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Do Pilot and Demonstration Projects Work?

Abstract

Pilot and demonstration (P&D) projects are commonly deployed to catalyze early adoption of
technology, but are poorly understood in terms of mechanism and impact. We conceptually
distinguish unique functions of pilots and demonstrations, then examine whether they accelerate
green building adoption. To identify effects of P&Ds on adoption, we develop a difference-in-
difference-in-differences strategy, exploiting variation in location, technologies, and timing of
P&D projects. Results indicate a 12% increase in adoption rates within markets affected by
P&D projects. Further analyses examine mechanisms driving this effect. Subsequent results
suggest green building demonstration projects create learning externalities, proliferating
technology diffusion under certain conditions.
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1 Introduction

Investment in new technologies may have substantial benefits for firms, their stakeholders,
and the environment, but is hindered by uncertainty about the performance of the emergent
technology (Bass 1969). For durable technologies, resolving uncertainties may be an impor-
tant strategy to foster market uptake (Doraszelski 2001; Farzin, Huisman, and Kort 1998;
Jensen 1982). Traditional policy interventions to catalyze adoption often leverage regula-
tory mandates or provide financial incentives (Stoneman and Diederen 1994). Alternatively,
policymakers may implement pilot and demonstration (P&D) programs, deploying the tech-
nology at reduced scale to remediate uncertainty about the reliability and performance of
new technology (Nemet, Zipperer, and Kraus 2018).

P&D programs may serve a critical role in the successful early deployment of emerging
technologies. Technology pilots are experimental implementations designed to verify feasi-
bility and assess private benefits of adoption (Kotchen 2017). Demonstration projects are
technology showcases that may create information or learning spillovers, mitigating uncer-
tainty about how well a technology aligns with private interests (Bollinger 2015). Despite
the use of P&D programs by a wide variety of private firms and public agencies, little work
has verified and evaluated their efficacy in increasing technology adoption.! This gap is par-
ticularly prominent in comparison to the breadth of analysis on research and development
stages, where analysis typically identifies conditions of innovation and outcomes of research
programs.

We first seek to identify whether P&D programs work. Using data on adoption of green
building technologies, we investigate the impacts of a suite of green building P&Ds on subse-
quent local market adoption rates. Our primary identification strategy leverages a difference-
in-difference-in-differences (DDD) estimation framework to identify the average effect of a
P&D project on market uptake of green building technology by exploiting quasi-experimental
variation across time, geography, and building typologies. Results suggest that, on average,
local adoption rates increase between 5% and 12% following the completion of a P&D project.
This finding is robust to a variety of alternative assumptions and specifications.

Successful P&D programs remediate uncertainties about the performance and/or feasi-

L Agencies around the world operate demonstration programs explicitly linked to information-based
market failures. These include (i) the World Health Organization’s efforts to increase adoption of
public health technologies in developing countries (http://www.who.int/phi/implementation/phi_
cewg_meeting/en/); (ii) the US General Services Administrations program to increase the use of ef-
ficient building technologies in government offices (https://www.gsa.gov/about-us/organization/
office-of-governmentwide-policy/office-of-federal-highperformance-buildings/
projects-and-research/demonstration-projects); and (iii) the European Space Agency’s initia-
tive to increase applications of space technologies to broader markets (https://business.esa.int/
funding/direct-negotiation-call-for-proposals/demonstration-projects), to name a few.


http://www.who.int/phi/implementation/phi_cewg_meeting/en/
http://www.who.int/phi/implementation/phi_cewg_meeting/en/
https://www.gsa.gov/about-us/organization/office-of-governmentwide-policy/office-of-federal-highperformance-buildings/projects-and-research/demonstration-projects
https://www.gsa.gov/about-us/organization/office-of-governmentwide-policy/office-of-federal-highperformance-buildings/projects-and-research/demonstration-projects
https://www.gsa.gov/about-us/organization/office-of-governmentwide-policy/office-of-federal-highperformance-buildings/projects-and-research/demonstration-projects
https://business.esa.int/funding/direct-negotiation-call-for-proposals/demonstration-projects
https://business.esa.int/funding/direct-negotiation-call-for-proposals/demonstration-projects

bility of an emerging technology. While the results identified in the DDD model may be
driven by social learning in which information spillovers resolve these uncertainties, herding
behavior may also explain the uptick in adoption. Because herding may inadvertently create
lock-in around a technology chosen by policymakers, rather than market processes, learning
is the preferred P&D outcome which generates the greatest social value. Moreover, while the
DDD estimates suggest effects of the project on surrounding markets, it does not capture
effects of participant firm experience that that may further drive adoption. We perform
subsequent analysis to explore how P&D projects work and unpack some of these channels
of effectiveness.

A series of empirical tests collectively informs our understanding of the roles that learning
and herding play in the outcomes of P&D programs. First, projects occurring at a later date
and deploying more certain technology have a more significant effect on adoption rates when
compared to the effects of earlier, more experimental P&D projects. This result suggests
potential adopters may be updating their private beliefs in response to the demonstrated per-
formance of the new technology, rather than simply imitating the behavior of early adopters.
Second, we find the required implementation time is 9-12% lower for organizations local to a
P&D project. As the industry is sensitive to costly project delays, we interpret this reduced
implementation time as evidence that stakeholders learn from P&D participation, and may
socially influence non-participant neighbors.

This paper contributes to the existing literature in at least three ways. Foremost, we
provide empirical strategies to evaluate the extent to which P&D programs foster technology
diffusion. Our DDD identification strategy compares variation in the adoption rates before
and after market exposure to P&D projects to adoption trends in untreated markets, and
does so for a suite of building typologies. The results estimate the causal effect of a P&D
project on the diffusion of green building technologies and practices. By comparison, past
P&D literature typically addresses this question qualitatively or evaluates the effects of an
individual project on the performance of a technology. For example, Mah et al. (2013)
describe the opportunities and challenges of smart grid P&D projects within regulatory and
business-oriented schemas in Japan. Hendry, Harborne, and J. Brown (2010) present dozens
of case studies highlighting innovation lessons from solar photovoltaic and wind energy P&D
projects in the United States, Japan, and Europe. Hendry and Harborne (2011) examine
qualitative evidence from wind developments in Denmark to show how P&D projects enhance
the overall innovation process. Rather than taking a qualitative approach or assessing P&D
effects on private performance, we investigate the role of P&D projects on market adoption
of emerging technologies.

Second, we contribute to an burgeoning dialogue on information spillovers from envi-



ronmental programs. Green technologies often have multiple positive externalities, leading
private costs to be less than social benefits and inhibiting optimal levels of adoption. For
durable technologies that provide returns over a long-time horizon, discounting slows in-
vestments in emerging technologies (Stoneman and Diederen 1994). Information provision
appears to be an effective policy intervention that generates positive regional learning ex-
ternalities for these technologies, such as lighting (DeCanio and Watkins 1998) and garment
cleaning (Bollinger 2015). Pollution prevention programs have been shown to be effective
when leveraging information spillovers, even absent stringent regulatory measures (Bui and
Kapon 2012; Lange 2009). We complement these findings by examining how well P&D
programs impact adoption, drawing on evidence suggesting an information spillovers mech-
anism.

Finally, our results give insight on the role of early adopters in the long-run diffusion
of a technology (Catalini and Tucker 2017). If the lead organization responsible for the
P&D project has establishments in multiple locations, organizational learning lowers costs
of adoption in subsequent locations (Attewell 1992). Further, if P&D project stakeholders
are highly visible and transparent regarding their experiences with the project, adoption may
be seeded in local and new markets through peer effects (Aral and Walker 2012; Bollinger
and Gillingham 2012; De Grip and Sauermann 2012; Zimmerman 2003) or social learning
(Bandiera and Rasul 2006; Conley and Udry 2010). Section 7 discusses opportunities to
strategically manage this outcome of P&D programs based on the evidence we provide.

