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Abstract: We analyze the impact of short-run and long-run earthquake risk
on Japanese property prices. We exploit a rich panel data set of property
characteristics, ward attractiveness information, macroeconomic variables,
seismic hazard data, and historical earthquake occurrences, supplemented
with short-run earthquake probabilities that we generate from a seismic ex-
citation model. We design a hedonic property price model that allows for
probability weighting, employ a multivariate error components structure, and
develop associated maximum likelihood estimation and variance computation
procedures. We find that distorted short-run and long-run earthquake proba-
bilities have a significantly negative impact on property prices. Our approach
enables us to identify the total compensation for earthquake risk embedded
in property prices and to decompose this into pieces stemming from short-run
and long-run risk, and to further decompose this into objective and distorted
risk components.
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The flow of the river is ceaseless
and its water is never the same.

The bubbles that float in the pools,
now vanishing, now forming,

are not of long duration:
so in the world are man and his dwellings.

Kamo no Chomei (1153–1216)

1 Introduction

After having witnessed a number of natural and personal catastrophes, in
particular the great earthquake of 1185, the Japanese author and poet Kamo
no Chomei decided to live as a hermit, in the forest outside the capital
Kyoto. His famous essay Hojoki (‘An Account of My Hut’) opens with the
displayed poetic lines (in the translation of Donald Keene), in which he puts
the catastrophes in Buddhist perspective. More specifically, the essay argues
that when a catastrophe strikes, one tends to reflect on the impermanence of
property and the evil and futility of attachment — at least, in the short-run.
In the long-run, however, one forgets these views and goes back to life as
before.

In the spirit of Chomei’s essay but with modern economics and statis-
tics of risk, this paper analyzes the subjective evaluation of both short-run
and long-run catastrophic risk, earthquake risk in particular, embedded in
Japanese property prices.

It is well-known that earthquakes tend to occur in clusters rather than
in isolation. These seismic clusters may take the form of foreshocks and
aftershocks anticipating and following a major earthquake or of a collection
of major earthquakes triggering one another by causing frictions that put
strain on neighboring faults. There is therefore objective predictive content
embedded in the occurrence of earthquakes. This phenomenon is known as
seismic excitation and there exists a large literature in statistics aimed at
capturing it.

In a different strand of the literature in economics, several papers analyze
the impact of natural catastrophes on property prices. Most commonly, this
literature incorporates the prevailing binary state of the world, depending
on whether or not a catastrophe has occurred, into a hedonic house price
model of the Rosen (1974) type, which has become the benchmark model
in analyzing property prices. Within a typical hedonic price model, the
characteristics of a property are viewed as detachable components that each
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contribute to a part of the property price. The selection of components range
from traditional house attributes such as square footage, location and build-
ing age, to external factors such as macroeconomic effects. The negative
effect coming from hazardous environmental events, such as flood, hurricane
and earthquake, has been addressed by various researchers; see, among oth-
ers, Brookshire et al. (1985), Kawawaki and Ota (1996), Beron et al. (1997),
Yamaga et al. (2002), Bin and Polasky (2004), Nakagawa et al. (2007, 2009),
Daniel et al. (2009), Naoi et al. (2009), Gu et al. (2011), Bin and Landry
(2013), Hanaoka et al. (2015), and Hidano et al. (2015).

In recent years, a large body of literature has documented empirically
that people do typically not treat objectively given probabilities linearly, but
rather tend to overweight small probability events and underweight large
probability events. This is particularly relevant when evaluating catastrophic
events that are often of a low-probability high-impact nature. Various mod-
ern theories of decision under risk, such as rank-dependent utility theory
and prospect theory, feature a probability weighting function that ‘distorts’
objective probabilities.

We contribute to this literature by introducing into a hedonic price model
an objective measure of seismic excitation, next to a more conventional mea-
sure of long-run earthquake risk, while allowing for probability weighting in
the spirit of the non-expected utility theories of rank-dependent utility and
prospect theory. We use a rich panel data set containing property charac-
teristics, ward attractiveness information, macroeconomic variables, seismic
hazard data, and historical earthquake occurrences. We design a hedonic
price model with a multivariate error component structure (Baltagi, 1980,
2008; Magnus, 1982) for which we develop associated maximum likelihood
estimation and variance computation procedures. By exploiting the matrix
form of the error components, we are able to estimate the model while pool-
ing properties of different types together, in spite of the very large dimension
of the variance matrix and the fact that each property type corresponds
to different features and total price levels. Our approach allows to isolate
the total compensation for earthquake risk embedded in Japanese property
prices, and to decompose this into pieces stemming from short-run risk and
long-run risk, and a further decomposition into objective and distorted risk
components.

We can summarize our main findings as follows. First, we find that objec-
tive long-run earthquake risk has a significant negative impact on property
prices, and increasingly so at higher risk levels. Second, given that long-run
risk matters for property prices, we find that the additional impact of objec-
tive short-run earthquake risk on property prices, while estimated at negative
values, is not significantly different from zero. Upon allowing for probabil-
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ity weighting, however, the distorted short-run earthquake probabilities do
have a significantly negative effect on property prices. Third, the probability
weighting function for short-run earthquake risk is found to be S-shaped,
thus underweighting small probabilities and overweighting larger probabili-
ties, contrary to the inverse-S shaped probability weighting function found
in many experiments. This remarkable finding may be explained by the fact
that the background arrival rate of earthquakes is positive rather than zero,
in particular in Tokyo where the short-run earthquake probabilities never
drop below 35% in the period that we analyze. Therefore, people may tend
to evaluate and overweight temporary deviations of the short-run earthquake
probabilities from the background seismicity caused by seismic excitation not
with respect to zero but with respect to a positive reference probability level.
In an extension of our base model, we also analyze probability distortions of
long-run time-invariant earthquake probabilities. In this case, we find that
small probabilities tend to be overweighted and large probabilities tend to
be underweighted, in accordance with conventional wisdom.

Most of the studies on the interplay between property prices and envi-
ronmental hazards investigate the risks of floods or earthquakes in the USA
or Japan. In the case of the USA, Brookshire et al. (1985) analyze a hedonic
house price model in an expected utility framework, examine self-insurance
for earthquake hazards in Los Angeles and San Francisco, and show that buy-
ers pay less for houses within a relatively risky area if they possess adequate
information about earthquake hazards. Bin and Polasky (2004) estimate
and compare the effects of flood hazards on property prices before and after
Hurricane Floyd (the 1999 flooding in North Carolina), and show that the
market price of a property located within a flood plain gets discounted by
more than a property located outside the flood plain. Re-examining these
findings, Bin and Landry (2013) estimate hedonic property prices for the
same location with two major flooding events, and show that the implicit
risk premia disappear rapidly.

In the case of Japan, Nakagawa et al. (2009), using the 1998 Tokyo hazard
map, show strong negative impacts of earthquake risks on land prices. Gu et
al. (2011), using an updated Tokyo hazard map, find that in previously safe
areas, a decrease in risk rankings (even more safety) has a positive impact on
relative land prices, while in previously dangerous areas, an increase in risk
rankings (even more risk) has a negative effect. Naoi et al. (2009) estimate
individuals’ valuation of earthquake risk, based on nation-wide panel data of
earthquake hazard information and records of observed earthquakes. They
show that after a big earthquake people discount house prices and house
rents within the earthquake area. Hidano et al. (2015) examine the effect
of seismic hazard risk information on properties in Tokyo, and find that the
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price of properties in low-risk zones is higher than the prices in high-risk
zones, but that for new more earthquake-resistant properties the influence of
seismic hazard risk information is limited.

We also mention two survey-data studies on how risk preferences of house-
holds have changed after the Tohoku earthquake (the Great East Japan
earthquake) in 2011. Naoi et al. (2012) find that although respondents
seemed to be more prepared for natural disasters after the Tohoku experience,
actual (costly) mitigation activities depend on household income. Hanaoka
et al. (2015) examine whether risk preferences of men and women have
changed, and if so whether they changed in a different way, after the To-
hoku earthquake. There is some evidence that men have become more risk
tolerant, while women have become more risk averse. Finally, our work is
also related to the financial econometrics literature on the estimation of risk
and financial excitation premia embedded in asset and derivative prices; see
Aı̈t-Sahalia et al. (2014, 2015), Bauer and Kramer (2016), Boswijk et al.
(2016), and Sperna Weiland et al. (2018).

The rest of this paper proceeds as follows. Section 2 explains our treat-
ment of objective seismic excitation and of probability weighting. Section 3
describes the data set. Section 4 lays out our hedonic house price model with
multivariate error components and Section 5 develops the procedures for es-
timation. Section 6 presents the estimation results. Section 7 analyzes the
influence of each component to the total property prices and calculates the
implied premia for earthquake risk. Section 8 discusses the robustness of our
estimation results. Section 9 concludes. Supplementary material, including
a detailed data description, is contained in an online appendix; see Ikefuji et
al. (2018).

2 Seismic Excitation and Probability

Weighting

In this section we consider short-run earthquake probabilities as objective
measures of seismic excitation, and develop a regression design that allows
for probability weighting.

2.1 Short-Run Earthquake Probabilities

Our approach estimates an Epidemic Type Aftershock Sequence (ETAS)
model and generates a panel of model-implied short-run earthquakes prob-
abilities which vary per quarter and per city to be used in our regression
design. These probabilities can be viewed as objective measures of short-run
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earthquake risk, summarizing publicly available information per time period
and per city.

