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Abstract

In this paper, we suggest and analyze a new class of specification tests for random
coefficient models. These tests allow to assess the validity of central structural features
of the model, in particular linearity in coefficients, generalizations of this notion like a
known nonlinear functional relationship, or degeneracy of the distribution of a random
coefficient, i.e., whether a coefficient is fixed or random, including whether an associated
variable can be omitted altogether. Our tests are nonparametric in nature, and use sieve
estimators of the characteristic function. We provide formal power analysis against global
as well as against local alternatives. Moreover, we perform a Monte Carlo simulation
study, and apply the tests to analyze the degree of nonlinearity in a heterogeneous random
coefficients demand model. While we find some evidence against the popular QUAIDS
specification with random coefficients, it is not strong enough to reject the specification

at the conventional significance level.

Keywords: Nonparametric, specification, testing, random coefficients, unobserved hetero-

geneity, sieve estimation, characteristic function, consumer demand.

1 Introduction

Heterogeneity of individual agents is now widely believed to be an important - if not the

most important - source of unobserved variation in a typical microeconometric application.
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Increasingly, the focus of econometrics shifts towards explicitly modeling this central feature
of the model through random parameters, as opposed to searching for fixed parameters that
summarize only, say, the mean effect. However, as always when additional features are being
introduced, this step increases the risk of model misspecification and therefore introducing
bias. This suggests to use all the information available in the data to assess the validity of the
chosen specification through a test before performing the main analysis. A second important
feature of a specification test is that we may be able to find a restricted model that is easier
to implement than the unrestricted one. This feature is particularly important in models of
complex heterogeneity!, which are generically only weakly identified and therefore estimable
only under great difficulties.

This paper proposes a family of nonparametric specification tests in models with complex
heterogeneity. We focus on the important class of random coefficient models, i.e., models in
which there is a finite (d, dimensional) vector of continuously distributed and heterogeneous
parameters B € R%, and a known structural function g which relates these coefficients as well
as a d, dimensional vector of observable explanatory variables X to a continuous dependent

variable Y, i.e.,
Y =g9(X, B). (1.1)

Throughout this paper, we assume that X is independent of B (however, as we discuss
below, this does not preclude extensions where some variables in the system are endogenous).
The leading example in this class of models is the linear random coefficient model, where
g9(X, B) = X'B, but we also propose specification tests in models where ¢ is nonlinear. Indeed,
in extensions we also consider the case where Y is binary, and/or where Y is a vector.

The simple linear model with independent random coefficients is well suited to illustrate our
contribution and to explain the most important features of such a nonparametric specification
test. Despite the fact that in this model there is a one-to-one mapping from the conditional
probability density function of the observable variables fy|x to the density of random coefficients
fB such that the true density of random coefficients is associated with exactly one density of
observables (see, e.g., Beran et al. [1996] and Hoderlein et al. [2010]), the model imposes
structure that can be used to assess the validity of the specification. For instance, in the very
same model, the conditional expectation is linear, i.e., E[Y|X]| = by + b1 X1 + ... + bp X}, where
b; = E[B,]. This means that a standard linear model specification test for quadratic terms in
X, or, somewhat more elaborate, nonparametric specification tests involving a nonparametric
regression as alternative could be used to test the specification. Similarly, in this model the

conditional skedastic function is at most quadratic in X, so any evidence of higher order terms

'We refer to models with several unobservables, e.g., random coefficients models, nonseparable models,
treatment effects etc, as (models with) “complex heterogeneity”.



can again be taken as rejection of this linear random coefficients specification. However, both
of these tests do not use the entire distribution of the data, and hence do not allow us to discern
between the truth and certain alternatives.

In contrast, our test will be based on the characteristic function of the data, i.e., we use
the entire distribution of the data to assess the validity of the specification. In the example
of the linear model, we compare the distance between a series least squares estimator of the
unrestricted characteristic function Elexp(itY')| X], and an estimator of the restricted one, which
is Elexp(it(X'B))|X] = [ exp(it(X'D)) f5(b)db, where the probability density function f5 of the
random coefficients B is replaced by a sieve minimum distance estimator under the hypothesis
of linearity. More specifically, using the notation (X, t) = Elexp(itY’) — exp(it(X'B))| X], our
test is based on the observation that under the null hypothesis of linearity, (X, ¢) = 0 holds,

or equivalently,
/E (X, 6)] w(t)dt = 0,

for any strictly positive integrable weighting function w, which is not required to be a pdf and
whose choice is discussed in the simulation section.? Our test statistic is then given by the

sample counterpart

S,=0Y [ BP0
j=1

where &,, denotes an estimator of € as described above. We reject the null hypothesis of linearity
if the statistic .S,, becomes too large.

This test uses evidently the entire distribution of the data to assess the validity of the spec-
ification. It therefore implicitly uses all available comparisons between the restricted and the
unrestricted model, not just the ones between, say a linear conditional mean and a nonpara-
metric conditional mean. Moreover, it does not even require that these conditional means (or
higher order moments) exist. To see that our test uses the information contained in the condi-
tional moments, consider again the linear random coefficients model. Using a series expansion

of the exponential function, (X, t) = 0 is equivalent to

Z(it)l {EY'|X] - E[(X'B)|X]} /(1) =0,

=0

provided all moments exist. This equation holds true, if and only if, for every coefficient [ > 1 :

E[Y'|X] = E[(X'B)'|X],

2This type of weighting is standard in the literature, see the weighted L? test statistic by Su and White
[2007], or the empirical likelihood test proposed by Chen et al. [2013]. For a complex number z € C the absolute
value is given by |z| = V/22.



i.e., there is equality of all of these conditional moments. This implies, in particular, the first
and second conditional moment equation E[Y|X] = X’E[B] and E[Y? X| = X'E[BB']X. As
such, our test exploits potential discrepancies in any of the conditional moments, and works
even if some or all of them do not exist.

Our test is consistent against a misspecification of model (1.1) in the sense that, under the
alternative, there exists no vector of random coefficients B satisfying the model equation (1.1)
for a known function g. Indeed, such a misspecification leads to a deviation of the unrestricted
from the restricted conditional characteristic function. Moreover, our test is also consistent
against certain specific other alternatives, e.g., if the null is the linear random coefficient model
and the alternative is a higher order polynomial with random parameters.

However, we can also use the same testing principle to analyze whether or not a parameter is
nonrandom, which usually allows for a y/n consistent estimator for this parameter, and whether
it has in addition mean zero which implies that we may omit the respective variable altogether.
This is important, because from a nonparametric identification perspective random coefficient
models are weakly identified (i.e., stem from the resolution of an ill posed inverse problem), a
feature that substantially complicates nonparametric estimation?.

Another key insight in this paper is that testing is possible even if the density of random
coefficients is not point identified under the null hypothesis. This is important, because many
structural models are not linear in an index. As such, it is either clear that they are not
point identified in general and at best set identified (see Hoderlein et al. [2014], for such an
example), or identification is unknown. To give an example of such a model that we will pursue
in the application, consider a single cross section of the workhorse QUAIDS model of consumer
demand (Banks et al. [1997]). Note that in a cross section prices often do not vary (or only
very minimally, see, e.g., the commonly used British FES data), and the demand model for a

good Y, in our example food at home, is therefore defined through:
Y = By + B1.X + B, X?,

where B; denotes parameters, and X log total expenditure. For reasons outlined in Masten
[2015], the joint density of random parameters By, By, By is not point identified in general. Our
strategy is now to solve a functional minimization problem that minimizes a similar distance as
outlined above between restricted and unrestricted model, and allows us to obtain one element
in this set as minimizer. If the distance between the restricted model and the unrestricted model
is larger than zero, we conclude that we can reject the null that the model is, in our example, a

heterogeneous QUAIDS. However, if the distance is not significantly different from zero, there

3In a nonparametric sense, there is a stronger curse of dimensionality associated with random coefficient
models than with nonparametric density estimation problems (see, e.g., Hoderlein et al. [2010]).



still may be other non-QUAIDS models which achieve zero distance, and which we therefore
cannot distinguish from the heterogeneous QUAIDS model. As such, in the partially identified
case we do not have power against all possible alternatives, and our test becomes conservative.
In contrast, our test has power against certain alternatives even if our model is not identified
under the null hypothesis. As an example, in the application we consider testing the random
coefficients QUAIDS model against higher order polynomials; in this case, €(X,t) = 0 for all
t implies that, e.g., the cubic model Y = By + X By + X2?B, + X3B; with random coefficients
(By, By, By, Bs) is misspecified®.

