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A COMPACT TOPOLOGY FOR σ-ALGEBRA CONVERGENCE

PATRICK BEISSNER AND JONAS M. TÖLLE

Abstract. We propose a sequential topology on the collection of sub-σ-algebras included in
a separable probability space (Ω,F ,P). We prove compactness of the conditional expectations
with respect to L2-bounded random variables along sequences of sub-σ-algebras. The varying
index of measurability is captured by a bundle space construction. As a consequence, we
establish the compactness of the space of sub-σ-algebras. The proposed topology preserves
independence and is compatible with join and meet operations. Finally, a new application to
information economics is discussed.

1. Introduction

Topological structures in probability theory enter at any stage. Results on compactness for
the state space and probability measures can be found in most textbooks. In contrast to that,
results on the compactness of the collection of sub-σ-algebras are to the best of our knowledge not
available. This paper aims to fill this gap, by introducing a topology that employs the one-to-one
correspondence between sub-σ-algebras and certain closed Hilbert subspaces of L2. In particular,
this allows us to borrow functional analytic convergence notions of sets, à la Mosco [30]. At the
same time, the convergence is formulated in probabilistic terms via conditional expectations.

Departing from the standard measure theoretic setup, we first introduce the L2-varying con-
vergence of σ-algebras that is a convergence of norms of conditional expectations being tested by
elements from L2. The induced sequential topology is Hausdorff and metrizable. Our compact-
ness result Theorem 4.1 relies on weak compactness (extending the Banach-Alaoglu theorem)
in a fiber bundle structure that is now parametrized by the indexing set of all sub-σ-algebras.
Within this abstract framework, the main step is to show that any limit point of any converging
net in the bundle structure can be identified with an orthogonal projection operator.

To show compactness in the bundle structure, we consider the disjoint collection of unit balls
within copies of L2-spaces, which are again indexed by sub-σ-algebras. Using ideas of Kuwae
and Shioya [27, 28], we define strong and weak convergence for sequences of functions “along”
L2-varying indexing sequences. In particular, we show that, in our case, both of the induced
topologies are actually of sequential or even metric type. The L2-subspaces converge Mosco, see
Attouch [6] for this notion. In a further step, we embed this bundle space into an infinite product
of compact spaces (via Tychonoff, as in the standard proof of Prohorov’s theorem). Starting
with an arbitrary sequence of sub-σ-algebras, we identify at least one σ-algebra as a limit for
a convergent subsequence. Finally, the continuity of the projection from the weakly compact
bundle of (uniformly L2-bounded) random variables to the index space of sub-σ-algebras yields
the desired compactness.
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COMPACT σ-ALGEBRA CONVERGENCE 2

Our single assumption on the probability space for receiving the compactness is separability.
At the same time, the topology of L2-varying convergence departs from the analytical and geo-
metric L2-structure of conditional expectations. One advantage is then the fruitful incorporation
of functional analytic tools, such as the use of the mentioned method of Mosco type convergence
in combination with a bundle space construction. To make this precise we recall a crucial result
from Schilling [35, Theorem 25.2]. In a nutshell, we may arbitrarily switch between the members
of the following classes related to a given L2-space under a probability space:

• sub-σ-algebras;
• a certain class of closed linear subspaces1 of L2;
• the conditional expectation operator2;
• sub-Markovian orthogonal projection operators3.

From this perspective, it seems that the compactness of the set of sub-σ-algebras is an intrinsic
property under the structure of the L2-space. Another justification is established, by showing
the comparability of the join/meet operation and the stability of independence in the limit.

The closest prior result to ours can be found in Artstein [5], where the notion of a conditional
expectation is relaxed in the Young measure sense and a compact convergence is observed. In
contrast to that, our setup guarantees that the each limit point can be identified with a sub-σ-
algebra. Recently, Tsirelson [39] relies on similar grounding for questions of classicality.

The present L2-varying convergence of norms for conditional expectations, tested by the ele-
ments of a set of random variables, can be nested into other notions of convergence. Variations
rely, on the one hand, on the change of the space of tested random variables and, on the other
hand, on the type of convergence of random variables. A hierarchy of implications between the
various types of convergence is inherited, see Neveu [32], Kudō [26], Alonso and Brambila-Paz
[3] for such variations. Stronger topologies, among others, employ Hausdorff convergence (see
Boylan [12], Rogge [34], Landers and Rogge [29], Van Zandt [41]) or a set-theoretic notion (see
Fetter [19]).

In economics, the concept of a σ-algebra serves as a model for information. This has initiated
a program in suggesting meaningful topologies on the set of sub-σ-algebras, Khan et al. [24],
Stinchcombe [36], Cotter [15], Allen [2]. For an application in martingale theory, see Coquet
et al. [14]. However, our compactness result opens the door for new applications in the economics
of information. We illustrate this by a model of information design. Communication in a game
theoretic setting can now be modeled by an information designer (see Bergemann and Morris
[8]), who chooses the information transfer by means of the resulting value of information.

The paper is organized as follows. Section 2 presents the L2-varying convergence. Section 3
introduces and discusses the topological setting. Section 4 introduces and proves the main result.
Section 5 shows that our topology is compatible with join/meet operations and independence.
Section 6 presents an application to information economics. The Appendix recalls some facts
from general topology and contains postponed proofs.

Acknowledgements. The authors would like to thank Michael Röckner and Vladimir I. Bo-
gachev for valuable remarks on this work. They would like to express their gratitude to Peter
Imkeller for several interesting discussions related to its topic. The second author would like to
thank Kazuhiro Kuwae for helpful remarks and for pointing out a useful reference.

1That is, precisely the class of closed subspaces spanned by the closure of an algebra of bounded functions.
2Which is precisely the orthogonal projection operator which maps onto a closed linear subspace of L2 with

the property that it is itself an L2-space w.r.t. a sub-σ-algebra.
3Note that conditional expectations are characterized as projections with range being a lattice, see Andô

[4], Bernau and Lacey [9].
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2. Convergence of sub-σ-algebras

Let (Ω,F ,P) be a separable probability space. Following the terminology in Bogachev [11,
7.14 (iv)], we call (Ω,F ,P) separable if L2(Ω,F ,P) is separable in the Hilbert space sense.

Let A,B ⊆ F be σ-algebras. Set A ∨ B := σ(A ∪ B) (the intersection of all σ-algebras
containing A and B, called join of A and B) and A ∧ B := A ∩ B (called meet of A and B).
Denote by N := {A ∈ F : P(A) = 0} the σ-ideal of P-null sets from F . Let F := {A ⊆ F :
A is a σ-algebra}. Let F∗ := {A∨N : A ∈ F}, which we call the collection of all sub-σ-algebras of
(Ω,F ,P). Clearly, for every A ∈ F∗, (Ω,A,P) is a probability space and L2(A) := L2(Ω,A,P) is a
closed Hilbert subspace of L2(F) with orthogonal projection given by the conditional expectation
f 7→ E[f |A] =: PA(f). Set ‖ · ‖p := ‖ · ‖Lp(F), p ∈ [1,∞] and let 〈f, g〉 := E[fg], whenever the

right-hand side is well-defined and finite for some f, g ∈ L1(F).
We focus on the following notion for σ-algebra convergence.

Definition 2.1. Let Bn ∈ F∗, n ∈ N, B ∈ F∗. We say that Bn → B in the L2-varying sense as
n → ∞, if

‖E[f |Bn]‖2 → ‖E[f |B]‖2

as n → ∞ for every f ∈ L2(F).

We illustrate the convergence in the following example, and furthermore, prove that the mod-
ification toward almost sure convergence results in a counterexample.

Example 2.2. Let Ω = [0, 1], F = B([0, 1]), that is, the Borel σ-algebra on [0, 1] and P =
dx x[0, 1] is the Lebesgue measure restricted to [0, 1]. Define the sequence Bn = σ(I(n)) ∨ N ,
where I(n) = I(n− 2⌊log2(n)⌋, ⌊log2(n)⌋) and I(k,m) =

[
k
2m , k+1

2m

]
for 0 ≤ k ≤ 2m − 1,m ∈ N.

Claim 1. Bn → {∅,Ω} ∨ N =: B0 converges L2-varying as n → ∞.

Proof of Claim 1. To see this, let f ∈ L2(F). We have that,

‖E[f |Bn]‖
2
2 = E

[
E[f1I(n) ]21I(n)

P(I(n))2

]

+ E

[

E[f1(I(n))c ]
21(I(n))c

(1− P(I(n)))2

]

.

