G correspogdo 9 near to 1, and
independence corresponding@onear to 0.

2.1.Moran and Geary revisited

One way to correct the inconsistency noticed aloowisists substituting the
two first weighted moments to the unweighted omethe scaling transformation
of the observations Xin the numerator as wellrashe denominator of both
indices:

X=Z 4o X S'f(X)=Z -2, 7% X

s S+4igy s s+ 5 ’ s S(X)

Modifying the repartition of weights changes in tadar the centering
process: the centered vector becomes the imagebgfte Q-centering operator
He (1, —/‘/Dq+) IX H X = X—X/. The Q-centering operatoH,. is
symmetric while the usudd, is |, — symmetric only, and its role is to center the

points cloud at its weighted barycen)%Fzsqs+Xs. X reduces to

a weighted mean in the cage= 1, and no more an arithmetic (unweighted)
mean X/ . The sample variance induced by the differenteilghts is:

§%(X) = z qs+(Xs —X)% = 'x thq Dgy Hg, x = i:-7‘71)q+ Hg x = ‘x (Dg+ — q+ g4 )x
s

This introduction of differential weights changdee tcentering and the
scaling, and so it yields two new indices varyingpi1:

— X, - X)(X,— X
Moran: IM:):stqst( s (X, ):zqstzszt
st

Zs Qs+ (Xs - ‘?)2
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1
- 5 X;—X
Geary:C :—2 Zst dse(Xs = X0 )* qut(z —-Z)*
zsqs+(xs - X)

Notice that some problems generatedgosemain: sinceg is usually not
semi-definite positive, the quadratic forfxQx= does not define an Euclidean
norm onF, but the additive decompositia,, = L, + @ induces for alk & F:
€ + T,y = 1since

xRy teox

(1)

I x I3 I B II2 + %xQx =

iy, I,

where for any symmetric and positive semi-defimitatrix N, || x 5= ™=Nx
designates the associated squared Euclidean notrepafcified by the metric N.
This property is satisfied in spatial statistics iy .. andLg, but not forg !

Finally, we get a more meaningful formula of decosifion of the total
variance by applying equation (1) to agy —centered vectct = H, x.
Proposition1:

Any g, —centered vectof = H_x verifies:

Il Hgx Ihz)q,,:ll Hgx ||§Q+ txCox ,where  Co = "HqaQH, 2)

The proof is immediate since the right term isradiapplication of equation
(1), and the first term of this addition results sibstitution ofH=I-g.7 in the
semi-metridN="H,LoH, and use of y=1m

The equation (2), proves that the two correctediapautocorrelation
coefficients are basically complementary, siBcel- I

Note also that when the,@re interpretable as proximity indicdpx ||ﬁQ

may be interpreted as a local variance coeffidiafter Lebart (1969)),|| X ||"[‘,q+

is a measure ofotal variance and'xCox is a measure ofjlobal variability,
interpretable as a variance only wi@ms semi-definite and positive. Moreover,
the second term of this addition i%Cox, which generalizes the proposal of
Griffith (2000): it is directly linked to the numator of the classical Moran
coefficient, while here, the centering is more gahe¢han in Griffith (2000,
2003) since we use the centering proje¢igin place ofH,; which constrains

g to be uniformyg_ = 1/n,fors = 1:n.
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2.2.Connections to the Laplace Beltrami operator and tdvlachine Learning

The Statistical and Machine Learning communitiesettgp powerful
statistical methods useful for data mining underdabsumption that the data lies
on a manifold. Example going, research domainsilikege analysis often use
sources of high-dimensional data, where the nundfefredundant) features
available is much higher than the intrinsic dimenality of their support, while
this one is highly nonlinear. In such a case, thalyeis is complicated by the
fact than in high dimension, one can trust onlyaladistances, but not global
ones. In the following, we show the relation exigtibetween the statistical
analysis based on the New Moran's coefficient aimel éxisting statistical
learning methods which look for optimal decompasis of the type:

Data = Riemannian Manifolds with a measure + Noise

This goal generated a renewed interest for Nonatib@mension Reduction
(aka NLDR) methods which developed at the turn of theétcentury, motivated
by the following question: How to built faithful dhow dimensional representations
of data obtained by sampling a probability lawridisted over a manifold? Given

a set of n pointx, OR", s=1:n}the problem is to find a set of points

{y.OR’, s=1:n} such thatd «p and eachy, representsx, with small
residuals.

