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Abstract

We show that the excessive use of hidden orders causes artificial price pressures and

abnormal asset returns. Using a simple game-theoretical setting, we demonstrate that this

effect naturally arises from mis-coordination in trading schedules between traders, when

suppliers of liquidity do not sufficiently disclose their trade intentions. As a result, hid-

den liquidity can increase trading costs and induce excess price fluctuations unrelated to

information. Using NASDAQ order book data, we find strong empirical support and illus-

trate that hidden liquidity is higher if bid-ask spreads are smaller and relative tick sizes are

higher.
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1 Introduction

A growing proportion of traders on financial markets perceive a tangible benefit in concealing

their trading intentions from public view. To address the rising demand, exchange operators

and markets have introduced a range of order types that allow traders to hide the full extent of

their standing limit orders (such as reserve orders, Iceberg orders or hidden orders). As a result,

the proliferation of hidden liquidity has grown significantly over the past decade and nowadays

accounts for a sizable proportion of overall liquidity supply in electronic equity markets.1

Proponents of hidden liquidity argue that the proliferation of hidden volume attracts traders

that would otherwise not partake in trading and thus increases market liquidity and lowers trans-

action costs.2 Nonetheless over the recent years, the significant growth of hidden liquidity and

dark trading practices has amplified the debate about its possible role in generating market

frictions for the market as a whole.3 Critics argue that hiding of trade intentions may have a

negative impact in matching trade counterparties.

The general idea is that trade execution requires that counterparties trade synchronously and

that, therefore, their trading schedules need to be synchronized. In limit order book markets,

this sort of trade synchronization is facilitated through signaling of trade intentions. Typically,

liquidity suppliers provide a signal of trade interest by submitting openly displayed orders.

Liquidity demanders monitor the market and may initiate a trade as a response. Displayed

orders, therefore, act as an instrument to coordinate order flow between liquidity suppliers and

demanders.

Hence, if liquidity suppliers hide their presence, some liquidity demanders might miss out

on mutually beneficial trades. This scenario is conceivable and most likely prevalent when

possible trading counterparties, i.e., liquidity demanders, are strategic and selective in their

choice of the timing (and location) of trades. As shown in this paper, in such a case, the decision

about order display does not only affect trade execution, but has also wider implications for the

price discovery process.

Consistent with this reasoning, our empirical analysis shows that hidden orders have a strik-

ing impact on prices. Figure 1 shows the averaged estimated cumulative reaction in one-minute

mid-quote returns induced by an increase in hidden (blue line) order submissions. The plot

shows that hidden order submissions move prices significantly. In contrast, displayed orders

(red line) have a negligible effect. In line with this finding, we also show in this paper that

– ceteris paribus – markets exhibiting a larger proportion of hidden liquidity tend to be more

volatile.
1E.g., Bessembinder et al. (2009) show that 44% of volume in Euronext-Paris is hidden, while Frey and Sandas

(2009) find a proportion of 16% of hidden liquidity in the German Xetra market.
2See Aitken et al. (2001).
3A statement by the European Commission is echoing the growing concern about dark trading practices in the

context of the new MIFID II framework: "... Strict transparency rules will ensure that [hidden] trading of shares
and other equity instruments which undermine efficient and fair price formation will no longer be allowed."
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Figure 1: Cross-sectional averages of estimated cumulative effects of one-minute mid-quote returns

due to positive one-standard-deviation shocks in hidden (blue) and displayed (red) bid-ask order imbal-

ances. The effects correspond to impulse response functions based on a vector autoregressive model for

one-minute returns, depth imbalances, bid-ask spreads, volatility, and order activity, estimated for 10

randomly picked stock traded at NASDAQ, November to December 2008. The dashed lines show the

approximate 95% confidence intervals of the averaged impulse response functions.
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In this paper, we show theoretically that these price pressures arise from mis-coordination

between the supply and demand side of liquidity, when the former do not sufficiently display

their trade intentions. Our results, therefore, suggest that mis-coordination can be a major

source of non-informational trading frictions. We substantiate our conclusions by analyzing

the microstructure foundations of hidden order submissions and their causal effect on prices

in a structural equilibrium framework. Our model considers strategic liquidity suppliers and

demanders. Liquidity suppliers trade in the public limit order book, face liquidity competition,

and are impatient and pre-committed to trade (cf. Foucault et al. (2005)). Liquidity demanders

passively monitor the order book market for trading opportunities and make strategic decisions

about the timing and the venue of their trades (see, e.g., Grossmann (1992), Harris (1997),

Hasbrouck and Saar (2009) and Bessembinder et al. (2009)). They only enter the limit order

book market whenever the current market situation makes trading beneficial. These strategic

liquidity demanders therefore provide a reservoir of latent liquidity demand. While such so-

called ’latent traders’ can monitor the public limit order book, liquidity suppliers only have a

probabilistic belief about their presence.

Such a setting incorporates two important aspects determining the optimal (equilibrium)

strategies of liquidity suppliers and demanders: i) competition in liquidity supply and ii) com-

petition for latent order flow. The presence of liquidity competition confronts liquidity suppliers

with the decision whether to quote more aggressively or to avoid competition by strategically

hiding their trade intentions. On the other hand, competition for (latent) order flow incentivizes

liquidity suppliers to signal their trade interest in order to attract such trade demand. Accounting

for both aspects results into a trade-off between the benefits and costs of order display. Order

display fuels liquidity competition and therefore increases liquidity suppliers’ trade execution

costs. On the other hand, order display increases the probability to attract trade counterparties

which in turn reduces execution costs.
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In the equilibrium, therefore, the optimal amount of displayed orders (the so-called ’display

size’) balances this trade-off. We show that the equilibrium display size depends on liquidity

suppliers’ beliefs about the presence of latent counterparty demand. If this presence is unlikely,

they limit their display size to prevent other liquidity suppliers from overbidding. Conversely,

if the probability for the presence of latent liquidity demand is high, it is optimal to fully reveal

trading intentions to attract such counterparties. In this case, the costs arising from liquidity

competition are overcompensated by the benefit of attracting counterparty liquidity demand.

Although off-exchange brokerage services charge a brokerage fee for their counterparty

search service, they are generally still more cost-efficient for large traders than public limit

order book markets as they provide more liquidity. Only if liquidity suppliers in the public

limit order book provide sufficient displayed liquidity, it appears to be beneficial for the latent

trader to trade in this market. Consistent with this reasoning, we show that there is a critical

order display size for attracting latent liquidity demand. This display size can be interpreted as

a liquidity premium required by the latent trader in order to enter the limit order book market.

Liquidity suppliers offering this display size then maximize the probability of executing their

limit orders against latent trade demand. A central feature of the equilibrium is, therefore, that

liquidity supply and (latent) liquidity demand is optimally synchronized, minimizing the costs

of trading for all counterparties and avoiding frictions arising from sub-optimal coordination.

If liquidity suppliers, however, undercut this optimal display size, i.e., hiding too much of

their orders, they face a higher risk of not (fully) executing their order. Whenever they are

pre-committed to trade and thus face time constraints to liquidate their positions, they need to

enforce trade execution by increasing order aggressiveness. Consequently, non-executed hid-

den orders are canceled and traded as market orders. This ultimately generates price pressures,

which are unrelated to information and would be completely absorbed in case of perfect liquid-

ity synchronization. Our theory produces therefore a set of testable predictions on the causal

effects of excessive hidden order submissions. The predictions build on the assumption that

liquidity suppliers face liquidation constraints and thus need to re-position their orders in case

of non-execution. Consequently, our model predicts changes in the order flow composition

whenever there is too much hidden liquidity on one side of the market. In these situations, we

predict lower order execution rates on the same side of the market, higher cancellation rates and

an increase of market order submissions on the same side of the market.

To empirically validate the testable predictions, we employ a unique data set on hidden

orders and high-frequency order messages from NASDAQ. The data set yields high-frequency

snapshots of the entire order book, including the hidden part. It therefore allows us to relate

changes in the hidden and displayed order book imbalance on the order flow. To appropriately

capture the dynamics in high-frequency order flow data, we specify a high-frequency vector

autoregressive process of hidden and displayed depth imbalances, order flow, mid-quote returns

and volatility. The short-run and long-run effects of hidden order submissions are quantified by

estimated impulse response functions. Beyond a distinct effect of hidden orders on subsequent

returns, as depicted by Figure 1, we also find strong empirical support for the predicted effects

on changes in the order flow decomposition.
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Our model moreover allows us to derive conclusions on the driving forces affecting the

propensity for hidden liquidity supply. For instance, we theoretically and empirically show that

wider spreads increase the provision of hidden liquidity. Markets with wider spreads are thus

subject to higher return volatility. Our model therefore complements existing theory based on

asymmetric information by establishing a non-informational causal link between the bid-ask

spread and the tick size as drivers of liquidity mis-coordination to asset return volatility. While

in classical information-based models, as, e.g., Glosten and Milgrom (1985) or Kyle (1985),

the bid-ask spread arises as a compensation for market maker’s adverse selection costs and,

thus, is triggered by volatility, our setting explains why causality might run in the opposite

direction as well. We argue that wider spreads force traders to limit their display size due to

increased liquidity competition. Excess volatility then arises from an extensive use of hidden

orders, creating matching frictions and ultimately non-expected liquidity demand. In fact, we

empirically show that the cross-sectional variation in volatility is well explained by the variation

in hidden liquidity and in bid-ask spreads.

Our paper contributes to the extant theoretical literature on limit order book markets, focus-

ing on order bidding strategies and their determinants in limit order book markets.4 Only few

models, however, address the impact of hidden orders on trading. Boulatov and George (2013)

and Moinas (2010) study the impact of hidden liquidity when some investors have private in-

formation. They analyze the role of informed and non-informed trading and the informational

efficiency of prices. Generally, they find that hidden liquidity improves market quality as it gen-

erates a deeper book and more intense competition in liquidity supply. Buti and Rindi (2013)

study the use of hidden orders in a limit order book market, where traders make endogenous

trade decisions. Similar to our setting, there is no information asymmetry in their model. They

show that hidden orders help traders to compete for liquidity provision and to reduce order

display costs.

A major distinction to these approaches, however, is that our model does not only focus

on liquidity competition but captures an important additional source of liquidity externality:

liquidity demanders strategically choose between different venues. A major effect is that com-

petition for liquidity demand incentivizes liquidity suppliers to expose trading intentions even

when they face liquidity competition. In this sense, our paper contributes to the recent line of

research that simultaneously analyzes the role of liquidity competition and liquidity external-

ities (see, e.g., Hendershott and Mendelson (2002) and Foucault et al. (2005)). Our findings

complement this literature and demonstrate that fundamental empirical microstructure relation-

ships in limit order book markets (as analyzed, e.g., in Biais (1993), Ranaldo (2004), and Hall

and Hautsch (2006)) can be explained by the interplay between liquidity competition and the

disclosure of trading intentions.

A further major difference to the existing literature is that our model focuses on frictions

that purely arise from trade execution without endogenizing trading motifs. This is in line with

the view of Foucault et al. (2005), who stress that a considerable amount of trading frictions in

4See Glosten (1994), Chakravarty and Holden (1995), Rock (1996), Seppi (1997), Parlour (1998) Biais et al.

(2000), Parlour and Seppi (2003), Foucault (1999), Foucault et al. (2005), Goettler et al. (2005) and Rosu (2009).
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practice is not caused by information asymmetry but by the process of optimal trade execution.

In practice, the decision to trade is typically separated from the process of trade execution as

most market participants delegate this task to specialized brokerage firms. At this stage, how-

ever, trade execution follows generic principles of transaction cost minimization irrespective of

the investor’s underlying trading motif. One of our aims is, therefore, to gain a deeper under-

standing to which extent fundamental microstructure relationships originate by frictions arising

from the trading process alone. Therefore, we do not consider a general equilibrium model,

where trading motifs are endogenized. In our setting, traders trade due to exogenous reasons.

Strategic order choice decisions are entirely due to the objective of (expected) transaction cost

minimization.

Our results are important for both market regulators and exchange operators. Public ex-

changes compete for order flow in an increasingly fragmented market. If they loose too much

order flow to competitors, the public price formation process may be harmed. Extant litera-

ture suggests that these liquidity externalities are closely related to market transparency. In this

work, we show that transparency on primary exchanges can enhance market quality in terms of

lower transaction costs, mitigate fragmentation and attract large order flow from latent investors.

To increase market share and improve price formation on public exchanges, our analysis sug-

gests that market operators should broaden their network with other liquidity pools, enhance

their order routing infrastructure and provide large institutional investors direct market access

and real-time monitoring capabilities. Then, liquidity opportunities can be seized instantly as

they arise.