The occurrence of major earthquakes have served previously in hedonic
price models with regression discontinuity design as natural exogenous events
to elicit causal pricing effects. Limitations of this conventional approach
include the somewhat rudimentary binary nature of this treatment, which
does not reflect the multiplicity of the events, the time elapsed since the
last event, and the severity of the events. By contrast, our approach relies
on a continuous-time predictive earthquake intensity that depends on all
previous earthquakes, with recent ones being more important than older
ones, and explicitly accounts for the severity of the events. Furthermore, the
earthquake intensity can be translated into objective short-run probabilities
enabling us to analyze probability weighting.

The ETAS model was introduced by Ogata (1988) and has since been
widely used to capture the quiescence and activation of seismic dynamics.
The basic idea of the model is that each earthquake can trigger a sequence
of aftershocks like ‘epidemics’ in that the occurrence of an earthquake makes
future earthquakes more likely and that the impact of the trigger event dimin-
ishes over time (and distance). Despite the existence of several space-time
extensions, we choose the temporal version of the ETAS model as described
in the following, which we estimate separately for each of the five cities. Be-
cause we consider five cities this treatment is natural and simpler than first
estimating a space-time version to a large area that covers all five cities and
next isolating the city effects.

Formally, the ETAS model is a path-dependent marked point process
and a special case of a Hawkes self-exciting process. Given observations of
earthquake occurrences at times t1, t2, . . . , tn over an interval [0, T ] (T ≥ tn),
the associated counting processNt is defined asNt =

∑n
i=1 1ti≤t. Denoting by

Ft the information filtration up to time t, the corresponding left-continuous
Ft-conditional jump intensity process λt describes the mean jump rate per
unit of time,

λt = λ(t|Ft) = lim
h↓0

1

h
Pr [Nt+h −Nt > 0|Ft] .

In the temporal ETAS model, the conditional intensity function may be
written as

λt = λ∞ +
∑
ti<t

c(mi,mc)g(t− ti),

where λ∞ > 0 (measured in number of jumps per time unit) is the background
seismicity, g(t− ti) is the aftershock decay (i.e., time response) function, and
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the weight assigned to the aftershock decay is a function c(mi,mc) of the
magnitude of the earthquake mi and a cut-off (i.e., threshold) magnitude
mc. Thus, the earthquake intensity depends on the background intensity
and a weighted sum of all aftershock decays, where the sum is taken over all
earthquakes that have occurred before time t. (In the ETAS model, g takes
the form of a so-called modified Omori law and c takes an exponential form.)

We estimate the ETAS model for each of the five cities that we consider,
based on the earthquake catalog of five areas covering the five cities, over the
period January 1, 1970, to December 31, 2015. Next, the estimated intensi-
ties are used to generate by simulation 90-days probabilities of an earthquake
exceeding a magnitude threshold of 5.5, for each city. Our simulation method
follows Ogata (1981). Further details about the parameterization, estimation
and simulation within the ETAS model are contained in online supplemen-
tary material (Ikefuji et al., 2018).

In Figures 1 and 2 we plot the earthquake intensities along with the
corresponding short-run probability series for two of the five cities, Tokyo
and Nagoya. The probabilities spike up immediately after a large earthquake
and die out gradually until another major earthquake occurs. The Tohoku
earthquake of Friday 11 March 2011 was the most powerful earthquake ever
recorded in Japan. The spike is visible in 2011/Q2 (rather than in 2011/Q1)
because the short-run probabilities are simulated based on actual earthquakes
up to and including the previous quarter.

The objective measure of seismic excitation given by the 90-days earth-
quake probabilities is included in our regression design. The rationale is that,
in addition to the long-run earthquake risk that people may take into consid-
eration when purchasing a property, news from a recent nearby earthquake
may also temporarily affect property prices. Just like objective seismic exci-
tation generated by a self-exciting process, the impact of such bad news on
people’s perception of risk peaks right after the event and dies out as time
proceeds.

2.2 Probability Weighting

To account for probability weighting our regression design furthermore allows
for a parametric probability weighting function. There is a large literature
on probability weighting. Probability weighting is an important ingredient
of prospect theory (Kahneman and Tversky, 1979; Tversky and Kahneman,
1992), and of the related decision theories given by the dual theory of choice
under risk (Yaari, 1987) and rank-dependent utility (Quiggin, 1982), which
are building blocks of prospect theory.

We shall consider two canonical one-parameter families of probability
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Figure 1: Short-run earthquake risk: Simulated short-run earthquake proba-
bilities and the logarithm of the earthquake intensity series for Tokyo. Events
marked in the graph: 1©: 2007-07-16 Chuetsu Offshore earthquake, M6.8.
2©: 2009-08-09 Izu Islands earthquake, M6.8 and 2009-08-11 Shizuoka earth-
quake, M6.5. 3©: 2011-03-11 Tohoku earthquake, M9.0. 4©: 2012-01-01
Izu Islands, M7.0. 5©: 2013-10-26 Fukushima-ken oki earthquake, M7.1.
(Source: Japan Meteorological Agency.)

weighting functions, proposed by Tversky and Kahneman (1992) and Prelec
(1998), respectively. The Tversky-Kahneman function — see also Wu and
Gonzalez (1996) — is given by

w(p) =
pψ

(pψ + (1− p)ψ)1/ψ
, (1)

while the Prelec function is given by

w(p) = e−(− log p)ψ . (2)

The parameter ψ is restricted to be positive. When 0.279 < ψ < 1 the
Tversky-Kahneman function is inverse S-shaped, while the Prelec function
is inverse S-shaped for 0 < ψ < 1; when ψ = 1 both functions reduce to
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Figure 2: Short-run earthquake risk: Simulated short-run earthquake prob-
abilities and the logarithm of the earthquake intensity series for Nagoya.
Events marked in the graph: 1©: 2007-03-25 Noto Hanto earthquake, M6.9.
2©: 2009-08-11 Shizuoka earthquake, M6.5. 3©: 2011-03-11 Tohoku earth-
quake, M9.0. (Source: Japan Meteorological Agency.)

w(p) = p; and when ψ > 1 both functions are initially S-shaped, but (only)
the Tversky-Kahneman function becomes convex for large values of ψ.

In laboratory experiments (see Wu and Gonzalez, 1996, and Abdellaoui,
2000) the probability weighting function is often found to be inverse S-shaped,
first concave and then convex. An inverse S-shape captures the phenomenon
that people tend to become less sensitive to changes in objective probabili-
ties as these probabilities move further away from the reference point 0 and
become more sensitive as they get closer to the reference point 1. The inverse
S-shape is consistent with a positive third derivative of the probability weight-
ing function. The interpretation of the signs of the successive derivatives of
the probability weighting function was recently provided by Eeckhoudt et al.
(2017). Note that contrary to the Tversky-Kahneman function the Prelec
function has an invariant fixed point and inflection point at p = 1/e = 0.37,
which implies that it can never be globally convex or concave.
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3 The Data

The data collection process for this project has been complex and elaborate,
and in this section we provide a brief summary. Full details and references
to sources are available in an online appendix (Ikefuji et al., 2018). We
are interested in the impact of earthquake risk on property prices in major
cities in Japan, and we have selected five cities for our purpose. Each city is
divided into wards and each ward is divided into districts. (In the original
data set the word ‘area’ is used. We prefer ‘district’ to avoid confusion
with other uses of the word ‘area’.) Certain information that can affect
(and explain/predict) the attractiveness of buying a property is available per
ward. For example, population characteristics, information about schools
and medical facilities, shopping, safety, etc. We distinguish between three
types of properties: ‘residential land (land and building)’, ‘residential land
(land only)’, and ‘pre-owned condominiums’ (hereafter, condos). Sales prices
and property characteristics are available for each of these types in each of
the five cities. We do not know the exact location of a property, but we do
know in which district the property lies and we also know the distance to
the nearest station and the name of that station. Some macro variables are
relevant and affect house prices nationally. Finally, we have information on
historical earthquake data and on earthquake risk data.

Cities. Japan has twelve cities with a population of more than one million
people. Almost 100 million people, or 78% of the country’s total population of
127.4 million, live in urban areas. The total population of Japan’s largest 103
cities amounts to 63.9 million or just over half of all the country’s residents.
Tokyo, with almost nine million inhabitants, is by far the largest Japanese
city. (Strictly speaking, Tokyo is not a city — it is a prefecture, but we shall
call it a city.) With a population of 3.7 million, Yokohama, south of Tokyo, is
Japan’s second largest city. Osaka and Nagoya are Japan’s third and fourth
cities, each with a population of over two million. Eight cities have between
one and two million inhabitants: Sapporo, Kobe, Fukuoka, Kyoto, Kawasaki,
Saitama, Hiroshima, and Sendai.

From these twelve cities we selected five: Tokyo, Osaka, Nagoya, Fukuoka,
and Sapporo. This choice guarantees that each of the three major metropoli-
tan areas is represented: the greater Tokyo area (Tokyo, Yokohama, Kawa-
saki, Saitama) by Tokyo, the Kansai region (Osaka, Kobe, Kyoto) by Osaka,
and the Chukyo metropolitan area by Nagoya. To obtain a representative
geographical spread we added Sapporo, the largest city in the North, and
Fukuoka, the second largest city in the West after Osaka. Data limitations
prevented us from including Hiroshima, while Sendai was not included be-
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cause it is too close to Fukushima where the 2011 nuclear disaster took place
following the Tohoku earthquake.