Finally, we may extend the approach outlined in this paper to binary or discrete depen-
dent variables, provided we have a special regressor Z, as in Lewbel [2000], and to systems of
equations, see section 3 as well as an additional online appendix, see Breunig and Hoderlein
2017].

Related Literature. As already mentioned, this paper draws upon several literatures. The
first is nonparametric random coefficients models, a recently quite active line of work, including
work on the linear model (Beran and Hall [1992], Beran et al. [1996], and Hoderlein et al. [2010]),
the binary choice model (Ichimura and Thompson [1998] and Gautier and Kitamura [2013]),
and the treatment effects model (Gautier and Hoderlein [2015]). Related is also the wider
class of models analyzed in Fox and Gandhi [2009] and Lewbel and Pendakur [2013], who both
analyze nonlinear random coefficient models, Masten [2015] and Matzkin [2012], who both
discuss identification of random coefficients in a simultaneous equation model, Hoderlein et al.
[2014] who analyze a triangular random coefficients model, and Dunker et al. [2013] and Fox
and Lazzati [2012] who analyze games.

As far as we know, the general type of specification tests we propose in this paper is new
to the literature. In linear semiparametric random coefficient models, Beran [1993] proposes a
minimum distance estimator for the unknown distributional parameter of the random coefficient
distribution. Within this framework of a parametric joint random coefficients’ distribution,
Beran also proposes goodness of fit testing procedures. Also, in a parametric setup where the
unknown random coefficient distribution follows a parametric model, Swamy [1970] establishes
a test for equivalence of random coefficient across individuals, i.e., a test for degeneracy of
the random coefficient vector. We emphasize that with our testing methodology, despite less
restrictive distributional assumptions, we are able to test degeneracy of a subvector of B while
others are kept as random. Another test in linear parametric random coefficient models was

proposed by Andrews [2001], namely a test for degeneracy of some random coefficients. In

4In addition, our method also applies to other point identified random coefficient models such as models
that are linear in parameters, but where X is replaced by a element-wise transformation of the covariates (i.e.,
X is replaced by h;(X;) with unknown h;. See Gautier and Hoderlein [2015] for the formal argument that
establishes identification).



contrast, our nonparametric testing procedure is based on detecting differences in conditional
characteristic function representation and, as we illustrate below, we do not obtain boundary
problems as in Andrews [2001].

While our test is the first that uses characteristic functions to test hypotheses about random
coefficients, in other econometric setups tests based on comparing characteristic functions have
been proposed. For instance, Suand White [2007] considered a test of conditional independence,
Chen and Hong [2010] proposed a goodness-of-fit test for multifactor continuous-time Markov
models, and Chen et al. [2013] considered an empirical likelihood test for correct specification
for Markov processes.

In this paper, we use sieve estimators for the unknown distributional elements. In the
econometrics literature, sieve methodology was recently used to construct Wald statistics (see
Chen and Pouzo [2015] and Chen and Pouzo [2012] for sieve minimum distance estimation)
or nonparametric specification tests (see Breunig [2015b]), and, in nonparametric instrumental
regression, tests based on series estimators have been proposed by Horowitz [2012] and Breunig
[2015a]. Moreover, in the nonparametric IV model, tests for parametric specification have been
proposed by Horowitz [2006] and Horowitz and Lee [2009], while Blundell and Horowitz [2007]
proposes a test of exogeneity. Santos [2012] develops hypothesis tests which are robust to a
failure of identification. More generally, there is a large literature on model specification tests
based on nonparametric regression estimators in L? distance starting with Hardle and Mammen
[1993]. Specification tests in nonseparable models were proposed by Hoderlein et al. [2011]
and Lewbel et al. [2015]. None of these tests is applicable to specification testing in random
coefficient models. Moreover, in contrast to nonparametric specification tests in instrumental
variable models in Horowitz [2012] and Breunig [2015a] who assume bounded support, we
explicitly allow for regressors with large support which is required to ensure identification of
random coefficient models in general. This results in a very different setup as densities have
to be allowed to be close to zero, which leads to slower rates of convergence and rules out the
approach of density weighting considered in Horowitz [2012].

Finally, our motivation is partly driven by consumer demand, where heterogeneity plays an
important role. Other than the large body of work reviewed above we would like to mention
the recent work by Hausman and Newey [2013], Blundell et al. [2010], see Lewbel [1999] for a
review of earlier work.

Overview of Paper. In the second section, we introduce our test formally, and discuss its
large sample properties in the baseline scenario. We distinguish between general specification
tests, and subcases where we can additively separate a part of the model which contains only
covariates and fixed coefficients from the remainder. In the third section, we focus on the exten-

sions discussed above. The finite sample behavior is investigated through a Monte Carlo study



in the fourth section. Finally, we apply all concepts to analyze the validity of a heterogeneous
QUAIDS (Banks et al. [1997]) model which is the leading parametric specification in consumer

demand.

2 The Test Statistic and its Asymptotic Properties

2.1 Examples of Testable Hypotheses

In the wider class of models encompassed by (1.1), we consider two different types of hypotheses.
First, we provide a general test for the hypothesis that the structural relation between the
covariates, the random coefficients, and the outcome variable coincides with a known function

g. We thus consider the hypothesis °
Hoq @ there exist some distributions of random parameters B such that Y = g(X, B).

The alternative hypothesis is P(Y # g(X, B) for all distributions of random parameters B) >
0. An important example is testing the hypothesis of linearity, i.e., whether with probability

one

Hy: Y = X'B,

in which case the distribution of B is point identified. Another example is a quadratic form of
the function g in each component of the vector of covariates X, i.e., we want to assess the null

hypothesis
Hquad Y = B(] -+ X/Bl -+ (X2>/B2,

for some B = (By, Bi, By), where the square of the vector X is understood element-wise.
Note that in the latter example the distribution of the random parameters B is only partially
identified. As already discussed above, this fact will generally result in a lack of power against
certain alternatives.

The second type of hypotheses our test allows to consider is whether a subvector of B, say,
Bs, is deterministic (or, equivalently, has a degenerate distribution). More specifically, we want

to consider the following hypothesis
Hgeg : By = by for some distributions of random parameters satisfying (1.1).

The alternative is P(32 # by for all distributions of random parameters B satisfying (1.1)) > 0.

5Equalities involving random variables are understood as equalities with probability one, even if we do not
say so explicitly.



While the hypothesis Hqey could be considered in more general models, motivated by the linear
(or polynomial) model we will confine ourselves to functions g that are additively separable in
the sense that

Haga 0 Y = g1(X, Bo) + g2(X, By), (2.1)

where ¢g; and g, denote two known functions, and we use the notation B_s = (By, B})". The
leading example for this type of hypothesis is of course when ¢, is a linear function of a subvector

X of covariates X, in which case we obtain a partially linear structure, i.e.,
Hpart-lin Y = BO + XiBl + g2(X7 BZ): (22>

where gs is a known function. This covers the following examples of hypotheses already outlined
in the introduction: First, in a linear model, i.e., Y = By + X|B; + X} B, it allows to test

whether the coefficient on X is deterministic, i.e., we may test the null
Hyegiin © Y = By + X{B1 + Xjbs,

against the alternative that By is random. Obviously, in this case by is identified by standard
linear mean regression identification conditions. A second example arises if, in the quadratic

model, we want to test a specification with deterministic second order terms, i.e.
Hdeg-quad Y = BO + X{Bl + (X12),627

against the alternative that By is random. Note that in the latter two hypotheses, identification
of by follows as in parametric mean regression and, in equation (2.2), point identification under
the null holds for instance if go(X, be) = h(X3)'by for some vector valued function h such that
the associated rank condition is satisfied. In the Monte Carlo study and the application, we will
only consider the case where by is point identified, which we consider to be the leading case.
However, we would like to point out that the test applies also more generally to situations
where by does not need to be point identified, as in the most general case defined by hypothesis

H.q4, albeit with a loss of power against some alternatives.