The remainder of this paper is structured as follows. Section 2 presents the data, the under-

lying econometric framework, and empirical evidence on the main finding of this paper: effects

of hidden order imbalances on the subsequent price process. In Section 3, we present the the-

oretical model and derive testable predictions. These predictions are empirically validated in

Section 4. Section 5 concludes.

2 The price impact of hidden orders – empirical evidence

In this section, we substantiate the empirical evidence shown in Figure 1 which constitutes the

main empirical result of this paper. In this context, we present the data and the underlying

econometric framework. This section therefore builds the empirical basis for the theoretical

model presented in Section 3.

2.1 Data

Our empirical analysis uses a combination of two data sets based on NASDAQ trading. Infor-

mation on consolidated hidden and displayed depth for each price level on a minute-by-minute

basis for all NASDAQ traded stocks originates from the NASDAQ ModelView data set. The

initial sample covers the constituents of the S&P500 universe through the period from Novem-
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ber to December 2008. To reduce the impact of very illiquid stocks, we restrict the analysis to

stocks that have a quoted spread below 25 cents on average. This leaves us with a sample of

N = 468 stocks.

Table 1 reports averages across stock groups and time for mid-quote levels, spreads, visible

and hidden depth, and limit order activities. We group the stocks into quintiles based on the

average daily trading volumes (ADV ). Distinct variations in trading activities are reflected

by inter-trade durations ranging from 2.65 seconds for the least actively traded stocks to 0.35

seconds for stocks in the largest liquidity quintile. Similar monotonic relationships across the

liquidity quintiles are found for trade sizes (increasing in ADV ), bid-ask spreads (decreasing in

ADV ), price levels (decreasing inADV ), first-level order book depth (increasing inADV ), and

daily volatility, measured based on the daily high-low range relative to the daily average mid-

quote (increasing in ADV ). Hence, the highest trading activity (in terms of both the number of

transactions and the size of shares) is observed for stocks with small spreads, low price levels,

and high depth.

We observe that the proportion of hidden shares in total posted shares is declining for less

liquid stocks, amounting to approximately 17% on average. The relative amount of shares

executed against standing hidden orders, however, is decreasing with overall daily trading vol-

ume. While on average 26% of trading volume is executed against hidden orders in the smallest

liquidity quintile, this number declines to on average 7% for the most actively traded stocks.

Hence, hidden liquidity is more prevalent for less liquid stocks with wider spreads and lower

displayed depth. As shown in Section 3, this relationship is strongly supported by economic

reasoning.

To utilize information on order flow between the minute-by-minute snapshots, we augment

the NASDAQ ModelView data by TotalView message-level data, which is processed via the

data service LOBSTER5. The data contains information on any (visible) order activity and the

corresponding fully reconstructed (displayed) NASDAQ limit order book at each instant. We

aggregate order executions, cancelations, and submissions stemming from NASDAQ TotalView

for each minute and merge this information with the minute-by-minute snapshots on hidden

depth from NASDAQ ModelView. The merged data set then consists of 390 daily minute-

by-minute information observed over 40 trading days, resulting into 15, 600 observations per

stock.

To limit the computational burden, we conduct this analysis for 10 randomly selected stocks

reflecting an arbitrary cross-section of differently liquid S&P500 constituents. The tickers are

APC, AZO, CAH, GAS, GOOG, EMR, LEG, PAYX, STJ, and TDC. Table 3 in the Appendix

reports time-series averages of mid-quotes, bid-ask spreads, visible and hidden depth as well as

order activities based on one-minute aggregates for these 10 stocks. The statistics indicate that

order submission behavior and market dynamics are obviously strongly driven by liquidity com-

petition and order activity. In line with Hautsch and Huang (2012), we observe that most order

activity originates from order submission and order cancellation activity: on average, approx-

5See http://lobsterdata.com.
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Table 1: Averages across stocks and time for daily trading volume (ADV ), inter-trade durations (DUR),

daily high-low ranges standardized by corresponding daily average mid-quotes (HL), and trade sizes

(TS) as well as averages of minute-by-minute snapshots of bid-ask spreads (SPR), mid-quotes (MQ),

visible depth on top (first level) of the book (D1), and total hidden depth on the first 10 levels (HD10).

Moreover, we report the average ratios of hidden to total depth on the first 10 levels (evaluated based

on minute-by-minute snapshots) (RHD10), the average number of shares traded against hidden volume

(THD), and the corresponding ratio of executed hidden shares to average trading volumes (RTHD :=

THD/ADV ). The amount of traded hidden volume, THD, is computed as the average daily trade

volume executed on the best quotes. The averages are computed within liquidity quintiles based on

ADV . The stock universe consists of all S&P500 constituents that are traded on NASDAQ, excluding

stocks with an average spread below 25 cents. The sample ultimately includes 468 stocks for the period

between November and December 2008.

Liquidity

Quintile

Observable Stock Properties
Hidden Liquidity

posted traded

ADV
(106sh.)

DUR
(sec.)

HL
(ratio)

T S
(sh.)

SP R
(ticks)

MQ
($)

D1
(sh.)

HD10
(sh.)

RHD10
(ratio)

T HD
(106sh.)

RT HD
(ratio)

q20 1.39 2.65 0.07 147 4.91 36.46 308 656 0.19 0.37 0.26

q40 2.72 1.38 0.08 158 3.39 32.84 576 1318 0.20 0.57 0.20

q60 4.23 0.94 0.09 165 2.40 27.41 800 1671 0.17 0.69 0.15

q80 7.13 0.61 0.10 178 1.87 24.59 1278 2292 0.16 0.83 0.11

q100 16.98 0.35 0.11 219 1.38 23.32 3490 6202 0.13 1.10 0.07

Total 6.57 1.19 0.09 174 2.79 28.91 1305 2440 0.17 0.71 0.16

imately 47% of the order flow volume is caused by order submissions, 49% by cancellations,

and only approximately 4% by trades.

Figure 3 in the Appendix provides evidence on the autocorrelation properties of fundamen-

tal order book characteristics. It shows across-stock averages of autocorrelations of one-minute

returns, 10-min volatilities, and one-minute snapshots of depth and displayed depth imbalances,

defined as standing buy volume in excess of sell volume. Moreover, we report one-minute ag-

gregates of limit order submissions (SUB and SUS), cancellations (CAB and CAS), and ex-

ecutions (EXB and EXS). Nearly all variables are strongly autocorrelated and reveal a pretty

strong persistence (i.e., slowly decaying autocorrelation functions). Interestingly, the liquidity

supply (reflected by standing limit orders) is more persistent than the liquidity demand (reflected

by order executions). In line with the finding that liquidity competition is a substantial driver of

market dynamics, this finding suggests that traders actively micro-manage, modify, and cancel

limit orders when they feel that orders become mis-priced or have a low chance of execution.

The presence of strong serial dependence in execution volumes (i.e., market orders) is in line

with the fact that traders do not execute their position by means of a single market order, but

8



tend to slice larger orders into smaller orders and feed them sequentially into the market. This

is in line with the literature on optimal liquidation (e.g., Obizhaeva and Wang (2013)).

2.2 Estimating the price impact of hidden orders

Variations in liquidity supply are expected to affect future price directions only if they occur

on one side of the market. We therefore consider buy-sell imbalances, defined as the difference

between standing volume on the buy side and the sell side. According to Figure 3 (Appendix),

depth imbalances are significantly autocorrelated. We moreover find that hidden order imbal-

ances are more persistent than displayed imbalances. This result yields some evidence that

displayed imbalances tend to be absorbed by counterparties’ market order flow. Conversely,

hidden order imbalances "survive" longer, as their presence cannot easily be detected by coun-

terparties.

Modelling depth imbalances therefore requires an autoregressive model. This is also true

for midquote returns, which are clearly less persistent, but still reveal significant autocorrela-

tions on one-minute frequencies. We moreover find significant cross-autocorrelations between

depth imbalances, returns, volatility, liquidity demand, and liquidity supply.6 To properly quan-

tify the effect of imbalances in (hidden and displayed) market depth on subsequent returns, it

is therefore required to utilize an econometric framework which explicitly accounts for these

dynamic interdependencies. The equi-distant nature of the underlying ModelView data, allows

us to employ classical techniques of multivariate time series analysis. A natural and compu-

tationally tractable framework is the class of vector autoregressive (VAR) models, as applied,

e.g., by Hasbrouck (1991) and Hautsch and Huang (2012), among others.

To capture all major variables which are dynamically interrelated with midquote returns

and liquidity characteristics, we specify a VAR process of the following variables: one-minute

mid-quote returns (RET ), minute-by-minute snapshots of bid-ask spreads (SPR), minute-by-

minute rolling window estimates of 10-min realized volatilities (corresponding to the sum of

squared one-minute mid-quote returns; RV ), minute-by-minute snapshots of hidden and dis-

played order imbalances (HI10 and DI10, respectively) and total depth (sum of hidden and

displayed depth on the first 10 levels; TD10), and per-minute numbers of submitted, executed,

and canceled buy and sell limit orders (SUB, SUS, EXB, EXS, CAB, and CAS).7

The state of the order book at t is thus represented by the 12-dimensional vector yt, consist-

ing of the variablesRET , SPR, V OLA, HI10, DI10, TD, SUB, SUS, EXB, EXS, CAB,

and CAS. We then model yt in terms of a VAR(p) process of the form

yt =
p
∑

j=1

Ajyt−j + ut, (2.1)

6For sake of brevity, these statistics are not reported here.
7We log-transform total depth TD10, realized volatility RV , and spread SPR in order to reduce the impact of

outliers and to make a normal distribution more appropriate.
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with Aj denoting (12 × 12) coefficient matrices for j = 1, ..., p and ut denoting a vector of zero

mean white noise error terms with E [utu
′
t] = Σu.

Given the paper’s objective, we are interested in the effect of depth imbalances (HI10

and DI10) at minute t on the midquote return process (RET ) over the next trading minutes

t + h, h > 1. Changes in depth imbalances, however, might affect future returns not only

directly but also indirectly through other variables in the system. To measure the long-run

effect of depth imbalances on returns, while accounting for possible dynamic feedback between

all variables, it is necessary to analyze how a change in depth imbalances is dynamically traced

through the system. Such analysis is performed by means of an impulse response analysis. In a

VAR system, the impulse response function is derived based on the underlying moving average

representation,

yt = Φ0ut + Φ1ut−1 + Φ2ut−2 + Φ3ut−3 + . . . , (2.2)

with Φ0 = IK and Φs =
∑p

j=1 Φs−jAj for s > 0. We compute generalized impulse response

functions according to Pesaran and Shin (1998), defined as the difference between the (condi-

tionally) expected value of yt+n (i.e., RET ) given a shock in the innovation of variable j (HI10

orDI10) and the corresponding (conditional) expectation if this shock would not occur. Define

Ωt as the information set up to time t, then, the generalized impulse response is given by

Θj(n) := E [yt+n | ujt = δj ,Ωt−1] −E [yt+n,Ωt−1] , (2.3)

where δj is the size of the shock. Assuming multivariate normality for ut, the conditional

expectation given a shock δj :=
√
σjj in one variable yields E [ut | ujt = δj] = Σuejσ

−1
jj δj ,

with ej denoting the unit vector. By setting the shock to one standard deviation, i.e., δj =
√
σjj,

the generalized impulse on all variables in t+ n, induced by a shock in variable j, is given by

Θj(n) =
ΦnΣuej√

σjj

, j = 1, . . . , K. (2.4)

By summing over all periods k = 1, . . . , n, we obtain the cumulative (generalized) impulse

response given by

Ξj(n) :=
n∑

k=1

Θj(k) =
n∑

k=1

Φk

Σuej√
σjj

, j = 1, . . . , K, (2.5)

which is consistently estimated by

Ξ̂j(n) =
n∑

k=1

Φ̂k

Σ̂uej
√

σ̂jj

. (2.6)

The main advantage of this approach is that generalized impulse response functions are invari-

ant to the re-ordering of the endogenous variables. As shown by Pesaran and Shin (1998),

orthogonalized impulse responses coincide with orthogonalized impulse responses (based on a

Cholesky decomposition of Σu) if the respective variable is the first one in the ordering. Pesaran

and Shin (1998) derive the asymptotic properties of the impulse response functions based on a
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co-integrated VAR model. We adapt these derivations and provide the asymptotic distributions

of the generalized impulse response functions in the Appendix.

