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Abstract

We use a model with agency frictions to analyze the structure of a dealer market that faces
competition from a crossing network. Traders are privately informed about their types (e.g. their
portfolios), which is something the dealer must take into account when engaging his counterparties.
Instead of participating in the dealer market, the traders may take their business to a crossing
network. We show that the presence of such a network results in more trader types being serviced
by the dealer and that, under certain conditions, the book’s spread shrinks. We allow for the pricing
on the dealer market to determine the structure of the crossing network and show that the same
conditions that lead to a reduction of the spread imply the existence of an equilibrium book/crossing

network pair.
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1 Introduction

In traditional financial markets, liquidating large positions (relative to the available liquidity) leads
to an unfavorable price impact. In response to this problem, alternative trading venues such as crossing
networks (CNs for short) have been established (e.g. Liquidnet and POSIT, among others). The most
prominent feature of these venues is that trading occurs at a price taken from a reference market (a stock
market or a dealer market), but the execution of orders is uncertain. This leads to the question of how
the prices and traded volumes in the dealer market (DM for short) are affected by the emergence of the
CN.!

We model the price-setting market using a contract-theoretic framework with private information,
where the principal represents a monopolistic DM run by a profit-maximizing dealer. On the other
hand, the privately-informed agents correspond to traders who choose between engaging the dealer and
their so-called outside option. In our case, the latter corresponds to either abstaining from trading or
trading in a CN, depending on which offers the highest (expected) utility. The price in the CN depends
in a pre-specified manner on the price schedule offered by the dealer (e.g. the midpoint of the bid-ask
spread of the DM) and, simultaneously, it determines the traders’ outside option, thereby influencing
the dealer’s optimal strategy.? This feedback loop leads to a fixed point problem, which we analyze step

by step.

First, we formulate the optimization problems of the dealer and the traders. The latter are parame-
terized by their types (e.g. their inventory positions). The dealer does not know each trader’s type, but
only the distribution of types; hence, he faces a screening problem. For a given execution price in the
CN, the dealer’s objective is to devise a pricing schedule so as to maximize his expected profits from
trading, roughly defined as the gains from trading certain positions net of the associated costs. We show

that this problem has a unique solution on the set of traders participating in the DM.

Second, we analyze the qualitative influence of the CN on the existing market. We prove that the set of
reserved types, i.e. those who trade nothing in exchange for nothing, shrinks after the introduction of the
CN. This means that the presence of the CN results in more traders earning positive rents. Furthermore,
we see that, in the particular case of uniformly distributed types, the spread of the DM narrows and the
indirect utility, i.e. the highest attainable utility a trader can obtain from engaging the dealer, increases
in the presence of the CN. In the sequel we also distinguish between excluded types (those traders who
favor the CN over the DM) and fully serviced types (those traders who earn strictly positive rents from
participating in the DM). Analyzing the market segmentation brought about by the presence of a CN is

one of our main foci.

In order to have a benchmark, we first analyze the problem without a CN in the spirit of Biais
et al. (2000). Adding a non-trivial outside option complicates computations significantly, due to the
discontinuities of the model. These discontinuities, closely related to the market-segmentation issue,
arise because small changes in the structure of the DM may result in a large amount of traders switching
from being fully serviced to being excluded (or vice versa). This in turn results in considerable changes of
the dealer’s expected utility. We overcome this difficulty by using an “accounting trick” following Jullien

(2003): instead of excluding traders with whom trading is too costly, we assume the dealer has access to

The European MIiFID 2, approved in 2014 and to be implemented by January 3, 2018, introduced the new category
“organized trading facility (OTF)”. Among others, the OTF regime captures broker CNs. Given the increased regulatory
scrutiny to which CNs are subject, analyzing their effect on primary markets is a current, relevant issue.

2Put differently, this work is based on a particular setting, in which the competitor to the monopoly is not modeled,
and instead adopts an automatic quotation system inspired by some existing financial markets.



a second, fictitious technology that allows him to offer trades at their expected costs, giving zero profits
to the dealer. In this case, there are no longer excluded types, as previously excluded traders become
fully serviced, albeit under the alternative technology. We show that on the set of types who are serviced
using the “original technology”, the resulting optimal pricing schedule coincides with the solution to the
original price-schedule design problem. The caveat is that we have to keep track of the points where
the dealer switches between using one technology or the other. We illustrate the results by means of
several examples with and without a CN. The segmentation of the market can become quite complex,
as is demonstrated in particular in Example 3.10.

Having understood the dealer’s problem, we show that, under certain conditions, there exists an
equilibrium price schedule. By this we mean the following: given an exogenous sell/buy price pair
(m_,74) in the CN, the dealer optimally chooses his pricing schedule. If we then specify the mechanism
via which prices in the DM determine those in the CN, we in general have that the prices emerging
from the dealer’s choice do not coincide with the original (7_, 7). An equilibrium price schedule is such
that the optimal reaction of the dealer to the prices (w_, 7 ) in the CN results in a price schedule that
induces (w_, 74 ) via the price-generation mechanism. Our study of such a feedback loop is novel and it
is a crucial component in our analysis of the interactions between DMs and CNs, which is typically not
unidirectional. As an application we consider a problem of optimal portfolio liquidation where traders
can chose between a DM and a CN (in this particular case a dark pool). We obtain the existence of an

equilibrium price and discuss the lack of the uniqueness thereof.

Related literature

Market impact. The analysis of optimal trading under market impact has received considerable atten-
tion from the mathematical-finance community. Starting with the contribution of Almgren and Chriss
(2001), the existence of optimal trading strategies under illiquidity has been established by many authors,
including Forsyth et al. (2012), Gatheral and Schied (2011), Kratz and Schéneborn (2015) and Schied
et al. (2010), just to name a few. This literature typically assumes that block trading takes place under
some (exogenous) pricing schedule, which describes the liquidity available for trading at different price
levels. Horst and Naujokat (2014) and Kratz and Schoneborn (2015) were the first to also allow orders
to be simultaneously submitted both to a DM and a CN. However, neither allows for an impact of off-
exchange trading on the dynamics of the associated DM, which is precisely the feedback effect that we

focus on?®

Market segmentation. The literature on the impact of market segmentation and, more specifically,
the impact of alternative trading venues on existing markets, has grown significantly in the last two
decades, see for instance Gomber et al. (2013), Degryse et al. (2005) and Oriol (2012) for references
to both theoretical and empirical papers. For instance, Fagart (1996) and Pouyet et al. (2008) study
models of dealers competing for traders with private information about their types, with focus on the
precise information structure in the market. The former analyzes a model with two equal dealers and a
trader who may have one out of two possible types. The latter allows more than two identical dealers
and an unspecified type space. Contracts and the resulting competitive equilibria are called efficient
if, among other requirements, the dealers obtain zero profit. Our setting differs significantly from the
aforementioned works by having only one profit-maximizing dealer who competes with a CN whose

price-schedule adjusts mechanically to the dealer’s price. In other words, whereas they have true Nash

3Zhu (2014), Buti et al. (2016) and Ye (2016) are examples of recent literature that also analyzes this impact.



Equilibria*, we have only a one-sided optimization. A priori, it is not clear whether equilibrium prices

exist in our setting.

A common approach (that we do not follow) in the theoretical literature is to assume that the market
participants trade only a single unit of the stock. For instance, in their seminal work, Hendershott and
Mendelson (2002) derive conditions for the viability of the alternative trading institutions in a modeling
framework where a random number of informed and liquidity traders, each buying or selling a single
unit, chooses between a DM and a CN. In their model, dealers receive multiple single-unit orders and
cannot distinguish between the informed and the liquidity orders. Degryse et al. (2009) and Daniéls
et al. (2013) also address competition between DMs and CNs.