Originally, research carried on the case when{the] R”, s=1:n} were

directly observedaka manifest): then, prototypical examples of LDR dusien
reduction methods are Principal Component Analyaia PCA) and Multiple
Correspondence Analysisaka MCA) respectively for the case where the
measurements g numerical (resp. categorical) variables are abvalain both

cases, th§ y, [ R?, s=1:n} derive from thed first eigenvectors of the Gramian

matrix induced by the measuremefits O R”, s=1:n}.
Then, the researchers got interested in the caseen withe
{y.OR’, s=1:n} are latent, and known in an indirect way througfficient

statistics or maximal invariants, such as scaladywts (kernel methods), Euclidean
distances (distance-based methods) and more dgrigralome form of proximity
measure. In the last two cases, one often usedoraerate — especially in ecology
— consists in substituting a Principal Coordinatealjsis éka PCoA or Classical
Scaling) to PCA in a way to built thgy, OJR?, s=1:n}, see e.g. Torgerson

(1952), Gower (1966), or d’Aubigny (1989, 2009).
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These methods offer three examples of the LineareDsion Reduction
(aka LDR) approach, while during the last 20 years, ¢hallenge for Statistical
Learning specialists has consisted in extendingethmethods to the curvilinear
manifold setting. Such developments required theptah of mathematical
formulations relevant to differential geometry, ame shall show in the following
that one such formalization may be useful for spatatistics because it is related to
the new (corrected) Moran’s and Geary’s coeffigeiitt consists in using graph
theory to express the neighborhood information aionatl either in the adjacency
matrix or its close relative the Laplacian of apyrao explore or integrate the
topology of this graph, in modeling spatial depewiles. Moreover, this approach
may be extended to the case when topology doesexiwiust the available
information, because the analyst also disposagt@farea proximity measurements,
in the form of an edge-weighting function.

The approach promoted by Belkin et al. (2001, 2@@8)ms to us to provide
an illuminating framework looked for, which beaitg links with the foundations
of our new measures of spatial dependence forapadideling.

While dominant for spatial analysis in ecology &mdpatial econometrics,
the Spatial Filteringmethod is not devoid of difficulties, and weakmssshich
seem generally underestimated by its proponemtsCeiffith (2003) or Legendre
& Legendre (2012). Its general principle is basadhe spectral analysis of the
connectivity matrixC =H,; Q H, which is the source of opacity of the results
since it results in a liberal application of PCo& dn often non semi-definite
matrix {J , see d’Aubigny (1989, 2009). As a matter of faetave still looking for
explicit optimality criteria for this method, mogenerally satisfied than in the
very special case whed satisfies the constraints ensuring the Euclidégnid
a metric defined of.

d’Aubigny (1989, 2009) considers methods of analysdi proximity data
based on an analogy to the modelling of electrigvoeks adopted by Doyle &
Snell (1984), and expressed in terms of the cortdnilah Laplacian of a graph,
see also Bollobas (1991). But, while the preseamtatif Belkin & Niyogi (2001,
2003) leads to the same formalism, it is mathemlfticnuch more grounded and
more detailed. Belkin and co-workers call this falism the Laplacian Filtering
approach. Its three main qualities are: first, rikserves optimally (in a given
sense) the local neighborhood information; Sectmel representation of spatial
entities obtained by the algorithm may be integateds a discrete approximation
of a smooth map derived from the intrinsic geomefryhe underlying manifold;
and this approximated map is the solution of asadas Heat equation problem,
expressed with help of the Laplace Beltrami Operdtd3O) to provide an
optimal embedding of the manifold. The connecti@meen the LBO and the
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Laplacian of a Graph is well known to geometers spetialists of spectral graph
theory, see Chung (1997).

Let us go back to the minimization of the penaliyecion f) usable for
smoothing a functiondldefined on the set of nodes of a graph. A wayotdrol
the smoothness of a functidérdefined on a discrete set of points which belong
to some Riemannian manifold/ consists in minimizing a roughness penalty
criterion, such asthe sum of squared differences - f))?> between neighbor
pointss ~ ¢, over them existing edges of the graph:

S(f) =Xsee (fs—fD? =15 tfLaf .