Wards. A designated city is a Japanese city that has a population greater
than 500,000 and has been designated as such by order of the Cabinet of
Japan. Designated cities are delegated many of the tasks normally per-
formed by prefectural governments, such as public education, social welfare,
sanitation, business licensing, and urban planning. Designated cities are re-
quired to subdivide themselves into wards (‘ku’), each of which has a ward
office conducting various administrative functions for the city government.
The 23 special wards of Tokyo are not part of this system, as Tokyo is a
prefecture, and its wards are effectively independent cities. The five cities
together contain 80 wards (regular and special together): 23 in Tokyo, 24 in
Osaka, 16 in Nagoya, 7 in Fukuoka, and 10 in Sapporo.

When considering to buy a property in a given city, one is likely to be
interested in certain characteristics of these wards. The original data set con-
tains one hundred characteristics divided into eleven categories. Since many
of these are highly correlated we first select eleven of these divided into six
categories: two from population; three from schools, culture and welfare; one
from medical facilities; one from safety; two from shopping facilities; and two
from employment. Only four of these appear in our base model, but exten-
sive sensitivity analyses will be conducted in Section 8 to assess how adding
more characteristics may affect the results.

Districts. Within each city there are wards, and within each ward there are
districts (usually ‘cho’, sometimes ‘machi’). An average ward in Nagoya con-
tains 86 districts, an average ward in Osaka only 23. The number of districts
ranges from 318 in Fukuoka to 1383 in Nagoya (1379 after prescreening).
In total there are 3714 districts (3710 after prescreening) in the five cities
together.

Property types. In a given district i we have observations on three types of
(residential) properties: land and buildings, land only, and condos. Most
properties are condos (45.1%), followed by land and buildings (34.1%) and
land only (20.8%). We have observations over T = 38 quarters, from 2006/Q2
to 2015/Q3.

Records with obvious errors have been excluded. Also excluded are
records where the walking time to the nearest station is longer than thirty
minutes or the nearest station is unknown; records with a living area larger
than 2000 square meters; and properties built before the war (1945). After
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Table 1: Distribution of properties over cities, wards, and districts

City Ward District Land & Land Condo Station
building only

Tokyo 23 898 57,568 33,991 92,518 482
Osaka 24 564 21,064 6,901 21,855 220
Nagoya 16 1,379 14,640 13,110 11,029 159
Fukuoka 7 318 7,847 5,660 12,475 75
Sapporo 10 551 11,763 9,461 11,461 86

Total 80 3,710 112,882 69,123 149,338 1,022

applying the above criteria we are left with N = 3710 districts in total. The
number of wards, districts, properties of each type, and stations in each city
is displayed in Table 1.

Property prices and characteristics. We work with sales prices rather than
with rental prices, because sales are more permanent than rentals and we
would therefore expect that the effect of earthquake risk on choosing a prop-
erty will be more informative.

Nakagawa et al. (2009) use land prices over various years (from 1980
onwards) and describe the data in their Section 3 (for the Tokyo area). Their
data are based on the Koji-Chika data set published by the Ministry of
Land, Infrastructure, Transport, and Tourism (MLIT). The Koji-Chika data
set provides fictional sales prices (as produced by ‘experts’) and they are
only available at annual intervals, which we consider to be too long for our
purpose. We use a different data set, which provides self-reported transaction
prices at three-months intervals. This data set, also provided by the MLIT,
is known as the ‘real estate transaction-price information’; see

www.land.mlit.go.jp/webland_english/servlet/MainServlet.

The information in this data set is based on the results of a questionnaire
survey of persons involved in real estate transactions conducted by MLIT,
compiled and published quarterly. We thus know the transaction price and
the transaction date (quarter), and also in which district the property lies and
the name of the nearest station. In addition, many property characteristics
are provided, of which we shall only consider: total area in square meters,
total floor area in square meters, distance to nearest station measured in
walking minutes, age of the building (if applicable), building structure (rein-
forced concrete, steel, or wood), purpose of city planning in the urban control
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area, maximum building coverage ratio, and maximum floor area ratio. Dif-
ferent types may have different regressors. For example, the equation for
land only does not have ‘building structure’ or ‘building age’ as a regressor;
and the equation for condos does not use ‘building structure’ as a regressor.

Economic indicators. Property prices are affected by general economic con-
ditions. In order to incorporate possible effects of these economic conditions,
we have selected two national macroeconomic indicators: GDP and CPI.

Long-run earthquake risk. We consider two measures of earthquake risk:
short-run risk (i.e., seismic excitation; see Section 2.1) and long-run risk.
Long-run earthquake risk is defined as the probability of an earthquake ex-
ceeding certain intensity thresholds in the next 30 years in a given area,
provided by the Japan Seismic Hazard Information Station (JSHIS). We
select the threshold intensities ‘5-lower’ (medium risk) and ‘6-lower’ (high
risk) in our analysis. The JSHIS probabilities are provided in various mesh
sizes, varying from one square km to 250 square meters. For each district
we identify its center and then define the risk of that district as the JSHIS
risk associated with the smallest available mesh in which this center lies.
Although the JSHIS exceedance probabilities are updated every one or two
years, we take the average of the JSHIS risk data over all available years, thus
obtaining a time-invariant measure of long-run risk for each district. These
probabilities are included as objective measures of long-run earthquake risk
in our regression design, at the district level. Choosing a district of relative
safety may be viewed as a form of self-insurance. Therefore, provided this in-
formation, which is publicly available, is known among consumers, we would
expect higher property prices in relatively safe areas all else being equal.

If the intensity is ‘5 lower’ then, according to the Japan Meteorological
Agency, many people will be frightened and feel the need to hold on to
something stable. Hanging objects (such as lamps) will swing violently, books
may fall from bookshelves, and unstable furniture may topple over. Windows
may break and fall down, electricity poles may move, and roads may sustain
damage. There may be cracks in the walls of wooden properties. If the
intensity is ‘6 lower’ then the effects will be more severe. It will be difficult
to remain standing, unsecured furniture will move and topple over, and cracks
in walls, crossbeams, and pillars will appear not only in wooden properties
but also in properties built from reinforced concrete.

Summary statistics are shown in Table 2. It is clear from Table 2 that
Tokyo, Nagoya, and Osaka are high-risk cities with respect to ‘small’ earth-
quakes. In fact, it is almost certain that an earthquake will occur in Tokyo
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Table 2: Seismic hazard probabilities per city, averaged over districts and
time (2005–2014)

City mean min 25% 50% 75% max sd
Exceeding intensity level ‘5 lower’
Tokyo 1.00 0.99 0.99 1.00 1.00 1.00 0.00
Osaka 0.93 0.90 0.92 0.94 0.95 0.97 0.02
Nagoya 0.96 0.91 0.94 0.97 0.98 0.98 0.02
Fukuoka 0.39 0.06 0.30 0.42 0.48 0.56 0.12
Sapporo 0.33 0.05 0.21 0.33 0.44 0.51 0.12

Exceeding intensity level ‘6 lower’
Tokyo 0.35 0.16 0.22 0.28 0.49 0.59 0.13
Osaka 0.37 0.22 0.30 0.39 0.44 0.52 0.09
Nagoya 0.56 0.21 0.41 0.61 0.67 0.77 0.14
Fukuoka 0.03 0.00 0.02 0.03 0.03 0.05 0.01
Sapporo 0.01 0.00 0.01 0.01 0.02 0.03 0.01

with an intensity more severe than ‘5 lower’ within the next 30 years. Re-
garding the occurrence of ‘severe’ earthquakes (‘6 lower’), Nagoya is more
exposed than Tokyo and Osaka, and much more exposed than Fukuoka and
Sapporo. The variation in probabilities of severe earthquakes in Tokyo, Os-
aka, and Nagoya is also much larger than in the other two cities. Fukuoka
and Sapporo are not likely to have severe earthquakes, but there is still con-
siderable probability (and variation) of smaller earthquakes. This suggests
that it is important to use both thresholds, 5-lower and 6-lower, in char-
acterizing the distribution of long-run earthquake risk for our purpose. In
particular, this will guarantee sufficient variation of long-run probabilities in
the hedonic price model discussed in Section 4.

Location information. The location information from our property data set
(district and nearest station) needs to be linked to the location information
of the risk data. We use the Google Maps API and a web scraping script
to automatically search the coordinates of the center of a given district or
station.

4 The Model

The dependent variable is log-property price, and we denote the h-th obser-
vation of type k in district i during quarter t as y

(h,k)
it . The most common
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method of modeling the property market is hedonic pricing, pioneered by
Rosen (1974) who argued that an item’s total price can be thought of as the
sum of the price of each of its homogeneous characteristics, so that the effect
of each characteristic on the price can be determined by regressing (log)price
on these characteristics.

We shall follow the hedonic approach. In our case the (log)price is deter-
mined by characteristics of the property itself (size, age, etc.), the surround-
ing environment (location, crime rate, schools, etc.), earthquake risk factors,
and macroeconomic influences.