To evaluate whether P&D projects increase adoption of green building technologies and
practices, we organize the paper in 7 sections. In section 2, we distinguish the characteristics
of pilot and demonstration projects, and their roles in fostering market uptake of emerging
technologies. We identify potential mechanisms driving the success of P&D projects. Section
3 describes the empirical context and data used in the analysis. We utilize data on P&D
projects for the Leadership in Energy and Environmental Design (LEED) green building
standard, and here introduce the institutional characteristics of LEED that are crucial for
our analysis. We present the main empirical strategy, including our identifying assumptions,
in Section 4. Section 5 presents the main results of the study and presents several robustness
checks to test our estimates against alternative assumptions and model specifications. Our
main results suggest P&D projects contribute to a 5-12% increase in quarterly adoption
rates of the LEED standard in regions with a completed P&D project. In section 6, we
explore whether this effect is driven by learning externalities or herding behavior. We present
evidence supporting the claim that learning externalities from P&D projects drive adoption
of the LEED standard. Lastly, we conclude and provide additional policy implications in

section 7.



2 Conceptual Framework

As new ideas and technologies emerge from basic and applied research, numerous uncertain-
ties inhibit new innovations from reaching market maturity. Unproven technical reliability,
uncertain market and institutional receptiveness, and limited organizational and manage-
rial expertise characterize this intermediate stage of the technology lifecycle. Because these
uncertainties may limit early investment in emerging technologies (Hendry, Harborne, and
J. Brown 2010), this stage is sometimes referred to as the technological “valley of death,”
in which socially beneficial technologies fail to diffuse. In this stage, successful market de-
ployment requires a balance of periods of experimentation and market development (Nemet,
Zipperer, and Kraus 2018). Market interventions designed to bridge the valley of death
spark diffusion of new technologies by remediating these technical, organizational, market,
and institutional uncertainties.

Common interventions promoting new technologies in this stage of development include
P&D projects, which implement new technologies at small scale with the goal of reaching
broader implementation (market maturity). Pilot projects adopt new technology in exper-
imental fashion, with the intent to learn from the implementation process and refine the
technology or verify its best management practices (Kotchen 2017). Due to their experi-
mental nature, pilots often occur within narrow divisions of an organization, such as one
department or establishment. Demonstration projects showcase technical feasibility and re-
liability to broad sets of market actors, often engaging numerous stakeholders to reduce
technical and management uncertainties (Bollinger 2015; M. Brown et al. 1993). P&D pro-
grams often leverage elements of both pilots and demonstrations, because both interventions
aim at inducing learning or reduce uncertainties that otherwise inhibit adoption. However,
other mechanisms are possible, and few econometric evaluations of P&D performance have
been conducted. To frame our analysis, we first describe the mechanisms by which P&D

projects may achieve this goal.

2.1 Demonstration projects and social learning

To conduct a demonstration project, a mix of private and public sector actors must coor-
dinate on key project features and execution. Managing the production and dissemination
of knowledge within this network is considered essential for the success of demonstrations
(Nemet, Zipperer, and Kraus 2018): demonstrations that contribute to the formation of
social and business relationships among members of the project’s development team can
subsume costs of learning-by-searching for future adopters. The social and business ties

established during the demonstration project reduce search and matching frictions by bro-



kering and screening interactions between future adopters, project stakeholders, and input
suppliers (Boudreau et al. 2017; Cassi and Plunket 2014; Fafchamps, Leij, and Goyal 2010;
Jackson and Yariv 2007). The development of a robust knowledge-sharing network facilitates
the diffusion of information on product reliability and performance (Reiner 2016), including

diffusion to actors not participating in the demonstration.

2.2  Social learning versus herding

Even if P&Ds fail to induce learning, an effect on adoption is still plausible. When infor-
mation fails to diffuse, or when the information is not meaningfully incorporated into the
decision making process, herd behavior drives investment in the emerging technology if man-
agers assume that those promoting or involved in the demonstration have better information
guiding the decision to adopt (Banerjee 1992; Scharfstein and Stein 1990).This is especially
viable when demonstrations actively seek to engage key stakeholders such as market lead-
ers and high-status firms (Nemet, Zipperer, and Kraus 2018). Importantly, while mimicry
drives the diffusion of the technology, herding may lead to lock-in on underperforming tech-
nologies. Technology diffusion via learning is the preferred policy outcome as it reveals
information that otherwise hinders deployment, thus reducing market barriers for the most

efficient available technologies.

2.3 Pilot projects and organizational learning

From the outset of a pilot project, those implementing the new technology engage with
learning-by-searching and learning-by-doing (Kamp, Smits, and Andriesse 2004). As early
adopters, organizations actively search for resources useful for technical implementation,
and for information regarding likely performance that will later guide project evaluation.
This evaluation primes learning-by-doing that enables efficient deployment for later adoption
(Arrow 1962). Thus, organizations learning from participation in a pilot program may have
fewer barriers to adoption in other parts of the organization.

At this point, learning-by-interacting may enable additional organizations and stakehold-
ers sharing feedback to diffuse the practice (Kamp, Smits, and Andriesse 2004; Von Hippel
1978; 1986; 2010), amplifying the effect of the original project through networks of users
and stakeholders (Hellsmark et al. 2016). After learning from a pilot, a repeat adopter im-
plementing the piloted technology at a different establishment may effectively demonstrate
that technology to a new set of stakeholders. In this sense, pilots and demonstrations are
conceptually and pragmatically distinct, but are not mutually exclusive when iterated. Our

analysis presents evidence from P&Ds in one industry, in terms of social learning, social



herding, and organizational learning.

3 Empirical Context

The United States Green Building Council (USGBC) certifies buildings that meet its stan-
dard for Leadership in Energy and Environmental Design (LEED). The LEED certification
system identifies baseline design and performance norms in the construction and real es-
tate industry, and recognizes achievement beyond those norms. Certification is based on
improvements to the entire building footprint (including energy, water, materials, land use,
and indoor environment) rather than a single characteristic. To attain certification, builders
must register, implement high environmental performance technologies, and provide suffi-
cient evidence of these improvements. The certification standard may be flexibly adapted to
the particular needs of specific buildings. Though the technologies and practices implemented
may vary across buildings, all buildings meet the minimum baseline for each monitored cat-
egory of environmental technology, and most use advanced planning processes recommended
by the USGBC. These best practices are reinforced by a community of professionals trained

on the LEED certification process and familiar with how it may be implemented.

3.1 LEED Building Standards and Pilot Programs

The USGBC offers separate certification standards for major building categories to recognize
the heterogeneous technology demands of different building typologies. For example, the US-
GBC distinguishes the functional design and practices required by newly constructed build-
ings from renovations to existing building structures. Standards are further distinguished
for several major building uses, namely commercial office, retail, schools, and residential
dwellings. These distinct standards are designed to meet the particular needs of each sector
of the real estate market and are periodically updated as advances are made in green building
technology and practices.

Before introducing a new building standard, the USGBC experiments with different forms
of the standard to determine the standard’s market viability and to demonstrate the value of
the technologies and practices embedded in the standard. After gaining stakeholder support
for a version of the standard that appears feasible, the USGBC recruits a limited number
of firms that volunteer as early adopters. The LEED-Pilot program constitutes a set of
demonstration projects, in that they are attained by the initial adopters of the new building
technology, and the USGBC provides coordination assistance to engage stakeholders in com-

pleting the project, with the aim of spreading the standard to others in the building market.
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Figure 1: Spatial distribution of LEED buildings in the contiguous United States.

These experimental standards are also pilots for the participating firms, who are often in-
terested in adopting the standard at larger scale. Moreover, the name “LEED-Pilot” refers
to the USGBCs experimentation with the standard itself, with the final form of the new
LEED standard informed by feedback from early adopters of the piloted standard. In this
paper, we leverage data on LEED-Pilots, and subsequent LEED registrations in the United
States to evaluate the effect of P&D projects fostering adoption of emerging technologies

and practices for greener buildings.

3.2 Location and Timing of LEED Pilots and Certifications

Adoption of the LEED standard varies over space and time. In Figure 1 we show the spatial
distribution of LEED certified buildings and LEED-Pilot projects in the contiguous United
States. The distribution of registered buildings (black circles) and, notably, LEED-Pilot
projects (red circles) in the map is consistent with previous research aligning the location
of green building activity with environmental preferences and natural resource demands
(Cidell 2009; Kahn and Vaughn 2009). Additionally, the frequency and location of green
building adoption may closely track regional trends in population growth and urbanization,
as illustrated by the clustering of registrations in densely populated areas.