2.2 The Test Statistic

Our test statistic is based on the L? distance between an unrestricted conditional characteristic

function and a restricted one. We show below that each null hypothesis is then equivalent to

e(X,t) =0 for all ¢, (2.3)



where € : R%*! — C is a complex valued, measurable function. Our testing procedure is based

on the L? distance of € to zero. Equation (2.3) is equivalent to

/E[|5(X, D w(t)dt = 0,

for some strictly positive weighting function w with [ w(t)dt < co. Our test statistic is given

by the sample counterpart to this expression, which is

S, = nlz/ 2., ) t)dr,
j=1

where &, is a consistent estimator of . Below, we show that the statistic .S, is (after standard-
ization) asymptotically standard normally distributed. As the test is one sided, we reject the
null hypothesis at level & when the standardized version of S, is larger than the (1 —«)—quantile
of N(0,1).

We consider a series estimator for the conditional characteristic function of Y given X, i.e.,
o(x,t) = Elexp(itY)|X = z]. To do so, let us introduce a vector of basis functions denoted by
Pm(-) = (p1(:), ..., pm(+))’ for some integer m > 1. Further, let X,,, = (pm(X1),. .. ,pm(Xn))/
and Y,(t) = (exp(itY), ..., exp(itY,)). We replace ¢ by the series least squares estimator

Bu(,t) = D (1) (X, Xon, )X, Y1),

where the integer m,, increases with sample size n. We compare this unrestricted conditional
expectation estimator to a restricted one which depends on the hypothesis under consideration.

In the following examples, we provide explicit forms for the function . The analysis is
based on the assumption of independence of covariates X and random coefficients B. See also

the discussion after Assumption 1 below.

Example 1 (Testing functional form restrictions). The null hypothesis Hyoq i equivalent to

the following equation involving conditional characteristic functions

Elexp(itY)]X] = / exp(itg(X, b)) f (b)db.

for each t € R, a known function g, and some random parameters B, with probability density
function (p.d.f.) fp. Hence, equation (2.3) holds true with

£(X,t) = Elexp(itY)|X] — / exp(itg(X, b)) f(b)db. (2.4)

As already mentioned, if the function g is nonlinear the p.d.f. of random coefficients B is not



necessarily point identified. On the other side, if g is the inner product of its entries, then (2.3)
holds true with
e(X,t) = Elexp(itY)|X] — /exp(itX’b)fB(b)db,

and in this case the distribution of B is point identified (see, e.g., Hoderlein et al. [2010]).

While our test, based on the function ¢, is in general consistent against a failure of the null
hypothesis H,,,q, it is also consistent against certain alternative models such as higher order
polynomials which are not point identified. To illustrate this, consider testing linearity of the
random coefficient QUAIDS model which is given by Y = EO + B X + B, X2 for random coef-
ficients EO, él, and B (also independent of X ). In this case, the conditional first and second
moment equation implied by equation (2.3) yield E[Eg] =0 and Var(§2) =0, respectively. We
thus conclude that By = 0 with probability one.

Let us introduce the integral transform (F,f)(X,t) = [exp(itg(X,b))f(b)db, which coin-
cides with the Fourier transform evaluated at tX, if g is linear.® If g is nonlinear, then the
random coefficient’s p.d.f. fp does not need to be identified through ¢ = F,f. We estimate the

function € by
gn(Xjat) = @n(XJVt) - (fngn)(Xj’t)7

where the estimator fg, is a sieve minimum distance estimator given by

Fao € angmin { 3 [1800X,:0) = (00650 Plt)or (25)
€By, ]
and B,, = {gb() = ;‘Zl ﬁlql(~)} is a linear sieve space of dimension k, < oo with basis functions

{@}i>1. Here, k, and m,, increase with sample size n. As we see below, we require that m,
increases faster than k,. Next, using the notation Fy,(t) = ((Fyqr,)(X1,1), . .., (Fyi,) (Xn, t))/,

the minimum norm estimator of fg given in (2.5) coincides with an(-) = qki(-)’gn where

B, = ( / Fn(—t)'Fn(t)w(t)dt)* / Fo(—t)®,(t)(t)dt

and ®,(t) = (@n(Xht), o 795”()(”7@)’.7 The exponent “—7 denotes the Moore—Penrose gen-
eralized inverse. As a byproduct, we thus extend the minimum distance estimation principle of

Beran and Millar [1994] to nonlinear random coefficient models and the sieve methodology.

6The Fourier transform is given by (F¢)(t) = [exp(itz)¢(z)dz for a function ¢ € L'(R?) while its inverse

is (F1¢)(z) = (2m)~¢ [ exp(—itz)p(t)dt. We also make use of (F,¢)(t) = (F,¢)(—t) where ¢ denotes the
complex conjugate of a function ¢.
"The integral transform F of a vector of functions is always understood element-wise, i.e., (Fyqr, )(Xj,t) =

((‘ngﬂ(xjvt)’ L) (}—gq’fn)(Xj’t))/'

10



Example 2 (Testing degeneracy under the random coefficients specification). In the case of
an additively separable structure H,qq (see equation (2.1)), the null hypothesis Hg., tmplies the

equality of conditional characteristic functions, i.e.,
Elexp(itY)|X] = /exp (itg1(X,b-2)) fB_y(b—2)db_s exp (itg(X, bs)), (2.6)

for each t € R. Therefore, equation (2.3) holds with

e(X,t) = Elexp(itY)| X] — /exp (itg1(X,b_2)) fp_,(b_2)db_s exp (itga(X, b2)).

Given a partially linear structure Hpgriin (see equation (2.2)), the null hypothesis H g, implies

the equality of conditional characteristic functions, i.e., equation (2.3) holds with

e(X,t) = Elexp(itY)|X]| — /exp(itX{b_g)fB_Q(b_g)db_g exp (itga(X, by)),

where the distribution of the random coefficients is identified. Our test, based on the function
g, has power against any failure of hypothesis H gy if the distribution of the random coefficients
under the maintained hypothesis H,qq is identified, i.e., if g1 and go are linear in Xy and X,
respectively, or element-wise transformations of each component of these vectors (see Gautier
and Hoderlein [2015]).

To illustrate that our test of degeneracy has power in the random coefficient QUAIDS model
Y = éo + ElX + EQXQ, note that under the null the conditional first and second moment
regressions implied by equation (2.3) already yield that E[Bs] = by and E[B2] = b2, respectively.
From this observation we are already in the position to conclude that §2 15 degenerate with
By = by.

We estimate the function € by
En(X,t) = Bul X 1) = (Fou o) (X5, ) exp (itga(X;, 02n)),

where the estimators fp ,, and by, are a sieve minimum distance estimators of the p.d.f. fp_,

and the parameter by, respectively, given by

(F_m: ban) € (f,SE%Till&{; / [Bu(X5,8) = (Fou )G, D) exp (itga (X,,0)) [ (t)dt } (2.7)

and By, = {¢(-) = S Biq(-)} is a linear sieve space of dimension k, < oo with basis
functions {q;};>1 of B_y and By is a compact parameter space. See also Ai and Chen [2003]

for sieve minimum distance estimation for finite dimensional parameters and nonparametric

11



functions. As in the previous example, k, and m, increase with sample size n, but we require

that m,, increases faster than k,.

Example 3 (Testing degeneracy under additive separability alone). We also present an alter-
native test of degeneracy under H,qq (see equation (2.1)) when gy depends on covariates X
but not on a subvector X of the covariates X = (X1, X})'. In this case, we rely on additive

separability alone and base our test on
Elexp(itY)|X] = E|exp (it(Y — g2(X, b2))| X1] exp (itga(X, b2)). (2.8)

Of course, such a test is only reasonable if the sigma algebra generated by X is not contained
in the one generated by Xi. This rules out, for instance, testing degeneracy in the random
coefficient QUAIDS model where X is scalar and go is a quadratic function of X.

This test would not require any structure on the first term (despite not depending on X, ),
i.e., in equation (2.1) we do neither have to know g1, nor would have to assume that B_y is
finite. In contrast to the setting in Example 2, however, we require by to be point identified, which
in the absence of any structure on g may be difficult to establish. There are examples where
this structure could be useful. Consider for instance a model which has a complex nonlinear
function in X, but is linear in X, i.e., Y = g1(Xy, B_3) + X5Bs, with an unknown function
g1- Suppose a researcher wants to test the null that the random coefficients By has a degenerate
distribution. In this case, by is identified by a partially linear mean regression model, since
ElY|X] = w(Xy) + Xiba, where u(Xy1) = E[g1(X1, B_2)|X1]. Evidently, this test requires less
structure on the way Xy enters, but in return suffers from lower power, e.g., if X1 indeed enters
through a random coefficients specification.