The district i determines the city c(i), which takes values 1, . . . , 5 de-
pending on the city in which district i is situated. Also, the time variable
t determines in which quarter q(t) the transaction took place, taking values
1, . . . , 4 depending on whether t refers to the first, second, third, or fourth
quarter. The number of observations varies per district, type and quarter,
and this affects the precision. We let H

(k)
it denote the number of observations

on each type k = 1, 2, 3 in district i during quarter t.
We model the difference between cities by a shift αc(i) in the intercept

term, but we assume that all other parameters are the same between cities.
The difference between cities is thus completely captured by the αc(i).

Our model can now be written as

y
(h,k)
it = α

(k)
0 + αc(i) + γq(t) + x

(k)
i·
′β1 + x

(k)
·t
′β2 + x

(h,k)
it

′β3

+ rit(ψ)′β4 + u
(h,k)
it , (3)

where xi· denotes a variable that is constant over time, but varies over dis-
tricts (attractiveness variables), x·t denotes a variable that is constant over
districts, but varies over time (economic indicators), xit denotes a variable
that varies over districts and over time (property characteristics), and rit
denotes the risk data (same for each type k) given by the (distorted) short-
and long-run earthquake probabilities. The reference dummies are the city
dummy for Tokyo and the quarter dummy for Q4; these are set to zero.

Although the model appears to be linear in the parameters this is not
completely the case, because the risk variable rit is a non-linear function of
one or more ψ’s which appear in the probability weighting function w(p)
discussed in Section 2. This complicates the estimation, and we shall discuss
this issue in the next section.

In order to obtain a (balanced) panel we average over h, and obtain

ȳ
(k)
it = α

(k)
0 + αc(i) + γq(t) + x

(k)
i·
′β1 + x

(k)
·t
′β2 + x̄

(k)
it
′β3

+ rit(ψ)′β4 + ū
(k)
it , (4)
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where we average over H
(k)
it items, which thus depends on how many prop-

erties of type k there are in a given district.
Next we combine the three types of property into one 3× 1 vector:

ȳit = α0 + (αc(i) + γq(t)) ı+X∗i·β1 +X∗·tβ2 +X∗itβ3 + ırit(ψ)′β4 + ūit, (5)

where ı = (1, 1, 1)′, which we write more succinctly as

ȳit = X̄itβ + ūit (i = 1, . . . , N ; t = 1, . . . , T ), (6)

where ȳit is a p×1 vector of random observations, explained by (non-random)
regressors X̄it = X̄it(ψ), an unknown parameter vector β, and random errors
ūit (p× 1). In our case p = 3.

5 Estimation Method

The errors are assumed to follow a p-variate three-error components struc-
ture,

ūit = ζi + ηt + εit, (7)

a sum of three independent components each of which is iid with zero means
and variances

var(ζi) = Σζ , var(ηt) = Ση, var(εit) = Σε, (8)

where Σζ and Ση are positive semidefinite, and Σε is positive definite, all of
order p×p. Multivariate two-error components were first employed by Cham-
berlain and Griliches (1975) using maximum likelihood techniques. Multi-
variate three-error components were first considered by Avery (1977) who
derived a feasible Aitken estimator, which is however not maximum likeli-
hood and turns out to be asymptotically inefficient. Baltagi (1980) derived an
alternative estimator, also not maximum likelihood, which is asymptotically
efficient. Magnus (1982) discussed the estimation and testing of the mul-
tivariate two- and three-error components models in a maximum likelihood
context.

Our error structure implies that

E(ūit ū
′
js) =


Σζ + Ση + Σε if i = j and t = s,

Σζ if i = j and t 6= s,

Ση if i 6= j and t = s,

0 if i 6= j and t 6= s.

(9)
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Let

Y =


ȳ11 ȳ12 . . . ȳ1T

ȳ21 ȳ22 . . . ȳ2T
...

...
...

ȳN1 ȳN2 . . . ȳNT

 , U =


ū11 ū12 . . . ū1T

ū21 ū22 . . . ū2T
...

...
...

ūN1 ūN2 . . . ūNT

 , (10)

and

X̄(t) =


X̄1t

X̄2t
...

X̄Nt

 , X =


X̄(1)

X̄(2)
...

X̄(T )

 . (11)

Then we can write (6) in stacked form as

y = Xβ + u, (12)

where y = vecY and u = vecU . We shall assume that y is normally dis-
tributed with mean µ = Xβ and variance Ω(θ), so that β refers to the mean
parameters and θ to the variance parameters. One complication lies in the
fact that the non-random matrix X depends on a parameter (vector) as well,
so that X = X(ψ).

Under normality, the loglikelihood takes the form

L(β, ψ, θ) = constant− (1/2) log |Ω| − (1/2)(y −Xβ)′Ω−1(y −Xβ). (13)

Maximizing L with respect to β and θ is assumed to be (relatively) easy,
while maximization with respect to ψ is more difficult. Upon differentiating
µ we obtain

dµ = Xdβ + (dX)β = Xdβ + (β′ ⊗ In)Zdψ, (14)

where
Z = ∂ vecX/∂ψ′. (15)

Differentiating the loglikelihood then gives

dL = −(1/2) tr(Ω−1dΩ) + (1/2)(y −Xβ)′Ω−1(dΩ)Ω−1(y −Xβ)

+ (y −Xβ)′Ω−1Xdβ + (y −Xβ)′Ω−1(dX)β, (16)

and hence

d2L = (1/2) tr(Ω−1dΩ)2 − (y −Xβ)′Ω−1(dΩ)Ω−1(dΩ)Ω−1(y −Xβ)

− (dµ)′Ω−1(dµ)− 2(y −Xβ)′Ω−1(dΩ)Ω−1(dµ) + (y −Xβ)′Ω−1(d2µ)

− (1/2) tr(Ω−1d2Ω) + (1/2)(y −Xβ)′Ω−1(d2Ω)Ω−1(y −Xβ).
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Minus the expectation of the second differential takes the simple form

− E(d2L) = (1/2) tr(Ω−1dΩ)2 + (dµ)′Ω−1(dµ), (17)

which implies that the information matrix will be block-diagonal in (β, ψ)
and θ. This shows that we don’t have to take the variance of the maximum
likelihood (ML) estimator θ̂ into account when calculating the variance of
the ML estimators (β̂, ψ̂). Thus, writing

(dµ)′Ω−1(dµ) =

(
dβ
dψ

)′(
V11 V12

V21 V22

)(
dβ
dψ

)
, (18)

where
V11 = X ′Ω−1X, V12 = V ′21 = X ′

(
β′ ⊗ Ω−1

)
Z, (19)

and
V22 = Z ′

(
ββ′ ⊗ Ω−1

)
Z, (20)

we obtain estimators of the variances of β̂ and ψ̂ as

v̂ar(β̂) = V −1
11 + V −1

11 V12

(
V22 − V21V

−1
11 V12

)−1
V21V

−1
11 (21)

and
v̂ar(ψ̂) =

(
V22 − V21V

−1
11 V12

)−1
, (22)

where the parameters in the Vij matrices are replaced by their estimators.
It follows from (16) that the first-order conditions are

(y −Xβ)′Ω−1Xdβ = 0,

(y −Xβ)′Ω−1(dΩ)Ω−1(y −Xβ) = tr(Ω−1dΩ),

(y −Xβ)′Ω−1(dX)β = 0, (23)

for β, θ, and ψ, respectively. This implies that β̂ takes the simple form

β̂(θ, ψ) = (X ′Ω−1X)−1X ′Ω−1y, (24)

so that we can concentrate the likelihood with respect to β. The concentrated
loglikelihood is

L∗ = L(θ, ψ) = constant− (1/2) log |Ω| − (1/2)û′Ω−1û, (25)

where
û = y −Xβ̂ = y −X(X ′Ω−1X)−1X ′Ω−1y.
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For fixed ψ we have dψ = 0 and

dL∗ = −(1/2) tr(Ω−1dΩ) + (1/2)û′Ω−1(dΩ)Ω−1û

− û′Ω−1X(X ′Ω−1X)−1X ′Ω−1(dΩ)Ω−1û, (26)

using the fact that

dβ̂ = [d(X ′Ω−1X)−1]X ′Ω−1y + (X ′Ω−1X)−1d(X ′Ω−1y)

= −(X ′Ω−1X)−1X ′Ω−1(dΩ)Ω−1û. (27)

The variance matrix Ω = var(u) is of a very large dimension, but the error
components structure allows us to write it in a convenient form, allowing
simple expressions for its inverse and determinant; see Proposition A.1 in
the Appendix. We also need simple expressions for quadratic forms like
v′Ω−1v and X ′Ω−1X. These are provided in Proposition A.2.

Estimation of the parameters then proceeds as follows. For given ψ we
maximize the concentrated likelihood (25) with respect to the variance pa-
rameters θ, where using the explicit expression (26) for the gradient will
speed up the optimization. Performing a grid search on ψ we obtain the
ML estimates θ̂ and ψ̂. Then we find β̂ from (24). Finally, the estimated
variances of β̂ and ψ̂ are obtained from (21) and (22).

6 Estimation Results

Our primary interest is in earthquake risk and its impact on property prices.
More specifically, we wish to answer three questions:

(1) Do objective long-run earthquake probabilities have an effect on property
prices?

(2) If so, do objective short-run earthquake probabilities have an effect on
property prices, in addition to the effect of long-run probabilities?

(3) And do potentially distorted short-run earthquake probabilities have an
effect on property prices, in addition to the effect of long-run probabili-
ties?