Temporal variation in LEED registrations and LEED-Pilot projects are displayed in



Figure 2, where we plot the frequency of registrations across years. Examining the figure
reveals a close correlation between the completion of LEED-Pilots and registrations for the
corresponding building standard. The initial LEED-Pilot program (for New Construction)
ran just 8 projects to test and verify the standard. However, subsequent standards have
been tested and verified more extensively, with more recent programs (Retail-Commercial

Interiors and Retail-New Construction) associated with more than 150 projects each.

3.3 Data and Summary Statistics

The primary source of data used in this analysis is collected, maintained, and publicly
distributed by the USGBC’s Green Building Information Gateway. This database contains
information on all buildings registered since 2000. The time horizon of our study covers
the period 2000-2015, after which the majority of certifications occur in the more recent
versions of the standards. Our analysis covers the 44,330 buildings registered within the
United States and the six building standards for which pilot program data is available. These
ratings systems are Existing Buildings (EB), Commercial Interiors (CI), Core and Shell (CS),
New Construction (NC), Retail-New Construction (RNC), and Retail-Commercial Interiors
(RCI).

Table 1 presents the summary statistics for the central data used in the analysis. Panel
A presents the panel summary statistics, corresponding to the typical LEED standard, local
markets (measured as 5-digit ZIP code), and quarter. Panel B aggregates the data to present
cumulative adoption statistics for the typical LEED standard and local market. Columns (I)
and (IT) present summary statistics for registrations and building stocks for local markets
with and without LEED-Pilot projects, respectively. Column (III) summarizes the key
adoption statistics for the entire dataset. Lastly, Column (IV) presents the results of an
unequal variances t-test for difference-in-means between Column (I) and Column (II). A
quick inspection of Column (IV) reveals registrations are typically higher in local markets
with LEED-Pilots.

A naive interpretation of Column (IV) in Table 1 may note the statistically significant
increase of green building adoption in local markets with LEED-Pilots as a sign that learning
externalities from P&D projects induce greater adoption. However, it is important to note
that LEED-Pilots are not randomly assigned across space (see Figure 1). Rather, those vol-
unteering to pilot a new version of LEED may self-select based on both internal motivations
and external pressures to adopt. As early adopters, LEED-Pilot participants may be criti-
cal for shaping the course of future adoption and systematically differ from later adopters
(Aral and Walker 2012; Catalini and Tucker 2017; Lépple and Rensburg 2011). Moreover,



Table 1: Adoption statistics for ZIP Codes with and without LEED-Pilot projects

Panel A: Panel Summary Statistics (1) (II) (II1) (IV)
LEED-Pilot No LEED-Pilot All Difference
(mean/sd) (mean/sd) (mean/sd (diff/t-stat)
FHF
Privately-owned building registrations (R.s) (8(1);2) (8(1](1)2) (8(1](1)481) ?1%%86)
Kok
Local firm building registrations (R (8(1)?% (8833) (gggg) 0(.(8)04444)
ook
Multiregional firm registrations (R;":;”’) (8%8) (8833) (8823) 0((1)3792)
_ *okk
Publicly-owned building registrations (R?4) (8822) (8?83) (8(1)83) ?_'20927 4)
*kk
Certified private and public building stock (M) ((1);3(8]) (gggg) (82?;) (zi%glllOG)
ko
Local firm certified building stock (Me) (8g§§) 860237216) (ggg?) (2'1054304)
Kok
Multiregional firm certified building stock (M) (8gg§) (822:2’)) (822‘?) (2'1076831)
. *okk
Publicly-owned certified building stock (8?%) (8222) (8222) ((_)1%1(1]12)
Observations (ZIP Codes x Standards x Quarters) 55,104 3,071,040 3,126,144 3,126,144
Panel B: Cumulative Summary Statistics (by 2015)
. o . . 8.120 2.598 3.144 5.52%**
Total privately-owned building registrations (16.860) (4.804) (7.182) (9.25)
. Kok
Total local firm building registrations (28}18) (;g;g) (:1’)238) 2('8909)
Kook
Total multiregional firm registrations (341122) (;;673291) (iégg) 2('237 1)
Kok
Total publicly-owned building registrations (:1;(23;8) (éiéi) (;ig?) 0(;)042)
. . . g 5.086 1.938 2.249 3.15%**
Total certified private and public building stock (10.150) (3.266) (4.546) (8.75)
. . 1.852 0.621 0.743 1.23%%*
Total local firm certified building stock (4.260) (1.434) (1.945) (8.15)
L . g 2.406 0.718 0.885 1.69%**
Total multiregional firm certified building stock (5.778) (1.730) (2.500) (8.25)
. . g 0.827 0.599 0.622 0.23%¥*
Total publicly-owned certified building stock (1.836) (1.544) (L577) (3.39)
Observations (ZIP Codes) 805 7,336 8,141 8,141

Notes: Summary statistics are reported for registrations and building stock aggregated to the 5-Digit ZIP code level. Columns (I) — (III)
present means in the top row and standard deviation in parentheses. Column (IV) presents the results of Welch’s unequal variance t-test for
difference in means between Columns (I) and (II). A local firm corresponds to a firm or organization with buildings registered in a single ZIP
code. A multiregional firm corresponds to a firm or organization with buildings registered in multiple ZIP codes. Publicly-owned buildings

account for municipal, state, and federal buildings.
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Figure 2: This figure displays total annual registered buildings and pilot projects for each
LEED standard. The blue markers correspond to the annual number of buildings registered
for a LEED standard in the United States. Values for total registrations are plotted on
the primary y-axis. The red markers represent the annual number of certified LEED-Pilot
projects for a standard in a given year. These values are plotted on the secondary y-axis.
Panels are sorted based on the order in which standards were introduced.
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the USGBC actively recruited specific firms as early adopters, in hopes of maximizing feed-
back about the process. Our analysis assumes that P&D programs follow best practices by

selecting suitable participants (Nemet, Zipperer, and Kraus 2018).

4 Empirical Strategy

To investigate average effects of a well-designed P&D program across regional markets,
market sectors, and time periods, we develop a reduced-form empirical model to measure
the impact of a LEED-Pilot on adoption of the LEED standard.

4.1 Identifying Assumption

A simple strategy to estimate the effects of a LEED-Pilot on green building adoption could
be to measure the change in adoption rates in markets before and after the completion
of a LEED-Pilot, and compare these changes with the change in adoption rates in markets
without a LEED-Pilot. This comparison yields the well-known difference-in-differences (DD)
estimator (Ashenfelter and Card 1985). Define R as the number of private sector LEED
building registrations. In a simplified, conceptual model with two regions (z,z’), and two
time periods (pre, post), consider the treated region (the region with a LEED-Pilot project)
to be z and the control region as 2’ (the region without a LEED-Pilot project). The DD

estimator can be written as

BDD _ (R}Zost - Rgre) i (R;z;/ost B R;Z*e) (1)

This estimator does not account for the possibility that changes in adoption rates may be
driven by idiosyncratic shocks to local markets for green building technologies rather than
completion of a LEED-Pilot. For example, Simcoe and Toffel (2014) provide evidence that
municipal green building policies increase private-sector demand for green building technolo-
gies. Specifically, they show that cities with municipal green building policies experience an
overall increase in LEED registrations than cities without these procurement policies. If
municipal green building policies are implemented around the same time a LEED-Pilot is
completed, then the DD estimate erroneously attributes variation in adoption rates to the
LEED-Pilot and is biased.

We account for this possibility, as well as any other idiosyncratic shock that raises overall
demand for green building technologies, by introducing a third source of variation in the
model. Because LEED-Pilot projects constitute the first application of a set of technologies

and practices to a particular building typology, we exploit variation in adoption rates within
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a particular LEED standard (s) as a third source of variation. Our identifying assumption
is that, for one particular standard, market location, and time, only a LEED-Pilot project
within a particular standard, location, and time is affecting the rate of adoption of a LEED
standard. Under this assumption, only the interaction of the three sources of variation
(location, building standard, and time) can be interpreted as plausibly exogenous. Given
this assumption holds, we can thus exploit quasi-experimental variation in the location,
building standard, and timing of LEED-Pilot projects to estimate a causal effect of P&D
projects on adoption.