Empirical evidence. Besides the cited theoretical works, there exists a growing empirical literature
on the effects of market segmentation. For instance, Battalio (1997) empirically observes a positive
effect of new OTC® trading (and hence increased market segmentation) on NYSE-listed securities and a
tightening spread. Gresse (2006) finds that risk-sharing benefits from CNs dominate fragmentation costs
and cream-skimming®; if dealers are allowed to trade in the CN, then they can offer better prices. Naes
and (Odegaard (2006) analyze different costs associated to trading in CN such as direct trading costs
(e.g. originating from the spread), adverse selection costs and opportunity costs from delayed trading.
They find that implicit costs are larger than explicit trading costs. Nimalendran and Ray (2014) present
evidence of informed traders in CNs, suggesting that information and price discovery happen in CN due
to concurrent trading. Degryse et al. (2015) empirically supports the theory of cream-skimming and finds
a negative impact of dark trading on the related lit market. Buti et al. (2011), provide empirical evidence
that high CN activity is associated with narrower spreads, but no causality is concluded. Apergis and
Voliotis (2015) finds empirical evidence for negative spill-over effects of dark trading. Foley and Putnigs
(2016) show that two-sided dark pools (i.e., dark limit order books) are beneficial, whereas the impact
of one-sided dark pools (where crossing occurs e.g. at the midpoint of the bid-ask spread) is not clear
and has an adverse-selection effect. We can sum up the empirical results with a statement from Section
7.3 in Gomber et al. (2013): “It is also possible that all types of dark pool trading activity may not have
a uniform impact on the markets, given the different types of market structure that are clubbed in its

definition.”

2 The model and an existence result

We consider a quote-driven market for an asset, in which a risk-neutral dealer engages a group of
privately-informed traders”. The dealer market (DM for short) is described by a pricing schedule 7T :
R — R, where ¢ units of the asset are offered to be traded, on a take-it-or-leave-it basis, for the amount
T(q). For q € R, we refer to the pair (¢,T(q)) as a contract. Following Biais et al. (2000), we assume
that 7'(0) = 0 and that 7" is absolutely continuous; thus, we may write

T(q) = / “s)ds, g0,

4Glosten (1994) and Parlour and Seppi (2003) also use equilibrium models so as to analyze the impact of alternative
trading venues on DMs and trading behavior.

50TC (over-the-counter) - trading that occurs away from traditional exchange markets

6Cream-skimming refers to the effect that informed dealers tend to prefer the DM, whereas uninformed traders move
to the CN, leading to a higher (adverse selection) risk for the dealer who faces the better-informed traders.

7Our dealer is called the PrINCIPAL in the contract-theory jargon, whereas the traders are commonly referred to as
AGENTS.



and analogously for negative values of ¢q. Here t(s) is the marginal price at which the s-th unit is traded.
As we shall see below, pricing schedules are, in general, not differentiable at zero. Hence, for a particular
schedule T the spread is

S(T) = |T(0+) = T'(0_)| = [#(04) — t(0)],

where ¢(0_) and ¢(04) are the best-bid and best-ask prices, respectively. We denote by C' : R — R the
dealer’s inventory or risk costs associated with a position ¢ (e.g. the impact costs of unwinding a portfolio
of size ¢ in a limit-order book). We assume that the mapping q — C(q) is strictly convex, coercive® and
it satisfies C'(0) = 0.

The traders’ idiosyncratic characteristics are indexed by # € © := [0, 6]. So as to have buyers and
sellers, we assume that zero belongs to the interior of ©. Saying that a trader’s type is § means that if

he trades ¢ shares for T'(q) dollars his utility is w(6,q) — T'(¢q), where

u(0,q) = 01(q) +12(q)

and 11,12 : R — R are smooth functions that satisfy 11(0) = ¥2(0) = 0, v is strictly increasing and
C(q) — ¥2(q) > 0 holds for all ¢ € R.

Besides participating in the DM or abstaining from trading (which we discuss below), each trader
has the possibility to submit an order to a crossing network (CN for short). The latter is an alternative
trading venue where trades take place at fixed bid/ask prices 7 := (77_, 7r+), but where execution is not
guaranteed.® For a specific 7, the quantity w(f;7) > 0 represents the expected utility of the §-type
investor who decides to trade in the CN. Following Daniéls et al. (2013) and Hendershott and Mendelson
(2002) we focus on the case where a trader chooses exclusively between abstaining from trading or
doing it either in the DM or the CN, i.e., we do not allow for simultaneous participation in the DM and
the CN. Initially, we take 7w as given. Later, we analyze the case where it is endogenously determined
through the interaction between the DM and the CN via the feedback of the spread in the former into
the pricing in the latter. It is key to our analysis that the dealer is able to match the utilities that traders
enjoy in the CN, even if this comes at a loss. As we show below, this requires w(-;7) to be a convex
function. Finally, we assume there is a fixed cost of entry x > 0 to the CN. This captures the idea that
“small” traders do not benefit from off-market participation. More precisely, we work under the following

assumption:

Assumption 2.1. The traders’ utility w(-;7) from participating in the CN satisfies

w(m) = % (5m) — 5,
where W(-; ) is a convex function that satisfies W(0;7) = 0 and k > 0 is the fized cost of accessing the
CN.

The traders’ third option is to abstain from trading altogether. Given that u(6,0) = 0 and C(0) = 0,
from a modelling perspective we may equate this situation with the trade of the (0,0) contract in the
DM. In other words, abstaining from trading is equivalent to trading “nothing for nothing” in the DM.

Clearly, this only comes into consideration for traders who do not benefit from trading in the CN, i.e.

8By coercive we mean that lim|4| 00 C(g) = 00.
91In other words, the crossing network presents traders with possibly better prices at the cost of an uncertain execution.
CN trading often benefits traders who intend to unwind large positions, which might result in a price impact.



those whose types are such that w(f;7) < 0. In the sequel we refer to ug(-; 7) := max{w(-;7),0} as the

traders’ outside option(s).t?

Trading in the DM is anonymous: the dealer is unable to determine a trader’s type before he engages
the latter. The only ex-ante information the dealer has is the distribution of the individual types over ©,
which is described by a density f : © — R . Below we specify the traders’ and the dealer’s optimization
problems and analyze the impact of the CN on the DM, especially on its spread.

2.1 The traders’ problem

Until further notice we consider 7 to be fixed. Given the pricing schedule T', the problem of a trader

of type 0 is to determine,

qm(0) = arggléax {u(@, q) — T(q)}

and then choose, for gn, € ¢, (6), between his indirect-utility v(0) := u(6,qn) — T (gm) from trading in
the DM and his outside option ug(6; 7). As the supremum of affine functions, the indirect utility function
is convex (thus the need for ug to be convex if we wish to analyze a situation where the dealer can match
the CN).

The choice of a pricing schedule T" induces a segmentation of the type space. We say that a trader
of type 0 participates in the DM if v(0) > uo(0; ), assuming that ties are broken in the dealer’s favor.
Conversely, we say that a trader of type 0 is excluded from trading in the DM if v(6) < ug(6; 7). For a
given schedule T', we denote the set of excluded types by ©.(T; 7). We say that a trader of type 6 is fully
serviced if he earns strictly positive profits from interacting with the dealer.

2.2 The dealer’s problem

In a monopolistic setting like ours, contracts that are not chosen do not play a role in the game’s
outcome.'! This implies that there is no loss of generality in assuming that the DM is described by books
of the form {(q(6),7(0)),0 € ©}, where 7 : © — R, 7 = T o ¢, is an absolutely continuous function.
Studying the structure of the DM through contracts that are indexed by 6 significantly simplifies the

analysis of the dealer’s decisions. We then write ©.(q, 7;7) instead of ©.(T;7) for the set of excluded

types.

At the onset, a trader of type 6 could misrepresent his type by choosing a contract (q(a), 7(6)), with
0 = 0. The dealer strives to avoid this situation because he wants to exploit the information contained

in the density of types. This requires that he offers incentive-compatible books, i.e. those that satisfy

max {u(6,q(0)) —7(0)} = u(8,q(8)) — 7(0).
6co

In the presence of an incentive-compatible book, the contract that yields a trader of type 6 his indirect

utility is precisely the one the dealer has designed for him.

The dealer’s objective is to maximize his expected income from engaging the traders. Taking into

10Clearly, from the dealer’s perspective, once a trader of type 6 has chosen his outside option, it is irrelevant whether or
not w(-;m) < 0. However, we show below that, in general, traders with better outside options get better deals in the DM.

1 The Revelation Principle (see, e.g. Myerson (1991)) states that, when studying outcomes in hidden-information games
such as ours, there is no loss of generality in focusing on direct-revelation mechanisms, i.e. those mechanisms where the set
of types indexes the contracts. Furthermore, from the Tazation Principle (see e.g. Rochet (1985)) there is also no loss of
generality in writing 7(0) instead of T'(¢(9)).



account the impact of the CN on the traders’ optimal actions, his problem is to devise (¢*,7*) so as to

solve

SUD(g.r) Joos(gorem) (7(9) - c(q(e))) 1(0)d8,

subject to incentive compatibility

(4(0), 7(0)) € argmax g {u(60,q(0)) —7(0)}, Vo€ O

and 7 absolutely continuous.