Before we answer these questions and comment on our estimates in Ta-
ble 3, we explain our econometric modelling strategy. This strategy is based
on two ingredients. First, we aim for parsimony. We want the smallest model
that captures the essence of our story. This means that sometimes regres-
sors have been deleted from our model even when the associated parameters
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Table 3: Results under various risk assumptions

variable LR LR and Base
only objective SR model

land & building 3.7592 4.5593 4.3812
intercepts land only 3.5949 4.3940 4.2155

condo 3.1025 3.9024 3.7244

Osaka −0.2273 −0.2625 −0.2615
city dummies Nagoya −0.3801 −0.4100 −0.4139

Fukuoka −0.8770 −0.9133 −0.9108
Sapporo −1.2050 −1.2458 −1.2388

immigrants 6.7245 6.7224 6.7218
ward crime −0.0437 −0.0436 −0.0436
attractiveness unemployment −4.3360 −4.3395 −4.3399

executives 3.3426 3.3447 3.3464

economic log(GDP) 0.5606 0.5220 0.5229
indicators log(CPI) 1.5347 1.4687 1.5030

area (m2) 0.0025 0.0025 0.0025
floor area (m2) 0.0006 0.0006 0.0006
distance to nearest station −0.0145 −0.0145 −0.0145
age −0.0121 −0.0121 −0.0121
built 1981–2000 0.1674 0.1658 0.1652

property built after 2000 0.4136 0.4126 0.4123
characteristics structure: reinf. concrete 0.4348 0.4344 0.4343

structure: steel 0.1867 0.1867 0.1867
structure: wood −0.1264 −0.1266 −0.1266
urban control −0.8972 −0.8967 −0.8967
max building coverage ratio −0.0019 −0.0019 −0.0019
max floor area ratio 0.0004 0.0004 0.0004

long run 45–55 −0.1433 −0.1427 −0.1427
risk long run 55+ −0.5037 −0.5039 −0.5041

short run — −0.0915‡ −0.0514

ψ̂ — — 3.74†

∆ logL −68.5 −15.8 —

are ‘significant’. Significance does not imply importance, and importance is
what interests us. Second, we make a distinction between focus and auxil-
iary regressors. The focus regressors are the effects that we are interested
in or are part of the minimum set that would make up a credible model,
while the auxiliary regressors are only in the model because they improve
the estimation of the focus parameters.

Since we have many observations, most estimates are likely to be signifi-
cant at the usual 1.96 level. We provide more information about the results
by strengthening the significance requirement on the t-values. Thus, a ‡ will
indicate that |t| ≤ 1.96, which we interpret as not significant, while † indi-
cates significance with 1.96 < |t| ≤ 4.00. Estimates without superscript are
therefore significant with |t| > 4.0. The choice of 4.0 is somewhat arbitrary
and chosen a posteriori in order to provide more information about the pre-
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cision of our estimates, in particular our parameter estimates pertaining to
the risk variables. (All t-values test the null hypothesis that the parameter of
interest equals zero, except the t-value of ψ̂ which tests the null that ψ = 1.)

Now consider the first question. The results are presented in Table 3
under the heading ‘LR only’ and we see that all estimates are significant,
that is, their t-value (in absolute terms) exceeds 4.0. Regarding the long-
run risk effects, we remark that long run 45–55 (medium risk) indicates the
JSHIS probability that an earthquake occurs in the next thirty years of higher
intensity than 5-lower and lower intensity than 6-lower; and that long run
55 + (high risk) indicates the JSHIS probability that in the next thirty years
an earthquake occurs of intensity 6-lower or higher. Both medium risk and
high risk appear to have a significant negative impact on property prices. The
higher risk level has a more severe impact, which is intuitively reasonable.
Hence, long-run risk matters. This answers the first question.

Next, we consider the second question: given that long-run risk plays
a role, do objective short-run probabilities also have an effect on property
prices? The results are presented in the next column of Table 3 under the
heading ‘LR and objective SR’. Apparently they don’t: the effect of the risk
variable short run, while negative as we would expect, is not significantly
different from zero.

Finally, we consider the third question: given that long-run risk plays
a role, do potentially distorted short-run probabilities also have an effect
on property prices? The results are displayed in the final column of Table
3 under the heading ‘Base model’. Apparently they do: after distortion,
short-run probabilities have a significant negative effect on property prices.

The difference between distorted and objective short-run risk is that
short-run probabilities are now allowed to be distorted using a probability
weighting function, in this case the one-parameter weighting function (2) pro-
posed by Prelec (1998), which yields the highest likelihood. The parameter
ψ in the Prelec function is estimated to be 3.74 and is significantly different
from unity, since the absolute value of its t-value lies between 1.96 and 4.00;
in fact |t| = 2.91.

As shown in Figure 3, the estimated probability weighting function has
an S-shaped pattern where small probabilities are underweighted and large
probabilities are overweighted, which is in contrast to the inverse S-shaped
probability weighting function often found in experiments. This contrast may
be explained by the fact that with a positive background intensity of earth-
quakes, temporary deviations of short-run earthquake probabilities caused
by seismic excitation are not evaluated (and overweighted) with respect to a
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Figure 3: Estimated probability weighting of short-run probabilities, Prelec
probability weighting function, ψ̂ = 3.74

reference probability of zero but with respect to a positive reference proba-
bility level. This applies in particular to Tokyo where the 90-day probability
of an earthquake exceeding magnitude threshold of 5.5 never drops below
35% in the period that we analyze.

In summary: long-run risk matters, objective short-run risk does not, but
distorted short-run risk does. In addition, all non-risk parameter estimates
in the second and third columns are similar to the ones in the first column
and all are significant (with a t-value larger than 4.0 in absolute value).

We briefly comment on these other (non-risk) parameters in the base
model.

Intercept and city dummies. Tokyo, of course, is the most expensive city to
buy property. If we set the property price level of Tokyo at 1.00, then the
average property price levels of the other cities are 0.77 in Osaka, 0.66 in
Nagoya, 0.40 in Fukuoka, and 0.29 in Sapporo. (Recall that we don’t regress
price but log-price on these dummies.) Also, if we set the price of land and
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building at 1.00, then the average price of the other types of property are
0.85 for land only and 0.52 for condos.

Quarterly effects. Estate agents sometimes tell customers that some months
are better to buy or sell than others. Our results (in quarters, not months)
are ambiguous, which is why we have omitted the quarter dummies from our
regression. We return to this issue in our sensitivity analysis section.

Ward attractiveness. As discussed in Section 3, we selected eleven char-
acteristics for each ward, divided into six categories. Only four of these
eleven characteristics appear in our base model: percentage of immigrants
(representing population); number of criminal offenses (representing safety);
and unemployment ratio and percentage of executives (representing employ-
ment). Executives make a ward more attractive, while crime and unemploy-
ment make it less attractive. Immigrants too make a ward more attractive,
which makes sense if we realize that the word ‘immigrant’ refers to some-
body moving into the ward from another municipality, usually within Japan.
Hence, the more people move in from other areas in Japan, the more attrac-
tive the ward apparently is.

Economic indicators. Property prices are affected by general economic condi-
tions, and two indicators appear in Table 3 and in our base model: log(GDP)
and log(CPI), both of which have a positive effect on property prices. The
inclusion of log(CPI) has the additional advantage that if we wish to explain
real (rather than nominal) property prices, then all results remain the same
except that the effect of log(CPI) is now 0.503 rather than 1.503. Hence, CPI
has a positive effect not only on nominal but also on real property prices.

Property characteristics. A large (floor) area and proximity to the nearest
station contribute positively to the price. New buildings are preferred to old
ones, where we have included two dummies because major changes occurred
in the regulations on earthquake-resistance standards in 1981 and 2000. As a
result, buyers prefer a house built between 1981 and 2000 over a house built
before 1981, and they like a house built after 2000 even better. Regarding
the structure, wood is not desirable, steel is desirable, but reinforced concrete
is preferred. Urban control signifies restrictions on development possibilities,
and this has a negative effect on prices.

For all three property types the designated maximum building coverage
ratio (BCR) and the maximum floor-area ratio (FAR) are provided. These
ratios are legally allowed maxima, different for each piece of land. The BCR
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is the percentage of the building area to the site area; the FAR is the per-
centage of the total floor area to the site area. We use both ratios in our
regression and find a negative effect of BCR and a positive effect of FAR.
Shimizu and Nishimura (2006) and Nakagawa et al. (2009) use only FAR and
find mixed effects and a positive effect, respectively. Hidano et al. (2015)
use both ratios (as we do) and find a negative effect of BCR and a mixed
effect of FAR.

Error components. We estimated the coefficients using the multivariate
three-error components structure, as described in Section 5. It turns out
that

tr(Σε) > tr(Σζ)� tr(Ση)

and as a result we set Ση = 0, so that we end up with a two-error components
structure. The effect of this is negligible and will be discussed further in our
sensitivity analysis in Section 8.

7 Importance Ordering and Premia

for Earthquake Risk

Next we wish to determine an ordering of importance of the explanatory
variables, in particular the importance of the risk variables, and to calculate
the premia for earthquake risk embedded in property prices.