Our empirical strategy boils down to a difference-in-difference-in-differences (DDD) es-
timation that controls for a variety of confounding factors that would otherwise limit our
ability to interpret our estimates as causal. For instance, we control for all time-invariant
heterogeneity across both geography and building standards, including interactions between
them. Additionally, our approach controls for the impact of real estate trends across the
United States, within building typologies, and within regional markets that may have af-
fected demand for green building technologies and practices.

Using the notation from equation 1, consider a LEED-Pilot project is conducted in region
z for some standard s. We denote untreated standards as s’, and, as before, untreated regions

as 2. Thus, the DDD estimator is written as

B = (R = RIy) — (RY — RUY) — (R — RUY) — (RS — RUY)
= B0 - p7° (2)

where the parameter BSPD represents the DD estimator given in equation 1 for untreated
(existing) standards. Equation 2 measures the extent to which changes in local adoption
rates differ from adoption rates in existing standards, following the completion of a LEED-
Pilot, relative to the same change in untreated regions. If contemporaneous shocks drove
adoption of green building technologies and practices across all building types, then the
DDD estimator 3 in equation 2 would net-out the impact of these shocks. Our identification
strategy rests on the assumption that the remaining variation in adoption rates is thus
attributable to the effects of the LEED-Pilot project itself.

4.2 Estimating Equation

We estimate the effect of LEED-Pilots on local adoption of the LEED standard using the

reduced-form equation
stq = ‘/zsq + /Bstq + €z2sq (3)
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where the index z corresponds to the 5-digit ZIP codes with at least one LEED registered
building to date. The subscript s indexes the LEED standard. Lastly, the index ¢ corre-
sponds to the quarter and year of registrations.

The behavioral outcome of interest in equation 3 is adoption of a LEED standard within a
5-digit ZIP code R.,,. For the analysis, we use the number of privately-owned registrations
of a LEED standard as a proxy for building adoption. Due to a preponderance of zero
registrations in the data, the LHS variable stq corresponds to the Inverse Hyperbolic Sine
(IHS) transformation of quarterly registrations (Burbidge, Magee, and Robb 1988; Pence
2006).2

In the main analysis, we treat the LEED-Pilot variable P,,, as a binary variable taking

values
0 if qg<7eert
Py = - (4)
3 cer
1 ifqg> 78
where 75 represents the date a pilot project achieved certification. In locations with mul-

tiple LEED-Pilots in the same standard, the variable P,,, represents the completion date of
the first LEED-Pilot to be certified in a 5-digit ZIP code.

We use V.sg = Ay + 9, + 75 + &q + a5 + 24 as shorthand to represent the fixed effects
terms in the model. We include a full set of fixed effect and interaction terms to control
for confounding factors in the analysis. Time period fixed effects A\, control for time-varying
secular patterns in the United States that may have influenced private sector investment
in green building technologies, such as fluctuations in real interest rates or federal building
standards. We include ZIP code fixed effects 9, to control for unobserved, time invariant
factors that may have influenced adoption of the LEED standard in a particular location,
such as local geographic conditions. LEED standard fixed effects  control for time-invariant
heterogeneity across standards or building types.

A full set of dummy variables are included to capture interactions between these three
sets of fixed effects. Time-varying shocks within LEED standards are controlled for by
&sq in equation 3. These account for the impact of variations within a LEED standard
on adoption across the United States, such as price variations in underlying technologies,
aggregate learning-by-doing, or broader awareness of the standard that is exogenous to the

LEED Pilots. The term a,; accounts for time-invariant interactions between regional markets

2The IHS transformation of quarterly registrations is calculated using the following relation

R.sg=In (stq + (RZ, + 1)1/2>
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and standards. For instance, regional markets with an initial building stock mainly comprised
of old, commercial buildings may naturally experience more registrations in the Existing
Building standard given the larger initial stock of this building type. We account for time-
varying shocks within regional markets with the term 7., in equation 3. These interacting
dummies control for time-varying factors that influence the propensity for green building
adoption within a particular regional market. These time-varying factors include but are not
limited to changes in municipal green building policy, variations in environmental preferences,
or fluctuations in local real estate market conditions.

The parameter of interest in equation 3 is 8, which measures the average effect of LEED-
Pilots on local adoption of a LEED building standard. Our identification of this effect
relies on the assumption that, other than what we have already controlled for in equation
3, there are no other idiosyncratic shocks occurring around the completion of a LEED-
Pilot project that influence local demand for a particular LEED building standard. If this
assumption holds, the parameter (8 is equivalent to the DDD estimator B given in equation
2 and is identified from within ZIP-standard comparisons over time. For P&D projects to
successfully induce widespread adoption in local green building markets, LEED-Pilots must
have positive and significant effect on registrations within a LEED building standard (B >0

after estimation).

5 Results

5.1 Baseline Results

We estimate equation 3 using Ordinary Least Squares (OLS); the estimates of the impact of
LEED-Pilots on local registrations are reported in Table 2. The results are reported for 5-
digit ZIP codes. Table 2 presents the results from estimating a pooled regression, a difference-
in-differences (DD) model, and a difference-in-difference-in-differences (DDD) model. Each
estimation accounts for different sources of variation to delineate the contributions of each
source of variations impact on adoption.

To measure the impact of LEED-Pilot projects on adoption of green building technology;,
we compare the point estimates given in Table 2 to the change in average LEED adoption
rates in treated areas. The average change in adoption rates is calculated by comparing the
average number of registrations in treated ZIP codes after a LEED-Pilot project is certified
to the average number of registrations before the LEED-Pilot project is completed. For

5-digit ZIP codes, we calculate this change without accounting for within-standard variation

15



Table 2: Local impact of LEED-Pilot on adoption

Pooled DD DDD

LEED-Pilot Project (8) 0.0367*** 0.0219"*  0.00747**
(0.00867)  (0.00498)  (0.00303)

Observations 3,125,760 3,125,760 3,125,760
Adj. R? 0.001 0.066 0.082
No. of Clusters 1,567 1,567 1,567

Notes: The dependent variable is the IHS transformation of quarterly,
privately-owned building registrations. Clustered standard errors re-
ported in parentheses. Standard errors for 5-Digit ZIP code estimates
are clustered by county. Estimated coefficients are rounded to the third
significant digit for comparison across models. Significance stars in the
table correspond to the following levels: * p < 0.10, ™ p < 0.05,
p < 0.01

as 0.052 and accounting for within-standard variation as 0.062.°

We compare the point estimates from the pooled and DD regressions to the average
change in adoption rates without accounting for within-standard variation, i.e. 0.052. From
the pooled estimation results, we estimate that LEED-Pilots account for 70.6% (=100% x
0.0367/0.052) of the change in adoption rates. The pooled estimate is statistically significant
at the 1% level. These results, however, cannot be interpreted as causal as they can be driven
by location and standard characteristics that can be confounded with the location and timing
of the LEED project. Because LEED-Pilot locations where not chosen randomly, we need
to account for location-specific time-invariant characteristics. After accounting for within
Z1P-standard and quarterly variation in the DD estimation, we find LEED-Pilots account
for 42.1% of the change in adoption rates. This implies that 28% of the change in adoption
rates is statistically indistinguishable from time-invariant heterogeneity within ZIP code and
standards and aggregate trends.

There is still variation in the location and timing of LEED-Pilots that can be attributed
to standard specific characteristics. Hence, in our next step, we exploit within-standard
variation to control for contemporaneous shocks that raise demand for green buildings across
each building standard. Exploiting this variation in the DDD estimation, we find LEED-
Pilot projects account for a smaller percentage of the change in adoption rates within treated
ZIP codes. Specifically, we estimate LEED-Pilot projects account for 12.0% (=100% x
0.00747/0.062) of the change in adoption rates in treated areas. The point estimate is
significant at the 5% level.

3These averages are calculated using the IHS transformed dependent variable to ensure these averages
are in the same units as the coeflicients in the estimated regression models.
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Altogether, our results suggest that the LEED-Pilot program is an example of P&D
projects that lead to increased adoption of the technology, in this case an increase in LEED
building registrations. We next present additional results to test our identifying assumption
while providing initial evidence of learning from LEED projects. We examine the role of
market size and firm experience in inducing changes in adoption rates before presenting

other robustness checks to illustrate the validity of our specifications and results.