Let /b\gn denote a consistent estimator of the point identified parameter bs. For instance,
under the partially linear structure Hpore 1 (See equation (2.2)), we have the moment restriction
ElY|X] = by + X{b1 + g2(X, b2) and thus, byn would coincide with the nonlinear least squares
estimator of by. We denote py,(-) = (p1(), ..., Pk, (1)) and Xi, = (pr, (X11), . .. ,pkl(Xln))/

which s a n X k, matriz. Consequently, we estimate the function € by
gn(Xj, t) = @N(Xj, t) — pkl(le)'(X'lnXln)le’ann exXp (’itgg<Xj,/[)\2n>),

where U,, = (exp(it(Yl — QQ(Xl,?)\Qn))), o exp(it(Y, — QQ(Xn,/b\Qn)))>/.
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2.3 The Asymptotic Distribution of the Statistic under the Null
Hypothesis

As a consequence of the previous considerations, we distinguish between two main hypotheses,
i.e., functional form restrictions and degeneracy of some random coefficients. Both types of
tests require certain common assumptions, and we start out this section with a subsection
where we discuss the assumptions we require in both cases. Thereafter, we analyze each of the
two types of tests in a separate subsection, and provide additional assumptions to obtain the
test’s asymptotic distribution under each null hypothesis. While it might be possible to treat
both types of hypotheses under an abstract general testing framework, because of transparency

of exposition (at least for applied researchers), we decided to treat both cases separately.

2.3.1 General Assumptions for Inference
Assumption 1. The random vector X is independent of B.

Assumption 1 is crucial for the construction of our test statistic. Full independence is
commonly assumed in the random coefficients literature (see, for instance, Beran [1993], Beran
et al. [1996], Hoderlein et al. [2010], or any of the random coefficient references mentioned in the
introduction). It is worth noting that this assumption can be relaxed by assuming independence
of X and B conditional on additional variables that are available to the econometrician, allowing
for instance for a control function solution to endogeneity as in Hoderlein and Sherman [2015],
or simply controlling for observables in the spirit of the unconfoundedness assumption in the

treatment effects literature. Further, X denotes the support of X.

Assumption 2. (i) We observe a sample ((Y1, X1), ..., (Yn, Xy)) of independent and identically
distributed (i.i.d.) copies of (Y,X). (ii) There exists a strictly positive and nonincreasing
sequence (A )n>1 such that, uniformly in n, the smallest eigenvalue of A\ Epy, (X)pm, (X)'] is
bounded away from zero. (iii) There exists a constant C' > 1 and a sequence of positive integers

(Mn)n>1 satisfying sup,ex |Pm, (2)[1* < Cmy, with m2logn = o(nA,).

Assumption 2 (i7) — (i2) restricts the magnitude of the approximating functions {p;};>1
and imposes nonsingularity of their second moment matrix. Assumption 2 (i#i) holds, for
instance, for polynomial splines, Fourier series, wavelet bases, and Hermite functions (which are
orthonormalized Hermite polynomials).® Moreover, this assumption ensures that the smallest
eigenvalue of E[p,, (X)pm,(X)'] is not too small relative to the dimension m,,. In Assumption
2 (4i), we assume that the eigenvalues of the matrix E[py,, (X )pm,(X)’] may tend to zero at
the rate A, which was recently also assumed by Chen and Christensen [2015]. On the other

$When p; are Hermite functions, it holds due to Cramer’s inequality that sup,¢ y [P, () [ < 1.0867 Y/ %m,,.
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hand, the sequence (A,,),>1 is bounded away from zero if {p;};> forms an orthonormal basis on
the compact support of X and the p.d.f. of X is bounded away from zero (cf. Proposition 2.1
of Belloni et al. [2015]). The next result provides sufficient condition for Assumption 2 (i7) to

hold even if the sequence of eigenvalues (\,),>1 tends to zero.

Proposition 1. Assume that {p;};>1 forms an orthonormal basis on X with respect to a measure
v. Let (\,)n>1 be a sequence that tends to zero. Suppose that, for some constant 0 < ¢ < 1, for

alln > 1 and any vector a,, € R™ the inequality
[ @ @7 1{5@) < Mboldo) < ¢ [ (@, (a)w(d) (29

holds, where f = dFx/dv. Then, Assumption 2 (ii) is satisfied.

Condition (2.9) is violated, for instance, if dF'y /dv vanishes on some subset A of the support
of v with v(A) > 0. Estimation of conditional expectations with respect to X is more difficult
when the marginal p.d.f. fx is close to zero on the support X. In this case, the rate of
convergence will slow down relative to A, (see Lemma 2.4 in Chen and Christensen [2015] in
case of series estimation). As we see from inequality (2.9), A, plays the role of a truncation
parameter used in kernel estimation of conditional densities to ensure that the denominator is
bounded away from zero.

To derive our test’s asymptotic distribution, we standardize S,, by subtracting the mean
and dividing through a variance which we introduce in the following. Let V = (Y, X), and
denote by ¢ a complex valued function which is the difference of exp(itY’) and the restricted
conditional characteristic function, i.e., 6(V,t) = exp(itY') — (F,fp)(X,t) in case of Hy,oq, and
d(V,t) = exp(itY') — Elexp(it(Bo + X1B1))| X1] exp(itg2 (X, by)) in case of Hgeg. Moreover, note
that [ E[6(V,t)|X]w=(t)dt = 0 holds.

Definition 1. Denote by P, = E[pm, (X)pm,(X)'], and define

i, = [ B8V 0P, (XY P, (X)] (0t and

_ 2 1/2
e = ([ [ |2 BV 5000, () i, (012,77 m(mrasa)
- - F
Here, we use the notation ¢ for the complex conjugate of a function ¢, and || - ||z to

denote the Frobenius norm. Alternatively, we could normalize our test statistic using residuals
exp(itY)— Elexp(itY)| X] rather than §(V,¢). While this alternative procedure leads to accurate
normalization of our test statistic under the null hypothesis, it is not necessarily accurate under

alternative models.
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Assumption 3. There exists some constant C > 0 such that E[| [ §(V, t)w(t)dt[*| X] > C.

Assumption 3 ensures that the conditional variance of [ 6(V,t)w(t)dt is uniformly bounded
away from zero. Assumptions of this type are commonly required to obtain asymptotic nor-
mality of series estimators (see Assumption 4 of Newey [1997] or Theorem 4.2 of Belloni et al.

[2015]). As we show in the appendix, Assumption 3 implies ¢,,, > C'\/m,, see Lemma 5.1.

2.3.2 Testing functional form restrictions

We now present conditions that are sufficient to provide the test’s asymptotic distribution under

the null hypothesis Hyoa. To do so, let us introduce the norm ||¢[|- = ( [ E|¢(X, t)|2w(dt))1/2
and the linear sieve space @, = {¢ : ¢(-) = >;21 Bm()}. Moreover, || - || and | - ||,
respectively, denote the FEuclidean norm and the supremum norm. Let us introduce A, =
[ E[(Feqr, ) (X, —t)(Foar, ) (X, t)]ew(t)dt and its empirical analog A, =n7t [Fo(—t)F,(t)w(t)dt

(see also Example 1). In the following, we introduce a strictly positive, nonincreasing sequence
(T )n>1 such that 7,[| A, ||* = O(1).

Assumption 4. (i) For any p.d.f. fg satisfying p = F,fp there exists Iy, fp € B, such
that n||Fy(IIy, f — fB)||Z = o(/my). (ii) There exists Il ¢ € P, such that n||Il,,, ¢ —
ol = o(\/Tamy) and |1, — ¢l = O(1). (id) It holds knlogn = o(T,\/my). (iv) It
holds P(mnk(A ) = mnk;(zzl\n)) = 1+ o0(1). (v) There ezists a constant C > 0 such that
p (f]Rdb q(b) db) < C [ga, 9*(b)db for all square integrable functions ¢.