We write the prediction based on our original model (4) as

ˆ̄y
(k)
it = α̂

(k)
0 + α̂c(i) + γ̂q(t) + x

(k)
i·
′β̂1 + x

(k)
·t
′β̂2 + x̄

(k)
it
′β̂3 + rit(ψ̂)′β̂4. (28)

In order to determine an ordering of importance of the explanatory variables,
we note that the size of an estimated parameter gives no indication of the size
of its influence, because this influence depends also on how the associated
regressor is measured. We write (28) symbolically as

log(price) = intercept +W+ − |W−|+M + P+ − |P−| − |Rlr| − |Rsr|, (29)

where the intercept comprises the (combined) constant term α̂
(k)
0 + α̂c(i) +

γ̂q(t) (positive); W+ and W− contain the two positive and two negative ward

regressors in x
(k)
i·
′β̂1; M contains the two macro regressors in x

(k)
·t
′β̂2 (both

positive); P+ and P− contain the seven positive and five negative property

regressors in x̄
(k)
it
′β̂3, respectively; and Rlr and Rsr contain the long-run and

short-run risk regressors in rit(ψ̂)′β̂4 (all negative).
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Table 4: Influences of each component for each type and city, real prices.
Interquartile range between brackets.

intercept ward macro property long-run short-run
risk risk

Type
land & building 0.2894 0.0641 0.5394 0.0811 0.0155 0.0012

(0.0175) (0.0113) (0.0335) (0.0229) (0.0062) (0.0021)
land only 0.2928 0.0659 0.5626 0.0476 0.0158 0.0000

(0.0206) (0.0115) (0.0371) (0.0250) (0.0067) (0.0021)
condo 0.2597 0.0732 0.5747 0.0638 0.0164 0.0015

(0.0162) (0.0252) (0.0265) (0.0107) (0.0060) (0.0026)

City
Tokyo 0.2628 0.0707 0.5741 0.0664 0.0160 0.0022

(0.0300) (0.0160) (0.0302) (0.0186) (0.0062) (0.0013)
Osaka 0.2760 0.0739 0.5482 0.0680 0.0182 0.0000

(0.0303) (0.0270) (0.0318) (0.0180) (0.0038) (0.0000)
Nagoya 0.2995 0.0616 0.5482 0.0693 0.0225 0.0000

(0.0248) (0.0124) (0.0315) (0.0281) (0.0066) (0.0000)
Fukuoka 0.3094 0.0650 0.5424 0.0666 0.0047 0.0000

(0.0248) (0.0244) (0.0312) (0.0277) (0.0015) (0.0000)
Sapporo 0.3320 0.0628 0.5299 0.0673 0.0025 0.0000

(0.0200) (0.0111) (0.0343) (0.0330) (0.0024) (0.0000)

Some categories (the ward characteristicsW and the property characteris-
tics P ) contain both positive and negative influences. Simple addition would
then be misleading since two opposite forces would hide possibly important
influences. Hence we calculate the influences by first defining

A = intercept +W+ + |W−|+M + P+ + |P−|+ |Rlr|+ |Rsr|, (30)

where all items are positive (by construction). Influences can then be decom-
posed into contributions from various categories by using A as the common
denominator, that is, by computing intercept/A, (W+ + |W−|)/A, et cetera.

Table 4 presents the median of the relative influences for each compo-
nent, by type and by city, using log real property prices as the dependent
variable. Macroeconomic indicators are very important, contributing around
56%. The intercepts for type and city are also important, contributing around
28%. Location matters as well, as ward attractiveness takes up around 7%
of the influence, while individual property characteristics add up to another
7%. This leaves around 2% for long-run and short-run risk. The influence
of long-run risk is almost the same for all property types, but it differs sub-
stantially among different cities. Fukuoka and Sapporo, where earthquakes
are relatively rare, are not much influenced by long-run risk, while Nagoya is
the most influenced. Regarding short-run risk, only Tokyo is influenced and
the importance of short-run risk in Tokyo is about one-tenth of the influence
of long-run risk.
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While the macro variables are by far the most relevant in explaining me-
dian house prices, they may be less relevant in explaining the dispersion
around the median. To consider this aspect, Table 4 also displays the in-
terquartile ranges (in brackets) of the relative influences. They reveal that
the macro variables are still important, but all other variables (including
the risk variables) are also quite important. More specifically, we see that
individual property characteristics and intercepts for type and city are rele-
vant in explaining dispersion in property prices (0.020 and 0.018 on average,
respectively), still surpassed by macroeconomic variables (0.032), and quite
closely followed by ward characteristics (0.011) and risk variables (0.009).
Remarkably, the risk variables thus almost stand on equal footing with ward
characteristics in explaining dispersion in property prices.

We can also compute these influences per quarter, in particular the quar-
ter after the Tohoku earthquake (2011/Q2). The median influences of each
component are essentially the same in that quarter with the exception of
short-run risk in Tokyo, which is 0.22% overall but 0.35% in 2011/Q2. Large
earthquakes have an important short-run effect in Tokyo. The influence of
long-run risk remains the same.

We now investigate the influence of long-run and short-run risk in more
detail, by decomposing the premia for earthquake risk. More precisely, we
calculate and compare the predictions from four models. In modelM0 there
are no risk variables, either long-run or short-run; in modelM1 we only have
the two (objective) long-run risk variables; in model M2 we have long-run
plus objective short-run risk variables; and in model M3 we have long-run
plus distorted short-run risk variables (our base model).

Table 5: Decomposition of the premia for earthquake risk per type and city

type city median median premium
log-price m1 −m0 m2 −m1 m3 −m2

Tokyo 17.7275 −0.2620 −0.0246 −0.0092
land & Osaka 17.2495 −0.2783 −0.0049 0.0049
building Nagoya 17.4264 −0.3393 −0.0076 0.0076

Fukuoka 17.2812 −0.0630 −0.0043 0.0043
Sapporo 17.0736 −0.0558 −0.0016 0.0016

Tokyo 17.7073 −0.2409 −0.0241 −0.0087
land Osaka 17.2167 −0.2691 −0.0048 0.0048
only Nagoya 17.1113 −0.3293 −0.0077 0.0077

Fukuoka 16.9066 −0.0658 −0.0046 0.0046
Sapporo 16.3805 −0.0517 −0.0016 0.0016

Tokyo 17.0344 −0.2621 −0.0246 −0.0093
Osaka 16.5881 −0.2677 −0.0051 0.0051

condo Nagoya 16.5236 −0.3175 −0.0079 0.0079
Fukuoka 16.2134 −0.0740 −0.0042 0.0042
Sapporo 16.2134 −0.0457 −0.0015 0.0015
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Table 5 contains the results of this experiment. Let us denote the median
of the log-price predictions in the four models by m0, m1, m2, and m3,
respectively. Then the column m1 −m0 contains the premium of including
(objective) long-run risk compared to not including any risk variable; the
column m2 −m1 contains the premium of including objective short-run risk
(in addition to long-run risk) compared to not including short-run risk; and
the column m3 −m2 contains the premium of including distorted short-run
risk (in addition to long-run risk) compared to including objective short-run
risk.

We see that there is not much difference between different types of prop-
erty and that the premium for long-run risk (compared to no risk) is much
larger than the additional premium for short-run risk. Tokyo, Osaka, and
Nagoya have a substantial premium for (objective) long-run risk of about
24–34%, while in Fukuoka and Sapporo this premium is 5–7%, thus much
smaller. This is consistent with their different long-run risk profile. All long-
run premia are negative, which means that long-run risk is compensated for
through an adjustment in property prices in all cities.

Regarding short-run risk, there is a big difference between Tokyo and the
other cities. In Tokyo, property prices are compensated for objective short-
run risk with a median premium of about 2.5%, and there is an additional
median compensation for distorted short-run risk of about 1%, because peo-
ple tend to overweight large short-run earthquake probabilities in the Tokyo
property market. In the quarter after the Tohoku earthquake these median
premia rise to 3.0% and 1.7%, respectively.

Outside Tokyo we see that (m3−m2) ≈ −(m2−m1), which implies that
the overall effect (m3−m1) is almost zero. This is caused by the shape of the
estimated probability weighting function. The short-run probabilities outside
Tokyo are relatively small, and after probability weighting they become even
smaller (bottom part of the S-curve). People thus underweight small short-
run probabilities; in fact they almost ignore them altogether. This effect (or
lack of effect) can be decomposed into a ‘compensation’ (m2 −m1 < 0) for
objective short-run risk and a ‘reward’ (m3 − m2 > 0) for underweighting
short-run risk.

The power of econometrics is well-illustrated by the fact that, while prop-
erty prices are the highest in Tokyo, the largest compensation (that is, reduc-
tion) for short-run risk (objective and distorted) and a sizeable compensation
for long-run risk is in Tokyo.
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8 Sensitivity Analysis

Our base model depends on assumptions regarding which variables to include
and which not, how to measure or group certain variables, the choice of
functional forms, and the stochastic specification. We wish to show that our
results are robust, and we shall do so by deviating from our base model in
various directions. (Of course, the selected base model was, in fact, itself the
result of extensive sensitivity analyses.) In each case we are interested to find
out whether our focus parameters are affected by these deviations. We are
less interested to find out whether the deviations themselves are ‘significant’
or not, since these deviations typically represent auxiliary variables and are
not the primary focus of our investigation.

Our focus variables are the risk variables and, in addition, four key char-
acteristics of the property: area (m2), floor area (m2), distance to the nearest
station, and age of the property. We have chosen the location (distance to
nearest station) and the size (area and floor area) as our focus variables, and
one characteristic of the property (age).