Note that for p ∈ [1,∞), E[1p
I(n) ] = P(I(n)) = 2−⌊log2 n⌋ ≤ 2− log2(n)+1 = 2

n → 0 as n → ∞.
For the same reason, 1I(n) → 0 strongly in Lp(F) for any p ∈ [1,∞). For a subsequence {nk},
let g ∈ L∞(F) be a weak∗ limit of the sequence {1I(nk)}. However, 〈g, h〉 = limk〈1I(nk) , h〉 = 0
for any h ∈ Lq(F), q > 1 and hence g = 0. As this argument works for any further extracted
subsequence, we conclude that 1I(n) → 0 weak∗ in L∞(F). Also, it follows that 1(I(n))c → 1Ω
strongly in L2(F).
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Via E[f |B0] = E[f ]1Ω and ‖E[f |B0]‖
2
2 = E[f ]2, we apply Jensen’s inequality for the measure

P̃n(·) = P( · |I(n)),
∣
∣
∣‖E[f |Bn]‖

2
2 − ‖E[f |B0]‖

2
2

∣
∣
∣

=

∣
∣
∣
∣
∣
E

[
E[f1I(n) ]21I(n)

P(I(n))2

]

+
E[f1(I(n))c ]

2

1− P(I(n))
− E[f ]2

∣
∣
∣
∣
∣

≤ P(I(n))

∫

I(n)

f2 dP̃n +

∣
∣
∣
∣
∣

E[f1(I(n))c ]
2

1− P(I(n))
− E[f ]2

∣
∣
∣
∣
∣

= 〈f2, 1I(n)〉
︸ ︷︷ ︸

−−−−→
n→∞

0

+

∣
∣
∣
∣
∣

〈f, 1(I(n))c〉
2

1− P(I(n))
− E[f ]2

∣
∣
∣
∣
∣

−−−−→
n→∞

0 +
∣
∣〈f, 1Ω〉

2 − E[f ]2
∣
∣ = 0.

�

Claim 2. There exists g0 ∈ L2(F) such that E[g0|Bn] 6→ E[g0|B0] P-a.s. We note, however,
that for the same g0, there exists a (fast) subsequence {Bnk

} such that E[g0|Bnk
] → E[g0|B0]

P-a.s.

Proof of Claim 2. One possible choice is g0(ω) := 2ω, ω ∈ [0, 1]. We postpone the lengthy but
straightforward proof to Appendix B.

�

Lemma 2.3. Let Bn,B ∈ F∗, n ∈ N. Suppose that Bn → B in the L2-varying sense. Then

‖E[f |Bn]− E[f |B]‖2 → 0

as n → ∞ for every f ∈ L2(F).

Proof. Fix f ∈ L2(F). In Hilbert spaces, convergence of norms together with weak convergence
implies strong convergence. Therefore, it is sufficient to prove that the random variables Pnf :=
E[f |Bn], n ∈ N, Pf := E[f |B] converge weakly Pnf ⇀ Pf in the Hilbert space sense in L2(F)
as n → ∞. The conditional expectation PA : f 7→ E[f |A] is a linear orthogonal projection
operator onto L2(A) in H := L2(F) for any A ∈ F∗. By the sequential Banach-Alaoglu theorem,
the unit ball in the space of bounded linear operators4 L(L2(F)) is sequentially compact with
respect to the weak operator topology. However, since the range of Pn, n ∈ N is always at least
one-dimensional, ‖Pn‖L(L2(F)) = 1 and thus a subsequence {Pnk

} converges in the weak operator

topology to some bounded linear operator Q. Let g ∈ L2(F). We get by the polarization identity
that

〈Qf, g〉 = lim
k
〈Pnk

f, g〉 = lim
k
〈Pnk

f, Pnk
g〉 = 〈Pf, Pg〉 = 〈Pf, g〉.

Hence, Q = P and, since the argument works for any further subsequence, the initial sequence
converges Pnf ⇀ Pf weakly for all f ∈ L2(F). �

Notation. Due to Proposition 2.4 below, L2-varying convergence induces a topology on F∗

which we denote by κ.

4For a normed space X, we set L(X) := L(X,X) and denote by it the space of all linear and bounded operators
T : X → X with operator norm ‖T‖L(X) := sup‖x‖X≤1 ‖Tx‖X .
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Proposition 2.4. The following metric generates the topology of L2-varying convergence

dκ(A,B) :=
∞∑

j=1

2−j

∣
∣
∣‖E[fj |A]‖2 − ‖E[fj |B]‖2

∣
∣
∣

1 +
∣
∣
∣‖E[fj |A]‖2 − ‖E[fj |B]‖2

∣
∣
∣

, A,B ∈ F∗,

where {fj}j∈N is a countable dense subset of L2(F).

Proof. It is a standard exercise to prove that dκ defines a pseudometric on F∗. It indeed defines
a metric, as dκ(A,B) = 0 implies

(2.1) ‖E[fj |A]‖2 = ‖E[fj |B]‖2

for every j ∈ N. The conditional expectation PA : f 7→ E[f |A] is a linear orthogonal projection
operator on L2(F) for any A ∈ F∗. Thus (2.1) implies ‖PBfj‖2 = ‖PB̃fj‖2 for all j ∈ N. It
follows by e.g. Kubrusly [25, Problem 2.9] and a density argument that PB = PB̃ and hence

that L2(B) = L2(B̃) as closed subspaces of L2(F), which yields that B = B̃ up to P-negligible
elements of F .

It remains to show that dκ generates the L2-varying topology κ. Clearly, limn dκ(Bn,B) = 0
if and only if limn ‖E[fj |Bn]‖2 = ‖E[fj |B]‖2 for each j ∈ N. We claim that this equivalent to
L2-varying convergence Bn → B. In order to see this, let f ∈ L2(F) and let fk ∈ {fj}j∈N, k ∈ N

such that limk ‖f
k − f‖2 = 0. We get that

|‖E[f |Bn]‖2 − ‖E[f |B]‖2|

≤
∣
∣‖E[f |Bn]‖2 − ‖E[fk|Bn]‖2

∣
∣+

∣
∣‖E[fk|B]‖2 − ‖E[f |B]‖2

∣
∣

+
∣
∣‖E[fk|Bn]‖2 − ‖E[fk|B]‖2

∣
∣

≤‖E[|f − fk||Bn]‖2 + ‖E[|f − fk||B]‖2 +
∣
∣‖E[fk|Bn]‖2 − ‖E[fk|B]‖2

∣
∣

≤2‖f − fk‖2 +
∣
∣‖E[fk|Bn]‖2 − ‖E[fk|B]‖2

∣
∣ .

Thus, letting first n → ∞ and then k → ∞ yields the claim. �

As a metric space, (F∗, κ) is a first-countable Hausdorff space.

3. Convergence in bundle spaces

Denote by5

H :=
⊔

B∈F∗

L2(B)

the disjoint union of L2-spaces, indexed by the sub-σ-algebras of F . Let

π : H → F∗

5Let I be an index set and let Ai, i ∈ I be sets. Then the disjoint union is defined as the following set of pairs
⊔

i∈I

Ai :=
⋃

i∈I

{(x, i) | x ∈ Ai}.

By abuse of notation, for x ∈
⊔

i∈I
Ai, we drop the reference to its index i in the notation, assuming quietly

that we are actually considering a pair (x, i) and not just an element x. We may recover the index from any
x ∈

⊔
i∈I

Ai by introducing the map π(x) := i, whenever x ∈ Ai, that is, the projection on the index element.
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be the (bundle) projection on the index of the element in H. The collection H mimics the total
space of a fiber bundle, whereas F∗ plays the role of the base space of a fiber bundle:

(3.1) H

π

��

ι
// L2(F)× F∗

proj2
vv

F∗

Here,

(3.2) ι : H → L2(F)× F∗, ι(u) := (u, π(u))

denotes the standard embedding and proj2 denotes the projection on the second component.
We usually require to take copies of elements in L2, that is, for instance the constant function

1Ω ∈ L2({∅,Ω}) is clearly distinguished from the constant function 1Ω ∈ L2(F), whenever F is
non-trivial. This is accomplished by implicitly keeping track of the index element π(1Ω) ∈ F∗

(which is obviously not necessarily the same object as σ(1Ω)).
Note, however, that we are not in the case of fiber bundles as e.g. in Husemöller [21], as the

fiber spaces L2(B) might be either finite or infinite dimensional so that a universal isomorphic
fiber space (a candidate would be L2(F)) does not necessarily exist. Note also that we do neither
assume nor verify that (F∗, κ) is connected. On these lines, see also Dupré [16].