Assumption 4 () is a requirement on the sieve approximation error for all functions fp that
belong to the identified set Z, = {f . fis a p.d.f. with p = ]-"gf}. This condition ensures that
the bias for estimating any fp in the identified set Z, is asymptotically negligible. In the linear
case, Hermite functions are eigenfunctions of the Fourier transform F and hence, Assumption
4 (1) is equivalent to imposing a sufficiently small approximation error Iy, fg — fp. In the
following, we present primitive conditions when Assumption 4 (7) holds also for any nonlinear

function g and, in particular, is satisfied for, e.g., quadratic functions. We observe that

17 fo = )l < 15yl [ | f(8) = )]
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where we introduced the operator norm given by

1,12 = sup / E| / exp(itg(X, b)) b(b)db| (1)t

$ELI(RD), [ |6(b)|db=1

< sup / ( / |6(b)|db) e (t)dt

T geL (R, [ |p(b)]db=1

- [ =t

using that |exp(itg(X,b))| < 1. The sieve approximation error imposed in Assumption 4 () is
g plitg\A, pPp p p

thus less restrictive than assuming

Vit [ fa®) = fa0)]db = ol /i),

for any fp € Z,. For instance, if fp and its approximation II;, fp belong to a compact subset
of R% and ||y, f5 — [Bllec = O(kn s/ d”), which is satisfied for B-splines or trigonometric basis

2s/dp

functions, we obtain the rate restriction nk, = 0o(y/m,,), which imposes a lower bound on

the dimension parameters k, and m,. If in addition 7,;' = O(1), Assumptions 4 (i) and (i77)
are satisfied if m,, ~ n® and k, ~ n* where dy(1 — (/2)/(2s) < k < (/2.2 We thus require
¢ > 2d,/(2s+dp), so s has to increase with dimension dy,, which reflects a curse of dimensionality.
In this case, Assumption 4 (ii), which determines the sieve approximation error for the function
¢, automatically holds if || 11, ¢ — ¢|le = O(mn o/ %) and we may choose & to balance variance
and bias, i.e., K = d,/(2s + d,).!° For further discussion and examples of sieve bases, we refer
to Chen [2007].

Assumption 4 (zii) has the interpretation of an overidentification restriction imposed on
the finite dimensional approximations and requires that there are more moment restriction
(captured by m,,) than unknown parameters (captured by the dimension of the sieve space B,
given by k).

Assumption 4 (iv) ensures that the sequence of generalized inverse matrices is bounded and
imposes a rank condition. This condition is sufficient and necessary for convergence in proba-
bility of generalized inverses of random matrices with fixed dimension, for further discussions
and sufficient conditions see Andrews [1987] for the comparable case of generalized Wald tests.
Note that Assumption 4 (iv) is more involved than the corresponding assumption in Andrews
(1987) due to increasing dimensions of A,. In 4 (iii) we also restrict the dimension of A,

determined by k,, relative to the size of ||A_||.

9We use the notation a,, ~ b, for cb, < a,, < Cb,, given two constant ¢,C' > 0 and all n > 1.

10This choice of k,, corresponds indeed to the optimal smoothing parameter choice in nonparametric random
coefficient model if s = r + (d; — 1)/2 where 7 corresponds to the smoothness of f5 (see Hoderlein et al. [2010]
in case of kernel density estimation).
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Assumption 4 (v) is satisfied if {g; };>1 forms a Riesz basis in L*(R%) = {¢ : [p4, ¢*(s)ds < co}.

The following result establishes asymptotic normality of our standardized test statistic.

Theorem 2.1. Let Assumptions 14 hold with 6(V,t) = exp(itY) — (F, f5)(X,t). Then, under
H,,.q we obtain

(V26m,) " (1S = fim,) > N(0,1).

Remark 2.1 (Estimation of Critical Values). The asymptotic result of the previous theorem
depends on unknown population quantities. As we see in the following, the critical values can
be easily estimated. We define 0,(V,t) = exp(itY’) — (fngn)(X, t), and

ou(s,) = (50(Va, )3 Vi, D), . ,5n(Vn,s)5n(Vn,t)))/.

We replace pi,,, and s, , respectively, by the estimators

T, = / tr((xgxn)*“ X!, diag(o, (t,1)) X, (X4X,,) 2>w(t)dt

and

o, = ( / / H(X;Xn)*”?x; diag(an(s,t))Xn(X;Xn)1/2“iw(s)w(t)dsdt)l/2.

Proposition 2. Under the conditions of Theorem 2.1, we obtain

Cmn%i =1+ Op(l) and [y, = i, + Op(vmn)~

The asymptotic distribution of our standardized test statistic remains unchanged if we
replace fi,,, and ¢, by estimators introduced in the last remark. This is summarized in
following corollary, which follows immediately from Theorem 2.1, Proposition 2, and Lemma
5.1.

Corollary 2.1. Under the conditions of Theorem 2.1, we obtain
(V28,,) " (0 S = Jim,) 2 N(0,1).

An alternative way to obtain critical values is the bootstrap which, for testing nonlinear
functionals in nonparametric instrumental regression, was considered by Chen and Pouzo [2015].
In our situation, the critical values can be easily estimated and the finite sample properties of
our testing procedure are promising, thus we do not elaborate bootstrap procedures here. In
the following example, we illustrate our sieve minimum distance approach for estimating fp in

the case of linearity of g.
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Example 4 (Linear Case). Let g be linear and recall that in this case the integral transform F,
coincides with the Fourier transform F. For the sieve space B, we consider as basis functions

Hermite functions given by

\/(%7)\/% exp(m2/2)% exp(—x?).

These functions form an orthonormal basis of L*(R). Hermite functions are also eigenfunctions

q(z) =

of the Fourier transform with
(Fa) () = Vor (=) a().

Let us introduce the notation gi(-) = (=) "q(-) and X,(t) = (qr, (tX1), - .. 75@(?5)(11)/)/- Thus,
the estimator of fp given in (2.5) simplifies to an(-) = qki(-)/gn where

— argmin Z / 1Bul(X5, 1) — G (EX,) B (0) . (2.10)

BERKn

An explicit solution of (2.10) is given by

3 = ( / Xn(—t)'xn(t)w(t)dt)* / X, (—t) @ (t)w(t)dt

where ®,,(t) = (@n(Xl, 1), ..., on(Xy, t)),. We emphasize that under the previous assumptions,
the matriz [ X,,(—t)'X,(t)w(t)dt will be nonsingular with probability approaching one.

2.3.3 Testing degeneracy under the random coefficient specification for the model

For testing degeneracy, Theorem 2.1 is not directly applicable as the required sieve approxi-
mation error in Assumption 4 (i) is here not satisfied in general. In contrast, we will impose
an approximation condition on the function g(z,t,b) = exp(itgs(x,b)) where b belongs to the
parameter space Bs.

Let us introduce a (k, - [,,)-dimensional vector valued function x, given by x,(z,t) =
(Fo1Qr,)(,1) @ pr,(w,t), where ® denotes the Kronecker product and py, is a [,~dimensional
vector of complex valued basis functions used to approximate g(-, -,b). For instance, if go(x,b) =
¢(x)1(b) then approximation conditions can be easily verified due to g(x,t,0) = 3,5 pi(w, t)1(b)’
where p;(z,t) = (itqﬁ(x))l/l!. Let us introduce A, = [ Elxn(X, —t)xn(X,t)]w(t)dt and its
empirical analog A, = n~! I xn (X5, =) xa (X, 8)'w(t)dt. Recall that By, = {p(b) =
S B (b) for b € R%:2} where dy, denotes the dimension of by and let Go, = {¢(z,t) =

Zi’;l Bipi(z,t)}. In the following, we introduce a strictly positive, nonincreasing sequence
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(7w )n>1 such that 7,[| A ||> = O(1).

Assumption 5. (i) The hypothesis H,qq holds. (ii) The set of parameters by satisfying (2.6)
belongs to a compact parameter space By C R%2. (iii) For any b € By there exists IT;, §(-,-,b) €
Go satisfying n|| 11, g(-,-,b) — g(-, -, b)||% = o(/my,). (i) For any p.d.f. fp_, satisfying (2.6)
there eists Iy, fp_, € B_a, such that n||Fy (I, fe_, — f_,)|5 = o(y/m,). (v) It holds
knlnlogn = o(Tuy/my). (vi) It holds P(rank(A,) = mnk(;l\n)) =14 o0(1). (vii) There exists a
constant C > 0 such that Y7, 5 (Fo, a0 - D1, 9)* < C||@I2, for all functions ¢ with ||¢||= < oo,

Assumption 5 (i) states the maintained hypothesis of an additive structure of g given in
equation (2.1). Assumption 5 (7ii) states an asymptotic condition of the sieve approxima-
tion error for g(-,-,b) for any b in the parameter space By. By doing so, we impose reg-
ularity conditions on the integral transform JF,, of the Dirac measure at b but not on the
Dirac measure itself. For instance, if again go(z,b) = ¢(x)(b) and py(z,t) = (z’tqb(az))l/l! for
[ > 1 then ||II,,9(-,-,b) — g(-,, b)||« < C/(l, + 1)! for some constant C' > 0, provided that
E[¢™(X)] ! (b) [t (t)dt is bounded. Assumption 5 (iv) requires an appropriate sieve ap-
proximation error only for any nondegenerate p.d.f. fg_, satisfying (2.6). This assumption is
a modification of Assumption 4 (i), which does not hold under Hge, as degenerate distribu-
tions cannot be accurately approximated by basis functions. Assumption 5 (v) restricts the
magnitude of k, also relative to the dimension parameter [,, which is not too restrictive as
the dimension k, is used to approximate a lower dimensional p.d.f. than in Theorem 2.1.