Ward attractiveness. Our base model contains four variables which mea-
sure the attractiveness of a ward. We extend this list by adding seven ward
characteristics: the percentage of foreigners, and the number of hospitals,
daycare centers, kindergartens, homes for the aged, department stores, and
large retail stores.

Table 6: Sensitivity — ward attractiveness and economic indicators

Base +Attr. −GDP

area (m2) 0.0025 0.0025 0.0025
floor area (m2) 0.0006 0.0006 0.0006
distance to nearest station −0.0145 −0.0142 −0.0145
age −0.0121 −0.0121 −0.0122

long run 45–55 −0.1427 −0.1961 −0.1411
long run 55+ −0.5041 −0.5706 −0.5024
short run −0.0514 −0.0519 −0.0839

ψ̂ 3.74† 3.75† 2.63†

∆ logL — 472.9 −407.8

If we compare the column ‘+Attr.’ with the base model (‘Base’) in Ta-
ble 6 we see that very little changes, thus showing the robustness with re-
gard to these ward characteristics. These additional ward characteristics are
therefore omitted in view of parsimony and the fact that, while they may be
significant, they are not important.
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Economic indicators. In the same Table 6 we also experiment with deleting
log(GDP), so that the only economic indicator is log(CPI). This has some
(although not a large) effect in particular on short-run risk, so that we keep
GDP in the model as a general plausible indicator of economic activity.

Property characteristics. Next we experiment with the property characteris-
tics. We consider three deviations from the base model, reported in Table 7.

Table 7: Sensitivity — property characteristics

Urban control Build. Struct. Land use

area (m2) 0.0025 0.0025 0.0025
floor area (m2) 0.0006 0.0009 0.0006
distance to nearest station −0.0147 −0.0159 −0.0146
age −0.0121 −0.0119 −0.0121

long run 45–55 −0.1060 −0.1685 −0.1387
long run 55+ −0.4661 −0.5263 −0.4767
short run −0.0516 −0.0508 −0.0515

ψ̂ 3.72† 3.89† 3.76†

∆ log L −786.6 −5824.4 33.9

In the first column we remove the urban control variable; in the second
column we remove the three building structure dummies; and in the third
column we add, in addition to urban control, three further land-use variables
(‘residential’, ‘commercial’, and ‘industrial’), which describe the city’s inten-
tions of the usage of the land. Again, the estimated parameters appear to be
robust to these changes; inclusion of urban control and, in particular, build-
ing structure dummies appears to substantially increase the loglikelihood,
which makes sense because building a property costs more when steel is used
instead of wood, and even more when reinforced concrete is used.

Cities. In our base model we have selected five Japanese cities. Although
our selection is based on careful considerations (geographical spread and risk
variation, in particular) as discussed in Section 3, this is still somewhat arbi-
trary. Suppose we only had four cities. How would this affect our estimates?
This is shown in Table 8. In the first column we delete Tokyo, in the second
column we delete Osaka, and in the third column we delete Nagoya. The
effect on the non-risk parameters (area, distance, age) is small, but the effect
on the risk parameters is not so small. Deleting Tokyo has quite a large
effect on the risk parameters, because the short-run risk of Osaka, Nagoya,
Fukuoka and Sapporo is relatively small compared to Tokyo, and estimation
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Table 8: Sensitivity — four cities

Tokyo Osaka Nagoya

area (m2) 0.0023 0.0024 0.0025
floor area (m2) 0.0006 0.0006 0.0006
distance to nearest station −0.0152 −0.0145 −0.0147
age −0.0126 −0.0127 −0.0115

long run 45–55 −0.2427 −0.1124 −0.1571
long run 55+ −0.4302 −0.4759 −0.6160
short run −0.1873‡ −0.0627 −0.0525

ψ̂ 1.9‡ 4.04† 4.11†

is less accurate when there is less variation in the risk variables. Deleting Os-
aka or Nagoya only affects the risk estimates marginally. Deleting Fukuoka
or, in particular, Sapporo leads to unreliable results for the long-run risk
parameters, probably caused by the fact that without these cities there is
insufficient variation in the long-run risk variables leading to inaccurate esti-
mation results. They are therefore omitted from the table. (Notice that we
do not show the difference in loglikelihood in this table since the numbers of
observations are different with different subsets of the sample.)

Time dimension. Our observations are per quarter and we could include
quarter dummies to capture the idea that buying or selling in one quarter is
more advantageous than in another.

Table 9: Sensitivity — quarters and Tohoku dummy

Base Q123 Q4 Tohoku

area (m2) 0.0025 0.0025 0.0025 0.0025
floor area (m2) 0.0006 0.0006 0.0006 0.0006
distance to nearest station −0.0145 −0.0145 −0.0145 −0.0145
age −0.0121 −0.0120 −0.0120 −0.0121

long run 45–55 −0.1427 −0.1415 −0.1406 −0.1426
long run 55+ −0.5041 −0.5033 −0.5025 −0.5040
short run −0.0514 −0.0162† −0.0208† −0.0562

ψ̂ 3.74† 4.56‡ 3.89‡ 3.27†

∆ logL — 1091.3 1007.8 6.3

Our base model does not include quarter dummies and in Table 9 we ex-
periment with three possible extensions, namely adding three quarter dum-
mies, adding one dummy for the fourth quarter (because there are relatively
few earthquakes in the fourth quarter), and adding one dummy for the quar-
ter following the Tohoku earthquake, respectively. In the cases Q123 and
Q4 the likelihood increases substantially, but the key estimates don’t change
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much, although the short-run risk parameters now become less significant.
In the case of Tohoku even the likelihood does not increase much. Because
the quarter dummies and the short-run risk are both time effects, which are
likely to interact with each other, the results are ambiguous. This is why
we prefer to exclude quarter dummies, thus making the interpretation easier
and more transparent.

Stochastics. In our base model we have estimated two variance matrices:

Σζ = 0.129

 0.16 0.10 −0.00
0.10 0.18 −0.04
−0.00 −0.04 0.66

 , Σε = 0.407

0.31 0.01 0.00
0.01 0.33 0.00
0.00 0.00 0.36

 ,

while we set Ση = 0. This is because when we estimate the full three-error
components model, we find

Σζ = 0.129

 0.16 0.11 −0.00
0.11 0.18 −0.04
−0.00 −0.04 0.66

 , Σε = 0.406

0.31 0.01 0.00
0.01 0.33 0.00
0.00 0.00 0.36

 ,

while

Ση = 0.002

0.32 0.35 0.00
0.35 0.44 −0.06
0.00 −0.06 0.24

 .

The matrices Σζ and Σε are thus hardly affected and Ση is about one hundred
times smaller than the other two.

Table 10: Sensitivity — stochasticity and station versus district

Base 3-errors station

area (m2) 0.0025 0.0025 0.0026
floor area (m2) 0.0006 0.0006 0.0006
distance to nearest station −0.0145 −0.0146 −0.0137
age −0.0121 −0.0121 −0.0115

long run 45–55 −0.1427 −0.1448 −0.1378†

long run 55+ −0.5041 −0.5067 −0.5742
short run −0.0514 −0.0443 −0.0548

ψ̂ 3.74† 3.52† 3.56†

∆ logL — 735.2

In Table 10, column 2 we see that the key parameters are also hardly
affected, although the likelihood (with six additional parameters) increases
substantially. A formal test (not trivial in this case) may indicate that the
hypothesis Ση = 0 is rejected in favor of Ση > 0, but we opt — in line with

32



current ideas about the theory of applied econometrics (Angrist and Pischke,
2009; Magnus, 2017) — for parsimony and importance rather than for sig-
nificance.

Station versus district. We know a lot about each property from the data,
but not its exact location. We know in which district the property lies and
we also know the name of the nearest station. In our setup we use districts
as our location reference and there are 3,710 districts in our data set. But we
could also use the nearest station as our location reference. There are 1,022
stations, so the district measure should be more precise. In fact, as Table 10,
column 3 shows, the results are amazingly similar, demonstrating that the
precise method of approximating the location is not so important.

Probability weighting functions: an extension. In our base model we use
objective long-run probabilities and distorted short-run probabilities based
on the Prelec probability weighting function. This raises various questions.
First, one could argue that we should allow long-run probabilities to be
distorted too; and second, we could experiment with different probability
weighting functions.