P(n) =

From the Envelope Theorem, if a contract {(q(@), 7'(9)),0 € @} is incentive compatible, then 1 (q(6))
belongs to the subdifferential dv(#). Given that for almost all § € © it holds that dv(6) = v'(0) and ),
is strictly increasing, we have that for almost all 8 € ©

q(0) =¥y ('(0)). (1)

Therefore, starting from a convex indirect-utility function we can recover, for almost all types, the
quantities in the incentive-compatible book that generated it. Furthermore, the indirect utility function

may be written as

v(0) = 01 (V1 (V'(0))) + 2 (1 (v'(0))) — ()

: 1y (y (2)
=60 (0) + (2 0p; ") (V'(0)) — 7(6).

It follows from Egs. (1) and (2) that the traders’ indirect utility function contains all the information
about the quantities and the pricing schedule, which allows us to write ©¢(v; ) instead of ©%(q, ;7).

In particular, introducing the functions

K(q) = C(¥1(q)) — ¥2(¥1'(q)) and i(f,v,q) =0 q—v—K(q)

and denoting by C the set of all real-valued convex functions over ©, we can restate the dealer’s problem

as

P(m) sup/@c( ' )i(@,v(@),v'(ﬁ))f(@)d@.

vel

We prove in Theorem 2.4 below that, under suitable assumptions, Problem P(7) admits a solution.
The latter is, in fact, quasi-unique in the sense that on the set of participating types the solution is
indeed unique. However, traders are excluded by offering them any incentive-compatible, indirect-utility
function that lies below ug. In other words, there is no uniqueness on the set of excluded types. From
the traders’ point of view there is no ambiguity: they either trade in the dealer market or they take
their outside option. The non-uniqueness is also a non-issue for the dealer because it it only appears in
subdomains of the type space that he does not access. With this in mind, in the sequel we denote by

v(+; ) “the” solution to Problem P(7), which requires the following technical assumption:

Assumption 2.2. The functions 11,1 and C are such that K is strictly convez, coercive, continuously
differentiable and it satisfies K'(0) = 0.

For any v € C, we refer to ©g(v) := {6 € ©|v(#) = 0} as the set of reserved traders. Determining
this set is essential to our analysis, as it is precisely at the boundary types where ¢(0_) and ¢(04) are
determined. We prove in Lemma B.1 that, by virtue of Assumption 2.1, these limits are always well
defined. We prove in Proposition A.2 that there is no loss of generality in assuming that any admissible



v € C satisfies v(0) = 0; thus, Og(v) # 0. For simplicity, given 7 we write
Oo(m) := Op(v(-;m)).

Remark 2.3. A well defined spread requires ©o(r) to be a proper interval [0,(r),8o(m)]. We show below
that this follows from Assumption 2.1. There must also be an € > 0 such that (84(7) — €,04(7)) and
(Bo(),00() + €) belong to the set of fully-serviced traders. The erxistence of such an e is proved in
Lemma B.1. FEconomically, this conditions means that the CN is not beneficial for low-type traders.
There are several instances where the proofs of our results concern conditions on points to the left of
0,(7) or to the right of 0o(r) that are analogous. So as to streamline the presentation, whenever we find

ourselves in one of these “either-or” situations, we deal only with the positive case.

Our first main result pertains the existence of a solution to the dealer’s problem. The corresponding

proof is presented in Appendix A.
Theorem 2.4. Problem P(w) admits a solution, which is unique on the set of participating types.

Remark 2.5. If the dealer can profitably match all traders’ outside option, then the quasi-uniqueness
of a solution to Problem P(m) is in fact uniqueness and it follows directly from Assumption 2.2. Indeed,
in that case (i(97v(9)70’(0)))+ = (i(6,v(0),v'(0))) and problem P(n) reduces to mazimizing a strictly
concave, coercive functional over a convez set that is closed with respect to uniform convergence. In the
general case, we construct the quasi-unique solution in Section 3.2. Assumption 2.2 remains crucial, as
it guarantees that the mazximization problems through which we define the optimal quantities have unique

mazrimaizers.

In the following section we analyze the effect of the CN on the spread and the set of participating
traders. This requires us to compare scenarios with and without the presence of a CN. In the sequel
we use the subindices “m” and “0” to distinguish structures or quantities with and without a CN,

respectively.

3 The impact of a crossing network

In this section we look at the impact that a CN has on the spread, on participation and on the

traders’ welfare. In order to do so, we provide a characterization of the solution to Problem P().

3.1 A benchmark without a CN

We first analyze the benchmark case where the traders do not have access to a CN, i.e. all traders’ out-
side option is zero. The corresponding dealer’s problem is denoted by P, whose solution we characterize

using a Lagrange-multiplier approach. To this end, let us introduce the following definition:
I[v] ::/ i(97v(9)7v’(9))f(9)d0.
e

Let BV, (©) be the space of non-negative functions of bounded variation v : © — R, which we place in

duality with C(©,R), the space of real-valued, continuous functions on O, via the standard pairing

(0,7} = /@ o(8)d(6)



for v € C(O©,R), where dy is the distributional derivative of 7. It follows from Pontryagin’s Maximum
Principle and the fact that f is a probability density function that there is no loss of generality in

assuming that ~ is absolutely continuous and that v(f) = 1. The Lagrangian for the dealer’s problem is
L(v,7) = I[o] + (v,7), veC,
with corresponding Karush-Kuhn-Tucker conditions
(v,vy=0 and dy(0) =0= v(h) > 0. (3)

Regularity properties of the solutions to variational problems subject to convexity constraints were
studied in Carlier and Lachand-Robert (2001). Their methodology can be directly adapted to prove the
following result, which formalizes the vox populi saying “quality does not jump”.

Proposition 3.1. If v € C is a stationary point of L(v,7v), then v € C1(O).

The fact that, at the optimum, the mapping 6 — v’ () is continuous, implies that ¢ is also a continuous
function of the types. This is extremely useful, specially in the presence of a CN. If we integrate by parts,

then £(v, ) can be transformed into

_ F(0) —~(6) A
2(q,7) = /@ ((9 L )wl (a(9)) C(Q(G))>f(9)d97
where ¢(0) = ¢7 ' (v/(0)), as described above, and C(q) := C(q) — ¢2(q). The idea is to maximize the
mapping

F()-T -
W)i/fl(@ - C(Q)

pointwise, for a given I' (we use I’ whenever we are dealing with an arbitrary but fixed value of v). From

q—0(0,q,T) = (9 +

Assumption 2.2 it follows that we can write down the unique maximizer as

F(6) + 0 f(6) —r)

1(0,T) := K*( 0

where K(q) := C'(q)/4;(q). For each # € © and T € [0,1], the quantity [(,T) is a candidate for the
optimal ¢(#) and convexity (or incentive compatibility) is verified if the mapping 6 — 1(,T) is increasing.
The crux is then to determine the Lagrange multiplier 7. In the sequel we denote ©, := ©¢(v}), where
v¥ solves Problem P,. In other words, if 6§ € ©,, then ¢(8) = T(0) = v(#) = 0.

From Lemma A.2 we have that, unless v(8) = 0, the quantity ¢(8) < 0 and the complementary-
slackness condition imply that v(0) = 0 for 6 € [0, 9~) for some 6 > . The left endpoint g, of ©, is then
determined by solving the equation

_ F(0)
k(o EOY o
f9)
Furthermore, as v must be convex, once v(f) > 0 then v(0) > 0 for all § > . This implies that the right
endpoint 0, of O, is determined by solving the equation

(e }(1;)(9)) - 0.

The quantities F(0)/f(0) and (1 — F(0))/f(0) are know as the Hazard rates, and sufficient conditions



for the mapping 0 — [(0,T') to be non-decreasing are

i (7)== (7o)

see, e.g. Biais et al. (2000) for a discussion on this condition.

Let us assume that we have determined ©,. What remains is then to connect the participation

constraint with the spread. Differentiating Eq. (2) and noting that v'(6) = 11 (¢(f)) we have that

T(0) = ¢'(0) (09 (a(9)) + 5 (a(9)))-

Observe that 7/(6,) and 7/(6y) are in fact 77(0_) and 7"(0) as, by construction, ¢(6,) = q(6o) = 0. If
we define ¢ := 9] (0) and ¢5 := 4(0), then we have that the spread is given by the expressions

t(0-) = q/(Qo_)(Qo¢1 + ¢2) and t(04) = q/@O‘f‘) (§0¢1 + ¢2)- (4)

Our objective in Section 3.2 is to compare these values to those obtained in the presence of a crossing

network.