Assumption 5 (vi) and (vii), respectively, are closely related to Assumption 4 (iv) and (v).

Theorem 2.2. Let Assumptions 1-3, 4 (i), and 5 be satisfied with 6(V,t) = exp(itY) —
(For fB_0) (X, t) g(X, t,by). Then, under H gy we obtain

(V26m,) " (0 — iy, ) > N(0,1).

The critical values can be estimated as in Remark 2.1 but where now 0, (V,t) = exp(itY’) —
(]—"glfABQn)(X ) G(X,t,bsn). The following result shows that, by doing so, the asymptotic
distribution of our standardized test statistic remains unchanged. This corollary follows directly

from Theorem 2.2 and the proof of Proposition 2; hence we omit its proof.

Corollary 2.2. Under the conditions of Theorem 2.2 it holds
(V28,,) " (0 S0 = Fim,) 2 N(0,1).

Remark 2.2 (Comparison to Andrews [2001]). [t is instructive to compare our setup and
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results to Andrews [2001], who considers the random coefficient model:
Y = B() + Ble + (bg + O-EQ)XQ,

where BBy - B1|X] =0, By is independent of By, and E[By|X] = E[Bs|X] = 0. In this model,
degeneracy of the second random coefficient is equivalent to o = 0 and degeneracy fails if o > 0.
So under H 4.4 the parameter o is on the boundary of the maintained hypothesis with o € [0, 00).

In contrast, we rely in this paper on independence of B to X under the maintained hy-
pothesis. In this case, the hypothesis of degeneracy is equivalent to a conditional characteristic
function equation as explained in Example 2. Such an equivalent characterization is not possible
given the assumptions of Andrews [2001]. This is why in our framework we automatically avoid

the boundary problem that is apparent in Andrews [2001].

2.3.4 Testing degeneracy under additive separability alone

We now establish the asymptotic distribution of our test of degeneracy based on separability
but not full knowledge of g; (see Example 3). We introduce the function h(-,t) = FElexp(it(Y —
92(X,b2))| X1 = -] and a linear sieve space H, = {¢ : ¢(z1) = S Bipi(z) for @y € R }
where d,, denotes the dimension of X;. The series least squares estimator of h is denoted
by n(-) = P () (X1 Xin) X4, U, where U, = (exp(it(Y; — g2(X1,090))), - - -, exp(it (Y, —
gz(Xn,/Egn))))/ and Bgn denotes an estimator of b. Recall the notation g(z,t,b) = exp(itgs(x,b))

for b € B,. Below we denote the vector of partial derivatives of g with respect to b by gp.

Assumption 6. (i) The hypothesis H,qq holds, where g; need not to be known except that it
does not depend on Xs. (ii) There exists ITy,,h € H, such that n|| I, h — h||% = o(\/my). (iii)
The parameter by is point identified and belongs to the interior of a compact parameter space
By C R%:. (iv) There exists an estimator by, such that \/ﬁ(/b\gn —by) = O,(1) (v) The function
g is partially differentiable with respect to b and [ Esupyeg, ||g5(X,t,b)|*w(t)dt < co. (vi) It

holds ky, = o(\/my,).

Assumption 6 (i7) determines the required asymptotic behavior of the sieve approximation
bias for estimating h. This condition ensures that the bias for estimating the function A is
asymptotically negligible but does not require undersmoothing of the estimator En To see
this, let |[IIy,h — hll» = O(k‘;s/d”) for some constant s > 0. Assumptions 6 (i7) and (vi)
are satisfied if m,, ~ n® and k, ~ n" where d,, (1 — (/2)/(2s) < k < (/2. We thus require
¢ > 2d,,/(2s+d,,) and we may choose k to balance variance and bias, i.e., K = dg, /(25 + d,, ).
In this case, Assumption 4 (7i) automatically holds if || 1, o —¢||» = O(mﬁs/dx) and 2d,, > d,.

Under a partially linear structure Hpari1in, Assumptions 6 (iv) is automatically satisfied if /b\gn
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coincides with the nonlinear least squares estimator. If gy is linear, Assumption 6 (iv) holds
true if E||X|]* < oo and [#? w(t)dt < oo.

Theorem 2.3. Let Assumptions 1-3, 4 (i1), and 6 hold, with 6(V,t) = exp(itY)—h(X1,t)g(X, t, b2).

Then, under H 4., we obtain
(V20,) " (18 = iy, ) 2 N(0,1).

The critical values can be estimated as in Remark 2.1 but where now 6, (V,t) = exp(itY) —
ﬁn(Xl, t) exp(itgs (X ,Egn)). The following result shows that, by doing so, the asymptotic dis-
tribution of our standardized test statistic remains unchanged. This corollary follows directly

from Theorem 2.3 and the proof of Proposition 2; hence we omit its proof.

Corollary 2.3. Under the conditions of Theorem 2.3 it holds

(V28,,) " (050 = Fim,) 2 N(0,1).

2.4 Consistency against a fixed alternative

In the following, we establish consistency of our test when the difference of restricted and
unrestricted conditional characteristic functions does not vanish for all random parameters B.
In case of testing functional form restrictions, this is equivalent to a failure of the null hypothesis
H,oq, ie., P (Y # g(X, B) for all distributions of random parameters B) > 0. A deviation
of conditional characteristic functions can be also caused by alternative models with a different
structural function (see Example 1). We only discuss the global power for testing functional
form restrictions here, but the results for testing degeneracy follow analogously (of course, in
this case we have to be more restrictive about the shape of g; and g, as discussed in Example
2). The next proposition shows that our test of functional form restrictions has the ability to
reject a failure of the null hypothesis H,,,q with probability one as the sample size grows to

infinity.

Proposition 3. Suppose that H,,.q is false and let Assumptions 1-4 be satisfied. Consider a

sequence (Yn)n>1 satisfying v, = o(ng,,t). Then, we have
P((V280,)7 (0 S0 = fim,) > ) = 1+ o(1).

Recall that under Assumption 3 we have g, > C,/m, (see Lemma 5.1). Hence, under
this assumption, the rate requirement v, = o(ng,,!) implies v, = o(n//m,) which implies
Yo' =o(1).
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2.5 Asymptotic distribution under local alternatives

We now study the power of our testing procedure against a sequence of linear local alternatives
that tends to zero as the sample size tends to infinity. First, we consider deviations from
the hypothesis of known functional form restriction. Under H,,q, the identified set in the
nonseparable model (1.1) is given by Z, = {f : fisap.df with p = ]-"gf}. We assume that
7, is not empty and denote by fj the p.d.f. in Z, with minimal norm. We consider the following

sequence of local alternatives
@n:fg(fg_FA\/ gmn/”)? (2'11>

for some function A € L'(R%) N L*(R%). Here, we assume that A is such that [} + A\/Gn, /0
does not belong to the identified set Z, and need not to be a density. We also note that the
p.d.f. f}; coincides with the minimal norm solution of ||, — F, f||= as n tends to infinity. The
next result establishes asymptotic normality under (2.11) of the standardized test statistic S,

for testing functional form restrictions.

Proposition 4. Let the assumptions of Theorem 2.1 be satisfied. Then, under (2.11) we obtain
(V250,) " (050 = fima) 5 N (2721 FA 12, 1),

As we see from Proposition 4, our test can detect linear alternatives at the rate \/m
Results for testing degeneracy follow similarly. In the following, we thus study deviations from
the hypothesis of degeneracy only under the maintained hypothesis Hy, : Y = By + B X, +
B} X,. Under the maintained hypothesis of linearity, any deviation between the conditional
characteristic functions is equivalent to a failure of a degeneracy of the random coefficients Bs.
Let us denote Byey = (B, ba) with associated p.d.f. fz, . We consider the following sequence

of linear local alternatives

fBn = fBuy + AV S /10, (2.12)

for some density function A € LY(R%) N L?(R%) which is not degenerate at by. Applying the

Fourier transform to equation (2.12) yields
Elexp(itX'B)|X] = Elexp(it(By + X1 B1))| X] exp(it X5by) + /exp(itX's)A(s)dS\/cmn/n.