Table 11: Sensitivity and extension — probability weighting functions

Base dist. SR dist. LR dist. LR
TK Prelec TK

area (m2) 0.0025 0.0025 0.0025 0.0025
floor area (m2) 0.0006 0.0006 0.0006 0.0006
distance to nearest station −0.0145 −0.0145 −0.0143 −0.0143
age −0.0121 −0.0121 −0.0121 −0.0121

long run 45–55 −0.1427 −0.1427 −0.8644 −0.4856
long run 55+ −0.5041 −0.5039 −1.3838 −1.5028
short run −0.0514 −0.0733‡ −0.0517 −0.0518

ψ̂ 3.74† 1.40‡ 3.78† 3.77†

γ̂ — — 0.17 0.32

∆ logL — −14.6 152.8 167.6

In Table 11 we experiment with an alternative functional form for the
short-run risk variable, namely the weighting function (1) introduced by
Tversky and Kahneman (1992). In particular, in column 2 (dist. SR, TK) we
replace the Prelec function applied to the short-run earthquake probabilities
with the Tversky-Kahneman probability weighting function. The estimation
results are similar to the base model, but somewhat less precise, and the
loglikelihood decreases. The Tversky-Kahneman probability weighting func-
tion is found to be S-shaped, just like the Prelec function, confirming the
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robustness of this finding.
Next we also allow long-run risk to be distorted using both the Prelec

and the Tversky-Kahneman weighting functions. The model contains two
related time-invariant long-run probabilities and we quite naturally assume
that these two probabilities share the same weighting function with the same
parameter γ. (In particular, distorted long run 45–55 is computed as dis-
torted long run 45 + minus distorted long run 55 +, consistent with Choquet
integration.) In columns 3 and 4 of Table 11 we allow both long-run risk and
short-run risk to be distorted.
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Figure 4: Implied probability weighting functions of long-run and short-run
earthquake risk

The model with the higher likelihood is the one with an inverse S-shaped
Tversky-Kahneman weighting function for long-run risk and an S-shaped Pr-
elec weighting function for short-run risk, as shown in Figure 4. We note that
the Prelec function for long-run risk, although yielding a lower loglikelihood
than the Tversky-Kahneman weighting function, is also found to be inverse
S-shaped, which is reassuring for the robustness of our results. Thus, in
an extension of our base model that allows for distortion of time-invariant
long-run earthquake probabilities we find evidence of a conventional inverse
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S-shaped probability weighting function. This means that when purchasing
property in Japan, people tend to overweight small long-run probabilities
and underweight large long-run probabilities.

Summarizing, we have conducted extensive sensitivity analyses on our
base model, always moving one step away from our base model. The base
model proved to be remarkably robust in most directions. In some cases,
however, one could argue that the base model should have been adjusted.
The reason why we have not done so and prefer the current base model is
twofold. First, we aim for parsimony; we prefer a simpler model over a more
complex model. Second, if we were to change our base model, we would need
to do (and we have done) the sensitivity analysis again for all cases, now
based on the new base model. Then there will be other directions that prove
to be sensitive. It is unlikely that there exists a model that is insensitive in
every direction.

9 Conclusion

We have studied the impact of earthquake risk on Japanese property prices
using a rich panel data set. We have not only allowed for time-invariant long-
run earthquake probabilities to impact property prices, but we have also
analyzed the impact of short-run earthquake probabilities generated from
a seismic excitation model. We have designed a hedonic property prices
model that accommodates probability weighting, employing a multivariate
error components structure, and have developed the associated maximum
likelihood and variance computation procedures.

We have shown that long-run earthquake probabilities negatively impact
property prices and increasingly so at higher risk levels. We have also shown
that short-run earthquake probabilities have a negative impact on property
prices, and that this effect becomes statistically significant only after we allow
for probability weighting.

The probability weighting function associated with short-run earthquake
probabilities is found to be S-shaped. That stands in contrast to the famil-
iar inverse S-shaped probability weighting functions predominantly found in
experiments. The shape we find may be explained by the fact that in our set-
ting there is a non-negligible positive background arrival rate of earthquakes.
People may therefore tend to evaluate earthquake probabilities, and over-
weight their temporary deviations under seismic excitation, not with respect
to zero but with respect to a positive reference probability level. This re-
markable finding calls for the development of reference-dependent models for
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probabilities to augment the large literature on reference-dependent models
for changes in wealth levels.

Appendix:

Multivariate three-error components

Given the error components structure proposed in Section 5, we show that
the (NTp) × (NTp) variance matrix of the error term u in (12) takes a
particularly convenient form, allowing an easy way to calculate its inverse
and determinant:

Proposition A.1 Let ıT and ıN denote vectors containing only ones, of or-
ders T and N , respectively, and let JT = ıT ı

′
T/T and JN = ıN ı

′
N/N . Then,

Ω = var(u) = V1 ⊗∆1 + V2 ⊗∆2 + V3 ⊗∆3 + V4 ⊗∆4,

where
V1 = JT ⊗ JN , V2 = JT ⊗ (IN − JN),

V3 = (IT − JT )⊗ JN , V4 = (IT − JT )⊗ (IN − JN),

and
∆1 = Σε + TΣζ +NΣη, ∆2 = Σε + TΣζ ,

∆3 = Σε +NΣη, ∆4 = Σε.

In addition,

Ω−1 = V1 ⊗∆−1
1 + V2 ⊗∆−1

2 + V3 ⊗∆−1
3 + V4 ⊗∆−1

4

and
|Ω| = |∆1| |∆2|N−1 |∆3|T−1 |∆4|(N−1)(T−1).

Proof: We write

Ω = var(u) = ıT ı
′
T ⊗ IN ⊗ Σζ + IT ⊗ ıN ı′N ⊗ Ση + IT ⊗ IN ⊗ Σε

= JT ⊗ IN ⊗ TΣζ + IT ⊗ JN ⊗NΣη + IT ⊗ IN ⊗ Σε

= V1 ⊗∆1 + V2 ⊗∆2 + V3 ⊗∆3 + V4 ⊗∆4.

We note that the Vi are idempotent matrices, that ViVj = 0 (i 6= j), and that∑
i Vi = INT . The results now follow from Baltagi (1980), Magnus (1982,

Lemma 2.1), and Abadir and Magnus (2005, Exercise 8.73). ‖
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In the special case where Σζ = 0 we have

∆1 = ∆3 = Σε +NΣη, ∆2 = ∆4 = Σε, (A.1)

and
Ω = IT ⊗ JN ⊗∆1 + IT ⊗ (IN − JN)⊗∆2. (A.2)

In the special case where Ση = 0 we have

∆1 = ∆2 = Σε + TΣζ , ∆3 = ∆4 = Σε, (A.3)

and
Ω = JT ⊗ IN ⊗∆1 + (IT − JT )⊗ IN ⊗∆3. (A.4)

Both are examples of a multivariate two-error components structure. Notice
that we employ two idempotent matrices when there are two components,
but that we need four (rather than three) when there are three components.

Given (25), we can obtain the ML estimates of the unknown parameters
under normality by minimizing

L∗ = log |Ω|+ (y −Xβ)′Ω−1(y −Xβ). (A.5)

Given the special structure of Ω this function also takes a convenient form:

Proposition A.2 We have

L∗ = log |∆1|+ (N − 1) log |∆2|+ (T − 1) log |∆3|+ (N − 1)(T − 1) log |∆4|

+ (1/N)(1/T )(
∑
i,t

vit)
′(∆−1

1 −∆−1
2 −∆−1

3 + ∆−1
4 )(

∑
i,t

vit)

+ (1/T )
∑
i

(
∑
t

vit)
′(∆−1

2 −∆−1
4 )(

∑
t

vit)

+ (1/N)
∑
t

(
∑
i

vit)
′(∆−1

3 −∆−1
4 )(

∑
i

vit) +
∑
i,t

v′it∆
−1
4 vit,

where vit = ȳit − X̄itβ. In addition, we have

X ′Ω−1X = (1/N)(1/T )(
∑
i,t

Xit)
′(∆−1

1 −∆−1
2 −∆−1

3 + ∆−1
4 )(

∑
i,t

Xit)

+ (1/T )
∑
i

(
∑
t

Xit)
′(∆−1

2 −∆−1
4 )(

∑
t

Xit)

+ (1/N)
∑
t

(
∑
i

Xit)
′(∆−1

3 −∆−1
4 )(

∑
i

Xit) +
∑
i,t

X ′it∆
−1
4 Xit.
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Proof: Let e
(N)
i denote the ith column of IN and let e

(T )
t denote the tth

column of IT . Then, writing

v =
N∑
i=1

T∑
t=1

e
(T )
t ⊗ e

(N)
i ⊗ vit, X =

N∑
i=1

T∑
t=1

e
(T )
t ⊗ e

(N)
i ⊗Xit,

and

Ω−1 = JT ⊗ JN ⊗∆−1
1 + JT ⊗ (IN − JN)⊗∆−1

2

+ (IT − JT )⊗ JN ⊗∆−1
3 + (IT − JT )⊗ (IN − JN)⊗∆−1

4 ,

we obtain

v′Ω−1v =
∑
i,j,s,t

(1/T )(1/N)v
′

it∆
−1
1 vjs +

∑
i,j,s,t

(1/T )(δij − 1/N)v
′

it∆
−1
2 vjs

+
∑
i,j,s,t

(δst − 1/T )(1/N)v
′

it∆
−1
3 vjs

+
∑
i,j,s,t

(δst − 1/T )(δij − 1/N)v
′

it∆
−1
4 vjs,

where δij and δst denote the Kronecker δ, that is, δij = 1 if i = j and zero
otherwise; and δst = 1 if s = t and zero otherwise. Hence,

v′Ω−1v = (1/T )(1/N)
∑
i,j

∑
t,s

v
′

it

(
∆−1

1 −∆−1
2 −∆−1

3 + ∆−1
4

)
vjs

+ (1/T )
∑
i

∑
t,s

v
′

it

(
∆−1

2 −∆−1
4

)
vis

+ (1/N)
∑
i,j

∑
t

v
′

it

(
∆−1

3 −∆−1
4

)
vjt +

∑
i

∑
t

v
′

it∆
−1
4 vit.

The result for X ′Ω−1X follows in a similar manner. ‖
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