Next we define strong (denoted by τ) and weak (denoted by σ) topologies on H that coincide
with the original strong and weak topologies on each “fiber” L2(B), B ∈ F∗ and that capture
strong and weak convergence “along” a sequence L2-spaces associated to a L2-varying convergent
sequence of sub-σ-algebras, compare e.g. with Kuwae and Shioya [27, 28], Tölle [38]. Both
topologies rely on convergence of sequences, see also Appendix A.

3.1. Strong convergence. Without the bundle structure, the following type of convergence
(for nets replacing sequences) in general Hilbert spaces can be found in Kuwae and Shioya [27].
On an earlier comparable approach, see Stummel [37].

Definition 3.1. Let uk ∈ H, k ∈ N, u ∈ H. We say that uk → u strongly if π(uk) → π(u)
L2-varying and there exist elements ũm ∈ L2(π(u)), m ∈ N, such that ‖ũm−u‖2 → 0 as m → ∞
and

(S) lim
m

lim sup
k

‖uk − E[ũm|π(uk)]‖2 = 0.

Remark 3.2. Assume that we are given uk ∈ L2(B), k ∈ N, u ∈ L2(B) for some fixed B ∈ F∗.
Then uk → u strongly in L2(B) if and only if uk → u strongly in the sense of Definition 3.1.

Lemma 3.3. Let u ∈ L2(F) and let Bn → B in the L2-varying sense. Then E[u|Bn] → E[u|B]
strongly.

Proof. Set ũm := E[u|B] for every m ∈ N. Then by L2-varying convergence of Bn → B, we get
that

‖E[u|Bn]− E[E[u|B]|Bn]‖2 = ‖E[u− E[u|B]|Bn]‖2 → ‖E[u− E[u|B]|B]‖2 = 0.

�

We get the following:

Corollary 3.4 (Existence of strongly convergent sequences). Let Bk,B ∈ F∗, k ∈ N. Suppose
that Bk → B in the L2-varying sense. Then for each u ∈ L2(B) there exist uk ∈ L2(Bk), k ∈ N

such that uk → u strongly in H.

Lemma 3.5. Let uk, u ∈ H, k ∈ N. Suppose that π(uk) → π(u) in the L2-varying sense. Then
the following conditions are equivalent
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(i) uk → u strongly in H,
(ii) limn ‖uk − E[u|π(uk)]‖2 = 0,
(iii) limk ‖uk − u‖2 = 0.

In particular, each strongly convergent sequence possesses exactly one limit.

Proof. Suppose that (i) holds. Let ũm ∈ L2(π(u)), m ∈ N be such that ‖ũm − u‖2 → 0. Then

‖uk − E[u|π(uk)]‖2 ≤‖uk − E[ũm|π(uk)]‖2 + ‖E[ũm − u|π(uk)]‖2

≤‖uk − E[ũm|π(uk)]‖2 + ‖ũm − u‖2,

which tends to zero by (i). Thus (i) =⇒(ii).
Suppose that (ii) holds. We get that

‖uk − u‖2 ≤ ‖uk − E[u|π(uk)]‖2 + ‖E[u|π(uk)]− u‖2,

where the first part tends to zero by (ii) and the second part tends to zero by Lemma 2.3. Thus
(ii) =⇒(iii).

Suppose that (iii) holds. Clearly, by setting ũm := u for every m ∈ N, we get that

‖uk − E[u|π(uk)]‖2 ≤ ‖uk − u‖2 + ‖u− E[u|π(uk)]‖2,

where the first part tends to zero by (iii) and the second part tends to zero by Lemma 2.3. Thus
(iii) =⇒(i).

The proof is complete. �

Notation. Due to Proposition 3.6 below, strong convergence induces a topology on H which
we denote by τ .

Proposition 3.6. Strong convergence is an S∗-sequential convergence in the sense of Definition
A.4, and thus generates a Fréchet-Urysohn topology on H.

Proof. See Appendix A.2. �

Remark 3.7. In addition, strong convergence is metrizable with metric

dτ (u, v) := ‖u− v‖2 + dκ(π(u), π(v)) u, v ∈ H,

compare with Proposition 2.4. Thus, H can be identified with a closed metric subspace ι(H) ⊆
L2(F)× F∗, see (3.2) above.

Lemma 3.8 (Properties of strong convergence). Let α, β ∈ R, uk, vk, u, v ∈ H, k ∈ N.

(i) If uk → u strongly, then ‖uk‖2 → ‖u‖2 as k → ∞.
(ii) If uk → u strongly and π(vk) = π(uk) for all k ∈ N, then vk → u if and only if

‖uk − vk‖2 → 0 as k → ∞.
(iii) If uk → u strongly, π(vk) = π(uk) for all k ∈ N, and vk → v strongly, then αuk+βvk →

αu+ βv strongly.

Proof. Let α, β ∈ R, uk, vk, u, v ∈ H, k ∈ N. Assume that uk → u strongly.

(i): Follows by

|‖uk‖2 − ‖u‖2| ≤ ‖uk − u‖2

and Lemma 3.5 (iii).
(ii): By the assumption, π(vk) = π(uk) → π(u) in the L2-varying sense. Hence, the claim

follows by an ε/2-argument and Lemma 3.5 (iii).
(iii): Taking the proof of (ii) and the linearity of the conditional expectation into account,

the claim follows by standard arguments.

�
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3.2. Weak convergence. In the following, we introduce the weak convergence on H.

Definition 3.9. Let uk, u ∈ H, k ∈ N. We say that uk ⇀ u weakly if π(uk) → π(u) in the
L2-varying sense and the following two conditions are satisfied:

(W1) it holds that

sup
k

‖uk‖2 < +∞,

(W2) and, we have that

lim
k
〈uk, vk〉 = 〈u, v〉

for all vk ∈ L2(π(uk)), k ∈ N, v ∈ L2(π(u)) such that vk → v strongly in H.

Remark 3.10. Assume that we are given vk ∈ L2(B), k ∈ N, v ∈ L2(B) for some fixed B ∈ F∗.
Then vk ⇀ v weakly in L2(B) if and only if vk ⇀ v weakly in the sense of Definition 3.9.

Remark 3.11. A weakly convergent sequence {uk} in H possesses exactly one limit, which is
seen by Definition 3.9 (W2), namely, for some limit u and any other possible limit ũ, we get by
L2-varying convergence that π(u) = π(ũ) and that 〈u− ũ, v〉 = 0 for every v ∈ L2(π(u)).

Notation. Due to Proposition 3.12 below, weak convergence indeed induces a topology on H

which we denote by σ.

Proposition 3.12. Weak convergence is an L∗-sequential convergence in the sense of Definition
A.4, and thus generates a sequential topology on H.

Proof. See Appendix A.2. �

Lemma 3.13 (Properties of weak convergence). Let α, β ∈ R, uk, vk, u, v ∈ H, k ∈ N.

(i) If uk → u strongly, then uk ⇀ u weakly as k → ∞.
(ii) If uk ⇀ u weakly, then lim infk ‖uk‖2 ≥ ‖u‖2.
(iii) If uk ⇀ u weakly, π(vk) = π(uk) for all k ∈ N, and vk ⇀ v weakly, then αuk + βvk ⇀

αu+ βv weakly.

Proof. Let α, β ∈ R, uk, vk, u, v ∈ H, k ∈ N.

(i): Assume that uk → u strongly. L2-varying convergence is immediate. (W1) follows from
Lemma 3.8 (i), as does (W2) by employing the polarization identity.

(ii): Assume that uk ⇀ u weakly. By (W1), we get that lim infk ‖uk‖2 < ∞. It follows that
there is a subsequence {ukl

} of {uk} such that liml ‖ukl
‖2 = lim infk ‖uk‖2. Clearly, by

Proposition 3.12, ukl
⇀ u weakly, too. We can find u0 ∈ L2(π(u)) with ‖u0‖2 = 1 and

〈u0, u〉 = ‖u‖2. By Lemma 3.3, E[u0|π(uk)] → u0 strongly as k → ∞. By Lemma 3.8
(i) and (W2), we get that

lim inf
k

‖uk‖2 = lim
l
‖E[u0|π(uk)]‖2

︸ ︷︷ ︸

=1

lim
k

‖ukl
‖2

≥ lim
k
〈E[u0|π(uk)], ukl

〉 = 〈u0, u〉 = ‖u‖2.

(iii): The part for the L2-varying convergence is clear. (W1) follows by the triangle inequality.
(W2) follows by the bilinearity of the scalar product.