The next result establishes asymptotic normality under (2.12) for the standardized test statis-
tic S, for testing degeneracy. This corollary follows by similar arguments used to establish

Proposition 4 and hence we omit the proof.
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Corollary 2.4. Let the assumptions of Theorem 2.3 be satisfied. Then, under (2.12) we obtain

(V25,)7 (S0 — Fima) S N (2721 A2, 1)),

3 Monte Carlo Experiments

In this section, we study the finite-sample performance of our test by presenting the results
of a Monte Carlo simulation study. The experiments use a sample size of 500 and there are
1000 Monte Carlo replications in each experiment. As throughout the paper, we structure this
section again in a part related to testing functional form restrictions, and a part related to

testing degeneracy.

3.1 Testing Functional Form Restrictions

In each experiment, we generate realizations of regressors X from X ~ N (0,2) and random
coefficients B = (By, By)' from B ~ N (0, A) where

. ( 1 1/2>‘
1/2 1

We simulate a random intercept By L (By, By) according to the standard normal distribution.

Realizations of the dependent variable Y are generated either by the linear model

the quadratic model
Y = Cl(nBo + XBl + X282>, (32)
or the nonlinear model
Y = CQ(?]B0+XB1 + \/ |X|Bg), (33)

where the constant 7 is either 0.7 or 1. Here, the normalization constants c¢; and ¢, ensure that
the dependent variables in models (3.1)—(3.3) have the same variance.!’ Note that the random
coefficient density fp is neither point identified in model (3.2) nor in model (3.3). However,
recall that even if the model is not point identified under the maintained hypothesis, our testing
procedure may still be able to detect certain failures of the null hypothesis, in particular if they

arise from differences in conditional moments. Consider, for example, testing linearity in the

' This normalization ensures that large empirical rejection probabilities are not only driven by a large variance
of the alternative models (see, for instance, Blundell and Horowitz [2007]).
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heterogeneous QUAIDS model (3.2), where the first two conditional moments yield E[By] =0
and Var(By) = 0. Consequently, P( [ |e(X,t)[*w(t)dt # 0) > 0 if and only if P(Bs # 0) > 0.
In the finite sample experiment, we also observe that our testing procedure is able to detect

such deviations.

rows || Null Model Alt. Model n |k, | Empirical Rejection probabilities using
Hoa True DGP m, =8 m, = 12 m, = 16
1 (3.1) 0.7] 5 0.041 0.006 0.004
2 (3.2) 7 0.120 0.063 0.020
3 (3.1) (3.2) 5 0.958 0.727 0.561
4 (3.1) (3.3) 0.645 0.233 0.129
5 (3.2) (3.1) 7 0.935 0.780 0.558
6 (3.2) (3.3) 0.990 0.903 0.734
7 (3.1) 1|5 0.093 0.014 0.002
8 (3.2) 7 0.290 0.120 0.051
9 (3.1) (3.2) 5 0.876 0.513 0.327
10 (3.1) (3.3) 0.550 0.146 0.053
11 (3.2) (3.1) 7 0.994 0.952 0.837
12 (3.2) (3.3) 0.996 0.966 0.866
13 (3.1) 0.7] 6 0.019 0.003 0.001
14 (3.2) 9 0.140 0.049 0.023
15 (3.1) (3.2) 6 0.887 0.539 0.313
16 (3.1) (3.3) 0.524 0.161 0.064
17 (3.2) (3.1) 9 0.938 0.778 0.581
18 (3.2) (3.3) 0.986 0.893 0.756
19 (3.1) 1 ]6 0.042 0.004 0.003
20 (3.2) 9 0.292 0.103 0.042
21 (3.1) (3.2) 6 0.847 0.465 0.261
22 (3.1) (3.3) 0.364 0.085 0.037
23 (3.2) (3.1) 9 0.991 0.952 0.833
24 (3.2) (3.3) 0.994 0.957 0.859

Table 1: Rows 1,2,7,8, 13, 14, 19, 20 depict the empirical rejection probabilities if H,,,q holds
true, the rows 3-6, 9-12, 15-18, 21-24 show the finite sample power of our tests against various
alternatives. The first column states the null model while the second shows the alternative model
and is left empty if the null model is the correct model. Column 3 specifies the noise level of
the data generating process. Column 4 depicts the values of the varying dimension parameters
kn. Columns 5-7 depict the empirical rejection probabilities for the nominal level 0.05.

The test is implemented using Hermite functions, and uses the standardization described

in Remark 2.1. When (3.1) is the true model, we estimate the random coefficient density
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as described in Example 4, where we make use of the fact that the Hermite functions are
eigenfunctions of the Fourier transform. If (3.2) is the true model, the integral transform F;
is computed using numerical integration. In both cases, the weighting function w is given
by the standard normal p.d.f., following Su and White [2007] and Chen and Hong [2010],
or following Chen et al. [2013] by the uniform p.d.f. with support [—-2,2]. We also tried
different weighting functions and found, similarly to Chen and Hong [2010], that the results
of our finite sample analysis are not sensitive when these functions have support on the whole
real line. For finite support weight functions the results are equally sensitive and thus we
report the empirical rejection probabilities of our tests using the uniform weights only in the
Supplementary Material.

Our test statistic is implemented using a varying number of Hermite functions to analyze
its sensitivity to that dimension parameter choice. If (3.1) is the correct model, we use either
k,=5(=3+2)or k, =6 (= 3+ 3) Hermite functions to estimate the density of the bivariate
random coefficients (By, By). If (3.2) is the correct model, we have an additional dimension
which accounts for the nonlinear part. Here, the choice of Hermite basis functions is either
kyn=T7(=3+2-2)ork,=9(=3+2-3). In both cases we vary the dimension parameter m,,
between 8, 12, and 16.

The empirical rejection probabilities of our tests are shown in Table 1 at the nominal level
0.05. We also note that the models are normalized and hence, the null and alternative have
the same variance. The differences between the nominal and empirical rejection probabilities,
under the correct functional form restrictions, is accurate for m,, = 8 if the linear model is the
correct model (see rows 1, 7, 13, and 19) while for the correct quadratic model we require a
large value of m,, to obtain accurate finite sample coverage (see rows 2, 8, 14, and 20). This is
not surprising but in line with our theory, where we require m,, to be larger than £, and the
quadratic model requires a larger choice of k,.

From Table 1 we see that the empirical rejections probabilities become larger as the param-
eter 1 increases. On the other hand, we observe from this table that our tests have power to
detect nonlinear alternatives even in cases where the model under the maintained hypothesis
is not identified. This is in line with our observation that these alternatives imply deviations
between the restricted and unrestricted characteristic functions. Comparing rows 3, 9 with 4,
10 in Table 1, we observe that our test rejects the quadratic model (3.2) more often than the
nonlinear model (3.3). From rows 5, 11 and 6, 12 we see that our test rejects the nonlinear
model (3.3) slightly more often than the linear model (3.1).

Note that m,, could be any integer larger than const. x k2 that is smaller than n'/2 (up
to logs). The range of admissible dimension parameters for this minimization-maximization

routine reflects the dimension restrictions imposed in Theorem 2.1 and the consistency results
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thereafter, i.e., m2logn = o(n) and k, = o(,/m,)."> From Table 1 we see that the condition
ky, = o(\/m,,) might be too restrictive in finite samples when Hermite functions are used.'® We
thus modify the range of possible dimension parameters to ensure accurate finite sample cover-
age. Le., if s(k,, m,) denotes the value of the test statistic, a guideline for parameter choice in
practice is given by the minimum-maximum principle min, ;9,174 Maxy, <. < /m 15k, M)}
The intuition behind this criterion is that we choose k, to have a good model fit and to choose
m,, such that the finite sample power of the test statistic is maximized. For instance, as we see
from Table 1, if n = 1 and (3.1) is the correct model, the principle yields k, = 6 and m,, = 8
which implies an empirical rejection probability of 0.042 (see row 19). The minimum-maximum
principle also ensures that k, is always smaller than m, and thus precludes inaccurate finite
sample coverage in the quadratic model due to too small m,, as we see in rows 2, 8, 14, and 20.
For instance, if n = 0.7 and (3.2) is the true model the principle yields k, = 9 and m,, = 12
leading to the empirical rejection probability of 0.049 (see row 14). Yet for larger values of 7,
i.e. if n =1 and (3.2) is the true model, the principle yields again k, = 9 and m,, = 12 leading
to the empirical rejection probability of 0.103. Thus, the testing procedure works generally well
but leads in some cases to overrejection (see row 20).