5.1.1 Market size and firm experience

Our identification strategy relies on the assumption that no other factors affect adoption for
a given standard, in a given ZIP code at a particular time. To further test the validity of our
identifying assumption, we account for two other factors that could affect adoption within a
LEED standard. Specifically, we extend the DDD model in equation 3 to account for market
size and firm experience. The new estimating equation is given by

Rusq = Vasq + BPisq + 0Mosq + ¥ Basg + €25 (5)
where, as before, V., is shorthand for the fixed effect terms and P, is the binary treatment
indicator for when a LEED-Pilot was completed. The variable M. , measures the size of the
local green building market for a particular standard. We measure this as the installed-base
of LEED certified buildings within a building standard. The installed-base of a technol-
ogy is often used to approximate peer effects in models of technology diffusion, e.g., see
Bollinger and Gillingham (2012). In our setting, the installed-base of LEED buildings may
also capture the maturity of a local green building market. Because of this, we interpret the
coefficient # on the market size term as measuring the extent to which green buildings act
as strategic substitutes or complements. The variable B,,, measures the installed-base of
certified buildings owned by firms (or organizations) that register a building in a ZIP code,
standard, and quarter. In this sense, we are measuring the impact of certified buildings in
other markets on local registrations. The coefficient 1) on the firm experience term measures
how organizational learning affects adoption. We expect firm experience to have a positive
effect on adoption, i.e. we hypothesize that 1/3 > 0.

Table 3 reports the results of estimating equation 5 using OLS. The results are reported
in different columns to illustrate the impact of omitting market size and firm experience on
the point estimate for LEED-Pilot projects. For ease of comparison, Column (I) reports the
results of the baseline DDD estimate from Table 2.

Column (IT) reports the estimates for the effect of demonstration projects and market size

on green building adoption. By including market size, we find our estimate of the treatment
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Table 3: Impact of LEED-Pilot projects, market size, and firm experience on LEED adop-
tion

(D (D (1) (V)

LEED-Pilot Project (8) 0.00747** 0.00786***  0.00701**  0.00735"*
(0.00303)  (0.00285)  (0.00304)  (0.00287)

Local Market Size (6) 0.00550*** 0.00480***

(0.00186) (0.00185)

Firm Experience (¢) 0.00496***  0.00495***

(0.000122)  (0.000120)

Observations 3125760 3,125,760 3,125,760 3,125,760
Adj. R? 0.082 0.083 0.120 0.121
No. of Clusters 1,567 1,567 1,567 1,567

Notes: Reported coeflicients are estimated using the DDD model. The dependent variable
in each model is the THS transformation of quarterly, privately-owned registrations. Clus-
tered standard errors reported in parentheses and are clustered by counties. Estimated
coefficients are rounded to the third significant digit for comparison across models. Sig-
nificance stars in the table correspond to the following levels: * p < 0.10, ™ p < 0.05, ™"
p < 0.01

effect B = 0.00786 is statistically indistinguishable from the baseline model without market
size, implying investment responses to LEED-Pilots are independent of market size. Yet, the
point estimate does increase slightly in magnitude, and this increase suggests an underlying
negative association between market size and LEED-Pilots.

We estimate an additional, certified green building in a local market contributes to a
0.55% increase in local adoption rates. This effect is significant at the 1% level. The positive,
reduced-form parameter on market size 6 = 0.0055 indicates green buildings may serve
as strategic complements, indicating additional buildings might reduce overall investment
costs in local markets. This effect could be driven by peer-to-peer interactions or general
equilibrium effects, e.g. reduced input prices driven by entry of input-suppliers or specialized
contractors in local markets.

We also estimate the model including firm experience B,,, in Column (III). Again, we
find the estimated parameter for a LEED-Pilot project B = 0.00701 is not changed by
including additional covariates in the model. Conforming with our expectations, we find
that as firms gain more experience with green building construction, local adoption rates
increase. Specifically, we estimate that an additional certified building in another ZIP code
increases local adoption rates by 0.50%. Additionally, the estimated parameter on firm

experience 1) = 0.00496 suggests organizational learning is an important driver of adoption.

18



.04
L

Parameter Estimate
Parameter Estimate

.02
L

T T T T T T T T T T

55 4 3210123456 7 8 9 101112 65 4 3210123456 7 8 9 101112
Quarters Before and After Pilot Project Certification Quarters Before and After Pilot Project Certification
(a) Difference-in-differences (b) Difference-in-difference-in-differences

Figure 3: These figures visually inspect the parallel trend assumption for the difference-
in-differences (DD) and the difference-in-difference-differences (DDD) estimation for 5-Digit
ZIP codes, respectively. The solid line represents the point estimates for each quarter ob-
tained from the DD estimation; whereas, the dotted lines correspond to the 95% confidence
intervals of these point estimates.

Lastly, in Column (IV), we report the estimates including all covariates in the model.
Importantly, we find the estimated effect of LEED-Pilot projects on adoption rates B =
0.00735 is robust to the addition of both market size and firm experience in the model.
The positive, statistically coefficients 6 and @E may suggest both social and organizational
learning, respectively. While consistent with our conceptualization of LEED-Pilots and other
P&D programs as dual demonstration and pilot initiatives, we caution against interpretation

on this evidence alone, and provide further analysis of a learning mechanism in Section 6.

5.2 Robustness
5.2.1 Parallel Trend Assumption

For the DD estimates and DDD estimates presented in Table 2 to be valid estimates of
the causal effect of LEED-Pilot projects on adoption, the trend in adoption rates between
treated and control groups must be similar before LEED-Pilot projects were introduced,
conditional on observable characteristics. This parallel trend assumption ensures the control
group represents a valid counterfactual baseline to evaluate the outcomes of the treatment
group in the absence of a LEED-Pilot project.

We evaluate the validity of this assumption in the context of our estimation framework.
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To do this, we estimate the following specification:
stq = Vzsq + Z ﬁszsq + Ezsq (6)
k

In the specification above, we center the time period a LEED-Pilot is completed at £k = 0
and evaluate the impact of LEED-Pilots from k& = —6 quarters before and k£ = 12 quarters
following this certification date. We then compare the trend across treated and control
groups, before and after completion. Figure 3 plots the coefficients Bk for the DD and DDD
model. The horizontal axis measures the number of quarters preceding and following the
certification date of a LEED-Pilot. The vertical line centered at k = 0 corresponds to the
normalized time period a LEED-Pilot was completed. The vertical axis is the value of the
estimated parameter. The solid line corresponds to the point estimates for Bkk and the
dotted lines represent the 95% confidence intervals of these estimates.

Figure 3a plots the estimates from the DD model. For k£ < 0, the estimates are not statis-
tically distinguishable from 0. The panel suggests that there is not a statistical difference in
pre-treatment adoption trends between treated and control regions under a 95% confidence
level. Further, in the step from & = 0 to £ = 1, we find a statistically significant increase
in adoption rates in treated regions, suggesting the completion of LEED-Pilot projects do
have a positive impact on adoption decisions. Similarly, Figure 3b shows for the DDD model
that adoption rates were not statistically different between treated and control groups in the
pre-treatment period. At k = 0, we observe a statistically significant increase in adoption
rates in the treated group, again suggesting the presence of a LEED-Pilot project increases

local adoption.

5.2.2 3-digit ZIP code analysis

We have so far assumed the appropriate boundaries of regional real estate markets are best
approximated by 5-digit ZIP codes. In this section, we test the robustness of our main results
by re-defining the boundary of a regional real estate market. This robustness test also helps
us to re-examine the geographic scope of spillovers from LEED-Pilots. To this end, we
estimate the DDD model using 3-digit ZIP codes to approximate the boundaries of regional
real estate markets. We find re-defining geographic boundaries changes the estimated impact
of LEED-Pilots, in terms of the contribution of a LEED-Pilot project to the change in local
adoption rates, but the overall effect is still positive and statistically significant.