�

Lemma 3.14. Let uk, u ∈ H, k ∈ N. Then the following statements are equivalent.

(i) uk → u strongly.
(ii) uk ⇀ u weakly and ‖uk‖2 → ‖u‖2 as k → ∞.
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Proof. Assume (i). Then (ii) follows from Lemma 3.13 (i) and Lemma 3.8 (i) respectively. L2-
varying convergence follows, too.

Assume (ii). Clearly, by Lemma 3.3,

lim
k
〈uk,E[u|π(uk)]〉 = 〈u, u〉 = ‖u‖22.

Furthermore, by Lemma 3.8 (i),

0 ≤ lim
k

‖uk − E[u|π(uk)]‖
2
2

= lim
k

(
‖uk‖

2
2 + 2〈uk,E[u|π(uk)]〉+ ‖E[u|π(uk)]‖

2
2

)

= lim
k

‖uk‖
2
2 − ‖u‖22 = 0,

and hence (i) follows from Lemma 3.5.
The proof is complete. �

4. Main result: compactness

We arrive at our main result.

Theorem 4.1. (F∗, κ) is compact.

We shall prove Theorem 4.1 in several steps. First of all, we shall introduce the bundle space
of closed “unit balls”,

H1 :=
⊔

B∈F∗

{f ∈ L2(B) : ‖f‖2 ≤ 1} ⊂ H

that is, with fibers consisting of elements with norm less or equal to one. We shall denote the
restriction of π to H1 by the same symbol. Define

T :=
∏

u∈L2(F)

([−‖u‖2, ‖u‖2]× [0, ‖u‖2])

and equip T with the product topology, which is Hausdorff by Engelking [17, Theorem 2.3.11].
By Tychonoff’s theorem, see Kelley [23, p. 143, Theorem 13], T is compact. A net {xi}i∈I of
elements in T converges to some x ∈ T if and only if

lim
i∈I

xi(u) = x(u)

converges in R2 for any u ∈ L2(F).
The strategy to prove Theorem 4.1, inspired by Tölle [38, Theorem 5.22], is summarized in

the following procedure:

• We define a map I : H1 → T (see (4.1) below) which verifies
◦ I is injective, see Lemma 4.4 below.
◦ I is a homeomorphism between (H1, σ) and the range K := I(H1) ⊂ T, carrying

the relative topology, see Lemma 4.5 and Lemma 4.6 below.
• We prove that K is a closed subset of T and hence compact, see Proposition 4.7 below.
• We infer that H1 with the weak topology σ is a continuous image of a compact set and

hence compact.

Remark 4.2. By definition, π : H1 → F∗ is both τ/κ-continuous as well as σ/κ-continuous, in
other words, if fk, f ∈ H1, k ∈ N with fk → f strongly or fk ⇀ f weakly, then it follows that
π(fk) → π(f) in L2-varying sense.

Proof of Theorem 4.1. Taking into account the previous remark and the above procedure, we
conclude that F∗ = π(H1) is a continuous image of the compact space (H1, σ), and thus is itself
compact. Theorem 4.1 is proved. �
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Corollary 4.3. Let Bn ∈ F∗, n ∈ N. Then there exists B0 ∈ F∗ such that some subsequence
{Bnk

} converges to B0 in L2-varying sense.

Proof. This follows from Theorem 4.1 by noting that in metric spaces (see Proposition 2.4),
compactness implies sequential compactness. �

4.1. Remaining proof of Theorem 4.1. Define I : H1 → T by

(4.1) f 7→ I(f)(u) := (〈f,E[u|π(f)]〉, ‖E[u|π(f)]‖2) , u ∈ L2(F).

The map I is well-defined. Let us denote by (·)j : R
2 → R, j ∈ {1, 2}, the projection on the j-th

component.

Lemma 4.4. I is an injective map.

Proof. Let f, g ∈ H1 , f 6= g. Suppose first that π(f) = π(g). Then there exists u0 ∈ L2(π(f)),
u0 6= 0 with 〈u0, f〉 6= 〈u0, g〉. Clearly, 〈u0, f〉 = 〈u0,E[f |π(f)]〉 = (I(f)(u0))1. Similarly,
〈u0, g〉 = 〈u0,E[g|π(g)]〉 = (I(g)(u0))1. Suppose now, that π(f) 6= π(g). Then there exists
v0 ∈ L2(F), v0 6= 0, such that (I(f)(v0))2 = ‖E[v0|π(f)]‖2 6= ‖E[v0|π(g)]‖2 = (I(g)(v0))2. The
injectivity follows. �

Lemma 4.5. The map I is continuous with respect to weak convergence in H1.

Proof. By Lemma A.3 (iv) in the appendix, it is sufficient to prove continuity with the help of
sequences. Let fl ∈ H1, l ∈ N be a weakly convergent sequence with weak limit f , being unique
by Remark 3.11. As a consequence, π(fl) → π(f) L2-varying. By Lemma 3.3, E[u|π(fl)] →
E[u|π(f)] strongly as l → ∞ for any u ∈ L2(F). It follows that

(4.2) lim
l
(I(fl)(u))1 = lim

l
〈fl,E[u|π(fl)]〉 = 〈f,E[u|π(f)]〉 = (I(f)(u))1.

Also, by L2-varying convergence

(4.3) lim
l
(I(fl)(u))2 = lim

l
‖E[u|π(fl)]‖2 = ‖E[u|π(f)]‖2 = (I(f)(u))2.

Combining (4.2) and (4.3), yields the desired continuity. �

Lemma 4.6. The map I−1 : K → H1 is continuous, where K := I(H1) carries the relative
topology inherited from T and H1 is equipped with the weak topology.

Proof. We note that L2-varying, strong and weak convergence respectively are well-defined for
nets and the topology generated by nets coincides with the one generated by sequences, see
Lemma A.3 (vi) in the appendix for details. Let {xi}i∈I be a convergent net of elements in
K ⊂ T such that its limit satisfies x := limi∈I xi ∈ K. Set f := I−1(x) as well as fi := I−1(xi),
i ∈ I. Let L2(F). Then,

(4.4)

lim
i∈I

(〈fi,E[u|π(fi)]〉, ‖E[u|π(fi)]‖2)

= lim
i∈I

I(fi)(u) = lim
i∈I

xi(u) = x(u) = I(f)(u)

= (〈f,E[u|π(f)]〉, ‖E[u|π(f)]‖2) .

Clearly, as u was arbitrary, π(fi) → π(f) in the L2-varying sense. However, ‖fi‖2 ≤ 1, i ∈ I and
‖f‖2 ≤ 1.

Let us verify the weak convergence. Denote v := E[u|π(f)]. Let vi ∈ L2(π(fi)), i ∈ I,
v ∈ L2(π(f)) such that vi → v strongly in τ -topology. Clearly,

|〈fi, vi〉 − 〈f, v〉| ≤|〈f, vi〉 − 〈fi,E[u|π(fi)]〉|+ |〈fi,E[u|π(fi)]〉 − 〈f, v〉|

≤‖fi‖2‖vi − E[u|π(fi)]‖2 + |〈fi,E[u|π(fi)]〉 − 〈f,E[u|π(f)]〉|,
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where the first term converges to zero by Lemma 3.3 and Lemma 3.8 (ii) and the second term
converges to zero by (4.4). However, since u was arbitrary, we obtain the result for all v ∈
L2(π(f)) and thus fi ⇀ f in the weak sense. �

Proposition 4.7. K := I(H1) is closed in T.

Proof. We need to verify that for any net {xi}i∈I of elements xi ∈ K, i ∈ I, we have that all
its limit points are contained in K. Let x ∈ T be some limit point of {xi}i∈I . Then a subnet
{xj}j∈J of {xi}i∈I converges to x. Set fj := I−1(xj), j ∈ J . We have that ‖fj‖2 ≤ 1 for j ∈ J .
Based on (4.1), define the functional

fx(u) := (x(u))1, u ∈ L2(F),

and the form

(4.5) ax(u, v) :=
1

4

[
(x(u+ v))22 − (x(u− v))22

]
, u, v ∈ L2(F),

which is induced by the polarization of the second component of x. Note that fx and ax depend
on the subnet {xj}j∈J and thus on the directed set J . Our aim is to identify a unique element
f ∈ H1 and its “index σ-algebra” π(f) such that we have weak convergence σ- limj∈J fj = f
and thus L2-varying convergence π(fj) → π(f) and such that I(f) = x. The functional fx is a
candidate for a functional f with these properties. As limits preserve linearity, fx is linear on
L2(F). Also,

|fx(u)| ≤

∣
∣
∣
∣
lim
j∈J

〈fj ,E[u|π(j)]〉

∣
∣
∣
∣
≤ sup

j∈J
‖fj‖2‖u‖2 ≤ ‖u‖.