So, the RoughnesS(f) of a functionalf on M is controlled by the

combinatorial Laplaciath,. The properties of.4 and of its close relatives are
discussed in detail in Chung (1997). Belkin & Niy¢2003), inspired by the past
working in mathematical physics, seg.Rosenberg (1997), consider the formal
analogue of this problem in a continuum of poingsatlibing a differentiable
manifold & when the analyst ultimately wants to embed thisadma@ompact

Riemannian manifold¥ in a lineard-dimensional vector spaée In such a case,
the Riemannian structure a¢ is induced by the one d¢f and the authors notice
that if one attaches a roughness penalty in amyt poil F defined in its vicinity

specified by a small ball of radids the gradien Vf of the functionf (supposed
twice differentiable) satisfies:

L. L (f(x— fx +8)*p(0)d5 ~Il Vf I? p(x)

But, differential geometry theory says that for @antx of M, the tangent
space ofM at pointx, notedT.M, is an Euclidean linear subspace of F equipped
with a natural scalar producug<v> . The gradientdf(x) is a vector of ToMy
such that given another vectar]! TJM,, one hagif(v)=<0Of (x) ,v>, . Thus, the

total penalty inF is shown to be a function of theplace Beltrami operatofaka
LBO), which is defined as

n 9f
L = A £ — i= 2
Namely, one has: (1) =ar Li-1 ax;
L WYFIZ p(x)dx =< f,Af >3 @)

Equation (3) shows that the LBDis a symmetric semidefinite operator

whose spectrum is discrete: its eigenvalues arevecdionally numbered in

increasing order0=4 =4 =4, == ’1n, and we shall notef; the
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eigenfunction associated g Specifically, one may verify that=: is the
constant function of coordinates uniformly equalto

LBO £ has been often studied in mathematics and physézguse of its
role in the modeling of the Heat flows, i.e. th&fuiion of heat over space and
time. Letu(x,t) be the heat distribution at timélR, with initial distribution

u(x,0) = f(x),x € F. Then, the heat equation writgg(x,1) =£u(x,t) and its
dt
solution is obtained by convolution $fwith the heat kernel :

Il x—yl?

u(ed) = [ O Ry, hixy) = (40 2exp(—- )
F

When we take the limit of the derivative of the wtmn of the heat
equation fort = 0, we get:

d 1
aux 0 = | [ o) hex y)dyL = ¢ URGD — [ F0)nCxy)ay)

1 n
Au(x,t) may be approximated UG x) = K5 f () h(C6 %9} grom any
sample ofn empirical data. Belkin & Niyogi (2001, 2003) denstrated the
convergence (in the infill asymptotics sense) af #tructure of the induced

approximate combinatorial Laplaciah”Q to the structure of the underlying

manifold xr induced by its latent Laplace Beltrami operatdnew its numben
of sampled vertices grows to infinity under variossmpling schemas and
Belkin et al. (2009) extend these results to thgecaf points clouds. From
a practical point of view, these theorems are ingmirbecause they provide
objective arguments to assert the existence daéve stability of the empirical
embedding obtained by the spectral analysis ottmebinatorial Laplacian and
its expectable robustness against the ModifiabkaAdnit Problem (MAUP).

2.3.How to extract manifold structures from data?

The link between LBO and the combinatorial Laplaaiaay be explicited
in taking:

2
lloei—x;ll

Q= (QU)» qij = exp (—T): Qi+ = Xj=19y 4
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This choice givesL,, f (x) =q, f(x) —zr;:lqij f(x;) and induces the index
of spatial smoothness we looked fofi, f = Zleqij (F(x) - f(x ))?. This

is precisely the numerator of the modified Moratoefficient.

Of practical interest for the analyst, Belkin & My (2003) point out that it
is necessary to restrain consideration to paimoofts close enough (say less than
a fixed £) in order to ensure the positive semi-definitenafshe approximation
matrix L. So they propose to compute the graph Laplacighédocal formula:

I X —xj

[
3t if Il x;—x; I12< &, and 0 otherwise

qij = exp (—

This restriction of the retained edges to closeghm®ors has been
progressively advised in ecology, as a statemeekpérience and the object of

simulation results. In fact, ecologists often ext#ime use of the Gaussian kernel
Atogq,; = exp(—dij2 /4t) whered; is any dissimilarity index which is chosen

on thematic arguments. As far as | know, the themaleconsequences of this

relaxation on optimality properties of the method @aot known yet.