Before we proceed we present two examples so as to illustrate the use of the methodology described
hitherto. The first revisits Mussa and Rosen (1978). The second is slightly more advanced. We use it

below to illustrate the complex structure of optimal pricing schedules and utilities in the presence of
CNs.

Example 3.2. Let us assume that © = [—r,r] for some r > 0, that types are uniformly distributed and
that

u(f,q) = bq.

We also set C(q) = 0.5¢>. By direct computation we find that 0, = —5 and 6y = 5. Given that a trader

of type 0 € O, is brought down to reservation utility and hence trades q(0) = 0, the expression

F(0) —~(0)
q0) =0+ —FF+——=20+1r—2rvy(0
Q 0 1(6)
implies that the Lagrange multiplier is
0 ,0 < 0,
1) =4 5+¢ 0€0,
1 79 > g()

In particular, ¢'(8y—) = ¢'(0o+) = 2 and hence t(0_) = —r and t(0,) = r. Thus, the spread increases
linearly in the highest/lowest type.

Example 3.3. Let us assume that the distribution of types over © = [—1,1] is given by f(0) = (20+3)/4
for 6 € [—1,0) and f(0) = (3—20)/4 for 6 € [0,1]; that C(q) = 0.5¢> and that u(0,q)—7 = 6-¢g+0.25¢>—.

It is straightforward to show that the conditions on the Hazard rates are satisfied and that

K0 i) =2 T ] e (0= ) =2 g

10



Furthermore, ©, ~ [ — 0.423,0.423|. For the spread, we have that t(0_) = ¢'(6y)0, ~ —1.359 and
t(04) = ¢'(00)fo ~ 1.359. In order to obtain v we integrate q (¥1(q) = q) and take into account that
v =0 over O,. We plot graph{v,} in Figure 1, as well as the per-type profits of the dealer.
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Figure 1: An example without a crossing network

3.2 Introducing a crossing network

We now analyze the dealer’s problem when there is a CN that gives a trader of type 6 the expected
utility ug(6; 7). Recall that the dealer’s problem is

vel

P(r) = sup /@ (00/(1) = v(t) = K (v/(9)) oy 0y (0) £ (8)db.

Dealing with the presence of the zero-one indicator function lygcy is quite cumbersome (see, e.g. Horst
and Moreno-Bromberg (2011)) because its domain of definition may change with different book choices.
In contrast to the setting studied in Horst and Moreno-Bromberg (2011), however, here the CN is
passive. This lack of non-cooperative-games component allows for an alternative way to proceed, which,
as mentioned in Section 2, has as a key requirement that, disregarding negative expected unwinding
costs, the dealer is able match the CN. As a consequence of Assumption 2.1 and the structure of u we

can show this is always possible. More specifically

Proposition 3.4. There exists an incentive compatible book {(qc(0),7:(0)),0 € ©} such that for almost
all 0 € © it holds that u (6, qc(0)) — 7c(0) = uo(0; 7).

Observe that the incentive compatible book {(g.(#),7.(0)),0 € ©} that replicates uo(+;7) does not
say anything about

7e(0) — Clge(0)),

which may be negative. In other words, matching the CN for all types may result in type-wise losses.
With Proposition 3.4 in hand, we may make use of the following accounting trick, which was introduced
in Jullien (2003): let us assume that the dealer had access to a fictitious market such that the unwinding

costs from trading in it, denoted in the sequel by C., satisfy C.(q(0)) = 7(0). In this way, we may again

11



assume that the dealer trades with all market participants, but now his costs of unwinding are given by
the function C : R — R defined as

C(g) :=min{C(q),Cc(q)}, q<€R.

In terms of incentives, nothing is distorted by introducing the cost function C, but we must identify
the points where there is switching from using C to using C. and vice versa. These switching points
determine the market’s segmentation.

If we define, for any traded quantity ¢, the function ([Nj(q) = (C(q) — o (q), then we may re-use

12

the machinery from Section 3.1 with minor modifications;** namely, denoting by I the dealer’s utility

corresponding to the cost function C, we may write the Lagrangian of the dealer’s problem as
L(”? 7) = H[U] + <U - u0(7 7T>7 7)7

with the corresponding complementary-slackness conditions. From here on, we may proceed as in Sec-
tion 3.1 in order to find the quantities that the dealer chooses to offer. Strictly speaking we should find

the pointwise maximizer in ¢ of the expression

F(0)-T

o+

)vr(a) — K(a), (5)
where K(q) := ((Nf(q) — 12(q). This may fortunately be avoided, given that whenever C(q) = C.(q), the
participation constraint binds and ¢(6) = g.(6). Next, we study the connection between the solution to
the fictitious problem P(7) and that to P(7r).

Whenever the participation constraint does not bind, the dealer selects the quantity to be chosen
via the pointwise maximization of the mapping ¢ — o(f, ¢,I"). What makes the current problem trickier
than the case without a CN is that now we must pay more attention to the evolution of the multiplier .
If we compare [(6,0) and 1(6, 1) to ¢.(f) we may pinpoint the set where the participation constraint may
bind. Observe that {I(f,1),0 € ©} and {1(6,0),60 € O} are the sets of the lowest and highest quantities
the dealer may offer in an individually-rational way. Hence, as long as 1(0,1) < ¢.(0) < 1(6,0), there is
the possibility of profitable matching.

There might be instances where the participation constraint is binding for some type 6 € O, i.e.
(q(0),7(8)) = (qc(0),7c(0)), and 7c(6) — C(qe(8)) < 0. In such cases C(g.(#)) = Cc(qc(F)) and 6 € O (v)

for the corresponding indirect utility function, and we say there is exclusion.

Remark 3.5. It is at this point that the quasi-uniqueness mentioned in Remark 2.5 can be addressed.

The dealer’s problem P(w) using the cost function C results in the condition

(i(6,v(8),0'(6))) , = (i(6, 0(6),'(6)))

being trivially satisfied. As a consequence, problem P(m) admits a unique solution. The latter coincides,
by construction, with the solution to P(n) whenever C(q(6)) = C(q(0)). The caveat is that the solution
to problem P(r) is blind towards what is offered to excluded types, as their outside option is costlessly
matched (they are effectively reserved). Constructing incentive compatible contracts for the excluded types

is, thanks to the convezity of the indirect utility function, relatively simple. For instance if an interval of

120phserve that Assumption 2.1 and Proposition 3.4 imply that C satisfies Assumption 2.2.

12



types (01, 02) were excluded (but 61 and 02 participated) one could consider any two supporting lines to
graph{v(;m)} at (01,v(01;7)) and (02,v(02;7)). From the resulting indirect-utility function on (61, 0s)
one could extract the corresponding quantities and prices. The resulting global convexity of the indirect-
utility function offered by the dealer would imply that all incentives would remain unchanged. Whether
the dealer would suffer losses from the contracts offered to types on (01,02) would be irrelevant, given the

corresponding traders would not participate.

As mentioned above, here it is not necessary to determine v(6) in order to do likewise with ¢(#). On
the other hand, however, if we interpret v as the shadow cost of satisfying the participation constraint,
we may wish to identify the multiplier so as to have a measure of the impact of the CN on the dealer’s
profits. The following result, which deals with points where there is switching between matching and

fully servicing, extends Proposition 3.1.

Proposition 3.6. For m € R? given, let 6 € © be such that there exists € > 0 such that v(0; ) = ug(6; )
on (0 — €,0] and v(0;7) > uo(0;7) on (0,0 + ¢|. Furthermore, assume that

0
/5 (v(6) — C(a(6))) £(6)dB > 0,

—€

where {(q(@),T(G)), 0 e @} implements v(-; ). In other words, there is profitable matching on (6 — €, 0]
and the dealer fully services types on (5, 0+ €]. Then 81)(5; ) is a singleton. The result also holds if the

order of the matching and full-servicing intervals is switched.

The rationale behind Proposition 3.6 is that, as long as the dealer is able to match the traders’
outside option without incurring in a loss, it is possible to normalize the latter to zero and directly
apply Proposition 3.1. This is, naturally, not the case when matching ug results in losses. We put

Proposition 3.6 to work in Example 3.10.

Before moving on, we present below a modification to Example 3.3 that shows how even traders
without access to a non-trivial outside option benefit from the presence of the CN and that the optimal

Lagrange multiplier need not be continuous.