Hence fx can be identified with an element in L2(F) which we denote by the same symbol.
Claim 1. The map ax : L2(F)×L2(F) → R is a symmetric and non-negative definite bilinear

form that satisfies

|ax(u, v)| ≤ ‖u‖2‖v‖2.

Proof of Claim 1. In fact, in analogy to (4.5), we also define

aj(u, v) := axj (u, v) :=
1

4

[
(xj(u+ v))22 − (xj(u− v))22

]
, j ∈ J.

Thus xj = I(fj) induces a symmetric, non-negative definite bilinear form aj on L2(F) such that
by polarization

aj(u, v) = 〈E[u|π(fj)], v〉 = 〈E[u|π(fj)],E[v|π(fj)]〉

for all u, v ∈ L2(F). The corresponding properties for the elements xj , j ∈ J yield the claim
after passing to the limit. �

By Kato [22, Chapter V.2], there exists a unique bounded linear operator T x with domain
L2(F) and ‖T x‖L(L2(F)) ≤ 1 such that ax(u, v) = 〈T xu, v〉 for every u, v ∈ L2(F). Furthermore,
we see that T x is non-negative definite and symmetric. Define also Tju := T xju := E[u|π(fj)],
u ∈ L2(F).

At this point, we need to prove that T x is a projection, that is, (T x)2 = T x on L2(F).
However, in order to avoid double limits, we shall study the range of T x. To this end, consider
the set

Mx := {u ∈ Bb(Ω,F) | 〈T xu, v〉 = 〈u, v〉 for every v ∈ L2(F)},

where Bb(Ω,F) is the space of all bounded, F-measurable real-valued maps on Ω.
Claim 2. The set Mx is a linear subspace of Bb(Ω,F) closed under uniform convergence and

bounded monotone convergence such that 1Ω ∈ Mx.
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Proof of Claim 2. Since Tj1Ω = E[1Ω|π(fj)] = 1Ω for every j ∈ J , we have for every v ∈ L2(F)
that

〈1Ω, v〉 = lim
j∈J

〈Tj1Ω, v〉 = 〈T x1Ω, v〉

and thus 1Ω ∈ Mx. We see that Mx is closed under uniform convergence as follows. Let un ∈
Mx, n ∈ N and let u : Ω → R be bounded such that ‖un − u‖∞ := supω∈Ω |un(ω)− u(ω)| → 0.
Then u is F-measurable and for all v ∈ L2(F),

|〈u, v〉 − 〈T xu, v〉| ≤|〈u, v〉 − 〈un, v〉|

+ |〈u, v〉 − 〈T xun, v〉|
︸ ︷︷ ︸

=0 for every n ∈ N

+ |〈T xun, v〉 − 〈T xu, v〉|

≤‖v‖2(1 + ‖T x‖L(L2(F)))‖un − u‖∞ → 0.

In order to see that Mx is closed under bounded monotone limits, let un ∈ Mx, n ∈ N such
that un ≥ 0 and un ↑ u, where u is bounded. Clearly, u must be F-measurable. Let v ∈ L2(F)
with v ≥ 0 P-a.s. By a limit procedure, we see that T x is a positivity preserving operator, that
is, T xv ≥ 0 P-a.s. By symmetry of T x and the monotone convergence theorem,

sup
n
〈T xun, v〉 =〈T xv, sup

n
un〉 = 〈T xv, u〉 = 〈T xu, v〉.

The case of general v ∈ L2(F) follows by splitting v = v+ − v− into positive and negative parts
respectively. �

Claim 3. The space Mx is an algebra with respect to pointwise multiplication.

Proof of Claim 3. Let u,w ∈ Mx. Clearly, uw is bounded and F-measurable. By symmetry, for
v ∈ L∞(F),

〈T x(uw), v〉 =〈uw, T xv〉 = lim
j∈J

〈uw, Tjv〉 = lim
j∈J

〈Tj(uw), v〉

= lim
j∈J

〈Tj(uTjw), v〉 = lim
j∈J

〈uTjw, Tjv〉

= lim
j∈J

〈T 2
j w, uTjv〉 = lim

j∈J
〈Tjw, Tj(uTjv)〉 = lim

j∈J
〈Tjw, Tj(uv)〉

= lim
j∈J

〈Tjw, uv〉 = 〈T xw, uv〉 = 〈uw, v〉

where we have repeatedly used symmetry, idempotence of Tj and the following P-a.s. tower-type
property for bounded functions u,w:

Tj(uTjw) = TjuTjw = Tj(uw),

see Schilling [35, Theorem 22.5 (iii)] and Moy [31, Property T’3]. The proof of the claim is
concluded by approximating v ∈ L2(F) by elements in L∞(F). �

By the monotone class theorem, cf. Bogachev [10, Theorem 2.12.9 (ii), p. 146], and by Claims
2 and 3, we have that Bb(Ω, σ(M

x)) ⊂ Mx, where σ(Mx) =: Σ is the σ-algebra generated by
Mx. Hence, using Schilling [35, Theorem 22.5 (iii)], we infer that the ‖ · ‖2-closure of Mx in
L2(F) is equal to L2(Σ) and the property

T xu = u

holds for every u ∈ L2(Σ). Thus T x is the orthogonal projection on L2(Σ), in particular,
T xv = E[v|Σ] for every v ∈ L2(F).

It remains to identify the limit. Firstly, as above, Tj −−→
j∈J

T x converges in the weak operator

topology in L2(F). Since T x is a projection, we have that Tj −−→
j∈J

T x converges in the strong
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operator topology of L2(F) e.g. by Halmos [20, Problem 115, p. 62]. Thus π(fj) −−→
j∈J

Σ

converges in the L2-varying sense. On the other hand, we have for every v ∈ L2(F),

〈fx, v〉 = (x(v))1 = lim
j∈J

(xj(v))1

= lim
j∈J

〈fj ,E[v|π(fj)]〉 = lim
j∈J

〈E[fj |π(fj)],E[v|π(fj)]〉.

In particular, if v ∈ L2(Σ), we get the desired weak convergence in σ-topology fj ⇀ fx for j ∈ J
and Σ = π(fx). Hence I(fx) = x.

The proof is complete. �

As a direct consequence of Theorem 4.1, we give a new criterion for the existence of a con-
verging σ-algebra. In contrast to Doob’s martingale convergence theorem, no monotonicity on
the sequence of σ-algebras is required. We recall an exact notion of a limit point from Tsukada
[40, p. 137], (Property (E)) for the present case p = 2.

(E) There exists B0 ∈ F∗ such that ||E[u|Bn]− E[u|B0]||2 → 0 for every u ∈ L2(F).

Corollary 4.8. Let Bk ∈ F∗, k ∈ N. Property (E) from Tsukada [40] is implied by the following
property:

(4.6) +∞ > lim inf
k

‖E[u|Bk]‖2 ≥ lim sup
k

‖E[u|Bk]‖2 for every u ∈ L2(F).

Proof. By Theorem 4.1, for any subsequence {Bkl
} of {Bk} there exists a non-relabeled subse-

quence {Bkl
} and a sub-σ-algebra B0 ∈ F∗ such that Bkl

→ B0 in the L2-varying sense as l → ∞.
However, by (4.6), liml ‖E[u|Bkl

]‖2 exists for any u ∈ L2(F). Let B1 be any other possible limit
of the subsequence {Bkl

}. We get by L2-varying convergence and (4.6) that

‖E[u|B0]‖2 = lim
l
‖E[u|Bkl

]‖2 = ‖E[u|B1]‖2.

Since the above identity holds for any u ∈ L2(F), we get that B0 = B1 up to P-negligible
subsets, compare with the proof of Proposition 2.4. Since this argument can be repeated for any
subsequence, we get that the initial sequence converges Bk → B0 in the L2-varying sense. �

5. Probabilistic properties of L2-varying convergence

We show some useful implications that follow from our convergence of σ-algebras.

5.1. Continuity of conditional probability measures in σ-algebra. For simplicity, we stick
to the conditioning of the identity map X : Ω → Ω, X(ω) = ω and impose some structure on Ω.

We consider the regular conditional probability P : Ω × F × F∗ → [0, 1] that depends now
additionally on the conditioning σ-algebra and satisfies for each ω ∈ Ω, B ∈ F∗, A ∈ F :

(i) Pω(·|B) is a probability measure on (Ω,F).
(ii) ω 7→ Pω(A|B) is B-measurable.
(iii) We have Pω(A|B) = E[1A|B](ω) almost surely.