Whatever this choice is, the evaluation and amalydi the spatial
dependence constitutes only a preliminary stepghlyhin econometrics, is most
often followed by the specification and validatistudies of some linear model
controlled for some form of spatial autocorrelatioperating, either on the
residuals — as in the Simultaneous Autoregressik@ Enodel (SAR)cf. Whittle
1954) — or on the response — as in the Conditidotregressive model (CAR),
cf. Besag 1974) — see also Anselin (1988, 1995, 2014).

With some variants induced by the specificitieshef questionings central
to both disciplines, an analogous methodology re®ldped in ecology, with
greater dynamism and under various names: by ndsvptomoted under the
name ofdistance-based Moran’s Eigenvector M@b-MEM), seee.g. Borcard
& Legendre (2002), Dragt al.(2006), Legendre & Legendre (2012, Ch. 14).

One technical question remains in practice: howhoose the threshold
£? The fashionable practice in ecology consists mi@mum spanning tree of
the graph G, in a way to fe<l;, wherel, is the length of the longest edge of this
spanning tree. In the next steps of the analysisgss, one can retain only edges
closer tharz=l;, see Legendre & Legendre (2012, Ch. 14).

A challenger methodology may be practiced in camezewith the use of
the corrected autocorrelation coefficients presknte this paper since,
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maximizing the corrected Moran’s coefficient is eglent to minimizing the
corrected Geary’s. This minimum is realized By the smallest solutiodg.-
orthogonal of the generalized eigenvector problefinthg the spectral analysis
of the combinatorial Laplacidng, associated to a non-null eigenvalue:

2
IIvIlg,

maxc,p Iy (v) = gﬂg:( """5:+ & Lov! = 44Dy, v! (5)
This process may be repeated sequentially undecdhstraints oDg,-

orthogonality of the solution vectors and as issieal in multivariate analysis,

the solution of dimensionalitk is given by theDg. -orthogonal generating

system of eigenvectors {vl,v2 ,...,vk;ks(n—l)} satisfying
{tijq+vk =0if j;tk} and associated to the corresponding eigenvalues

ordered as the corresponding eigenvalugs: 0 < 1; < 1, < ...< J,. The
introduction of the metridN=Dg. on F is noticeable here, since then a point
i accounts especially in the spectral decompositidry, if it has more (and closer)
neighbors, in proportion to its participation ie thefinition of spatial structures.

Notice also that the solutions of the eigenvectablem (5) differ from
those of db-MEM and of Spatial Filtering in two pests: i) the centering are
not the same, and ii) here, orthogonality must beeustood in the metric Jp
that is as [ - orthogonality. Finally, when we explicit the rolé @ in (3), we
get an eigenequation different from the db-MEM &péatial Filtering ones:

LoV®= 4sDge V¥ = QV°= (1 -4g) Dy V° (6)

This equation defines &aaplacian Filtering Analysis whose resulting
eigenvectors and eigenvalues are in fact solutainthe Eigenmap Algorithm
due to Belkin & Niyogi (2001). These specialistsrofichine learning do not
make reference to spatial data analysis, but theik justifies the use of the
Laplacian in this context by an argument of appr@tion — through the spectral
decomposition (5) of the weighted Laplacian - af geometric structure of the
underlying manifold# ,attached to the corresponding Laplace Beltrararator
L. Let us also point out that Lebart (1969) initthtelated work motivated by
applications to spatial data analysis, and naboeal Analysis

3. Conclusion and discussion

In starting the work reported here, | wanted topgeeour understanding of
formulas giving the Moran’s and Geary's coefficgent spatial autocorrelation, and
their relationships to other indices discussed @tigs& Ord (1992). Over time,
| found that part of their complexity is due to ianoherence in the distributional
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assumptions made in defining their numerator aanl tenominator. As explained
above, we did use geometric arguments to correet globlem and then,

| discovered that it simplified considerably thestationship derived in books like
Cliff & Ord (1980) or Tiefelsdorf (2000), in a wayhich makes closer the ties
between geostatistics and statistical methods ediapthe analysis of areal data. In
terms of methodological contributions, the georoejustification used for the
proposed changes, formalized in the framework efahMultivariate Exploratory
Data Analysis in the French tradition — see Caile Pages (1976) or Escoufier
(1987) — also resulted in the proposal of serigseaf methods — not discussed here
— that | consider as close relatives of the dontieaisting ones, like db-MEM in
ecology and Spatial Filtering proposed by Griffithgeography and econometrics.
Their advantage when compared to these establisbtebd lies in the fact that they
are free of the problems induced by the use ofdefinite-positive weight matrices
Q, and that, as proved in the machine learningatiiee, they are supported by
a well known theoretical model of physics: the Hequation. | must add that the
spectral decomposition used in the Laplacian Fitlemethod presented above, did
generate in the twenty years a huge literatureachihe learning, mainly motivated
by applications in image analysis. Its use in eluisy is becoming dominant in that
setting because of repeated successes in applgation particular for big data —
and good and specific theoretical qualities, sge Shi & Malik (2000), Qiu &
Hancock (2007), or Saerens et al. (2004). It |yikto spread in the community of
geographers and economists formed to multivarnztas statistics.