Similar to the presentation of the main results in section 5.1, we compare the point
estimates for the treatment effect to the change in average adoption rates when a LEED-

Pilot is introduced in treated locations. After accounting for within-standard variation,
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Table 4: Impact of LEED-Pilot projects in 3-Digit ZIP Codes

@ (1) (111) (IV)
LEED-Pilot Project () 0.0163***  0.0303***  0.0165*  0.0208***
(0.00919)  (0.00927)  (0.00905)  (0.00906)

Market Size () 0.00622*** 0.00590***
(0.000892) (0.000889)
Firm Experience (v) 0.00384**  0.00382***
(0.000196) (0.000196)
Observations 319,104 319,104 319,104 319,104
Adj. R? 0.374 0.378 0.402 0.406
No. of Clusters 831 831 831 831

Notes: The dependent variable is the THS transformation of quarterly, privately-owned
building registrations. Clustered standard errors reported in parentheses. Standard errors
for 3-Digit ZIP code estimates are clustered by 3-Digit ZIP codes. Estimated coefficients
are rounded to the third significant digit for comparison across models. Significance stars
in the table correspond to the following levels: ~ p < 0.10, ™ p < 0.05, ™" p < 0.01

the average change in adoption rates is 0.326. Column (I) presents the results from the
DDD estimation using only the LEED-Pilot indicator. We estimate LEED-Pilots account
for around 5% (=100% 0.0163/0.326) of the average change in adoption rates in treated
3-digit ZIP codes.

Column (II) reports the results of the estimation when including only market size. By
including market size, we find the point estimate for the treatment effect approximately
doubles from the estimate presented in Column (I), again indicating a negative association
between market size and P&D projects; however, the estimate is statistically indistinguish-
able from the estimate in Column (I) at the 5% level. We estimate market size has a positive,
statistically significant impact 6 = 0.00622 on adoption rates, suggesting as before that green
building investments are complementary. All else constant, we find an additional certified
building is expected to increase local adoption rates by 0.6%.

Column (IIT) reports the estimation results when including firm experience. The esti-
mated treatment effect B = 0.0165 is unaffected by including firm experience, and, again,
we estimate firm experience 1& = 0.00384 is expected to increase adoption rates. Lastly,
Column (IV) reports the results of the full-specification. After including market size and
firm experience, we estimate LEED-Pilot projects account for approximately 9.1% of the
increase in adoption rates in treated areas. Further, the point estimates for market size and

firm experience remain positive and statistically significant at the 1% level.

21



Table 5: Robustness check using the quarters after a LEED-Pilot is certified

(D (IT) (I11) (IV)

Quarters After (8)  0.000636™* 0.000529*** 0.000594**  0.000501**
(0.000240)  (0.000205)  (0.000236) (0.000203)

Market Size () 0.00544** 0.00474***

(0.00185) (0.00184)

Firm Experience (¢) 0.00496**  0.00495***

(0.000122)  (0.000120)

Observations 3,125,760 3,125,760 3,125,760  3,125,7604
Adj. R? 0.082 0.083 0.120 0.121
No. of Clusters 1,567 1,567 1,567 1,567

Notes: The dependent variable is the IHS transformation of quarterly, privately-owned
building registrations. The treatment variable measures the number of quarters since a
pilot project received certification. All specifications are estimated using the DDD model.
Clustered standard errors reported in parentheses. The average number of quarters after
a pilot project receives certification is 14.34 for 5-Digit ZIP codes. Standard errors for
5-Digit ZIP code estimates are clustered by county. Estimated coefficients are rounded
to the third significant digit for comparison across models. Significance stars in the table
correspond to the following levels: * p < 0.10, ™ p < 0.05, ™" p < 0.01

5.2.3 Continuous Treatment

The main results of this paper are presented as a step change in adoption rates because the
treatment covariate is coded as a binary variable. In contrast, we can also account for trend
changes in adoption rates using a continuous measure of treatment. In this subsection, we
test for trend changes in the rate of adoption by measuring the treatment variable as the
number of quarters since a completion of a LEED-Pilot. Formally, we estimate the following

model

stq = Vtzsq + 5 Z PZS’T + eMzsq + szsq + Ezsq (7)

7<q

The results of the estimation are reported in Table 5. As before, we present the results
in different columns, where each column includes a different set of covariates. Further, the
results are only reported for 5-digit ZIP codes. Column (I) presents the results using only the
continuous measure of treatment. Subsequent columns introduce additional covariates in the
model, namely market size and firm experience. Point estimates related to these covariates
are nearly identical to the estimates presented in section 5.2.2; we focus our discussion of
this robustness test exclusively on the treatment effect.

The estimates of the treatment effect ranges from 3 = 0.000501 to 3 = 0.000636, implying
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adoption rates increase by these magnitudes at a quarterly frequency. The average number
of quarters since a completion of a LEED-Pilot is approximately 14 quarters. Evaluating the
treatment effect at this average, implies the effect of LEED-Pilots projects on local adoption
ranges from 0.00701 to 0.00890. Again, by comparing these point estimates to the average
change in adoption rates (0.062), we find LEED-Pilot projects contribute to an additional
11-14% in adoption rates. Overall, these estimates are consistent with the 12% baseline

effect from the main specification.

5.2.4 Alternative transformations of dependent variable

The baseline specification uses the IHS transformation of privately-owned building regis-
trations. In this section, we test for the impact of LEED-Pilot projects using alternative
transformations of the dependent variable. Table 6 presents the results of estimating the

DDD model using different transformations of the dependent variable.

Table 6: Estimated impact of LEED-Pilot projects with alternative transformations

THS(R.sy)  Rusq  In(Rugg+1)

LEED-Pilot Project (8) 0.00735" 0.00891**  0.00573**
(0.00287)  (0.00398)  (0.00222)

Observations 3,125,760 3,125,760 3,125,760
Adj. R? 0.121 0.1103 0.121
No. of Clusters 1,567 1,567 1,567

Notes: Clustered standard errors reported in parentheses. Standard errors
for 5-Digit ZIP code estimates are clustered by county. Estimated coefficients
are rounded to the third significant digit for comparison across models. Each
model includes the market size and firm experience covariates. Significance
stars in the table correspond to the following levels: * p < 0.10, * p < 0.05,
T p < 0.01

Each estimation includes the market size M. , and firm experience B.,, covariates, and
the estimated coefficients for these variables are consistent with the results presented in 3.
Hence, we only present the results for the treatment effect. We estimate two additional
models using the level of privately-owned building registrations R, and an alternative log-
transformation. These estimates are presented in the second and third columns of Table
6, respectively. We follow the same procedure from earlier sections and compare the point
estimates to the average change in adoption rates for treated markets. We calculate the
average change in adoption rates as 0.080 for the level variable and 0.048 for alternative

log-transformed variable.
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We find the point estimates for the effect of LEED-Pilot projects on adoption using
alternative transformations of privately-owned builindg registrations are consistent with the
main results. Specifically, comparing the point estimates to the average change in adoption
rates in treated markets, we find LEED-Pilot projects are estimated to increase adoption
rates by 11.1% using the level of building registrations. Similarly, we find adoption rates
increase by 12.0% using the alternative log-transformation in the third column. Overall,
both results are consistent with the baseline treatment effect of 12% discussed in section
5.1.

6 Is adoption driven by learning or herding?

The main results presented in Table 2 suggest LEED-Pilots have the effect of increasing
adoption of green building technologies and practices. In this sense, the results are con-
sistent with our hypothesis that P&D projects induce social and organizational learning
to affect local demand for green building technologies and practices. However, the results
presented above do not provide evidence for the mechanism of this effect. Following the
conceptual framework presented in Section 2, we investigate the possibility that this effect
is due to herding, rather than learning. The analysis that follows attempts to disentangle
these mechanisms driving the main results, and collectively informs our understanding of
the effectiveness of P&D programs.

Consider the possibility that the estimated increase in adoption may be driven by herding
behavior rather than learning or knowledge spillovers. If observed increased uptake is due to
herding, building owners may determine that P&D project stakeholders know more about
the performance value of green building adoption and, consequently, imitate or conform
to the actions taken by P&D stakeholders (Banerjee 1992; Bikhchandani, Hirshleifer, and
Welch 1992).