The high persistence of the underlying order book process requires using a VAR process

with high lag order. Information criteria and residual diagnostic suggest a lag order of 30. We

check the robustness of the resulting impulse response functions with respect to the choice of

the lag order and estimate alternative specifications that are parameterized more parsimoniously,

particularly VAR(5) and VAR(15) processes. In line with the results of Jorda (2005), showing

that impulse-response estimates are relatively stable regarding the choice of the underlying lag

order (given that a dominant part of the serial dependence is sufficiently captured), we find that

our results are not qualitatively affected and are remarkably quantitatively stable with respect to

the model choice.

We refrain from reporting individual VAR estimates, which are hardly interpretable for

such a highly parameterized process and rather focus on the resulting impulse response func-

tion. The plots shown in Figure 1 represent the cumulative impulse response of mid-quote

returns triggered by a positive one-standard-error shock in hidden and displayed net buy order

imbalances (HI10 and DI10). The reported impulse response functions are cross-sectional av-

erages (across the analyzed 10 stocks). Since the effects are symmetric in the sign of the shock,

we restrict our analysis to positive shocks only and refrain from showing the opposite case.

Given a fixed time interval t = n after the shock and variable j, the corresponding asymptotic

variance of the averaged impulse response function is approximated by M−2
∑M

l=1 Λl
jn, with

Λl
jn denoting the asymptotic covariance of the generalized impulse response (see Appendix).8

We thus find strong evidence for significantly positive price reactions caused by submis-

sions of hidden orders on the buy side. This effect is strikingly different to the reaction of

displayed orders causing slightly negative price reactions. We therefore observe that one-sided

liquidity supply shielded from the market yields a fundamentally different price impact than

visible liquidity supply. Two competing explanations for the price impact of hidden liquidity

arise: First, the presence of hidden liquidity on one side of the market indicates the presence

of information which then materializes in the subsequent price process. Second, these price

reactions simply originate from trading frictions. In the remainder of the paper we provide

theoretical reasoning and additional empirical support for the latter hypothesis.

8This approximation obviously ignores potential cross-equation correlations between the estimated asset-

specific impulse response functions of stock l. Given the high parameterization, the latter, however, is not straight-
forwardly taken into account. We therefore use this approximation as a convenient but still sufficiently precise

way to assess and compactly illustrate the overall significance of our estimates. The latter – and consequently –

our conclusions regarding the empirical validity of our hypotheses are not affected by this approximation and is
confirmed by individual (asset-specific) estimates, which are not reported here.
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3 Hidden liquidity in a sequential trade game

3.1 Structure of the game

In this game we model the fundamental trade-off in the decision to hide when liquidity suppli-

ers face both, benefits and punishment for displaying their trade intentions. For instance, order

display and thus the revelation of trading intentions fosters the attraction of possible trading

counterparties which otherwise would not partake in trading. As a result, order-display can

reduce liquidity supplier’s trading costs by attracting additional liquidity demand. On the other

hand, displayed orders are more likely to get overbid and, therefore, can lead to higher trading

costs by increasing liquidity competition on the same side of the market (see Harris (1997)).

Hence, it is conceivable that order-display affects the supply and demand side of liquidity dif-

ferently and that the equilibrium display size marks a trade-off.

Therefore, to properly capture this fundamental trade-off, we propose a minimalistic game-

theoretical framework that features both channels of interactions. This requires the presence of

three strategically interacting traders. The so-called hidden trader (H) aims at executing a (buy)

order with minimal costs within a given time and has the discretion over the extent of order

display. He faces liquidity competition from the so-called liquidity competitor (C) who trades

on the same side of the market. While trader C competes with trader H in order-execution, the

third trader, the latent trader L, acts as a potential counterparty. The latent trader has the option

to trade in the public limit order book against the standing orders ofH and C or entirely skip the

exchange order book market and conduct trades in an off-exchange trading platform. Hence, we

think of L representing a large institutional investor, who actively monitors the public primary

market for trading opportunities, but otherwise trades on an off-exchange trading venue (there-

fore we call him latent), such as, e.g., a dark pool, broker-dealer network or a classical upstairs

market. While these off-exchange markets generally provide more liquidity, they also charge

additional commission fees for the counterparty search service involved. Therefore, institu-

tional traders typically balance their positions between different types of platforms depending

on their liquidity needs and implied (expected) transaction costs.

In such a setup, liquidity competition between H and C is driven by the costs of non-

execution (or delayed execution) and the costs of overbidding (i.e., paying a worse price). Costs

of non-execution particularly arise whenever traders face liquidation time constraints, i.e., are

required to liquidate their positions over a given time horizon. For nowadays trading, this is

a rather realistic assumption and requires traders to enforce order execution if time elapses.

In such a situation, non-executed (buy) limit orders need to get canceled and re-submitted as

market (buy) orders at the end of the trading period. The higher expected transaction costs due

to market order executions correspond to the (opportunity) costs of non-execution. In case of

H , these costs particularly arise if he hides his order and thus reduces the execution probability.

The timing of events is as follows. The hidden trader H arrives at the initial time point t0,

submits his order and decides about order display. Then, at t1 trader C arrives and submits his

order in reaction to trader H ′s display decision at t0. His expected action therefore is taken into
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account by H . After the liquidity suppliers have settled their quotes at t1, liquidity demanders

arrive. First, at t2, the latent trader L arrives with a given probability. Depending on the (visible)

liquidity in the limit order book market, he decides whether to enter the market and to trade

against the standing liquidity supply. At t3, a noise liquidity demander arises and submits

random sizes of market orders which are matched by the standing (buy) limit orders posted

by H and C. Finally, liquidity supply by H and C which remains non-executed, needs to get

executed via market orders at time point t4.

The timing and structure of the game yields a generic setting to study the trade-off between

order liquidity competition and counterparty attraction under the assumption of liquidation time

constraints. There are some simplified assumptions. We argue that these simplifications are

justified because our focus is to address the partial aspect of the origination and effects of

hidden liquidity. Therefore, we may abstract from a range of more general aspects of the trading

process. In particular, we abstract from general endogenous order setting strategies. Instead, we

assume that the three strategic players H , C and L react to each other in the above sequential

structure, which, however, makes the trade-off and the game between all traders non-trivial.

Specific details about the order placement choices and traders’ optimal strategies are given

in the next section.

3.2 Order placement choices

Let Bti
denote the best bid price at time ti. At time t0, the hidden trader H submits a so-called

Iceberg order at the best bid price Bt0 . Without loss of generality we assume that H establishes

a new best bid price level.9 We denote the size of the Iceberg order by NH . In contrast to

standard limit orders, Iceberg orders allow traders to specify how much of the posted order

volume should be visible to the public. We refer this to as the ’display size’. Accordingly, H

can choose to openly display any number from [0, NH] in the order book; the remaining shares

are hidden and shielded from public view. They can be matched with incoming orders but have

lower execution probability than any displayed orders. We denote a generic action of H by

aH ∈ [0, NH].

H knows that he faces competition from the liquidity competitor C, who will arrive at time t1
and wants to buy NC shares. The assumption that C arrives with certainty, however, is made for

convenience only. Our results easily carry over to a more general setting where H has a belief

about the distribution of NC , thus reflecting the degree of liquidity competition.

At time t1, C acts based on the visible order book as determined by the hidden trader’s

display size aH set in t0. If C posts his limit order on the same price level, it is queued behind

H’s order, looses priority and thus faces a higher execution risk. This effect increases in the

display size aH . Therefore, to increase execution priority, C may overbid H’s submission price

9Our implications can be, however, straightforwardly generalized to a setting where H posts at an existing
order book level.
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level. Consequently, he faces a trade-off between overbidding H’s order by a tick ∆ (and

therefore increasing his execution costs) and submitting at the same submission price level (and

thus being subject to higher execution risk). Formally, we denote C’s order placement choices

by

aC ∈ {0, 1},

where aC = 0 is associated with a submission atBt0 and aC = 1 is associated with a submission

at Bt0 + ∆. If the competitor overbids the hidden trader’s best bid price Bt0 , the new best bid at

t1 is Bt1 = Bt0 + ∆ and Bt1 = Bt0 otherwise.

We assume that C fully displays his trade intentions and his only discretion lies in the

choice of the limit order submission price level. This does not pose a restriction of our model.

As shown below, overbidding is the main threat and the reason for other liquidity suppliers to

hide their trade intentions. Hence, liquidity competitors who do not face competition by others

(i.e., arriving last in our setting) always fully display their trade intention as they can not get

overbid. In our setting, this assumption is generic and does not restrict the generality of the

setup.

Liquidity (buy) suppliers set their quotes in anticipation of future incoming (sell) liquid-

ity demand. We assume that liquidity demand stems from a strategic latent trader L and an

exogenous noise trader. L arrives at t2 with probability µ and has liquidity demand (i.e., sell

volume) NL. The (sell) noise trader arrives (with certainty) at t3. His trade size is random and

exogenous, i.e., independent of the previous traders’ actions.

Both liquidity suppliersH and C share a consistent belief µ about the presence of the latent

trader L. The latter is strategic in his decision about where to trade. He can either trade in the

public limit order book (“downstairs market”) using market orders, on an off-exchange trading

platform such as a broker-dealer network, or through private brokers (“upstairs market”). The

noise trader only trades at the public limit order book market.

Thus, L’s decision about where to trade constitutes a central element of liquidity external-

ity in our model. We assume that L is an institutional trader facing large trading (sell) demand.

If he decides to trade in the upstairs market, he benefits from guaranteed order execution as

such upstairs markets provide sufficient liquidity even for large block trades. As such broker-

age mechanisms, however, require non-trivial commission fees, he may consider entering the

downstairs (limit order book) market as an alternative. In this market, he avoids paying com-

mission fees but faces (implied) transaction costs if there is not sufficient liquidity pending on

the highest order book price level. In this case, part of his order need to be matched with liquid-

ity standing on lower price levels (increasing transaction costs) or he may decide to execute the

remaining part on the upstairs market. As discussed below in more detail, the latter alternative

becomes more beneficial the higher the liquidity supply in the downstairs market and thus the

lower the non-executed volume. Hence, a central element of our model is that the attraction of

outside (external) liquidity demand becomes more likely if the (visible) liquidity supply in the

limit order book market increases.

Without loss of generality and to keep the model tractable, we assume that L only trades in
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Figure 2: Structure of the game. At t0, the hidden trader arrives and submits an Iceberg order with size

NH and display size aH with 0 ≤ aH ≤ NH . Other traders only observe aH shares submitted. At t1,

the liquidity competitor arrives and decides whether to maintain (aC = 0) or to overbid (aC = ∆) the

hidden trader’s price. At t2, the latent trader arrives and trades aL ticks deeply into the book.

0 ≤ aH ≤ NH

Hidden Trader

(Liquidity Supply)

aC = ∆

Liquidity Competitor

(Liquidity Supply)

aL = 0

Latent Trader

(Liquidity Demand)

aL = 1

aL = 2

aC = 0

aL = 0

aL = 1

t0 t1 t2

public limit order book markets via (sell) market orders. We moreover assume that L controls

his (expected) transaction costs and thus has discretion about how deeply he wants to trade into

the book (if there is insufficient liquidity supply on the best price level). A generic action of L

is therefore denoted by

aL ∈ {0, 1, 2, ...}.
Here, aL = 0 means that L only trades in the upstairs market, while aL = i. i = 1, 2, ....,

implies that he trades exactly i ticks into the limit order book beyond the prevailing best bid

price Bt1 . Trading aL ticks into the book, implies that the new best bid price at t2 is

Bt2 = Bt1 − aL, (3.1)

withBt1 = Bt0 +1{aC=1}, where 1 denotes the indicator function. An illustration of the trading

game of the strategic players H , C and L is shown in Figure 2.

An important feature of the trading game is that the price setting in the upstairs market is

coupled with the quote setting in the downstairs market. In line with practice, we assume the

price in the upstairs market to follow a linear pricing rule, which takes the prevailing best bid

price as a reference price and charges an additional brokerage commission fee γ > 0,

Bt2 − γ, (3.2)

where Bt2 denotes the best bid price at time t2, after L’s arrival. This pricing rule influences

the L’s decision whether or not to enter the downstairs market. In particular, if L decides to

trade aL ticks into the book (see (3.1)), he implicitly makes trading on the upstairs market more

expensive. Hence, the price impact of his own order on the downstairs market will increase the
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execution costs of any non-executed part on the upstairs market. As discussed in below in more

detail, this effect is a central aspect in L’s trading strategy.