Example 3.7. Let f, ©, C and u be as in Example 3.3 and assume that the CN offers the traders the
following expected profits:

—0.9750 — 0.52, if 6 < —&;

uo(0;(3.2,3.2)) = 1 0.9750 — 0.52, if 6 > £,

convez and negative for 0 € (—%, 1%)

Matching this outside option would require the dealer to offer the contracts (£0.975,0.52). This is
profitable, hence the indirect utility never lies below ug. To illustrate this, we have plotted the indirect-
utility function in Figure 2(a). It strictly dominates the one plotted in Figure 1(a) for all types who earn
positive profits. The smooth pasting condition (1(0,~v(0)) = q.(0) where v touches ug, i.e. in £0.675)
determines the optimal Lagrange multiplier, namely v(—1) = 0 and v = 0.030 on (—1,—0.389]. For
positive types we obtain symmetrically v(1) = 1 and v = 0.970 on [0.389,1). The new spread, given by
(¢(0-),t(04)) = (—1.282,1.282), is strictly smaller than in the case without a CN.

The following theorem, the second of our main results, analyzes the impact of the CN on the DM and

the traders’ welfare.
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Figure 2: An example without exclusion

Theorem 3.8. For a given pricem = (n_,74) let Sy, and S, be the spreads with and without the presence
of the crossing network and v, and v(-;m) the corresponding indirect-utility functions, respectively. In

the presence of the crossing network

1. less types are reserved, i.e. Og(v,) 2 ©O¢(7). Furthermore, the inclusion is strict if there exists
0 € © such that ug(0; ) > v,(0);

2. if the types are uniformly distributed (f = (6 — 0)~') the spread narrows, i.e. Sy > Sp;
3. the type-wise welfare increases, i.e. v,(0) < v(0;7) for all 6 € O.

We finalize this section with two examples that showcase the results obtained thus far. Example 3.9
showcases that, in the simple case where the outside option is such that the dealer (only) excludes all

high-enough (in absolute value) types, then the results of Theorem 3.8 follow trivially.

Example 3.9. Let us revisit Example 3.2 with an extremely steep outside option that warrants exclusion,
namely, for ro <r let
oo, if 0 € [—r,—ro) U(ro,7];

0, otherwise.

uo(0) =
Recall that, for a given value I' of the Lagrange multiplier, the corresponding quantity is
q(6;T) :==20 +r — 2rT.

In Example 3.2 the participation constraint does not bind for high types. In particular, v =0 on [—r,8,)
and to find the left-hand endpoint of the reserved set we set I' = 0 and solve 20 + r = 0. In the current

setting, the participation constraint binds for 0 < —rg and the multiplier is constant on (—ro,8,(T)),

where
T
0,(T) := —= |1 —2I'|.
70( ) 2 [ ]
By construction, the choice of I' bears no weight on the trader types that are serviced to the left of 6 = —ry,

but only on how many additional low types benefit from the presence of the outside option. By integrating
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q(0;T') and noting that the corresponding indirect-utility function v(-;T') must satisfy v(0,(T);T) = 0, we
have, for 6 € [—ro,8,(I")]

o

v(6:T) = 0% 4 0r[1 —2r] + - [1 - 2r]",

Given that the indirect-utility function also satisfies v(6;T) = 0¢(0;T") — 7(6;T"), we have that the dealer

market on [—rg, 0y(T')] is described by the quantity-price pairs (q(@; r), 027§ [172F]2). As a consequence,

the per-type profit is
3 2
Y 92 2
Ine;r) .= -6 — il [1 - QF] — 20r [1 — ZF],
where the third term on the right-hand side is positive and dominates the first two. Finally, we have that

each choice of " results in the dealer obtaining the aggregate profits from negative types

1 0,(T)
P(D) = ﬂ/ I1(6; T)do.

—7g

The mapping T — P(T) is strictly concave and the first-order conditions yield that it is mazimized at
= (r—r9)/(2r). As a result 0,(T) = —ro/2 and v(0;T) = 6% + rof + 13 /4, which correspond to the
boundary of the reserved set and the indirect-utility function for negative trader types in the problem

without a CN on [—rg, 7).

Example 3.10. We stay with the basic setup of Examples 3.3 and 3.7, but now assume that ug(6;7) =
(1_%96/5 — 0‘001>+ for 8 >0 and up(0; ) = 0 otherwise. For any type 0 such that ug(0) > 0 it holds
that

((Jc(a)ﬁc(e)) = (%(1 - 7T+)91/57 %(1 - 7T+)96/5 + %(1 - 7T+)292/5 - (%(1 - 7T+)96/5 - 0-001)+>'

We assume m = (0,1/2). The first thing to notice is that the dealer’s per-type profit for offering (g.(6), 7.(9)),
ie. T.(0) — C(q.(0)) = 6%°/30 — 62/5/100 4 0.001, is negative for types 6 € (0.0035,0.1667). On the
other hand, the inequality uo(6;1/2) > 0 only holds for 6 > 0.014. Combining both arguments we see that
O, (m) C (0.014,0.1667). Next we observe that the inequality

1—F(9)) >@

l(9,1):K‘1(9— 5 )25

holds for all 6 € [0.4761,1]. As a consequence, we have that profitable matching may occur on the interval
(0.1667,0.4761), over which q(6) = q.(0) and C(q(0)) = C(q(0)). Furthermore, Proposition 3.6 implies
that the corresponding indirect utility function is differentiable at 0 = 0.4761. In order to obtain v(6;)

for 0 € [0.4761, 1], we integrate I(-,1) and determine the corresponding integration constant ¢ by equating

0.4761 2

302 — 60 + 2 1

2 T T T2 ) dh+ ¢ = =(0.4761)%/5 — 0.001.
/0 ( 20— 3 ) te=g! )

We know from the example without a CN that v(t) = 0 for 6 € [—1,—0.423). On [—0.423,0) the multiplier

must satisfy
_ 0) — F(6)
(i iC)
O~ ) ="
which results in y(0) = (302 4+ 60 4 2) /4 on the said interval. What remains to be determined is 0y and
v(6o). To this end, we define the family of functions v(-;T) such that v'(0;T) = 1(0,T) whenever this
quantity is positive and v(6; ') = 0 for 6 € [0, 0(T')], where 0(T') is the solution to the equation I(0,T") = 0.
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As v(0) = 0.5, we have that T > 0.5.13 In fact, T = ~v(0y) = 0.5105, 0y = 0.007 and the intersection of
v(+T) and uo(-;1/2) occurs at 6 = 0.0159.

Summarizing, the types on [—1,—0.423) U (0.007,0.0159] U (0.1667,1] are fully serviced, those on
[—0.423,0.007] are reserved and the ones that lie on (0.0159,0.1667) are excluded. The left-hand side of

the spread is the same as in the example without a CN, whereas the right-hand side is t(04.) = 0.0281.
This is significantly smaller than in Example 3.3.

Determining v(0) on (0,0.007] is relatively simple, as we again must solve [(6,~v(0)) = 0, which results
in y(0) = (=302 + 60 + 2)/4. Finally, in order to determine v on O.(m) we must rewrite the virtual
surplus using C(q(0)) = 7.(0), which results in

C(q) = (5°/6)¢® — (1/4)¢* + 0.001.

The pointwise mazimization of the resulting virtual surplus must equal q.(0) = {/@/5 After some lengthy

arithmetic that we choose to spare the reader from, we obtain
3(6) = F©) - 50) 500 ~ 6| =F0) for 0 € 0.7

Finally, in the profitable-matching region we solve 1(0,v(0)) = v/8/5 so as to find the multiplier, which
yields
1
v(0) = F(0) — f(0) [1091/5 - 9} for 6 € [0.1667,0.4761).
or

— 2 _ 60 —
v(0) = %091/5. 294 530 fa 2 orbe [0.1667,0.4761).

Observe that, in contrast with Example 3.7, here v(0) = 1 for types that are strictly smaller than one.
This means that the rightmost types do not profit from the introduction of the CN via changes in the
quantities they are offered, but rather from changes in the corresponding prices. Intuitively speaking this
has to do with how steep the outside option is for large types and, as a consequence, whether or not it is

matched over a non-trivial interval.

We present in Figure 3(a) the indirect utilities for positive types (the ones for negative ones being the
same as in Figure 1(a)). The values of ~ have been plotted in Figure 3(b). In Figure 4 we provide a
magnification around small values of 6 so as to highlight the switching between reservation, full servicing
and ezclusion. Observe the jump of the Lagrange multiplier at the boundary between fully-serviced and
excluded types (Figure 4(b)) and between excluded and matched ones (Figure 3(b)).