If Ω is a Polish space, the conditional probability (ω,A) 7→ Pω(A|B) exists for every B ∈ F∗, see
Faden [18] for a characterization of existence. Before we move to the continuity of conditional
probabilities, we state first a simple but useful result.

Lemma 5.1. Bn → B in the L2-varying sense implies E[g|Bn] → E[g|B] in probability for all
g ∈ L2(F).

Proof. For all g ∈ L2(F) we have E[g|Bn] → E[g|B] in L2(F) and hence in probability. �
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Remark 5.2. Let Bn,B ∈ F∗, n ∈ N and B ∈ B, then clearly 1B ∈ L2(F). By Lemma 5.1, L2-
varying convergence Bn → B implies the Skorohod J1 convergence, that is E[1B |Bn] → E[1B |B]
for every B ∈ B, see Coquet et al. [13].

We have an almost sure weak continuity, with respect to the conditioning information, of the
conditional probability.

Proposition 5.3. Let Ω be a Polish space and set B(Ω) = F . Let Bn → B in the L2-varying
sense. Suppose that for each f ∈ Cb(Ω), there exists a sequence εn = εn(f) > 0, n ∈ N with
εn ց 0 and that

∞∑

n=1

P (|E[f |Bn]− E[f |B]| > εn) < ∞.

Then we have Pω(·|Bn) ⇀ Pω(·|B) weakly with respect to Cb(Ω) for P-almost every ω ∈ Ω.

Proof. Let f ∈ Cb(Ω). Since Cb(Ω) ⊂ L2(F), we have by the L2-varying convergence of Bn to
B, Lemma 5.1 and an application of the Borel-Cantelli lemma that E[f |Bn] → E[f |B] P-a.s. As
a consequence, for P-a.e. ω ∈ Ω,

∫

Ω

f(ω̄)Pω(dω̄|Bn) = E[f |Bn](ω) → E[f |B](ω) =

∫

Ω

f(ω̄)Pω(dω̄|B),

and the result follows. �

5.2. Stability of independence L2-varying convergence. We show that independence of
σ-algebras is a robust property when moving to the L2-varying limit.

Proposition 5.4. Fix An,A,Bn,B ∈ F∗, n ∈ N, with An → A and Bn → B in the L2-varying
sense such that An and Bn are P-independent for every n ∈ N. Then A and B are also P-
independent.

Proof. By Kudō [26, Theorem 3.2], we have

B := lim inf
n

Bn =
{

A ∈ F : lim
n

inf
B∈Bn

E[1A∆B ] = 0
}

,

where A∆B denotes the symmetric difference of the events A and B. As shown in Alonso and
Brambila-Paz [3, Lemma 1.1 and Lemma 1.2], B ⊂ B characterizes weak convergence of {Bn},
that is, E[1A|Bn] → E[1A|B] in probability for all A ∈ F , which is implied via Lemma 5.1 by
the L2-varying convergence. We may assume B = B and A = A and take A ∈ A and B ∈ B
arbitrary. Then there are sets An ∈ An and Bn ∈ Bn for each n such that

lim
n

E[1An∆Bn
] = 0.

Via the general identity |1C − 1C′ | = 1C∆C′ for all C,C ′ ∈ F , we derive

E[|1A∩B − 1An∩Bn
|] = E[|1A∩B − 1An∩B + 1An∩B − 1An∩Bn

|]

≤E[1A∆An
] + E[1B∆Bn

]

and also E[|1A1B − 1An
1Bn

|] ≤ E[1A∆An
] +E[1B∆Bn

], due to the independence via E[1An
1Bn

] =
E[1An∩Bn

]. Consequently, we have

E[1An
] · E[1Bn

]− E[1A1B ] → 0 and E[1A∩B ]− E[1A] · E[1B ] → 0

and the result follows. �

Compare also with Vidmar [42, Section 3].
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5.3. Join and meet operations. Finally, we show that the lattice operations on F∗ turn out
to be continuous under the L2-varying topology.

Proposition 5.5. The join operation B∨C = σ(B, C) and the meet operation B∧C = B∩C, for
some B, C ∈ F∗ are L2-varying jointly continuous operations ∨,∧ : F∗ × F∗ → F∗.

Proof. ∨ : By Remark 5.2, the joint continuity of ∨ follows from Coquet et al. [13, Proposition
2.3].

∧ : Let Bn, Cn,B, C ∈ F∗ with Cn → C and Bn → B in the L2-varying sense. Set C∨ =
∨

n∈N
Cn.

The associated orthogonal projections PA(·) = E[·|A], by setting fC = P C∨(f) and fB = PB(f),
satisfy for all f ∈ L2(F) the following

||PBn ◦ P Cn(f)− PB ◦ P C(f)||2

≤ ||PBn ◦ P Cn(f)− PB ◦ P Cn(f)||2 + ||PB ◦ P Cn(f)− PB ◦ P C(f)||2

≤ ||P C∨ ◦ (PBn − PB)(f)||2 + ||PB ◦ (P Cn − P C)(f)||2

≤ ||(PBn − PB)(fC)||2
︸ ︷︷ ︸

→0

+ ||(P Cn − P C)(fB)||2
︸ ︷︷ ︸

→0

,

where we use the commutativity of projections. Consequently, Bn ∧Cn converges to B ∧C in the
L2-varying sense. �

6. Application to information economics

In economics, sub-σ-algebras often serve as a model of (incomplete) information of some
decision maker (DM). Based on Section 4, we can consider problems of information design, a
recent field in theoretical economics that departs from the idea of mechanism design (inverse
game theory, see Bergemann and Morris [8] for a Bayesian approach). In such models there
is a second better informed agent, the so called omniscient information designer (ID). The ID
can transfer information to the DM. The optimal and payoff relevant decision of the DM, after
receiving information from the ID, then also affects the payoff of the ID. The topology of L2-
varying convergence establishes a setting that allows to analyze problems of strategic information
transfer.

6.1. Strategies of the DM. For the DM, let there be a finite set of actions A = {a1, . . . , aN}
that determines the payoff. A (pure) strategy is a mapping s : Ω → A. A mixed strategy is
given by s : Ω → ∆A, where ∆A denotes the simplex in R|A| and models the set of all mixed
actions. The measurability condition on s now constraints the DM’s set of feasible strategies. As
the imperfectly informed DM fails to be omniscient, she is only endowed with a sub σ-algebra
G ( F as information. Without information transfer the set of information feasible strategies is
then

L(G) =
{

s : Ω → ∆A : s is G-measurable and EP[s] < ∞
}

.

6.2. (Randomized) σ-algebras as information. By Proposition 2.4 and Theorem 4.1, we
have that (F∗, κ) is a metrizable compact topological space. In turn, this is equivalent to the
weak∗ compactness of the space of all probability measures on F∗, which we denote by

∆(F∗) := M1(F
∗,B(F∗))

where the weak∗ topology is given by σ(∆(F∗), Cb(F
∗)) and Cb(F

∗) denotes the space of contin-
uous bounded real valued functions on F∗. For details and the stated equivalence, see Aliprantis
and Border [1, Chapter 15].

The ID knows F and can send parts of his information to the DM. We also allow for a
probabilistic transfer of information. Some ν ∈ ∆(F∗) is then interpreted as a randomized
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information transfer, that is, the probability that one of the σ-algebras G ∈ G ∈ B(F∗) is
received by the DM and is exactly captured by ν. For instance, the class of most elementary
information transfers, consists of Dirac measures δG ∈ ∆(F∗), for some G ∈ F∗, and means a
deterministic information transfer of G.

6.3. Information design. For simplicity, let the only action of the ID be to transfer information.
The expected payoff of the ID then depends on the optimal strategy s∗ of the DM, which in turn
depends on the received information ν. Under some increasing, continuous and concave Bernoulli
utility index v : R → R the ID’s optimization problem is given by

max
ν∈∆(F∗)

∫

F∗

EP[v(s∗(·,H)] dν(H),

where s∗(·,H) : Ω → ∆A is some G ∨ H-measurable and integrable payoff relevant strategy that
is chosen by the uninformed DM. As such, the maximization problem is not yet well-posed.

The reason for this stems from the strategy s∗ of the DM which depends in turn on the
information transfer ν as it is solution of optimization with constraints depending on ν. We
clarify this in the next subsection.