Finally, the noise liquidity demander (seller) enters the game at t3, enabling H and C to ex-

ecute yet non-executed limit order shares. We assume that the noise trading demand arises from

exogenous reasons, independent of the limit order book’s liquidity provision, and is stochas-

tic. Hence, the noise market sell order size is distributed according to some probability density

distribution f .

An important assumption underlying this setting is that all strategic traders face commit-

ments to liquidate their positions within a given time. This forces them to increase order ag-

gressiveness in case of non-execution:

Assumption 1 (Pre-commitment to trade). We assume that all strategic traders are pre-committed

to trade. Accordingly,

i) trader H and C cancel outstanding non-executed shares and re-submit them as a corre-

sponding buy market order at the end of the trading period, t4,

ii) trader L trades non-executed shares via market orders in the upstairs market after t2.

Trading pre-commitment is an important element in many trading strategies nowadays.10

Many algorithmic trade execution services implement liquidation constraints, reflecting trader’s

trading horizons, irrespective of trader’s underlying motifs. For instance, many so-called ’child

orders’ that are executed on a trajectory of a larger ’meta order’ are often subject to time liqui-

dation constraints ensuring that the underlying trading strategy meets certain execution require-

ments. In these strategies, market orders often serve as an action of last resort, when execution

with limit orders does not provide the desired outcome.

Throughout the paper, we assume the common priority rules for matching market orders

against standing limit orders: orders submitted at more competitive price levels have priority

over orders submitted at less competitive price levels. Openly displayed orders have priority of

hidden orders at the same price level. Finally, orders with the same display status submitted at

the same price level are executed on a first-come-first-serve basis. The cost functions as well as

the timing and structure of the game are assumed to be common knowledge among all strategic

players.

3.3 Trader payoffs and strategies

In our model, traders coordinate their trade decisions in order to minimize expected trading

costs. Since this is a major (albeit not the only) driving force of nowadays trading activity

(particularly on high frequencies), our aim is to exclusively focus on frictions arising from the

10Foucault et al. (2005) shows that trader impatience plays an important role in the origination of non-
informational sources of frictions.
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mechanism of trading and the underlying market structure. We denote these frictions as ’non-

informational’ frictions. We are therefore not concerned with aspects of price discovery or

frictions arising from information asymmetry. We neither assume that some traders have prior

knowledge about the fundamental value of the asset. Our objective is rather to gain insights into

the effect of these non-informational frictions on traders’ strategic decisions and the resulting

order book dynamics.

Likewise, we assume that traders are risk neutral and that the displayed shares in the public

limit order book are the only common information source. Moreover, we assume that traders are

aware about other traders’ intentions and payoffs. Beliefs about possible hidden liquidity is not

formed by any participant. We argue that this is a costly endeavor for most market participants

as real-time information about hidden liquidity is not available and historical data on hidden

liquidity is not extensively disseminated and expensive. It is thus reasonable to assume that

trader decisions are mostly affected by the visible portion of the order book.

3.3.1 The latent trader’s strategy

In principle, the latent trader L can decide to trade arbitrarily deeply into the limit order book.

We restrict the analysis, however, to the most relevant cases aL ∈ {0, 1, 2}. Considering the case

aL > 2 would not gain any additional insights but would just require to assume the presence

of more liquidity suppliers and corresponding competitors. In this case, liquidity competition

would spread over more than two price levels of the order book, making the model significantly

more complex without changing the underlying rationale. In our model, the case aL > 2 can

be ruled out by assuming that the size of the latent trader L exceeds a critical threshold. Then,

given his trading demand it will never pay off for him to shift prices in the downstairs market

too much and thus to make trading in the upstairs market significantly more expensive.

On the other hand, we rule out the trivial case where L is so large (in terms of trade demand)

that he will never benefit from trading in the downstairs market (because the non-executed part

of his order will be prohibitively high in any case). In such a case, the game would reduce to a

game without the latent trader thus concentrating on liquidity competition. To rule out such a

case, we assume that there is also an upper bound on the latent trader’s size, i.e., N−
L ≤ NL ≤

N+
L . Given these bounds, it can be shown that L’s order placement decisions are restricted to

the set

a∗
L = {0, 1, 2} . (3.3)

For a formal proof see Lemma 2 in the Appendix.

We start the equilibrium analysis by first deriving the latent trader’s payoff and his best

response given the competitor’s and hidden trader’s actions aH and aC . Denote D := NC + aH

as the displayed liquidity, provided jointly by H and C. To simplify notation, we set the initial

price level set by H in t0 to Bt0 = 0. L’s payoff function ΠL(aH , aC , aL) then depends on

H’s display size aH , C’s decision on potential overbidding, aC , and L’s decision aL whether to

enter the downstairs market and – if yes – how deeply to trade into the book. The corresponding
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payoff can be presented in terms of the following matrix:

ΠL(aH , aC , aL)

aC = 0 aC = ∆

aL = 0 −NLγ NL(∆ − γ)

aL = 1 −(NL −D)(∆ + γ) NC∆ − (NL −NC)γ

aL = 2 n/a NC∆ − (NL −D)(∆ + γ)

(3.4)

Hence, if L does not enter the downstairs order book market (aL = 0) and C does not improve

the best bid price aC = 0, then L’s net transaction costs arise solely from the commission fee.

If C, however, improves the best bid price (aC = ∆), L’s net transaction costs reduce by the

amount NL∆.

Moreover, whenL trades one tick into the order book (aL = 1), he trades all visible liquidity

at the best bid Bt1 . If, in this case, C posts his order at the same price level as H (aC = 0), then

L executes all D shares, but needs to trade the remaining NL −D shares in the upstairs market,

confronting him with a commission fee γ. His net marginal trading costs for the remaining

NL − D shares are therefore ∆ + γ since his trade in the downstairs market has reduced the

public (downstairs) bid price by one tick. Following the same logic, the transaction costs of L

in the remaining cases follow similarly.

Since L is a seller and the trading costs enter ΠL() negatively, his aim is to maximize ΠL.

From (3.4), we can derive the best response of L, given H’s and C’s order placement decisions,

argmax
aL∈{0,1,2}

ΠL(aH , 0, aL) =







0 if aH ≤ φ(aC , NL, NC , λ),

1 otherwise,

argmax
aL∈{0,1,2}

ΠL(aH , 1, aL) =







1NC≥NLλ if aH ≤ φ(aC , NL, NC , λ),

2 otherwise,

(3.5)

where φ(aC , NL, NC , λ) is a critical threshold for the display size aH , depending on the size

of C’s order (NC) and his order aggressiveness aC , the latent liquidity demand NL and the

parameter λ. The latter corresponds to the relative costs of price improvement in the order book

(by one tick ∆) relative to the per-share commission costs prevailing in the upstairs market. The

upper part of (3.5) refers to the case, where C does not overbid, i.e., aC = 0. In this case, L

enters the order book market only ifH’s display size aH is sufficiently high. In this case, trading

in the downstairs market becomes beneficial as L can execute a sufficiently large proportion of

his order without commission fees. As long as aH > φ(), this cost benefit overcompensates the

increasing trading costs of the non-executed part due to price impairment in the upstairs market.

The critical threshold φ() gives the display size aH , making the marginal costs of trading in the

downstairs market equal to the costs of trading in the upstairs market.

A similar logic applies to the second case in (3.5), refering to the case of price improvement

through the liquidity competitor C. Note that in this case the action space of L expands from

{0, 1} to {0, 1, 2}. The important difference to the case above is that L may enter the order

book market even if the display size aH is below φ(). This is only possible, however, if the
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liquidity competitor C offers sufficient liquidity to attract the latent trader. In particular, C’s

liquidity supply must be sufficiently high to make L benefiting from C’s price improvement

in the downstairs market (recall that L is a seller) without making subsequent trading of any

non-executed volume in the upstairs market (due to L’s price impact in the order book market)

too expensive. This is guaranteed by the size condition NC ≥ NLλ. If, H’s display size is too

small, however, it is not beneficial for L, to trade against H’s liquidity supply. In this case, only

C’s liquidity supply gets executed as L only trades against the first order book level. Only if

C’s display size is sufficiently high, it pays off for L to execute two order book levels and thus

to execute liquidity of both H and C.

Trading in the downstairs market therefore implies a fundamental trade-off between bene-

fitting from lower transaction costs (i.e., avoiding commission fees) and causing price impact

which in turn makes subsequent trading in the upstairs market more expensive. Thus, trading

in the downstairs market is only beneficial for L, if the (displayed) liquidity is sufficiently high.

The critical threshold φ() can therefore be interpreted as a premium for liquidity display to

attract outside trading demand.

The liquidity premium φ() can be explicitly computed as

φ = φ11{aC=0} + 1{aC =1}

(

φ21{NC≥NLλ} + φ31{NC<NLλ}

)

, (3.6)

with φ1, φ2 and φ3 given by

φ1 := NLλ−NC , φ2 := (NL −NC)λ, φ3 := 2NLλ−NC(λ+ 1). (3.7)

It therefore increases with liquidity demandNL and decrease with the competitor’s volumeNC .

Hence, competition in liquidity supply reduces the display premium for hidden order traders.

The analysis is simplified if we restrict ourselves to the case of a large latent trader, i.e.,

assuming NLλ ≥ NC .In this case, it can be shown that φ3 − φ2 = φ1 > 0, and

φ1 < φ2 < φ3, (3.8)

in which case L’s best strategy (3.5) simplifies to

argmax
aL∈{0,1,2}

ΠL(aH , 0, aL) =







0 if aH ≤ φ1,

1 otherwise,

argmax
aL∈{0,1,2}

ΠL(aH , 1, aL) =







0 if aH ≤ φ3,

2 otherwise.

(3.9)

3.3.2 Trading costs of liquidity suppliers

In our model, trading costs of liquidity suppliers arise whenever they are not able to execute

their trading volume via the posted limit order. In this case, they are forced to cancel the non-

executed limit orders and to re-submit them as market orders at the end of the trading period
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(t4). In this case, the trading costs depend on prevailing liquidity on the opposite side of the

market. If market depth on top of the book is sufficiently high, the market order can be fully

executed on the first level and the trader only pays the bid-ask spread. Conversely, if the market

is illiquid, the order needs to get executed against liquidity on higher price levels, incrementally

increasing marginal execution costs.

The latter feature is captured by a so-called impact function c(m), representing the trading

costs of a market order of size m which is executed against a standing limit order book.11 We

assume that c(m) and thus market (il-)liquidity on the sell-side book is exogenous for the trad-

ing decisions of all strategic players. This simplification is made to abstract from interactions

between liquidity supply on both sides of the book. The latter would make the model signif-

icantly more complex without gaining additional insights in the given context. For simplicity

and without loss of generality we assume that c(m) depends on an individual trader’s order.

For ease of illustration, we normalize the costs of both liquidity suppliers H and C with

respect to the initial best bid price Bt0 = 0. Accordingly, executions at Bt0 do not cause any

costs. To provide a concrete example, denote the expected spread at t4 by s > 0 and assume

that the sell-side limit order book is block-shaped with the (deterministic) inverse depth given

by β > 0. Then, trading costs c(m) are quadratic in the trade size m and are given by

c(m) = s ·m+
β

2
m2. (3.10)

To quantify the expected execution costs of a generic (potentially partly hidden) limit order

of size n, we assume that a shares are displayed and n− a shares are hidden. We moreover as-

sume that there exist d additional displayed shares, which have been submitted by a competitor

on the same price level but are queued behind. Then, the a displayed shares have highest pri-

ority, the d displayed shares have second highest priority and finally the Iceberg’s n− a hidden

shares have least priority. In our setting, this may represent the current state of a limit order

(initially submitted by H or C) after the decision of the latent trader L who may potentially has

executed parts of the order. In such a situation, standing liquidity supply can be matched only

with random trading demand from noise traders. Any remaining portions need to be executed

via market orders under the cost function m.

The expected costs to fully execute the limit orders in dependence on n, a, and d are thus

given by

Q(a, d, n− a) =
a∑

j=0

c(n− j)pj +
a+d∑

j=a+1

c(n− a)pj +
n+d∑

j=a+d+1

c(n + d− j)pj , (3.11)

where pj := P[x = j] defines the probability for the arrival of sell market orders from noise

traders of the size j.

11To exclude mathematically pathological cases, we impose some (weak) restriction on the shape of c(m),
guaranteeing that the proportional cost growth due to increases in m converges to zero if m gets very large. For

the exact condition, which is valid for typical order book shapes, see (5.1) in the Appendix.
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The first term is associated with the costs arising from trading the displayed shares n−a as

market orders. The amount of shares is reduced whenever noise sell orders of size j ≤ a arrive.