We revisit this example in the upcoming section, where we look into the existence of equilibrium

prices in the CN.

4  An equilibrium price in the crossing network

Motivated by the fact that prices in CNs are obtained from those in a primary venue, it is natural to
assume that pricing in the DM has an impact on the pricing schedule 7. For example, trading in the CN
could take place at the best-bid and best-ask prices of the primary market. We analyze such an example,

within a portfolio-liquidation framework, in Section 5.

13Pasting when passing from servicing to excluding need not be smooth.
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Figure 4: An example with exclusion (magnified)

The pecuniary interaction between the DM and the CN, however, is not unidirectional: the dealer
anticipates the effect that his choice of book structure has on the CN. Our main focus is the impact of the
CN on the spread in the DM. Specifically, if we denote by ¢(0;7) := (t(O,; ), t(04; 7r)) the best bid-ask
prices in the DM for a given CN price schedule 7, then we call 7* an equilibrium price if 7* = ¢(0;7*).

In this section we analyze the existence of an equilibrium price 7*.

We make the following natural assumption on the impact of 7 on the traders’ outside option.

Assumption 4.1. Let m; < my, where “<” is the lezicographic order in R?, then for all € © it holds
that uo(0;m) > uo(0; m2). Furthermore, we assume that there exists (x_,74) € R? such that uo(-;7) <0

for all (m_,7y) such that n_ < 7_ and Ty < 4.

Observe that, from Assumption 4.1, there is no loss of generality in assuming that 7* belongs to some

closed and bounded subset of R?, which we denote by II. As a consequence we have that ¢(0;-) : IT — II.

We are now ready to state of our third main result.
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Theorem 4.2. If types are uniformly distributed, then the mapping m — t(0;7) has a fized point.

Summarizing, we have that the dealer can correctly anticipate the movements in prices in the CN
when he designs the optimal pricing schedule for the DM. Furthermore, the presence of the CN is

beneficial in terms of liquidity, market participation and the traders’ welfare.

Remark 4.3. The requirement of uniformly distributed types can be relazed to the extent that if f and
K are such that Conditions (B1) are satisfied, then the required momnotonicity properties still apply.
Unfortunately, these conditions cannot be verified ex-ante because they include the end points of the set

of reserved traders.

Example 4.4. Let us go back to Example 3.10 (with exclusion), but introduce the feedback loop between
the DM and the CN through the iteration w11 = t(0;7;). We initialize the recursion by setting mo =

(0,1/2) and k = 0.001, which are the parameters in the aforementioned example.

x10°8

T =1/2

18F B
m = 0.028

16 7+ = 0.016 i
m = 0.015

14 1

12 1

08 [ 1

0.6 - 4

Indirect utilities for different

0 L L I I L L
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Agent types

Figure 5: The indirect-utility functions corresponding to the iteration ;1 = ¢(0; ;).

We observe a very swift convergence. Indeed, it takes only four iterations to reach ||v(-;m;) —
v(5mit1)|lo < 107° and the indirect-utility functions in the third and fourth iteration are almost in-
distinguishable. The equilibrium price is 7* = (0,0.015). We present in Figure 5 the plots of the first
four iterates. It is evident that each iteration results in a smaller set of reserved traders and in a higher
indirect utility for all types. The spreads, the right endpoints of the reserved regions, the Lagrange mul-
tipliers at the right endpoint of the reserved regions and the exclusion regions are provided in Table 1. It
18 interesting to observe that, as the spread decreases to its equilibrium level, the number of trader types
that are reserved decreases and the sets of excluded types grow (in terms of inclusions). This last fact
obeys the fact that, when the traders have a more attractive outside option, it is harder for the dealer to

match it profitably.

95 Portfolio liquidation and dark-pool trading

In this section we present an application of our methodology to portfolio liquidation. We assume that

the market participants’ aim is to liquidate their current holdings on some traded asset. The sizes of the
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Table 1: The numbers of the feedback loop

T+ 60 r 66(7r+)

1/2 [-0.423,0.0070] 0.5105 [0.0159, 0.1667]
0.0281 [-0.423,0.0040] 0.5061 [0.0083, 0.4872]
0.0161 [-0.423,0.0040] 0.5060 [0.0082, 0.4954]
0.0158 [-0.423,0.0040] 0.5060 [0.0082, 0.4955]

traders’ portfolios are heterogeneous and saying that a trader’s type is # means that he holds 6 shares
of the asset prior to trading. We set © = [—1,1] and f = 1/2. If a trader of type 6 trades ¢ shares for 7
dollars, his utility is

W0,q) — 7= —a(d —q)* -,

where 0 < « denotes the traders’ (homogeneous) sensitivity towards inventory holdings. Notice that
—a#? is the type-dependent reservation utility of a trader of type 8. If we “normalize" the said utility to
Z€ero, we may write

u(f,q) — 7 = 200q — ag® — 7.

In this example the crossing network takes the form of a dark pool (DP for short). Choosing to trade
in the latter entails two kinds of costs for the traders: On the one hand, there is a direct, fixed cost
K > 0 of engaging in dark-pool trading. On the other hand, execution in the DP is not guaranteed. We
denote by p € [0,1] the probability that an order is executed where we assume for simplicity that the
probability of order execution is independent of the order size. Pricing in the DP is linear. Namely, for a
given execution price 7, the utility that a trader of type 6 extracts from submitting an order of ¢ shares

to be traded in the DP is
p[(29a —T)q — aq2] — K,

where again we have normalized reservation utilities to zero. The problem of optimal submission to the

DP for a 6-type trader is

mqax {p[(29a —m)q — aqz] },

which yields the optimal submission level

We obtain that opting for the DP results in a trader of type 6 enjoying the expected utility

uo(6;m) = ap (9— %)2 — K.

We assume that pm? < 4ak so as to keep the DP unattractive for small types.

We assume that the dealer’s costs/profits of unwinding a portfolio of size ¢ are C(q) = € ¢+ 3¢* where
B > 0 and ¢ is non-negative. Observe that, as ug(-; ) does not satisfy Assumption 2.1, some restrictions

must be imposed on the problem’s parameters so as to still have Lemma C.1. Namely, it must hold that
ak

T<2 [ —. (6)
p
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Condition (6) imposes a hard upper bound on possible equilibrium DP prices. It should be noted that
Assumption 4.1 is not satisfied by ug(+;7), which, together with the way in which we shall define the
pricing feedback loop from the DM to the DP, implies that our equilibrium result does not apply “as is”

to the current setting.

5.1 The dealer market without a dark pool
In the absence of a DP, the dealer’s optimal choices of quantities are, for negative types

1(6,0) = ozaTﬁ(w—i_l) - m

and for positive types
e’ €

1(0,1) = a+5(29_1)_72(a+5)’

where the boundary of O is given by
€ — 1/ €
b =555 —1) ad Go=3(5+1)

In order to guarantee that ©¢ C [—1,1] the condition ¢ < 2a must be imposed on the corresponding

1
2
parameters. From the relation v'(6) = v (¢(9)) we have that the indirect-utility function is

2a° e} .
v(a): m92+m(2a76)0+61, GSQ(),

20202 _ o (20 +€)+ ¢, 6> 0y,

atB a+f
where o0 . > a2t e
= It B (za+1) + 2+ B) (35 +1)
and o0 . > a(2atd) e
2= 4o+ B) (% - 1) " 2(a+p) (% - 1)'
When it comes to the spread, observe that ¢’ = az—fﬁ, 11 = 2« and Y9 = 0, which yields
10, 400)) = 16, Tl

Below we analyze how the spread changes with the introduction of the DP.

5.2 The impact of a dark pool

We first take an exogenous execution price 7 and determine, for each 6 € ©, what is the quantity-price
pair (g.(6; ), 7.(#; 7)) that the dealer must offer so as to match a DP with execution price 7. Using the

relation ¢.(0; ) = u((6; ) we obtain

q.(0; ) = 2ap (0 - Z) and -

1.(0;7) = K + 40°p(0 — ap) (0 - %) —ap (0 — 1)2.

From the Envelope Theorem and the structure of u(6,q) we have that the traders’ indirect utility
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function satisfies

v'(6)
2c

=1(0,7(6)). (8)

In order to determine the spread in the presence of the DP we must determine 6, ,, and g, together

0,m

with (0. ,,,) and v(0o,m). For an arbitrary T € [0,1] we have

(67

+7

[20+1 - 2T —m.

o,r) =
(0.7) = -
Indexed by I', the candidates for ¢, ,, are then given by

0o (T) = %(i T — 1).