A second possible generalization of the methodsemited in this paper is
the coupling of two (or several) data tables. & baen the subject of numerous
studies in ecology because of the combinatoricpasisible variants, seeg.
Dray et al. (2003). In this setting one considers two triglgsMyy, N) and ¥,
Myy, N) where X andY are two data tables containing the measuremeriteof
two sorts of variables on the same set of geogecapkntities. TherX (resp.Y)
permit to represent the spatial entities in an i@ean spacé&y (resp.Ex). One
can analyze separately each triple by one of thinads discussed above, but
we may also want to study them simultaneously. This fact easily possible:
Chessel & Mercier (1993) show that one can find totorsu,L/Ex and such
that for any distributioN=D,, the covarianc€OMa,b)="aNb be maximum for
a=XMyu" andb'=XMyw". In fact, an elementary proof shows that thandv®
are eigenvector solutions=(L:n) of the analysis of the tripl&( M, Myy) , where
S='YNX The method is very general as argued by Dray, ¢2@03) the solutions
optimize CO\Ma,h)=CORa,b)xSTa) xSTOb), a mixed criterion. The question
Here is how to take space into account? What argtanastifies the choice by the
authors ofN=Dg, here? | noticed too that the same statisticalraeguiis can apply
to the triples of simple contrastglX, Mxyx, N=Do) and (Y, Myy, N=Do), with
equal formal justification, and the advantage tplieitly introduce the spatial



22 Gérard d’Aubigny

structure in the formulation of the model. | obs&rwith interest that in this case,
the solution is built by a PCA of the tripld;, Mxx, Myy) WhereT=(0Y)Do O X=
'YLoX. So, the solution depends on the combinatorialdcigmn.

Clearly, this line of research has a lot to teagkyet!
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Streszczenie

NARZEDZIE STATYSTYCZNE DO ANALIZY EKSPLORACYJNEJ
ORAZ MODELOWANIA DANYCH PRZESTRZENNYCH

Wiekszg¢ analiz eksploracyjnych danych przestrzennych rcapma st od oceny
proby jednostek przestrzennych, pod wdmyn wystpowania oraz sity autokorelaciji
przestrzennej dla zbioru zmiennych, stagowth atrybuty jednostek przestrzennych.
Trafnas¢ aplikacji najbardziej cenionych namzi weryfikacji autokorelacji przestrzennej —
wspoitczynnikébw Morana oraz Geary'ego jest rzadkestisnowana, pomimo faktge
w przypadku opisywania ich wiasitowielu uytkownikow zdaje sipopetia bledy oraz
wprowadzé nietad. Artykut rozpoczyna ¢siod krytycznej oceny klasycznej definicji
indekséw. Zakono, ze pomimo intuicyjnej konstrukcji, koncepcja indekddoryka s
z brakiem spéjn@i w przypadku wielu ich skladowych. Ngwstie zaproponowano korekt
wspotczynnikdw autokorelacji przestrzennej, ktdpaagzcza ich relacje, i otwiera dreg
do whczenia statystyk do zestawu rawz statystycznych, modelowania oraz wizualizacji.
W drugiej cgsci zaprezentowano teoretyczne przestanki konstmiawaielowymiarowych
narzedzi statystycznych, uwlgliajgcych skorygowane definicie  wspoéiczynnikéw
autokorelacji przestrzennej, zaczegbeiz ostatnich prac w dziedzinie statystyki. Pitagdsne
metody eksploracyjnej wielowymiarowej analizy danycharakteryzyj sie tatwaoscig
zastosowania oraz oprogramowania z wykorzystan@spehych, darmowych pakietow.

Stowa kluczoweanaliza wielowymiarowa, graf dualga, autokorelacja przestrzenna,
wspotczynnik Morana, mapa wektora wtasnego statystiprana, operator Laplace'a,
funkacja wtasna filtracji przestrzennej