If the noise trading demand exceeds a, but is smaller than a + d, all displayed orders a and

part of C’s displayed d orders, but none of the n− a hidden shares are automatically executed.

Correspondingly, exactly n − a shares need to be executed subsequently via market orders

inducing costs of the magnitude c(n−a). The last term captures the trading costs whenever the

noise market orders exceed the size a + d. In this case, the hidden n − h shares get partially

executed, causing costs c(n+ d− j).

In the next section, we will extend the cost function to account for the latent trader’s arrival

probability and his strategic actions.

3.3.3 The liquidity competitor’s best strategy

Denote pC(aH , aC) as the probability that C’s order is not executed against L′s trading de-

mand given H’s action aH and L’s best response (3.5). Then, for a given action aC ∈ {0,∆},

pC(aH , aC) is

pC(aH , 0) =







1 − µ if aH ≥ φ1,

1 else,

pC(aH ,∆) =







1 − µ if aH ≥ φ3,

1 else.

(3.12)

Recall that we benchmark all trading costs against the best bid price at the time of order

submission. Hence, if C does not improve the price set by H , then C’s trading costs are the

expected costs of liquidating the volumeNC , which, however, has lower execution priority than

the displayed volume of H , aH . The resulting expected execution costs are equivalent to those

of an Iceberg order with hidden size n− a = NC , display size a = 0 and d = aH shares having

higher priority than the NC shares. Accordingly, the expected trading costs for C are given by

pC(aH , 0)Q(0, ah, NC).

Likewise, if he improves the price (aC = 1), he gains priority over all other orders in the

queue and the expected liquidation costs are pC(aH ,∆)Q(0, 0, NC) plus the costs of the price

improvement, ∆NC . In summary, C’s cost function is therefore given by

ΠC(aH , aC) =1{aC=0}pC(aH , 0)Q(0, aH, NC)

+ 1{aC =∆} pC(aH ,∆)Q(0, 0, NC) + ∆NC

(3.13)

.

Using (3.13), the competitor’s best response is given by the following lemma.

Lemma 1. C’s best response is given by

a∗
C =







0, if aH ≤ ψ(aH),

∆, else,
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with ψ(aH) := ψ11{aH <φ1} + ψ21{aH ≥φ1} and 0 ≤ ψ1 ≤ φ1 ≤ ψ2 ≤ NH .

PROOF: See Appendix.

Here, ψ(aH) gives the critical display size of H , making the liquidity competitor C being

indifferent between overbidding or not. The higher the displayed volume by H , the lower the

execution probability and thus the higher the expected execution costs of C, if he places his

order on the same price level (and thus looses execution priority). If aH > ψ(aH), these costs

exceed the costs induced by the price improvement (by ∆), which forces him to overbid.

The threshold ψ(aH) depends on whether or not L partakes in trading. This decision,

however, depends on the display size aH . Therefore, ψ() depends on aH and one can readily

verify that ψ() increases in aH . Hence, the threshold, makingC indifferent between overbidding

or not, becomes higher if the display size is higher as it becomes more likely that L enters the

market. In this case, C’s execution risk declines as he can expect to get executed against L

(even if he is queued behind the displayed part of H). Figure 3 shows an illustration of the

overbidding mechanics.

Figure 3: Illustration of C’s overbidding decision a∗
C . At t0,H submits an order of sizeNH with display

size aH (blue bar). The remaining NH − aH are not visible to C (light-blue bar). Left picture: When H

does not over-display, i.e., aH ≤ ψ1, C does not overbid (a∗
C = 0) at t1. Right picture: When H displays

too much, for instance, aH > ψ2, C overbids (a∗
C = ∆).

a
H

ψ

B0 B0 + ∆ A

a
H

ψ

B0 B0 + ∆ A

3.4 Equilibrium strategies

3.4.1 The hidden trader’s equilibrium strategy

In this section, we derive the equilibrium by obtaining the hidden trader’s best response con-

ditional on the other trader’s best strategies. To derive the expected execution costs for H , we

consider the two possible outcomes where H’s volume is not executed against trading demand

by L. First, C overbids (aC = 1), in which case the total NC shares have priority over the NH

hidden shares, causing execution costs ofQ(0, NC , NH). Second, C does not overbid (aC = 0),

in which case H’s displayed part has priority over NC shares, while the remaining NH − aH

have less priority. In this case, the costs are Q(aH , NC , NH − aH).
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Finally, in the case, where the latent trader L enters the downstairs market, all displayed

orders get executed and H’s execution costs for remaining shares equals Q(NH − aH , 0, 0).

By denoting pH(aH , aC) as the probability for H’s volume being not executed against trading

demand by L, the expected execution costs of H are given by

ΠH(aH , aC) =pH(aH , aC)
(

1{aC=0}Q(aH , NC , NH − aH) + 1{aC=∆}Q(0, NC , NH)
)

+
(

1 − pH(aH , aC)
)

Q(NH − aH , 0, 0).
(3.14)

Denote a∗
C(a) as C’s best response given H’s display size aH ≥ 0, and denote the corre-

sponding expected execution costs according to (3.14) by Π∗
H(). The equilibrium actions of H

and C, (a∗
H , a

∗
C), are then given by

a∗
H ∈ arg max

a
Π∗

H(a, a∗
C); a∗

C = a∗
C(a∗

H).

The following theorem characterizes the optimal strategies of H and C in the equilibrium:

Theorem 1. Let ψ() denote the overbidding threshold according to Lemma 1. Then, there exists

a threshold for the size of H’s Iceberg order N0 ∈ [φ3,∞], such that the unique equilibrium

strategy is given by

(a∗
H , a

∗
C) =







(ãH , 0) if NH ≤ N0,

(NH ,∆) else,

with ãH := min(NH , ψ(aH = NH)).

PROOF: See Appendix.

When the order size of H is below the critical threshold N0, H limits his display size to the

’overbidding threshold’ ψ(), which (just) prevents the competitor C from overbidding. Hence,

consistent with the conjecture by Harris (1997), the presence of liquidity competitors restricts

the extent by which trade intentions can be made public.

If H’s order volume, however, is too small (NH < min(ψ1, ψ2) ≤ ψ(NH)), it never trig-

gers the overbidding threshold. Consequently, small hidden traders do not face any liquidity

competition and thus can afford fully displaying their trade intentions.

A third case occurs if the order size ofH is larger thanN0. Such orders are sufficiently large

to attract (large) latent counterparties if they are fully disclosed. In this case, the expected ben-

efits arising from attracting the latent trader outweigh the expected losses due to overbidding.

Therefore, traders that are sufficiently large, fully display their trade intentions.

Accordingly, hiding orders is only a rational decision for medium-size traders with ψ1 <

NH < N0. These traders are neither sufficiently small to avoid liquidity competition, nor

they are sufficiently large to attract latent liquidity demanders. Figure 4 illustrates the different

regimes of optimal order display in the equilibrium.
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Figure 4: The figure shows the different equilibrium display regimes. There are two regimes. If H is

large (NH > N0) or small (NH < ψ), he fully displays his order. Otherwise, if the order is medium-sized

(ψ < NH < N0), he partially hides his order and shows at most ψ shares.

NH

a∗
H

Large-Order

Full Display

Small-Order

Full Display

Medium-Order

Partially Hidden

a
∗
H

= NH

ψ1

N0

Thus, order-display can attract additional latent demand that would otherwise not partake in

trading. This is beneficial for all market participants. Liquidity suppliers benefit from increased

execution probability and a reduction in the usage of costly market orders, while large liquidity

demanders can meet their liquidity demand without conducting costly counterparty search in the

upstairs market. Hence, the welfare benefits from the disclosure of trade intentions ultimately

arise from synchronizing the timing and locations of trades through order display signaling.

The absence of such trade coordination, due to an excessive use of hidden orders, does not only

affect welfare and trading costs, but does also help explaining our main finding in Figure 1,

suggesting that hidden orders induce significant price adjustments while displayed orders do

not.

3.5 Testable predictions

3.5.1 Effects of hidden order submissions

According to the equilibrium derived in the previous section, it is optimal for sufficiently large

liquidity suppliers to fully display their orders as long as they expect the presence of latent trade

demand. Then, liquidity supply and demand is optimally coordinated and there is no need to

confront the market with unexpected trade demand arising from non-executed hidden orders.

In this scenario, any submission of hidden orders is sub-optimal and implies a deviation from

equilibrium. As a result, liquidity supply is not matched by (latent) trading counterparts, which

induces liquidity mis-coordination and forces traders facing liquidation constraints to enforce

trade execution. It therefore becomes necessary to cancel any non-executed hidden orders and

to trade them as market orders, which, however, causes price impact. A major implication
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of our model therefore is that an excessive use of hidden orders causes a temporal mis-match

between liquidity supply and demand which in turn causes price pressure. This price pressure

emerges from arising trade demand, which, however, is unexpected as it has been shielded from

the market.

According to our theory, full order revelation is optimal for large and small traders but

not necessarily for medium-size traders. In the latter case, the increase of hidden volume does

not necessarily induce trading frictions. Empirically, however, we cannot identify individual

hidden orders and thus cannot separate between small, medium or large traders. Effects of

hidden order submissions, however, should be also valid even if they are tested unconditionally

(i.e., without controlling for the size of individual orders), though they might be watered down

in case of a dominance of medium-size orders. Empirical evidence will tell us to which extent

such causalities can be identified. This yields the following hypotheses:

Testable Hypothesis 1 (Effect on returns). Increases in hidden buy order volume cause positive

returns.

Testable Hypothesis 2 (Effect on cancellation activity). Increases in hidden buy order volume

amplify cancellations of buy volume.

Testable Hypothesis 3 (Effect on order aggressiveness). Increases in hidden buy order volume

amplify the submission of market order volume on the buy side.

Note that Hypothesis 1 solely is also consistent with the hypothesis of informed trading:

informed traders may use hidden orders to conceal their trade intentions. Therefore, one might

expect that (buy) hidden orders are associated with (positive) price reactions. Therefore, just

testing Hypothesis 1 does not allow us to empirically separate it from the hypothesis of informed

trading.

Under the hypothesis that coordination frictions – as discussed above – play a role, also

Hypotheses 2 and 3 should be true. The latter are hardly in line with informed trading and thus

provide additional evidence in favor of our theory. Hence, if the observed price adjustments

originate from mis-coordination frictions resulting from an excessive hiding of orders, not only

Hypothesis 1, but also Hypotheses 2 and 3 should hold jointly.

Finally, note that the same predictions hold for hidden sell orders, but with reversed sign.

Therefore, assuming that buy hidden and sell hidden traders arrive randomly in time, we ex-

pect to see price fluctuations in both directions, which increase with the extent of hidden order

submissions. Consequently, we predict that markets with a higher proportion of hidden liq-

uidity should face a higher level of volatility due to a generally higher level of liquidity mis-

coordination:

Testable Hypothesis 4 (Effect on volatility). Markets with a higher level of hidden liquidity

exhibit more volatility.
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3.5.2 Determinants of hidden order submissions

The previous section addressed the effects of hidden order submissions on subsequent prices

and order submission activities. In this section, we analyze the implications of our theoretical

model for the determinants of hidden order submissions. According to our theory, the main

reason for the submission of hidden orders is to avoid liquidity competition by limiting the

display size. The display size is triggered by the overbidding threshold ψ(aH) as of (3.12) and

is determined by liquidity suppliers’ expectations of the cost of trading. The latter are driven by

the bid-ask spread, the minimum tick size, and the order book depth on the opposite side of the

market.

Hence, in our framework, the driving forces of hidden order submissions correspond to the

determinants of the threshold ψ(). Note that according to (3.13), ψ() depends on thresholds ψ1

and ψ2, for which, however, a closed-form solution is generally not available. We nevertheless

consider a special case which illustrates how the thresholds depends on underlying liquidity

characteristics: Assume that noise trading volume is exponentially distributed with mean λ > 0.

Moreover, assume that the impact function c(m) follows (3.10) with 1/β denoting the role of the

(constant) order book density and s being the quoted bid-ask spread. Under these simplifying

assumptions, the sub-threshold in (3.13) ψ1 is given by

ψ = ψ1 :=







−λ log
(

1 − NC

λ
∆

s̃

)

if NC

λ
< s̃

∆
,

+∞ else,
(3.15)

where

s̃ := s
(

1 − e−
NC

λ

)

+ λβ
(
NC

λ
− (1 − e−

NC

λ )
)

> 0. (3.16)

A similar calculation can be done for ψ2. For sake of brevity, we concentrate our discussion

on ψ1. Notice that s̃ can be interpreted as the C’s expected effective spread, corresponding to

the effective per share costs when market (sell) orders arrive with exponentially distributed size

x, and the remaining non-executed NC − x shares are traded via limit buy market orders with

linear price impact xβ.