6.4. Uninformed decision maker. Suppose the ID sends the randomized information transfer
ν to the DM. This allows the DM to consider a larger space of informationally feasible strategies
L2(G; ν), that is, the mixture of all possible realized information transfers. For some realization
H, the DM is now equipped with G ∨ H and an enlarged set of feasible strategies L(G ∨ H).

Ex ante, the DM incorporates now all reactions to possible information transfers:

L(G;µ) =
{

s : Ω× F∗ → ∆A : s(·,H) ∈ L(G ∨ H),EP⊗µ[s2]1/2 < ∞
}

,

where µ ∈ ∆(F∗) denotes his a priori given belief about the likelihood of information transfers.
With this and for a ν ∈ ∆(F∗) chosen by the ID, the DM’s optimization problem (sharing the

utility index with the ID) is given by

max
s∈L(G;µ)

∫

F∗

EP

[

v
(
s(·,H)

)]

dν(H).

6.5. Solution of the information design problem. Having specified the perspective of the
DM and ID, we introduce an equilibrium concept, when both players are interacting in a strategic
way. Therefore, we set f(s, ν) =

∫

F∗ E
P[v(s(·,H))]dν(H).

Definition 6.1. A game theoretic equilibrium of the information design problem is a pair (ν̂, ŝ) ∈
∆(F∗) × L(G;µ) such that f(s, ν̂) ≤ f(ŝ, ν̂) for all s ∈ L(G;µ) and f(ŝ, ν) ≤ f(ŝ, ν̂) for all
ν ∈ ∆(F∗).

Based on Theorem 4.1, we have existence of an equilibrium.

Proposition 6.2. A game theoretic equilibrium of the information design problem exists.

Proof. Let us set σF := σ(L2(F ;R|A|), L2(F ;R|A|)∗) and σF⊗B(F∗) := σ(L2(F⊗B(F∗);R|A|), L2(F⊗

B(F∗);R|A|)∗). For each G ∈ F∗, the set L(G) is bounded, closed and convex and hence σF -
compact in the space of R|A|-valued random variables L2(F ;R|A|). The space L2(F⊗B(F∗);R|A|),
with product measure P⊗ µ, has the same property, and its subset L(G;µ) is a σF⊗B(F∗)-closed,
convex and bounded set. By Berge’s maximum theorem, Aliprantis and Border [1, Theorem
17.31.], the correspondence

S(ν) = argmax
s∈L(G;µ)

f(s, ν)

is upper-hemicontinuous. Moreover, for any ν, S(ν) is non-empty, convex and σF⊗B(F)-compact,
by the concavity and continuity of f(·, ν).
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On the ID side and again by Berge’s maximum theorem the correspondence

V (s) = argmax
ν∈∆(F∗)

f(s, ν).

is upper-hemicontinuous, non-empty, convex and σ(∆(F∗), Cb(F
∗))-compact valued. The upper

hemicontinuity with compact values of the product of the above correspondences, given by SV :
∆(F∗) × L(G;µ) ⇒ ∆(F∗) × L(G;µ) follows from Aliprantis and Border [1, Theorem 17.28.1.].
By Aliprantis and Border [1, Theorem 17.10.2.], SV has a closed graph, as the space the space
of of signed measures M(F∗,B(F∗)) equipped with the topology of weak convergence is a locally
convex topological vector space.

An application of the Kakutani-Fan-Glicksberg fixed-point theorem, see Aliprantis and Border
[1, Corollary 17.55] gives a (ŝ, ν̂) ∈ SV (ŝ, ν̂), that is, the desired equilibrium exists. �

Appendix A. Sequential spaces, convergence and proofs

Let (T, T ) be a topological space. We assume that the reader is familiar with the notions net,
subnet, directed set, “cofinal”, “frequently”, “eventually”. They are e.g. explained in Engelking
[17], Kelley [23].

Recall that a set A included in T is open if and only if every net {xi}i∈I which converges to a
point x ∈ A is eventually in A. Also, a set A included in T is closed if and only if it contains with
any net all its possible limits, or equivalently, no net included in A converges to a point in T \A.
For a set A included in T one defines the relative topology of A in T by TA := {O ∩A | O ∈ T }.
B ⊂ A is called relatively open if B ∈ TA and B ⊂ A is called relatively closed if A \B ∈ TA.

Recall the following basic definition.

Definition A.1. A (Kuratowski) closure operator on a set S is a mapping : 2S → 2S such
that the Kuratowski closure axioms

(K1) ∅ = ∅,
(K2) for each A ∈ 2S : A ⊂ A,
(K3) for each A,B ∈ 2S : A ∪B = A ∪B,

(K4) for each A ∈ 2S : (A) = A,

hold.

If X is a topological space, we define for any subset A ⊂ X the closure w.r.t. the topology
of X as A :=

⋂

B⊃A,
B closed

B. It satisfies the Kuratowski closure axioms. Conversely, a Kuratowski

closure operator on a set S defines a topology on S by saying A ⊂ S is closed if A = A. Then
the Kuratowski closure operator coincides with the closure w.r.t. to the topology it generates.
See e.g. Kelley [23, Chapter 1].

Definition A.2. A topological space X is called sequential space if a set A ⊂ X is closed if and
only if together with any sequence it contains all its limits. A topological space X is called a
Fréchet-Urysohn space if for every A ⊂ X and every x ∈ A there exists a sequence {xn}n∈N of
points of A converging to x.

We assume that the reader is familiar with the terms first countable, second countable, compact,
sequentially compact and countably compact.

Lemma A.3. (i) Every first-countable space is a Fréchet-Urysohn space and every Fréchet-
Urysohn space is a sequential space.

(ii) Any subspace of a Fréchet-Urysohn space is itself a Fréchet-Urysohn space.
(iii) Any closed subspace of sequential space is itself a sequential space.
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(iv) A mapping F of a sequential space X to a topological space Y is continuous if and only
if F (limn→∞ xn) ⊂ limn→∞ F (xn) for every sequence {xn}n∈N in the space X.

(v) Sequential compactness and countable compactness are equivalent in the class of sequen-
tial spaces.

(vi) In a sequential space the characterization of open and closed sets found as in the begin-
ning of this appendix holds with nets replaced by sequences.

Proof. (i): Engelking [17, Theorem 1.6.14], (ii),(iii): Engelking [17, Exercise 2.1.H], (iv): En-
gelking [17, Proposition 1.6.15], (v): Engelking [17, Theorem 3.10.31], (vi): clear from the defi-
nition. �

Definition A.4. Let S be a set. A L∗-sequential convergence or L∗-(sequential) limit operator
C on S is a relation between sequences {sn}n∈N of members of S and members s of S, denoted

sn
C

−−−−→
n→∞

s (in words: {sn} C-converges to s), such that:

(L1) If sn = s for each n ∈ N, then sn
C

−−−−→
n→∞

s.

(L2) If sn
C

−−−−→
n→∞

s, then snk

C
−−−−→
k→∞

s for every subsequence {snk
} of {sn}.

(L3) If sn 6
C

−−−−→
n→∞

s, then {sn} contains a subsequence {snk
} such that no subsequence of

{snk
} converges to s.

C is called a S∗-sequential convergence or S∗-(sequential) limit operator if additionally:

(L4) If sn
C

−−−−→
n→∞

s and snm
C

−−−−→
m→∞

sn for each n ∈ N, then there exist increasing sequences of

positive integers n1, n2, . . . and m1,m2, . . . such that snk
mk

C
−−−−→
k→∞

s.

The pair (S, C) is called L∗-space (S∗-space respectively).

For a subset A ⊂ S of a L∗-space we define the C-closure A
C
⊂ S by the convention s ∈ A

C
if

and only if there is a sequence {sn} included in A C-converging to s.

Theorem A.5. The C-closure of an L∗-sequential convergence C on a L∗-space S fulfills the
first three of the Kuratowski closure axioms ((K1)–(K3)). (K4) holds in addition if C is a S∗-
sequential convergence. In an S∗-space S with convergence C the topology τ generated by the

C-closure is T1. We have that τ - limn→∞ sn = s if and only if sn
C

−−−−→
n→∞

s, that is, convergence

a posteriori is equivalent to the convergence a priori.
A topology coming from an L∗-convergence in the above sense is a sequential topology in the

sense of Definition A.2. A topology coming from an S∗-convergence in the above sense is a
Fréchet-Urysohn-topology in the sense of Definition A.2. Conversely, the usual convergence of
sequences in a (topological) sequential space is an L∗-convergence and the usual convergence of
sequences in a (topological) Fréchet-Urysohn space is an S∗-convergence.