As it must hold that 0, ,,(I") <0, then I' < 0.5(1 — ¢/2«). Integrating Expression (8) we have that, on

the interval [0,,,(T), 8, ,,(T')], the traders’ indirect utility is given by

202

a+p

v(0;T) = 02+2@[aa

+5(1—2F)—

€
——— 10+ c1m, 9
)t ©)
where 6,,(T) is the first intersection to the left of 09.m(T) of v(T) and ug(;7) and ¢ 4, is determined
by the equation
v(fy,,(T);T) = 0.

Unless the inequality I" < 0.5(1—¢/2q) is tight, in which case the types below gm(I‘) are excluded, Propo-
sition 3.6 implies that I" must be chosen so as to satisty the smooth-pasting condition wu (5m(I‘);7r) =
v’ (gm(I‘); ), which is equivalent to

() = [az—fﬁ _p}1[2(a€+ﬁ) a aiﬂ(l - - %}

Observe that, besides the requirement I' > 0.5(1 — €¢/2a), the strategy to determine g ,, is exactly the
same as for 0, ,,. Summarizing, from Eq. (9) we observe that, if I'_ and I'y correspond to the optimal

choices for the negative and positive endpoints of ©¢ (), then

/ 1 / 1 "7 — 2
q (QO,'m(F—)) = %U/(Qo,m(r—%r—) = %’U /(907m(r+);1—‘+) = q/(eo,"l(r+)) = CY+B
The spread is then
40&2 — 4&2 —
m\Y—)ytm = — LY r_ ) m r —, alZo» ’
[t (0-), tm (04)] a+ﬂ[90,m( ):0o,m(I'4)] C a+ﬁ[90 0ol

i.e. the presence of a dark pool strictly narrows the spread in the dealer’s market.

5.3 An equilibrium price

A standard (but not unique) way in which dark-pool prices are generated is by computing the average
of some publicly available best-bid and best-ask prices. In the case of the US, this is usually the mid-
quote of the National Best Bid and Offer (NBBO). Borrowing from this idea we define the price-iteration
in the DP as follows:

mig1 = 5 (t:(04) = :(0-)), €N,

| —
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where {¢;(0_),¢;(04)} are the best bid and ask prices in the DM in the presence of a DP with execution
price m;. We know from the previous section that the sequence {m;,i € N} C ((4a2)/(a + 8))[0y,00);
hence, by the Bolzano-Weierstrass Theorem it has at least one convergent subsequence. The limit of
each of the said subsequences is an equilibrium price. The (possible) non-uniqueness of these prices is
due to the fact that by virtue of its definition, the sequence of dark-pool prices need not be monotonic.
The problem of non-uniqueness of equilibria in models of competing DMs and CNs has been observed

before. We refer to Daniéls et al. (2013) for a detailed discussion.

6 Conclusions

We have presented a hidden-information model to study the structure of the limit-order book of a
dealer who provides liquidity to traders of unknown preferences. Furthermore, we have established a
link between the traders’ indirect-utility function and the bid-ask spread in the DM. Making use of the
aforementioned link, we have studied how the presence of a type-dependent outside option impacts the
spread of the DM, as well as the set of trader types who participate in the DM and their welfare. In
particular, we have shown, in a portfolio-liquidation setting, that the presence of a dark pool results in
a shrinkage of the spread in the DM. Finally, we have established that, under certain conditions, the
feedback loop introduced by the impact that the spread has on the structure of the outside option leads

to an equilibrium price.

Appendix

Appendix A Existence of a solution to Problem P(7)

In this appendix we prove the existence of a solution to the dealer’s problem in the presence of a CN.
Some of the arguments are somewhat standard, but we give them for completeness. The first important
result that we require is that the dealer’s optimal choices lead to him never losing money on types that
participate.

Proposition A.1. If (¢*,7%) : © — R? is an optimal allocation, then for all participating types it holds
that 7*(0) — C(q*(9)) > 0.

PROOF. Assume the contrary, i.e. that the set
0 := {9 |v(0;7) > uog(0;7), 7% (0) < C(q*(@))},
where v(6; ) = u(0,¢*(0)) — 7%(6) has positive measure. Define a new pricing schedule via
7(0) := max {7°(0),C(q*(0)) }.

The incentives for types in ©¢ do not change because their prices remain unchanged, whereas prices
for others have increased. Profits corresponding to trading with types in © increase to zero. As a
consequence the dealer’s welfare strictly increases, which violates the optimality of (¢*, 7). O

A consequence of Proposition A.1 is that, together with Assumption 2.2, it allows us to restrict the
admissible set of the dealer’s problem to a compact one. We prove this in several steps.
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Lemma A.2. Ifv: 0 — R is a non-negative, convex function that solves P, then v(0) = 0.

PROOF. Assume that v € C solves P and v(0) > 0. This implies that 2 (g(0)) — 7(0) > 0. Given
that, from Assumption 2.1, a trader of type # = 0 has no access to a profitable outside option, then he
participates. From Proposition A.1 it must then hold that 7(0) > C(q(0)) which in turn implies that
¥2(q(0)) > C(q(0)). This relation, however, can only hold for ¢(0) = 0, which implies that 7(0) = v(0) =
0. O

Lemma A.3. If v € C solves P, then |0v| < 7.

PROOF. From Assumption 2.2 and the compactness of © we have that the mapping ¢ — (6, v, q) tends
to —oo as |g| — oo uniformly on © for v > 0. From Proposition A.1 i(6,v(#),v'(6)) must be non-negative
for all participating types, which concludes the proof. O

As G could depend on 7, we define
A(m):={veC|v>0,0(0)=0,|0v] <g}
as new admissibility set for problem P(w). The previous results show that if we replace C by A(w) in
the definition of P(7), the solution to the problem does not change.
Corollary A.4. The admissible set A C C of Problem P is uniformly bounded and uniformly equicon-

tinuous.

PrOOF. From Lemmas A.2 and A.3, a uniform bound for all v € A is given by maxgece {uo(0; )} +7|©].
Lemma A.3 guarantees that for any v € A it holds that |0v| < g. In other words, A is composed of convex
functions whose subdifferentials are uniformly bounded, hence A is uniformly equicontinuous. O

Notice that, when it comes to determining quantities and prices for trader types who do participate,
Proposition A.1 results in the dealer having to solve the problem

Blr) = { SuP,ea Jo (1(6,0(0),v'(9))) , f(0)do
' s.t. v(0) > up(;m) for all § € ©.

The last auxiliary result that we need is the following proposition, whose proof is a direct consequence
of Fatou’s Lemma, together with Lemmas A.2 and A.3.

Proposition A.5. The mapping

Vs / (i(0, v(6),v/(9))) , F(8)d
e
is upper semi-continuous in A with respect to uniform convergence.

We are now ready to prove our first main result:

Proof of Theorem 2.4: Assume that A(){v € C|v(-) > ug(+;7)} is non-empty and consider a maxi-
mizing sequence {T, } <y Of Problem P(7). From Corollary A.4 we have that, passing to a subsequence
if necessary, there exists v € A such that v, — v uniformly. A direct application of Proposition A.5
yields that © is a solution to P(w). To finalize the proof we must construct from v a solution to Problem
P(m). To this end, let us define the sets

0_ = {0 0li(6,5(0),7(0) <0} and O :=0°.

It is well known that if a sequence of convex functions converges uniformly (to a convex function), then
there is also uniform convergence of the derivatives wherever they exist, which is almost everywhere.
This fact, together with the continuity of the mappings 6 — v(#) and (0,v,q) — i(6,v,q), implies that
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©_ is the union of a disjoint set of open intervals:

oo

e_ = U(ai,bi).

i=1
Define, for each i > 1,
Vq,i := inf {q|q € 86(%)} and U ; :=sup {q\q € 85(bi)}
and consider the support lines to graph{v} at a; and b; given by
1;(0) =v(a;) + Va,i(0 —a;) and L;(0) = 0(b;) + s (6 — b;),

respectively. Let ¢; € (a;,b;) be, for each ¢ > 1, the unique solution to the equation [;(8) = L;(6) and
define on (a;,b;) =: ©;
0 < c;

vi (0) = { Li(6) 0>

v*(f) {v;(a) 6e0,icN,

then v* is a solution to Problem P(w) and ©.(v*) = ©_, which concludes the proof. O

Finally define

Appendix B The impact of a CN on the DM

In order to prove Theorem 3.8, we require a result that guarantees that our notion of the spread is
well defined in the presence of a CN. This could be loosely summarized by saying that the first (in terms
of moving away from 6 = 0) types to earn positive utility trade in the DM.