The relationship between ψ and the effective spread s̃ can be graphically easily illustrated

when s̃ is expressed relatively to the tick size ∆. Then, as shown in Figure 5, the overbidding

threshold monotonously declines in s̃
∆

.
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Figure 5: The figure illustrates the overbidding threshold ψ1 (3.15) as a function of the relative effective

spread, s̃
∆

. C overbids H whenever aH > ψ1. The illustration is based on a setting with µ = 0,

λ = NC = 100, and β = 0, corresponding to stocks with deep books implying small price impacts.
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Hence, as higher effective spreads make market orders more expensive, liquidity competi-

tors have a higher interest in executing their position via limit orders. Consequently, they are

more willing to overbid standing orders in order to increase the execution probability of their

order. As a result, the overbidding threshold becomes smaller. Therefore, ceteris paribus, ef-

fective spreads increase liquidity competitors’ order aggressiveness. Following the same logic,

it is intuitive that the tick size acts in exactly the opposite way: A high tick size makes it more

costly to overbid which in turn reduces liquidity competition and yields a higher overbidding

threshold. Consequently, hidden traders are more willing to display their trade intentions. This

broadly confirms the conjecture by Harris (1996) that high tick sizes prevent displayed orders

from being undercut.

As an example, consider highly liquid stocks such as Cisco and Microsoft, which mostly

have a quoted spread of one tick. Moreover, their order book is thick, suggesting that average

trade sizes do not have much price impact, i.e., βλ ≈ 0. It is furthermore known that the level

of incoming liquidity supply clearly exceeds the amount of liquidity demand, i.e., NC/λ ≫ 1.

Hence, in these cases, our model predicts ψ1 → ∞, suggesting that there is no (or only little)

hidden volume in the order book.

Note that liquidity characteristics such as the quoted bid-ask spread s, the (opposite side)

order book depth β, and the market order arrival rate λ affect ψ() implicitly through the effective

spread s̃. Hence, ceteris paribus, smaller spreads s, higher depth 1/β and more market order

arrivals λ reduce the effective spread and therefore increase the overbidding threshold. Conse-

quently, the display size increases and the proportion of hidden liquidity shrinks. We formulate

these implications as testable hypotheses:

Testable Hypothesis 5 (Bid-ask spreads and hidden liquidity). Markets with smaller bid-ask

spreads reveal a higher proportion of hidden liquidity.
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Testable Hypothesis 6 (Relative tick size and hidden liquidity). Markets with wider (relative)

tick sizes reveal a lower proportion of hidden liquidity.

4 Testing the model implications

4.1 Dynamic implications

Given the data availability, the theoretical model presented in Chapter 3 cannot be tested in

structural form. Nevertheless, using the econometric framework presented in Chapter 2, we

can test Hypotheses 1, 2 and 3 in reduced form. Hence, employing the VAR model for the

12-dimensional vector

yt = (RET, SPR, V OLA,HI10, DI10, TD, SUB, SUS,EXB,EXS,CAB,CAS)′,

the effect of a shock in the order imbalance of hidden orders (HI10) and displayed orders

(DI10) on subsequent mid-quote returns cancellation activities and order aggressiveness, while

accounting for dynamic (cross-)dependencies, is quantified by (cumulative) impulse response

functions as formulated in (2.6). Accordingly, Hypothesis 1 is strongly confirmed by the cu-

mulative impulse response function depicted in Figure 1 in Chapter 1. Hence, in line with our

theory, imbalances in hidden volume induce a significantly stronger price impact than imbal-

ances in displayed liquidity.

As discussed in Section (3.5.1), our theory is additionally supported by corresponding evi-

dence for cancellation and order placement activities. Figures 6 through 8 show the estimates of

the cumulative impulse responses of one-minute buy and sell limit order cancellation volumes

(Ξ̂CAB and Ξ̂CAS), execution volumes (Ξ̂EXB and Ξ̂EXS), and submission volumes (Ξ̂SUB and

Ξ̂SUS), triggered by a positive one-standard-error shock in hidden and displayed order imbal-

ances (HI10 and DI10).

As NASDAQ ModelView data does not contain the cancellation of hidden orders, we can-

not verify whether hidden volume gets canceled in case of high depth imbalances and thus

cannot fully validate Hypothesis 2. Recorded cancellations of displayed orders, however, can

(at least partly) correspond to displayed parts of larger (partially) hidden orders. In this case,

the cancellation of partly hidden orders might also trigger a fraction of displayed cancellations.

Hence, the impulse response of hidden and displayed order imbalances on cancellations, as

shown in Figure 6, might provide at least some evidence in favor of Hypothesis 2. In fact, we

observe that shocks in non-displayed net buy depth tends to increase the cancellation rate of

buy limit orders. The fact that this relationship is only borderline significant (and insignificant

for net sell volumes) might be, however, due to the fact that this might be only partly driven by

cancellations of hidden orders.
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Figure 6: Estimates of cross-sectional averages of the cumulative generalized impulse response of one-

minute aggregated limit order buy and sell cancellation volumes (Ξ̂CAB and Ξ̂CAS) due to positive

one-standard-deviation shocks in hidden (blue) and displayed (red) order imbalances. The dashed lines

show the approximate 95% confidence intervals of the averaged impulse response functions. Based on

one-minute aggregates of NASDAQ ITCH data and one-minute snapshots of NASDAQ ModelView data

for the stocks APC, AZO, CAH, GAS, GOOG, EMR, LEG, PAYX, STJ, and TDC, for November to

December 2008.
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Figure 7: Estimates of cross-sectional averages of the cumulative generalized impulse response of one-

minute aggregated limit order buy and sell execution volumes (Ξ̂EXB and Ξ̂EXS) due to positive one-

standard-deviation shocks in hidden (blue) and displayed (red) order imbalances. The dashed lines show

the approximate 95% confidence intervals of the averaged impulse response functions. Based on one-

minute aggregates of NASDAQ ITCH data and one-minute snapshots of NASDAQ ModelView data

for the stocks APC, AZO, CAH, GAS, GOOG, EMR, LEG, PAYX, STJ, and TDC, for November to

December 2008.
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Hypothesis 3 is tested based on estimated impulse response functions of order execution

volumes. According to Figure 7, an increase in buy-side hidden orders does not generate a sig-

nificant increase in buy order executions (EXB). The effect tends to be negative but is widely

insignificant. In contrast, positive shocks in hidden buy-sell imbalances have a significantly

positive impact on sell order order executions, i.e., buy market orders (EXS). These results

confirm Hypothesis 3 and show that hidden liquidity influences the market in a very different

way than displayed liquidity. Indeed, for the latter, we observe exactly opposite effects, which
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are naturally explained by the fact that displayed liquidity is likely to be absorbed by trading

counterparts and thus induce executions on the same side of the market. The fact that hidden

liquidity imbalances trigger executions on the opposite side is strongly in line with our rea-

soning that impatient hidden liquidity suppliers enforce execution by increasing their trading

aggressiveness.

Figure 8: Estimates of cross-sectional averages of the cumulative generalized impulse response of one-

minute aggregated limit buy and sell order submission volumes (Ξ̂SUB and Ξ̂SUS) due to positive

one-standard-deviation shocks in hidden (blue) and displayed (red) order imbalances. The dashed lines

show the approximate 95% confidence intervals of the averaged impulse response functions. Based on

one-minute aggregates of NASDAQ ITCH data and one-minute snapshots of NASDAQ ModelView data

for the stocks APC, AZO, CAH, GAS, GOOG, EMR, LEG, PAYX, STJ, and TDC, for November to

December 2008.
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Additional supportive evidence is provided by Figure 8, showing the estimated cumulative

impulse responses for submission volumes. We observe that hidden order imbalances increase

the rate of displayed limit orders on the same side of the market and tend to decrease limit

order activities on the opposite side. Hence, hidden order imblances trigger corresponding

imbalances in displayed limit orders. These effects are in line with Hypothesis 3 as they indicate

that excessive hidden liquidity generally increases order aggressiveness. However, this does not

only result in higher market order activity but obviously also in more displayed limit order

submissions. Hence, a possible strategy to accelerate the execution of non-executed (hidden)

orders is to make them visible to the market. This strategy is not captured by our model but can

be seen as a less aggressive alternative to market order trading.

Again we observe a striking difference between the effects of displayed and hidden order

submissions. While imbalances in hidden orders cause significant reactions in limit order sub-

missions, these effects are insignificant in case of imbalances in displayed orders. Hence, strong

one-sided displayed liquidity supply does not trigger further effects in the same direction but is

likely to be absorbed by trading demand on the opposite of the market. The re-positioning and

revelation of volume which has been concealed before, however, causes fundamentally different

effects as it is perceived as newly arriving liquidity supply or trading demand, respectively. As

a result to this unexpected trading demand, prices significantly move, as documented in Figure

1, manifesting the key theoretical and empirical finding of this paper: hiding orders h liquidity
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sychnronization and makes prices inefficient as they only incorporate visible but not invisible

trade demand. As a result, we observe price fluctuations which would not occur if liquidity

demand and supply would be synchronized.

4.2 Cross-sectional implications

While Hypotheses 1 to 3 are associated with the causal temporal effects of hidden liquidity

submission, Hypotheses 4 to 6 formulated in Chapter 3 postulate cross-sectional relationships

between the extent of hidden liquidity, volatility, bid-ask spreades and the tick size. In order

to test these hypotheses, we therefore define the relative bid-ask spread RSPR as the ratio

between the spread SPR and the mid-quote MQ, and the relative tick size RTCK as the ratio

between the tick size TCK and MQ. Volatility is estimated by the daily realized variance

(RV ), computed as the sum of squared 10-min returns.

Testing the role of relative bid-ask spreads and relative tick sizes as drivers of hidden liq-

uidity (Hypothesis 5 and 6) yields the following simple regression

RHD10i = αh + βh,2RTCKi + βh,3RSPRi + εhi. (4.1)

Testing the effect of volatility on liquidity (Hypothesis 4) implies the model

RVi = αv + βv,1RHD10i + βv,2RTCKi + βv,3RSPRi + εvi, (4.2)

for i = 1, . . . , N , and white noise error terms εhi and εvi. Although not predicted by our

theory, equation (4.2) also incorporates RTCKi and RSPRi as additional control variables.All

variables enter in logarithmic form as time averages across days and (in case of RHD10i and

RSPRi) one-minute snapshots within a day. This leaves us with N = 468 cross-sectional

observations.12

Equations (4.1) and (4.2) constitute a triangular relationship, where causality runs from

RHD10 to RV . Although not captured by our framework, this causality, however, might be

reversed. For instance, Harris (1996) argues that liquidity suppliers use hidden orders to reduce

the risk of being picked off. Since the picking-off risk is particularly high in volatile markets,

causality may run from volatility to hidden liquidity. Moreover, in our setting, simultaneity

betweenRV andRHD10 can simply arise because of the use of time averages of both variables.

To account for this effect, we consider a second specification in which we explicitly includeRVi

in the first equation, resulting into a bivariate simultaneous equations system:

RHD10i = α̃h + β̃h,1RVi + β̃h,2RTCKi + β̃h,3RSPRi + ε̃hi, (4.3)

RVi = α̃v + β̃v,1RHD10i + β̃v,2RTCKi + β̃v,3RSPRi + ε̃vi. (4.4)

As soon as both β̃h,1 and β̃v,1 are truly non-zero, RHD10i and RVi are simultaneous, and

12An alternative to using averaged variables would be to estimate the model in a panel setting, which would
allow us to exploit not only cross-sectional variation but also time variation. Properly capturing the strong serial

(cross-)dependencies of most variables in a panel setting would be, however, quite challenging. Corresponding

panel VAR approaches would be cumbersome, or even impossible, to estimate given the amount of underlying
observations.
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Table 2: Estimation results of cross-sectional regressions of (4.1), (4.2), (4.3) and (4.4). The first two

columns give the OLS estimates of (4.1) and (4.2). The next columns give the 2SLS estimates of (4.3)

and (4.4) with instruments RET2i and D10i. Standard errors are shown in brackets. Below, we report

the F -statistics based on the first-stage regressions as tests for weak instruments and the Sargan test for

over-identification.