Proof. Cf. Engelking [17, Problems 1.7.18–1.7.20] and the references therein for the proof. �

Alternatively, if we impose the convention that a set A ⊂ S is closed if and only if it contains all
convergent sequences together with all their limits, this defines a T1-topology with the property
that convergence a priori is identical to convergence a posteriori even in the cases of an L∗-space.
If S is an S∗-space this topology coincides with the one coming from the closure defined above.

A.1. A lemma for diagonal sequences.
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Lemma A.6. Let {an,m}n,m∈N ⊂ R ∪ {+∞} ∪ {−∞} be a doubly indexed sequence of extended
real numbers. Then there exists a map n 7→ m(n) with m(n) ↑ +∞ as n → +∞ such that

(A.1) lim inf
n

an,m(n) ≥ lim inf
m

[

lim inf
n

an,m

]

,

or, equivalently

(A.2) lim sup
n

an,m(n) ≤ lim sup
m

[

lim sup
n

an,m

]

.

Proof. See Attouch and Wets [7, Appendix] or Attouch [6, Lemma 1.15 et seq.]. �

A.2. Remaining proofs from Section 3.

Proof of Proposition 3.6. Clearly, by Lemma 3.5, for uk, u ∈ H, k ∈ N, we have that uk → u
strongly if and only if π(uk) → π(u) in the L2-varying sense and uk → u in L2(F). Let us check
(L1)–(L4) from Definition A.4.

(L1): Obvious.
(L2): This follows from the fact that F∗ (by Proposition 2.4) and L2(F) (being a metric space)

have property (L2).
(L3): Suppose that uk 6→ u strongly. Then π(uk) 6→ π(u) in the L2-varying sense or uk 6→ u

in L2(F). Suppose that π(uk) 6→ π(u) in the L2-varying sense. Then there exists
f ∈ L2(F) such that

αk := ‖E[f |π(uk)]‖2 6→ ‖E[f |π(u)]‖2 =: α.

Hence, there exists a non-relabeled subsequence of {αk}, such that no subsequence of
it converges to α. Also, no subsequence of {π(uk)} converges to π(u). In the second
case, there exists a non-relabeled subsequence of {uk} that admits no subsequence which
converges to u in L2(F). Assume that π(uk) → π(u). Then by Lemma 3.5, uk → u
cannot be true (for any further subsequence). However, if π(uk) 6→ π(u) we are in the
first case again.

(L4): Let uk
m, uk, u ∈ H, k,m ∈ N and suppose that uk → u strongly as k → ∞, and that for

each k ∈ N, let uk
m → uk strongly as m → ∞. By an application of Lemma A.6 from

the appendix, we get that there exists an increasing sequence {km} of natural numbers
such that

lim sup
m

(
‖ukm

m − u‖2 + dκ(π(u
km
m ), π(u))

)

≤ lim sup
k

lim sup
m

(
‖uk

m − u‖2 + dκ(π(u
k
m), π(u))

)

≤ lim sup
k

lim sup
m

‖uk
m − uk‖2 + lim sup

k
‖uk − u‖2

+ lim sup
k

lim sup
m

dκ(π(u
k
m), π(uk)) + lim sup

k
dκ(π(uk), π(u))

=0,

where dκ is defined as in Proposition 2.4. We get that ukm
m → u strongly by Lemma 3.5.

�

See also Tölle [38, Subchapter 5.14] for a proof in a related setup.

Proof of Proposition 3.12. Clearly, by Lemma 3.5, for uk ∈ H, k ∈ N, u ∈ H, we have that
uk ⇀ u weakly if and only if π(uk) → π(u) in the L2-varying sense and (W1) and (W2) from
Definition 3.9 hold. Let us check (L1)–(L3) from Definition A.4.

(L1): See Remark 3.10.
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(L2): Follows easily from the fact that strong convergence satisfies property (L2), see proof of
Proposition 3.6.

(L3): Suppose that uk, u ∈ H, k ∈ N such that uk 6⇀ u weakly. Then π(uk) 6→ π(u) in the
L2-varying sense or (W1) or (W2) does not hold. Suppose that π(uk) 6→ π(u) in the
L2-varying sense. Then we find a non-relabeled subsequence of {uk} that admits no
subsequence which converges weakly to u, see proof of Proposition 3.6. Assume that
π(uk) → π(u). Then (W1) or (W2) does not hold. Let us suppose that (W1) does not
hold for {uk}. Then there exists a non-relabeled subsequence such that limk ‖uk‖2 =
+∞, so that no subsequence of which satisfies (W1) and thus cannot converge weakly.
Finally, after extracting a common subsequence for the above cases, if necessary, we
assume that (W2) is violated. Then there exist vk, v ∈ H, k ∈ N, with π(vk) = π(uk)
for every k ∈ N and π(v) = π(u) such that vk → v strongly and such that

lim sup
k

|〈uk, vk〉 − 〈u, v〉| > 0.

Hence there exists a non-relabeled subsequence, such that

lim sup
k

|〈uk, vk〉 − 〈u, v〉| = lim
k

|〈uk, vk〉 − 〈u, v〉| ∈ (0,+∞],

such that no subsequence of it converges.

�

See also Tölle [38, Subchapter 5.6] for a proof in a related setup.

Appendix B. Proof of Claim 2 from Example 2.2

In the following we give the postponed proof of the second claim of Example 2.2. We also
refer to Piccinini [33, Section 3] for a collection of similar examples.

Proof. Let g0(ω) := 2ω, ω ∈ [0, 1]. Then, clearly, E[g0|B0] = E[g0]1Ω = 2
(∫ 1

0
ω dω

)

· 1Ω = 1Ω.

We have that,

E[g0|Bn] =
E[g01I(n) ]1I(n)

P(I(n))
+

E[g01(I(n))c ]1(I(n))c

(1− P(I(n)))
=: Gn +Hn.

Firstly, denoting m(n) := ⌊log2(n)⌋, n ∈ N,

Gn =
2
∫

I(n) ω dω

2−m(n)
1I(n) =

2(2m(n) − n)

2−m(n)
1I(n) ,

secondly,

Hn =
1− 2

∫

I(n) ω dω

1− 2−m(n)
1(I(n))c =

1− 2(2m(n) − n)

1− 2−m(n)
1(I(n))c .

Altogether,

Gn +Hn − 1Ω

=
2(2m(n) − n)− 2−m(n)

2−m(n)
1I(n) +

1− 2(2m(n) − n)− (1− 2−m(n))

1− 2−m(n)
1(I(n))c

=
2m(n)+1 − 2n− 2−m(n)

2−m(n)
1I(n) +

2m(n)+1 − 2n+ 2−m(n)

1− 2−m(n)
1(I(n))c .
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Consider the subsequence nk := 2⌊log2 k⌋. Then, m(nk) = m(k) and

|Gnk
+Hnk

− 1Ω| =
∣
∣
∣
2m(k)+1 − 2m(k)+1 − 2−m(k)

2−m(k)
1I(nk)

+
2m(k)+1 − 2m(k)+1 + 2−m(k)

1− 2−m(k)
1(I(nk))c

∣
∣
∣,

and thus

lim
k

|Gnk
+Hnk

− 1Ω| ≤ lim
k

1I(nk) + lim
k

∣
∣
∣
∣

2−m(k)

1− 2−m(k)

∣
∣
∣
∣
= lim

k
1I(0,m(k)) = 0, P-a.s.

Now, consider the subsequence nk := 2⌊log2 k⌋ + 1. Then, m(k) ≤ m(nk) ≤ m(k) + 1, and

Gnk
+Hnk

− 1Ω

=
2m(nk)+1 − 2m(k)+1 − 2− 2−m(nk)

2−m(nk)
1I(nk)

+
2m(nk)+1 − 2m(k)+1 − 2 + 2−m(nk)

1− 2−m(nk)
1(I(nk))c

=(22m(nk)+1 − 22m(k)+1 − 21+m(nk) − 1)1I(nk)

+

(
2m(nk)+1 − 2m(k)+1 − 1

1− 2−m(nk)
− 1

)

1(I(nk))c ,

and thus,
lim inf

k
(Gnk

+Hnk
)

≤ lim sup
k

(22m(nk)+1 − 22m(k)+1)1I(nk)

+ lim sup
k

(
2m(nk)+1 − 2m(nk)+1 − 1

1− 2−m(nk)

)

1(I(nk))c

≤− lim sup
k

1(I(nk))c

≤0,

and hence lim infk(Gnk
+Hnk

) 6= 1Ω and thus E[g0|Bn] 6→ E[g0|B0] P-a.s. �
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