In the herding model, subsequent adopters react to the presence of new certifications
and mimic this behavior, regardless of the performance characteristics of the P&D project.
An extreme case may result in lock-in on sub-optimal technologies, rather than the iterative
improvement of practices achieved through learning. By comparison, if the project generates
knowledge spillovers, impacted market players integrate new information in the decision to
invest in the new technology (Kotchen 2017), and in some cases are able to adopt at lower
costs. Reductions in costs may arise from, for example, the creation of new value chains in
local markets, where new social and business ties between building owners, developers, and

contractors reduce transaction costs for subsequent adopters.
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6.1 Evidence of Iterative Learning

During the deployment phase, dozens of P&D projects may be built. Nemet, Zipperer, and
Kraus (2018) suggests that sequentially executing P&D projects allows innovators to build
from the successes and failures of previous projects, and thus improving the technology’s
value in each iteration. Consistent with this perspective, we assume that later LEED-
Pilot projects are more refined than the earlier projects and have improved performance
characteristics. Leveraging the difference between the registrations of the early versus later
LEED-Pilots, we attempt to identify a learning effect that drives the subsequent uptake of
LEED buildings.

We use the sequential timing of LEED-Pilots to determine if adoption is driven by herd-
ing or learning about performance. If adoption is driven by herding behavior, then the value
or performance characteristics of later projects should have very little impact on adoption.
Herding would produce no difference between the effect of earlier versus later LEED-Pilots
on adoption rates. In contrast, if adoption is driven by knowledge spillovers and learning
about the performance of the technology, we should observe that later LEED-Pilots increase
adoption rates more than earlier projects. In both cases, we assume that the performance
of technologies and practices used in LEED-Pilots improves with each iteration. We ar-
gue that rival interpretations of trends are addressed through our DDD framework in the
interpretation of these results.

To test these hypotheses, we divide the LEED-Pilots into 5 bins based on the day the
project registered with the USGBC. The registration date of the LEED-Pilot project cor-
responds to when a project registered with the USGBC and is the appropriate measure to
use when trying to measure the time when a LEED-Pilot enters the program. The first bin
corresponds to the first 20% of registered LEED-Pilots, with each subsequent bin represent-
ing the next quintile. We segment the bins based on percentages instead of total projects to
make estimates comparable across standards that have different numbers of projects. Uti-
lizing the empirical strategy as before, we examine differences in the trajectory of uptake of
a particular LEED standard at the ZIP code level, based on the timing of the LEED-Pilots.
We then estimate the following model using both the DD and DDD framework

5
stq = Vtzsq + Z Bipizsq + Ezsq (8)

i=1
where the subscript ¢ corresponds to the bins used for segmenting the timing of the LEED-
Pilot projects, and P,.,, is a dummy variable equal to 1 if a LEED- Pilot project is in the
tth bin and has registered by quarter q.

Figure 4 presents the estimated coefficients from the model using the registration date
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Figure 4: Effect of LEED-Pilot timing on adoption

of the LEED-Pilot projects. We present the estimated coefficients for each of the bins with
their respective 90%, 95%, and 99% confidence intervals. For the purpose of comparison,
we also estimate the same model using the DD framework. In both the DD and DDD
estimations, there appears to be an increase in the point estimates for each iteration of
LEED-Pilot projects. For the DDD estimation, we estimate that regions with the earliest
registered LEED-Pilot projects experienced a statistically significant decline B = —0.00926
in adoption rates relative to control regions, significant at the 5% level.

However, in subsequent iterations, we estimate a positive and statistically significant
effect of LEED-Pilots on adoption. Notably, for the third and fourth bins, we estimate
regions with these projects experienced an increase in adoption rates Bg = 0.00748 and
B4 = 0.00921, both estimates being significant at the 10% level. The largest estimated
impact, however, is associated with the final 20% of LEED-Pilot projects registering within
a standard. We estimate these projects have the largest effect on adoption ﬁ5 = 0.0296,
significant at the 1% level.

Although we cannot conclude that these estimates are statistically different from each
other, the results of this estimation seem to suggest a process where building owners are
learning about the performance characteristics of the LEED standard from LEED-Pilots.
Later LEED-Pilot projects appear to have more impact on local adoption of new standards
than do earlier projects. The strongest evidence in support of this conclusion comes from
the estimated effects of the earliest Bl = —0.00926 and the latest 55 = 0.0296 projects. The
negative point estimate for the first iteration of projects suggests these projects had little

effect on resolving the technical uncertainty of LEED certification and may have actually
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stalled diffusion of the standard in these areas. That is, the earliest LEED-Pilot projects
(which may face implementation challenges) have the smallest effect on subsequent adoption
and may have inhibited future uptake of the new standard. In contrast, the large point
estimate for the last quintile of projects suggests that the iterative improvements within the
LEED-Pilot program led to technical improvements to the new LEED standards. These
more refined projects with improved performance characteristics increased local adoption by
the largest magnitudes.

An alternative explanation for these results may be that market momentum is driving the
increasing impact of LEED-Pilot projects rather than learning externalities. Recall that our
DDD estimation controls for time-varying fluctuations within standards, such as changes
in the prices of component technologies or general advertising and promotion of the new
standard by the USGBC. To the extent market momentum is driven by these effects, the
DDD estimation should control for these changes. On the other hand, momentum may vary
at the regional level, and the estimates from the DDD model would be picking up these
effects. However, this would require that the momentum behind a new standard differs sub-
stantially between treated and control regions. Because of this, we conduct additional tests

to determine whether the change in adoption is driven by herding or learning externalities.

6.2 Evidence of Reduced Adoption Costs

In this section, we provide additional evidence supporting the claim that the change in
local adoption rates following the completion of a P&D project is driven by learning rather
than herding behavior. Specifically, we evaluate the impact of LEED-Pilots on the costs
of achieving LEED certification to directly test this claim. If adoption is the direct result
of herding behavior, and public opinion is valued more than private beliefs, then we would
expect LEED-Pilots to have no effect on the costs of LEED certification. In contrast, if P&D
projects increase adoption through a learning process, then we should observe a reduction in
the costs of achieving LEED certification following the completion of a LEED-Pilot project.

However, because we do not directly observe the financial costs of certification, we need
a suitable proxy for these costs to test our claim above. To this end, we use the number of
days D elapsed between the day a building is registered with the USGBC and the day the
building is awarded certification. Longer project completion times may proxy higher rental
costs of capital equipment, labor costs of workers and contractors, as well as construction
permitting costs.

Conducting this analysis requires a change in the unit of analysis. Rather than evaluating

the aggregate adoption rates in a geographic region, we observe a building b managed by an
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organization o. As before, we differentiate buildings by LEED standard s and the quarter-
year ¢ the building was registered with the USGBC. To measure project implementation time,
we must limit the sample to projects that reach certification, and then calculate the number
of days between registration, or intent to implement the new technology, and certification,
or completed adoption. We also restrict the sample to include organizations which have at
least 5 buildings that have achieved certification. Lastly, we only consider organizations that
have at least 1 project before exposure to treatment. That is, if an organization does not
register buildings over the “pre” period, adoption times for those organizations cannot be
compared before and after the treatment. Overall, there are 329 organizations and 5,272
buildings in the restricted sample.

We estimate the following model using OLS

Dbosq - \Ijosq + BEosq + nBoq + X;0 + Ubosq (9)

where W5, = (o + Ks + T4 + Wos + psq 15 shorthand notation for the fixed effect terms in
the model. The treatment dummy F,s, measures whether an organization o is exposed to a
LEED-Pilot by time g. We assume an organization is exposed to a LEED-Pilot project if the
organization registers a building in the same 5-digit ZIP code in which a LEED-Pilot project
is completed. As before, we differentiate this exposure at the level of a particular LEED
standard s, meaning exposure (treatment) is defined within a standard. The treatment
dummy FE,, is equal to 0 if an organization has not registered a building in the same 5-digit
ZIP code as a LEED-Pilot and equal to 1 after a building is registered in the same 5-digit
ZIP code of a completed LEED-Pilot.