Structural Model Simultaneous Equations Model

RHD10i RVi RHD10i RVi RHD10i RVi

(4.1) (4.2) (4.3) (4.4) (4.3) (4.4)

RHD10i 3.356∗∗∗ 3.356∗∗∗ 1.560∗∗∗

(0.427) (0.427) (0.163)

RVi 0.298∗∗∗ 0.294∗∗∗

(0.038) (0.038)

RTCKi −0.464∗∗∗ 1.877∗∗∗ −0.559∗∗∗ 1.877∗∗∗ −0.558∗∗∗ 1.043∗∗∗

(0.027) (0.217) (0.029) (0.217) (0.029) (0.090)

RSPRi 0.172∗∗∗ −0.234∗ 0.070∗∗ −0.234∗ 0.071∗∗ 0.075

(0.031) (0.126) (0.033) (0.126) (0.033) (0.063)

Const. −1.663∗∗∗ −5.438∗∗∗ 1.620∗∗∗ −5.438∗∗∗ 1.581∗∗∗ −8.426∗∗∗

(0.106) (0.791) (0.431) (0.791) (0.430) (0.332)

Instruments − − RET2i RET2i,Di

N 468 468 468 468 468 468

Weak-Instr. − − 1067.78∗∗∗ 68.08∗∗∗ 532.46∗∗∗ 86.52∗∗∗

Sargan − − − − 71.75∗∗∗ 109.30∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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the parameters cannot be consistently estimated by OLS. We therefore employ two-stage least

squares (2SLS) to estimate the system equation-by-equation. We use the squared daily mid-

quote return, RET2i, as an obvious instrument for RVi. As a second instrument, we utilize

the displayed depth D10i. Both RET2i and D10i are correlated with the endogenous vari-

ables. While the uncorrelatedness of RET2i and ε̃hi is easily justified (given that RVi serves

as a regressor in (4.3) and thus captures most volatility-associated variation in ε̃hi), the uncor-

relatedness of RET2i and ε̃vi is more critical and relies on the ability of the regressors that

are included in (4.4) to sufficiently capture variations in RVi. We conjecture, however, that

cross-sectional variation in RVi is particularly captured by the included regressors rather than

by squared daily returns, diminishing the remaining explanatory power of RET2i for RVi and

making correlations between RET2i and ε̃vi unlikely. The uncorrelatedness between D10i

and both ε̃hi and ε̃vi can be similarly justified, as D10i and RTCKi are strongly correlated13,

and thus, we expect the explanatory power of RTCKi to capture most of the variation in both

equations (4.3) and (4.4), making correlations between D10i and both ε̃vi and ε̃hi less likely.

Table 2 presents the equation-by-equation OLS estimates of (4.1) and (4.2) and 2SLS estimates

of (4.3) and (4.4). Without exception, the coefficient estimates based on all model specifica-

tions confirm Hypotheses 4 to 6 and are significant on the 5% level. Accordingly, there is

significant evidence for hidden liquidity provision (RHD10i) being higher for stocks that trade

at wider spreads (RSPRi) and smaller tick sizes (RTCKi). Furthermore, markets that exhibit

a higher proportion of hidden liquidity supply (RHD10i) are more volatile (RVi). Moreover, as

expected, we find evidence for simultaneity between volatility and hidden liquidity provision.

Although the test of over-identification does not fully support our choice of over-identifying

moment conditions, the results are nevertheless qualitatively similar across the different specifi-

cations. The results are also qualitatively similar if additional or other instruments are employed

(not shown here). We therefore conclude that simultaneity effects do not fundamentally influ-

ence the coefficient estimates of our variables of interest.

5 Conclusions

This paper shows that the excessive use of hidden orders can pose a possible source of trading

frictions in limit order book markets. Shielding liquidation needs from public view distorts the

synchronization of liquidity supply and demand and, as a result, cause excess price fluctuations

which are unrelated to information and would not occur in case of full order display.

In contrast, displaying trade intention improves the time synchronization of time schedules

between liquidity demander’s trading needs so that price pressures resulting from trading de-

mand and trading impatience are mutually absorbed. Consistent with this reasoning, we show

that the excessive use of hidden liquidity can artificially increase market volatility and thus can

harm the price discovery process and price efficiency.

13The estimated correlation coefficient between D10i and RTCKi equals 0.81.
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An important conclusion arising from this study is that trading frictions due to hidden liq-

uidity ultimately imply higher trading costs and a higher market fragmentation. The latter effect

arises because (large) liquidity demanders refrain from trading in a public limit order book if

the displayed liquidity is low and they face the risk of causing (too much) price impact. Con-

sequently, public limit order book exchanges suffer from a shortage in liquidity demand which

increases the costs for trading.

The key determining factor in the provision for hidden liquidity is liquidity suppliers’ belief

about the presence of latent liquidity demand and their belief about the intensity in liquidity

competition. Therefore, anything that reduces competition in liquidity supply or increases their

information about the presence of (large) latent liquidity demand will increase public supply of

displayed liquidity. Our analysis, therefore, provides several profound implications for reducing

trading frictions and increasing market participation on public exchanges.

First, in order to increase pre-trade transparency, exchange operators can enhance market

makers’ and liquidity suppliers’ incentives to keep spreads narrow, reducing the costs of liq-

uidity competition and thus increasing the incentives for order-exposure. Wide spreads increase

order-aggressiveness of incoming orders and -thereby- force liquidity suppliers to hide a greater

fraction of their order. Therefore, incentivizing market makers to provide narrower spreads can

reduce hidden liquidity related trading frictions.

Second, exchange operators can introduce a rebate structure that rewards liquidity demand.

Although this violates the general pricing rule that liquidity demanders have to pay a fee for

consuming liquidity, attracting large liquidity demanders will reduce the amount of large hidden

orders in the order book.

Third, increasing monitoring as well as direct market access capabilities will increase the

chances of exposure but will also increase the rate at which latent investors observe the public

market to seize liquidity opportunities. Knowing that latent traders monitor the market, liquidity

suppliers are more willing to reveal their trade intention and thereby increasing market liquidity

and reducing market volatility.

Fourth, we propose a novel order type, the mutually binding Indication Order of Interest that

mitigate the downsides of hidden orders but maintain the signaling capacity of openly displayed

orders. When a buyer submits a bIOI, they instantly match with pre-existing sell bIOI’s at a pre-

specified price. If there is no sell bIOI, then it is not actively displayed. Hence, mutually binding

IOIs effectively operate as a dark pool on top of the pre-existing public exchange. Therefore,

signals are only received by those counterparties who ar pre-committed to trade and completely

bypasses those traders who act at the same side of the market. Because orders are matched at

a pre-specified price, the matching of bIOIs can not have any price-effects. We therefore argue

that the inception of these order types can reduce market volatility, attract non-exchange order

flow and improve trade execution for large traders.
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Appendix

A Proofs

As discussed in Chapter 3, the cost function c(m) needs to satisfy a ’growth condition’ of the

form

lim
n→∞

c(n−m)

c(n)
= 1 for all m ≥ 0. (5.1)

There are several reasons why this condition does not pose a substantial restriction to our model.

First, it is satisfied, whenever c() is of polynomial or power-law growth. This is in line with

much empirical evidence on power-law scalings in financial markets. Second, the growth con-

dition ensures that for sufficiently large trade sizes n and a fix size m, the marginal transaction

costs c of a market order of size n − m and market order of size n are asymptotically equal.14

Through the remainder, we assume that (5.1) is satisfied.

Before we proof Lemma 1 and Theorem 1, we present one preparatory lemma:

Lemma 2. Assume that the buy-side order book depth behind H’s submission price level is

block-shaped, i.e., V j = V = 1, and assume that L’s order size NL satisfies N−
L ≤ NL ≤ N+

L

with N−
L = NH +NC + 2 γ

∆
− 1 and N+

L = (NC +NH)
(

1 + γ
∆

)

. Then, L executes at most the

visibly displayed orders of H and C, i.e.,

a∗
L ∈ {0, 1, 2}. (2.2)

PROOF OF LEMMA 2: Assume that L has consumed already the (visible) liquidity provided

by H and C and denote by N := NL − aH − NC the number of remaining shares. Under our

assumption of a block-shaped order book, i.e., V j = V , for all j, the cost of trading is minimal.

In this case, if L trades i ticks deeper into the book, the costs (in ticks) of trading downstairs,

respectively upstairs, when benchmarked against H’s submission price level, equal

i∑

j=1

j =
i(i− 1)

2
, respectively,

(

i+
γ

∆

)

(N − i).

The resulting cost function

C : {0, 1, ...., N} → R; i 7→ i(i− 1)

2
+
(

i+
γ

∆

)

(N − i)

attains its minimum at i∗ ∈ {0, N}. By direct computation we verify that the minimum is

indeed attained at i = 0 because NL > NH +NC + 2 γ
∆

− 1.

PROOF OF LEMMA 1: There are three regimes where the structure of C ′s cost function

changes as a function of H ′s and his own strategy. There are, however, only two thresholds

14 For instance, there should be no much difference in the cost function if a trader submits an order of say 10000
shares or 10001 shares.
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where C ′s optimal action changes from 0 to ∆. For aH ∈ [0, φ1), the total liquidity offered by

H and C is too small to trigger a trade execution by L, hence, pC ≡ 1. In this case, aC = 0 is

optimal if and only if

Q(0, 0, NC) + ∆NC ≥ Q(0, aH , NC).

Since the mapping aH 7→ Q(0, aH , NC) is strictly increasing, we obtain the first possible thresh-

old.

On [φ1, φ3), the best response ofL yields pC ≡ 1−µ for aC = 0 and pC ≡ 1 for aC = ∆. As

a result, the costs associated with (NH , 0) decrease discontinuously at φ1 for both players, and

aC = 0 might be optimal for the competitor at φ1 in which case a second threshold ψ2 ∈ [φ1, φ3)

might exist, where the best response switches back to aC = ∆. If such a threshold exists, i.e.,

if aC = ∆ is optimal for some aH < φ3, then aC = ∆ must be optimal for all aH ≥ φ3 as

the costs associated with price overbidding decreases at φ3 with pC declining from pC = 1 to

pC = 1 − µ.

Finally, if no threshold exists in [φ1, φ3), then a threshold might exist in [φ3, NH ], where the

probability of latent trader execution is independent of C’s action and aC = 0 is optimal if and

only if

(1 − µ)Q(0, 0, NC) + ∆NC ≥ (1 − µ)Q(0, aH , NC).

This proves the structural result on C ′s best response function.

PROOF OF THEOREM 1:

For the proof, we have to show that the equilibrium display size a∗
H must satisfy ΠH(a∗

H) ≤
ΠH(a) for all a ∈ [0, NH ]. We will show this for the case φ3 > ψ2. The opposite case does not

add much further insights and follows by analogy and slight adjustments.

Below we discuss different scenarios depending on the size of NH :

• If NH ∈ [0, φ1), then pH(a, aC(a)) = 1 for all display sizes a ≤ NH . As a result,

Π∗(a) =







Q(a,NC , NH − a) if a < ψ2,

Q(0, NC , NH) else.

Since the mapping a 7→ Q(a,NC , NH − a) is decreasing, this yields

a∗
H = min{NH , ψ1}.

• If NH ∈ [φ1, ψ2), then a∗
C(a) = 0 for all a ∈ [φ1, ψ2) as of Lemma 1. Thus, since the

mapping a 7→ Q(a,NC , NH − a) is decreasing, aH = NH is the dominating display size

for all a ∈ [φ1, ψ2). For the same reason, it is also the dominating display size for a < ψ1.

It remains to be shown that aH = NH also dominates any choice for a ∈ [ψ1, φ1). This is

true, because in this case a∗
C(a) = ∆ holds according to Lemma 1, while the probability

for L entering the market is zero (see Lemma 2). Thus, in equilibrium a∗
H = NH .
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• If NH ∈ [ψ2, φ3), then according to the previous case, a∗
H ≥ ψ2 must hold. However,

for ψ2 < a < φ3, we have a∗
C(a) = ∆, while L does not trade downstairs, i.e., aL = 0

and pH(a, aC(a)) = 1. Hence, there is no benefit in displaying more than ψ2, therefore

a∗
H = ψ2.

• If NH ∈ [φ3,∞), then pH(a, aC(a)) = 1 − µ for all a ∈ [φ3, NH ],

Π∗(a) =







µQ(NH − a, 0, 0) + (1 − µ)Q(a,NC , NH − a) if a < ψ2,

µQ(NH − a, 0, 0) + (1 − µ)Q(0, NC, NH) else.