When we consider different data generating processes, such as a cubic polynomial with
random coefficients, we find that our test of linearity leads to empirical rejection probabilities
which are close to one for all nominal levels considered. Hence, these results are not reported
here. Regarding consistency of the test statistic, we conduct experiments with increasing sample
sizes. We find a slight tendency of our test statistic to under-reject for small 7, see in Table 1
in rows 1, 2, 13, and 14. However, this under-rejection diminishes as we increase the sample
size to n = 1000. Not surprisingly, when n = 1000 also the empirical rejection probabilities in

in alternative models increase.

Recommendation on choice of tuning parameters. In the following, based on the the-
oretical results and the Monte Carlo investigation we provide a recommendation on the choice

of weighting function and dimension parameters to implement the test in practice.

e Concerning the weighting function w, choosing a standard normal p.d.f. performs well
in many different settings, and should probably be considered as a benchmark. However,
the results in the simulation section suggest that the choice of weighting is immaterial,

as the results do not appear to be sensitive.

e In contrast, the test appears to be significantly more sensitive to the choice of dimension

12For simplicity, we assume here the the minimal eigenvalues of the associated matrices are uniformly bounded
away from zero.
13This rate requirement is not too restrictive for B-spline basis functions as we see below.
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parameters k, and m,. In particular, the test appears more sensitive to the choice of
k, than to the choice of m,,. We recommend to choose the dimension parameters k,, and
m,, according to the minimum-maximum principle as proposed above, i.e., choose m,, to

maximize the finite sample power of the test, and k, to minimize the specification error.

3.2 Testing Degeneracy

In each experiment, we generate realizations of X from X ~ N (0, A) and random coefficients
B = (By, By) from B ~ N (0,4,), where

1 0.5 2
A= and A, = P ;
0.5 1 p 2

for some constant p > 0, which varies in the experiments. Further, we generate the dependent

variable Y either as
Y =0.25- By + B{ X1 + Xo,

if the null hypothesis Hges holds, where the constant « is either 1 or 2 in the experiments below.

For the alternative, we generate the dependent variable Y using
Y =0.25- BS + Bf X1 +nB5 X,

for some constants > 0, and x which vary in the simulations below.

The test is implemented as described in Example 2 with B—splines, and uses the standard-
ization described in Remark 2.1 with 6,(V,t) = exp(itY) — hy(X1,t) exp(itgs(X, ba,)). This
means that we use the more general test that allows for a nearly arbitrary specification in the
remaining model Y — go( X5, b2). We focus in the simulation on this specification, because it
has arguably less power than the more specific one that imposes in addition the linear random
coefficients structure. However, as will be evident from the results below, this test already has
very good power properties, implying that separating the term involving the fixed coefficient
turns out to already be a powerful device in testing. To estimate the restricted conditional
characteristic function, we use B—splines of order 2 with one or two knots (hence, k, = 4 or
k., = 5), and for the unrestricted one a tensor-product of these B-spline basis functions (hence,
m, = 16, m,, = 20, or m,, = 25). We do not consider larger values for k,, because we want to
ensure the requirement k2 < m,,, see also the minimum maximum principle below.

The empirical rejection probabilities for testing degeneracy are shown in Table 2 at the

nominal level 0.05. Again we normalize the models to ensure that the null and alternative have
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TOWS Alt. Model | Empirical Rejection probabilities using | Andrews’
K p n k, =14 k, =05 Test
my,=16 m, =20 m, =20 m, =25

1 1 1 0.053 0.016 0.017 0.003 0.060
2 0.3 0.184 0.135 0.009 0.009 0.974
3 0.5 0.489 0.419 0.107 0.076 0.999
4 0.7 0.783 0.709 0.400 0.344 1.000
5 1.5 0.110 0.019 0.018 0.003 0.070
6 0.3 0.352 0.269 0.032 0.024 0.976
7 0.5 0.760 0.691 0.291 0.229 1.000
8 0.7 0.953 0.946 0.692 0.660 1.000
9 2 1 0.102 0.050 0.058 0.032 0.220
10 0.3 0.461 0.389 0.344 0.335 0.822
11 0.5 0.852 0.810 0.786 0.756 0.983
12 0.7 0.984 0.969 0.970 0.945 0.996
13 1.5 0.178 0.083 0.103 0.046 0.190
14 0.3 0.601 0.507 0.512 0.448 0.801
15 0.5 0.925 0.890 0.894 0.865 0.984
16 0.7 0.995 0.991 0.991 0.978 1.000

Table 2: The first row depicts the empirical rejection probabilities under degeneracy of the
coefficient of Xo, the rows 2—4, 68, 10-12, and 14-16 show the finite sample power of our
tests against various alternatives. Column 1 depicts the value of k in the correct and alternative
models. Column 2 specifies the covariance of By and Bs for the alternative models. Column 3
depicts the value of n in the correct model and is empty if the null model is correct. Columns
4= depict the empirical rejection probabilities for the nominal level 0.05. Column § depicts the
empirical rejection probabilities using the quasi-likelihood ratio test proposed by Andrews [2001].

the same variance. The differences between the nominal and empirical rejection probabilities
are small under a fixed coefficient for X5, as is obvious from the first row. In Table 2, we
also see from rows 2—4, 6-8, 10-12, and 14-16 that our test rejects the alternative model more
often for a larger variance of By, as we expect. Moreover, the empirical rejection probabilities
increase as the covariance of By and By becomes larger, as we see by comparing rows 2—4 with
6-8 and 10-12 with 14-16.

In case of B-spline basis functions we need to be less restrictive regarding the size of
the dimension parameters and recommend the following criterion. Again if s(k,,m,) de-
notes the value of the test statistic, we consider the modified minimum-maximum principle
MiN g <, c9,1/4 MAXE2 < <2/ 15(kny M) }. For instance, as we see from Table 2, if k =2, p =1
and B, is deterministic, this principle yields &k, = 5 and m,, = 20 which implies an empirical

rejection probability of 0.058 (see row 9). Yet when p is larger, i.e., p = 1.5 and again k = 2,
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the minimum-maximum principle leads an empirical rejection probability of 0.103 and thus,
the testing procedure leads occasionally to overrejection.

In Table 2, we compare our testing procedure to the quasi-likelihood ratio test proposed by
Andrews [2001]. In both settings, conditional mean independence of random slope and intercept
parameters is violated. We see that this violation of Andrews [2001] framework leads inaccurate
empirical rejection probabilities, in particular, in the second case. We see that for k = 1, the
quasi-likelihood ratio test of Andrews [2001] is more powerful than the normalized statistic S,,.
When k = 2, however, the statistic of Andrews has inaccurate finite sample coverage, see rows

9 and 13, due to misspecification.

Recommendation on choice of tuning parameters. In the following, based on the the-
oretical results and the Monte Carlo investigation we provide a recommendation on the choice

of weighting function and dimension parameters to implement the test in practice.

e As above we recommend choosing the weighting function w to be the standard normal
p.d.f.

e In contrast, the test appears to be significantly more sensitive to the choice of dimension
parameters k, and m,,. In particular, the test appears more sensitive to the choice of k,,
than to the choice of m,,. We recommend to choose the dimension parameters k, and m,,
according to the modified minimum-maximum principle as proposed above, i.e., choose
m,, to maximize the finite sample power of the test, and k, to minimize the specification

error.

4 Application

4.1 Motivation: Consumer Demand

Heterogeneity plays an important role in classical consumer demand. The most popular class of
parametric demand systems is the almost ideal (Al) class, pioneered by Deaton and Muellbauer
[1980]. In the AT model, instead of quantities budget shares are being considered and they are
being explained by log prices and log total expenditure!®. The model is linear in log prices
and a term that involves log total expenditure over a nonlinear price index that depends on
parameters of the utility function. In applications, one frequent shortcut is to replace this

utility dependent price index by a conventional price index (e.g., Laspeyres), another is that

14The use of total expenditure as wealth concept is standard practice in the demand literature and, assuming
the existence of preferences, is satisfi