Equation 9 also controls for other factors that may have influenced the costs of the LEED
certification process. For instance, organizational learning may have contributed to reduced
certification costs if organizations are capable of utilizing previous building experience into
new projects. We measure a firm’s previous building experience using the installed-base
B,, of an organization’s buildings that have achieved LEED certification. The parameter 7
captures the effect of this experience on the costs of achieving LEED certification. We also
include building level controls X; to account for building-specific heterogeneity that may
impact project delays. The vector X; includes controls for the number of credits (Points
Achieved) awarded to a building and the gross square footage (Square Footage) of the build-
ing. Based on the specification in equation 9, the main parameter of interest 5 corresponds
to the DD estimator, similar to the estimator described in equation 1.* Table 7 codifies the

results of the estimation. Column (I) corresponds to the estimation that only includes the

4Using the same notation as before, where o is a treated organization and o’ is a control organization,
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treatment dummy, Column (II) includes organizational experience, Column (III) includes

building level controls, and Column (IV) includes variation from all controls.

Table 7: Effect of LEED-Pilot on Building Construction Time

(D (IT) (I11) (V)

Exposed to LEED-Pilot -0.117** -0.0995**  -0.112** -0.0942*
(0.0492)  (0.0502)  (0.0499) (0.0504)

Points Achieved 0.00613** 0.00575*
(0.00250) (0.00232)
Square Footage (Log) 0.0526™* 0.0553**
(0.0208) (0.0206)
Firm Experience -0.00391*  -0.00383**
(0.00186)  (0.00179)
No. of Observations 5,272 5,265 5,272 5,265
Adjusted R? 0.714 0.719 0.715 0.721

Notes: Cluster-robust standard errors are reported in parentheses. Standard errors
are clustered on organizations with 329 clusters. The dependent variable is the natural
logarithm of project completion time. Project completion times are measured as the
number of days between the registration and certification date of an individual building.
The average project completion time in the sample is 596.85 days and the median
completion time is 477 days. In Column (II) and (IV), 7 observations are dropped
because of missing building size data. Significance stars in the table correspond to the
following levels: * p < 0.1 ** p < 0.05 *** p < 0.01

In Column (I), we estimate a negative and statistically significant effect of exposure to a
LEED-Pilot project. We estimate that exposure induces an 11% reduction in the number of
days required to certify a building with the USGBC. This estimate is robust to inclusion of the
organizational experience variable in Column (II). We find organizational experience plays an
important role in driving adoption, particularly through the cost channel. In particular, we
estimate an additional certified building reduces the number of days to achieve certification
by around 0.3%.

Column (IIT) includes building-level controls. We find the point estimate for exposure
decreases slightly but remains negative and statistically significant at the 5% level. Further,
we find the amount of technologies and practices implemented in a building, as measured by

the number of credits, increases the time to achieve certification. Specifically, an additional

the g in the equation above is similar to

6 = (@os,post - @os,pre) - (@o/s,post - ﬁo’s,pre) (10)
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10 credits is associated with an increase of 6% in the certification timeframe. Lastly, we
find that larger buildings require more time, on average, to achieve certification. Column
(IV) includes all covariates in the model. We find the estimated effect of exposure to P&D
projects retains its sign and statistical significance.

These results suggest that P&Ds reduce local costs of adoption, consistent with the ex-
pectation that demonstrations foster formation of supplier and knowledge sharing networks.
This, combined with results in Section 6.1, suggest learning occurs from P&Ds, and the
observed effect is not purely the result of herding behavior. Notably, these estimates are
conservative with respect to a key assumption: that effects are highly localized. Though
there is some evidence that this is true (see Section 5.2.3), organizational learning from

participating in LEED-Pilots may facilitate adoption at other (non-local) establishments.

7 Conclusion

Pilot and demonstration (P&D) programs aim to catalyze early diffusion of new technologies.
In this paper, we define pilot projects as those seeking to provide internal learning, while
demonstration projects diffuse knowledge outwards to external parties. Using data on adop-
tion of green building technologies provided by the USGBC’s LEED-Pilot program, we em-
pirically test for the impact of P&D projects in the process of technology deployment. Using
a difference-in-differences-in-differences empirical strategy that exploits quasi-experimental
variation across time, geography, and certification typologies, we find that local adoption
rates of the LEED green building standard increases between 5% and 12% following the
completion of a LEED-Pilot project, controlling for other temporal, spatial, and industry
trends.

These findings are important in understanding the promotion of beneficial technologies
and market transformation. Due to a variety of market failures and barriers, the adoption
of potentially effective and efficient technologies is not guaranteed. P&D projects can help
lower search costs, procurement costs, and other transaction costs associated with the adop-
tion of new technologies, as well as help promote improved understanding of the benefits
and costs of new technologies. Using a quasi-experimental design, our evidence identifies
an aggregate causal effect of P&D projects on the adoption of innovative energy and en-
vironmental technologies. By extending this research, we are able to examine evidence of
mechanisms driving these effects to deduce lessons for policy design.

We find support for several mechanisms driving the adoption of energy and environ-
mental technologies. First, and most prominently, we find evidence for learning driving the

observed increase uptake of green building strategies and technologies. This evidence comes
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from several sources: we find evidence for increased adoption based on past firm experience
with green building technologies; we find evidence for decreased construction times if a firm
has been exposed to a P&D project. Together, these findings provide strong support for
learning outcomes. These findings, in addition to evidence that exposure to a P&D project
increases adoption in local markets, do not preclude the possibility that some increased up-
take is due to herding behavior or mimicry. Rather, elements of our results suggest that
firms differentiate successful experiments from unsuccessful ones, learning from those more
effectively implemented. We find that earlier, more experimental P&D projects have less
impact than later, more mature, projects. Moreover, as the number of LEED-Pilot projects
increases in a market, the faster the completion time is between registration and certification
of a building; suggesting a mechanism where learning spillovers to non-participant projects.
We also identify a within firm learning channel, where firms with establishments exposed to
LEED-Pilot projects, later implement projects in different locations, expanding the reach of
LEED-Pilots beyond localized markets.

Our estimates are robust to a large number of threats to validity. The DDD estimates
provide a robust causal identification strategy that controls for multiple sources of exoge-
nous variation, including secular trends, geographic and market trends, and unobservable
differences in geographic suitability for different certification vintages. Our DDD strategy
addresses a challenge of identification that is persistent through much of the literature on
information, technology, and policy spillovers, where adoption decisions cannot be distinctly
or separately identified from other concurrent trends or influences. The finely grained data
that involved individual building locations, as well as rich information about building con-
struction date, construction duration, and certification vintages allowed for a sophisticated
identification strategy and unique research context that lent itself to a robust identification
strategy and a variety of research extensions that help shed light on the causal pathways for
our findings.

The success of P&D programs in the LEED context may reflect on specific strategic
choices made by the USGBC when designing and implementing the LEED program. First,
USGBC identifies and works with market leaders willing to undertake financial risks in ex-
change for marketing benefits. The market premium provided by being an early adopter of
LEED exceeds the risks for some companies. This market premium accrues by signaling em-
ployees, customers, investors, and the community that the firm is innovative and embodies
values of sustainability. USGBC coordinates with firms engaging in P&D projects through-
out the process, essentially providing technical assistance in exchange for undertaking a risky
pilot project. By pursuing numerous P&D projects, USGBC ensures the adequate devel-

opment of new standards and spurs the dissemination of the new standard across industry.
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Together, these efforts highlight ways to incentivize the voluntary undertaking of risky P&D
projects to help seed market transformation.

The LEED-Pilot program highlights a set of best practices that lead to increased uptake
of energy and environmental technologies, and suggests a set of principles that can be lever-
aged to help disseminate the adoption of advanced technology. By providing some technical
assistance and a marketing benefit in exchange for taking on a risky P&D project, USGBC
encourages the early adoption of technologies and the sharing of knowledge associated with
these experiments. Together, these reduce the costs for future adopters to pursue advanced
energy and environmental technologies by promoting learning about the costs and benefits
of emergent technologies and reducing the costs associated with procuring and implementing
new energy and environmental technologies. Moreover, the USGBC may be able to strate-
gically select or recruit early adopters, favoring those with high market status or visibility,
in order to facilitate the broadest impact on subsequent adoption. In a world where the
rapid diffusion of advanced technologies may be vital to reducing environmental impact, this
study highlights the potential role of information programs in spurring investment that can

promote broader market transformation.
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