Then, the costs resulting from full display (a = NH) are

µQ(0, 0, 0)
︸ ︷︷ ︸

=0

+(1 − µ)Q(0, NC , NH), (2.3)

while that resulting from partial hiding (a = ψ2) is

µQ(0, 0, NH − ψ2) + (1 − µ)Q(ψ2, NC , NH − ψ2). (2.4)

Under the growth condition (5.1) for the market impact function, the costs of missing out

the opportunity of being executed by L outweighs the cost of price undercutting for large

orders. Indeed, for all n, h, d ∈ N0 we have

Q(a,NC , n−a) =
a∑

i=0

c(n−i)pi+c(n−a)
(

F (a+NC)−F (a)
)

+
NC+n
∑

j=NC+a+1

c(NC+n−j)pj .

Now, (5.1) yields:

a∑

i=0

c(n − i)

c(n)
pi

n→∞−→ F (a),

c(n− a)

c(n)

(

F (a+NC) − F (a)
)

n→∞−→ F (a+NC) − F (a),

NC+n
∑

j=NC+a+1

c(NC + n)

c(n)
pj

n→∞−→ 1 − F (a+NC).

(2.5)

Thus, for all δ > 0 there exists N0 ∈ N such that for all NH ≥ N0 that satisfy NH ≥ φ3:

(1 − δ)c(NH) ≤ Q(a,NC , NH − a) ≤ (1 + δ)c(NH), a ∈ {0, ψ2}
(1 − δ)c(NH) ≤ Q(0, 0, NH − ψ2) ≤ (1 + δ)c(NH).

Hence the assertion follows from (2.3) and (2.4) as Q(0, 0, 0) = 0.
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B Asymptotic theory of generalized impulse response func-

tions

To derive the asymptotic properties of the cumulative impulse response functions Ξ, we follow

Lütkepohl (2007). Therefore, consider the K−dimensional VAR(p) process

yt = A1yt−1 + . . .+ Apyt−p + ut, (2.6)

with yt = (y1t, . . . , yKt)
′ and the (K ×K) coefficients matrices Ai and K−dimensional white

noise with E(ut) = 0 and

E(utu
′
s) =







Σu, if t = s,

0, otherwise,
(2.7)

with

Σu =







σ11 . . . σ1K

...
. . .

...

σK1 . . . σKK






. (2.8)

Let vec denote the column stacking operator and vech the corresponding operator that stacks

only the elements on and below the diagonal. Then, the duplication operator Dk is such that for

any (K ×K)-matrix T , DKvech(T ) = vec(T ) holds. Then, we define the following matrices

D+
K = (D′

KDK)−1D′
K , σ = vech(Σu), (2.9)

J =
[

Ik . . . 0 0
]

, α = vec(A1, A2, . . . , Ap), (2.10)

and

Γ =



















yt

yt−1

...

tt−p+1










[

y′
t, . . . yt−p+1

]










, Σu =










√
σ11 0 . . . 0

0
√
σ22 0

...
. . .

...

0 0 . . .
√
σKK










, (2.11)

A =













A1 A2 . . . Ap−1 Ap

IK 0 . . . 0 0

0 IK 0 0
...

. . .
...

...

0 0 . . . IK 0













. (2.12)

Let α̂ and σ̂ denote the least squares estimators with respect to (2.6). According to Lütkepohl

(2007) these estimators have asymptotic covariances Σα and Σσ with

Σα = Γ−1 ⊗ Σu Σσ = 2D+
K

(

Σu ⊗ Σu

)

D+
K

′. (2.13)
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The orthogonalized impulse response functions, Θo and Ξo, arise from diagonalizing the resid-

ual covariance matrix Σu, such that Σu = PP ′ holds. With the definition wt = P−1ut, wt

obeys Σw = E[wtw
′
t] = IK . The corresponding MA representation of yt can be written as

yt =
∑∞

i=0 Θo(i)wt−i with the orthogonalized impulse response function Θo(i), i.e.,

Θo(i) = ΦiP Ξo(n) =
n∑

i=0

Θo(i). (2.14)

Comparing with the corresponding generalized impulse responses in (2.4) and (2.5), we have

Θg(n) = ΦnQ Ξg(n) =
n∑

i=0

ΦiQ, (2.15)

Θo(n) = ΦnP Ξo(n) =
n∑

i=0

ΦiP, (2.16)

withQ = Σu

(

Σu

)−1

. Observe that the only difference between orthogonalized and generalized

impulse response functions lies in the right-multiplication of the matrices Q and P . Thus, we

can use the analogy of the asymptotic properties of the orthogonalized impulse response as of

Lütkepohl (2007) to derive the asymptotic properties for the generalized impulse response.

Theorem 2 (Asymptotic Theory of Generalized Impulse Response Functions). Suppose

√
T

[

α̂− α

σ̂ − σ

]

d−→ N

(

0,

[

Σα 0

0 Σσ

])

. (2.17)

Then

√
Tvec

(

Ξ̂o(n) − Ξo(n)

)

d−→ N

(

0, BnΣαB
′
n +BnΣσB

′
n

)

, n = 1, 2 . . . , (2.18)

where the matrices Bn and Bn obey

Bn =
(

P ′ ⊗ IK

)

Fn, Bn = (IK ⊗ Ψn)H, (2.19)

(2.20)

with the Fn matrices obeying Fn =
∑n

i=1 Gi and Gi =
∑i−1

m=0 J(A′)i−1−m ⊗ Φm and the H

matrix being defined as H = ∂vec(P )/∂σ′. Moreover, Ψj =
∑j

i=1 Φi.

With (2.15) and (2.16) in mind, it is easy to check that the asymptotic property of the

corresponding cumulative generalized impulse response Ξg are derived similarly by replacing

the matrix P with Q. Together with (2.13) and Theorem 2 we finally obtain:

Corollary 1 (Asymptotic Distribution of Generalized Impulse Response).

√
Tvec

(

Ξ̂g(n) − Ξg(n)

)

d−→ N

(

0, Bg
nΣαB

g
n

′ +B
g

nΣσB
g

n
′

)

, n = 1, 2 . . . (2.21)
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with Fn, Gn Ψn as in Theorem 2 and

Bg
n =

(

Q′ ⊗ IK

)

Fn, B
g

n = (IK ⊗ Ψn)Hg, Hg = ∂vec(Q)/∂σ′, (2.22)

and

Σα = Γ−1 ⊗ Σu, Σσ = 2D+
K

(

Σu ⊗ Σu

)

D+
K

′. (2.23)

Due to Corollary 1, it is straightforward to show that the cumulative impulse response Ξg
j (n)

of the j-th endogenous variable at time n after the shock is obtained by right-multiplying Ξg
n

with the column-vector ei, which consists of zeros except at the jth entry. Thus, we have

√
Tvec

(

Ξ̂g
j (n) − Ξg

i (n)

)

d−→ N

(

0,Λjn

)

, (2.24)

and

Λjn = e′
j

(

Bg
nΣαB

g
n

′ +B
g

nΣσB
g

n
′

)

ej. (2.25)

C Descriptive statistics

Table 3: Time-series averages of mid-quotes, bid-ask spreads, visible and hidden depth, and order ac-

tivities based on one-minute aggregates for the stocks APC, AZO, CAH, GAS, GOOG, EMR, LEG,

PAYX, STJ, and TDC. Reported variables: Averages of one-minute mid-quotes (MQ), the bid-ask spread

(SPR), visible depth on the first 10 levels of the book (D10), and total hidden depth on the first 10 levels

(HD10), and averages of minute-by-minute aggregated volume of limit buy order submissions (SUB),

limit sell order submissions (SUS), limit buy order cancellations (CAB), limit sell order cancellations

(CAS), buy limit order executions (EXB), and sell limit order executions (EXS). Data are based on

one-minute aggregates of NASDAQ ITCH data and one-minute snapshots of NASDAQ ModelView data.

The sample period is from November to December 2008, corresponding to 15, 600 one-minute intervals.

MQ
(in $)

SPR
(in $)

D10
(103 sh.)

HD10
(103 sh.)

SUB
(103 sh.)

SUS
(103 sh.)

CAB
(103 sh.)

CAS
(103 sh.)

EXB
(103 sh.)

EXS
(103 sh.)

APC 36.42 0.07 1.41 0.89 22.20 18.99 21.47 21.29 1.63 1.68

AZO 117.14 0.53 0.24 0.51 7.36 4.80 7.18 6.93 0.28 0.31

CAH 33.87 0.05 2.24 0.40 8.08 7.58 8.43 8.41 0.60 0.62

EMR 33.08 0.04 3.41 0.45 18.81 19.50 18.23 19.10 1.82 1.54

GAS 37.84 0.24 1.11 0.26 3.94 4.01 4.05 4.27 0.14 0.13

GOOG 301.67 0.30 0.65 1.48 11.04 9.19 9.07 10.19 2.11 2.11

LEG 14.75 0.03 9.28 0.26 11.48 11.45 11.48 12.11 0.55 0.54

PAYX 26.31 0.02 9.88 0.28 31.51 26.39 29.50 30.02 2.09 2.10

STJ 31.52 0.08 2.23 0.27 13.40 12.36 13.44 13.43 0.87 0.85

TDC 13.87 0.03 6.06 0.45 4.96 4.80 5.23 4.97 0.25 0.26

Average 64.65 0.14 3.65 0.53 13.28 11.91 12.81 13.07 1.03 1.01
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Table 4: Summary statistics (mean, standard deviation and 10%, 25%, 75% and 90% quantiles) of mid-

quotes, bid-ask spreads, visible and hidden depth and order activities on one-minute aggregates for the

stock AZO. Reported variables: one-minute mid-quotes (MQ), minute-by-minute snapshots of bid-ask

spreads (SPR), visible depth on the first 10 levels of the book (D10), total hidden depth on the first 10

levels (HD10), and of total depth and displayed depth imbalances, defined as standing buy volume in

excess of sell volume (DI10 and HI10). Moreover, we report statistics of the minute-by-minute aggre-

gated volume of limit buy order submissions (SUB) and limit sell order submissions (SUS), minute-

by-minute aggregated volume of buy limit order cancellations (CAB) and sell limit order cancellations

(CAS), and minute-by-minute aggregated volume of buy limit order executions (EXB) and sell limit or-

der executions (EXS). Order flow minute-by-minute aggregation is based on NASDAQ ITCH data and

one-minute snapshots are based on NASDAQ ModelView data. Sample period November to December

2008 corresponding to 15, 600 one-minute intervals.

Variable Mean St. Dev. q10 q25 q75 q90

MQ
(in $)

117.14 12.92 100.27 106.48 129.02 132.45

SPR
(in $)

0.53 3.01 0.10 0.14 0.27 0.38

DI10
(in $)

−0.02 0.16 −0.23 −0.12 0.08 0.18

HI10
(in $)

0.01 0.60 −0.46 −0.16 0.19 0.49

D10
(in 1000 sh.)

0.24 0.16 0.04 0.11 0.33 0.46

HD10
(in 1000 sh.)

0.51 0.60 0.03 0.15 0.67 1.14

SUB
(in 1000 sh.)

7.36 23.56 0.70 1.82 8.20 15.33

SUS
(in 1000 sh.)

4.80 14.77 0.00 0.00 5.90 11.47

CAB
(in 1000 sh.)

7.18 23.40 0.60 1.70 7.90 14.90

CAS
(in 1000 sh.)

6.93 16.54 0.62 1.77 8.00 14.56

EXB
(in 1000 sh.)

0.28 0.53 0.00 0.00 0.36 0.76

EXS
(in 1000 sh.)

0.31 0.53 0.00 0.00 0.40 0.80
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Figure 3: Estimated average unconditional autocorrelation functions of buy- and sell-side order flow

volume variables (EXB, EXS, CAB,CAS, SUB, SUS) in quantities that refer to the state of the

order book, including the spread (SPRD), the hidden and displayed order imbalances (HI10, DI10),

the total order depth (TD10 = H10 + D10), the midpoint return RET , and return volatility V OLA.

V OLA is computed as the sum of squared 1-min returns over a 10-min window. Accordingly, the ACF

of V OLA is computed based on 10-minute intervals. Autocorrelation estimates for the other variables

are based on one-minute aggregates over snapshots. In particular, order flow volumes are aggregated on

a minute-by-minute basis, while order-book quantities originate from one-minute snapshots of the order

book. Based on one-minute aggregates of NASDAQ ITCH data and one-minute snapshots of NASDAQ

ModelView data for the stocks APC, AZO, CAH, GAS, GOOG, EMR, LEG, PAYX, STJ, and TDC,

November to December 2008.
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