Lemma B.1. There exists € = e(m) such that the types that belong to
(0o (m) = €,84(m)) U (Bo (), B0 (7) + €)
are fully serviced.

PROOF. Let us denote by 0 the positive solution to the equation ug(f;7) = 0. If there exists n > 0
such that types on (é, 0+ n) can be matched profitably, then the result follows either because 0g(7) < 6
or because 0y (m) = 6 and the types on (é,é + ¢€), for some 0 < ¢ < 7, are fully serviced. Let us now
assume that such an 7 does not exist, we claim then that fy(7) < 6 must hold. Proceeding by the way of
contradiction, let us assume that @y () = 6 (which is equivalent to f(7) > ) and that there exists § > 0
such that (6,0 +6) C ©.(r). This configuration can be improved upon as follows: let a > 0 be such that
0 — a > 0. By construction 1(§ — a,v(6 — a)) = 0. Let us fix v(0) = () — a) =: T'(a) for 6 € (0 — a,6,),
where 6, the solution to va(6) = uo(;7) on (A — a, 8] if it exists or 6, = 0 otherwise, given that we
denote by v, the indirect-utility function corresponding to I'(a). In particular 6, > 6 and (6, T'(a)) > 0
for 6 € (0 — a,6,).

We now have that types 0 € (§—a, 6,) are fully serviced. By Assumption 2.1, v/,(6—a) = 0 < u}y(6; 7);
therefore, there exists a; > 0 such that for all a < a; it holds that 6, < 0+ 6. If we could show that there
exists a < a; such that the dealer could offer types in (8 — a,6,) the quantities ¢q(6) = 1(6,T(a)) at a
profit, we would contradict the optimality of fy(7) and the proof would be finalized, as incentives above
0, would not be distorted and the dealer’s profits would strictly increase. In order to do so, observe that
the dealer’s typewise profit when offering ¢,(9) is

P(a) = 91/11(6111(9)) + ’(/}2((1(1(9)) - Ua(e) - C(Qa(e))
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In particular, P(# — a) = 0 and

¢a(0 — ) + (6 — @)t (4a(0 — a))a (0 — a) + v, (6 — a)

(

(4a(0 — a))q,(0 — a)
(0)+ (0 — a)} (0)ql(0 — a) + v}, (6 — a) — C"(0) g, (0 — a)
= (0 — a)¥}(0)q, (0 — a).

The step from the second to the third equality follows, because by construction v/,(§ — a) = 0; by
assumption ;(0) = 0 and, from Assumption 2.2, C'(0) = 0. Furthermore, given that 1, is strictly
increasing and ¢/,(0 — a) > 0, then P’(f — a) > 0. Therefore, there exists b > 0 such that P(0) > 0 if
0 (0—a,0—a+b). As a consequence, if a < a; is small enough, then P(6) > 0 for 6 € (6 — a,0,), as
required. O

We are now ready to prove our second main result:

Proof of Theorem 3.8: (1) Observe that if 7 is such that (8,(7),0o(7)) = O¢(7) C O,, then the result
follows immediately from Lemma B.1. If we revert the inclusion, two situations are possible, as the
addition of the CN-constraint to Problem P, may or may not bind for some types. The latter case being
trivial, let us look at the case where there is a point 6, > 6y on which it holds that v,(6,) = uo(6y; )
and such that v,(0) > ug(0; ) for 6 < 6, and vice versa for § > ,. The Lagrange multiplier ~,, is active

on (0,,0], which implies that 7,,(6,) < 1. We know from Jullien (2003), p. 9, that for all # such that
1(0,T) > 0, the latter is decreasing in I'. As a consequence, the root of the equation

— F(Q) — Wm(ea)
Ko+ — ") =0
S .
is strictly smaller than that of I(6,1) = 0, which yields the desired result.

(2) Let us denote by t,(0_) and ¢,(04) the best bid and ask prices without the presence of a CN and by
tm(0_) and ¢,,(04) the corresponding marginal prices with one; thus,

to(0-) = q,(0p.o— ) (80,001 + ¢2) and t,(04) = g, (00,04) (Fo,001 + b2)

and
tm(02) = @1, (09— ) (8o, m®1 + ¢2) and £, (04) = g1, (Bo,m+) (Bo,m1 + b2).

From Part (1) we know that 6, , < 6, , (both negative) and 6o ,, < 6o, (both positive) and, given that

¢1 and ¢- do not depend on the presence of the CN, all we have left to do is show that

q;n(QO,m—) < q:)(QO,o—) and q;n(QO,m-‘r) < q:)(QO,o-i-)'

Using the well-known relation (f~1)'(a) = 1/f(f~'(a)) we have that

: ! d,_ 20~ F()
0, )= A, 26— F(©)
AN L
L1 2P0,
K’ (gm (8o,n)) 6 1) =00,

(@o,im—) — F(6)
N %@( : (“7—))‘9:%77"’

df £(0)

de
where we have used the fact that v is constant on (¢, ,, — 0,8 ,,) for some § > 0. We may proceed
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analogously for the other three quantities. We have to show that

(o)~ F(O) .
il Moo, = iy o

K'(0) do f(6) bo  K'0)dON f(0) Jloe,, (B1)
1 1(v(?o,m+) —F(G))‘ o1 i(l—F(9)>‘
K’(0) df f(0) =6y,  K'(0)dO\ f(0) /lo=8o,

which hold with equality under the assumption that f = (6 — ).

(3) If follows from Part (1) that, if # participates in the presence of the CN, then ¢,(6) < ¢ (6). Assume
now that the inequality v,(6) > v(6; ) holds for all § in a non-empty interval (61, 62) and v,(61) = v(01;7)
and v,(02) = v(f2; 7). By the convexity of v, and v(-;7), this would imply the existence of 03 € (61, 63)
such that v/ (0) > v/(0; ) holds almost surely in (61, 603). However v/ (0) = ¢1(q,(0)), v'(0; ) = ¢1(gm (0))
and 1)y is strictly increasing; hence, this would imply that g,(0) > ¢,,(0) for almost all 8 € (61, 63), which
is a contradiction. ]

Appendix C The existence of an equilibrium price.

The restriction of possible equilibrium prices to II, together with Assumptions 2.1 and 4.1, yields the
next result.

Lemma C.1. There exists a non-empty interval [e1, 2] C © such that
1. 0 € (61,62);
2. ug(0;m) =0 for all 0 € [e1, €3] and all T € II.

In the sequel we make use of the results obtained in Section 3.2 to show that the mapping = — ¢(0; )
has the required monotonicity properties so as to use the following result (see, e.g. Aliprantis and Border
(2007)):

Theorem C.2. (Tarski’s Fized Point Theorem) Let (X, <) be a non-empty, complete lattice. If f : X —
X is order preserving, then the set of fixed points of f is also a non-empty, complete lattice.

Proof of Theorem 4.2. Lemmas B.1 and C.1 guarantee that we have a well-defined spread; thus, we
may decompose the analysis of the mapping 7 +— ¢(0; ) into that of the mappings 7_ — ¢(0_;7_) and
w4 +— t(04; 7). In other words, for a given price 7, the dealer’s optimal response to ug(+; 7) is, modulo
a normalization of 7, equivalent to the combination of his actions towards negative and positive types
separately. We shall concentrate on the existence of a fixed point of the mapping w4 +— ¢(04; 7).

From Assumption 4.1 we have that if m < a4, then ug(6;m14) > uo(0;m24) for all > 0. If for
1 = 1,2 it holds that up(0;m+) < v,(6) for all § > 0, then v(0;714) = v(0;72y) on the same domain
and t(04;m4) = t(04; 7). Next assume that ug(0;m;4) > v,(0) on a subset ©; of (0,0], for i = 1,2.
Given that ug(6; m14) > ug(6;7m2y) for all @ > 0, then 6(m1) < 6(m2) and the first point 6; such that
v(0;m14) = uo(0; 714 ) holds satisfies 51 < 52, where the latter is the analogous to 51 in the presence of
uo(0; ma4). The existence of 51 and 52 is guaranteed by the fact that in both cases the indirect-utility
functions intersect the corresponding outside options. Arguing as in the proof of Theorem 3.8, Part
(2), this also implies that fy(m1) < 0o(m2); hence ¢(04;714) < t(04; 7). In other words, the mapping
w4 +— t(04;7y) is order-preserving and, using Tarski’s Fixed Point Theorem, we may conclude it has a
fixed point. O
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