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Credit from the Monopoly Bank

Yvan Lengwiler* Kumar Rishabh†

August 30, 2017

Abstract

We establish that a monopoly bank never uses collateral as a screening device. A

pooling equilibrium always exists in which all borrowers pay the same interest rate

and put zero collateral. Absence of screening leads to socially inefficient lending in

the sense that some socially productive firms are denied credit due to excessively high

interest rate.

JEL classification: G21, D82, L12, D00.

Keywords: Monopoly bank, credit, contracts, screening, pooling, collateral.

1 Introduction

Banks are the most important source of debt finance. While the largest firms — especially

the ones listed on organized financial exchanges — may have access to the corporate debt

market, most firms do not enjoy this luxury. They depend on internal funds and on banks

to acquire the capital they need for their operations.

Banking is a business that requires particular skills. It is still, despite the increasing

standardization, a people business that depends on personal relationship. This is why

the phenomenon of the house bank is relevant. One indication of this is the fact that

*Both authors: Faculty of Business and Economics, University of Basel, Peter Merian-Weg 6, CH-4002
Basel, Switzerland.

†Corresponding author, kumar.rishabh@unibas.ch.
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banking, especially small and medium enterprise (SME) banking, is local in nature

(Brevoort and Wolken, 2008). The local nature of banking creates opportunity for the

banks to carve out captive local markets that allows them to exercise market power

in pricing the loans. Emergence of local monopoly power could be driven by high cost

of obtaining soft information about the potential borrowers located at longer distances

(Agarwal and Hauswald, 2010), or it can be due to high travelling costs (Degryse and

Ongena, 2005, Degryse, Laeven and Ongena, 2009). These effects are expected to be even

more pronounced in the case of developing countries where the reliance of banks on soft

information and the transportation costs may be even higher.

Bank market power and its relationship with access to credit and growth has been

well studied empirically. In general, studies have found opposite results about this. The

earlier argument by Petersen and Rajan (1995) and Marquez (2002), that monopoly power

may enhance access to credit by allowing banks to develop lending relationships, seems

to be challenged by a host of recent large scale panel studies (Love and Pería, 2015, Ryan,

O’Toole and McCann, 2014, Chong, Lu and Ongena, 2013, Cetorelli and Strahan, 2006,

Beck, Demirgüç-Kunt and Maksimovic, 2004). These studies have found that market

power is associated with higher interest rates and lower access to credit for SMEs.

As far as the theory of monopoly bank is concerned, the literature is rather small.

The classic Monti-Klein model (Monti, 1972; Klein, 1971; Freixas and Rochet, 2008,

pp. 78-79) applies the basic tools of demand and supply curves to the credit market

to conclude that a monopolist would set a higher interest rate and lower deposit rate.

However, this is an aggregate analysis without informational or contractual structure. A

strand of literature that is concerned with the informational and contractual aspects of

financial intermediation, models banks as delegated monitors in the spirit of Diamond

(1984) and Williamson (1986). Most notable papers in this literature are Guzman (2000)

and Smith (1998), who compare monopoly and competitive banks in the presence of

ex-post information asymmetry. In these models, the lenders cannot costlessly verify

if the defaults reported by the firms are true or not. In such costly state verification

models, credit rationing is generated without adverse selection (Williamson, 1986, 1987).
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The focus of these papers is capital accumulation and growth and therefore they do not

directly answer the question about market structure and credit access.

Another strand of models are those where information asymmetry is present ex-

ante. Agents are heterogeneous at the time of signing the contracts, but the bank cannot

identify the types of individual borrowers. This leads to a selection problem. Besanko

and Thakor (1987) analyze such a model with a monopolistic bank and many borrowers

that come in two types. The payoff of the projects of the first type of borrowers dominates

the payoff of the second type in the first-order stochastic dominance sense. The authors

establish that in this setting, the monopoly bank will not use collateral as a selection

device.

Our paper also analyzes the selection problem that a monopolistic bank faces. We

generalize the result of Besanko and Thakor (1987) to arbitrary distribution of types

(continuous or discrete). We also prove that a (zero-collateral) pooling equilibrium exists

under any arbitrary distribution as well. We characterize the equilibrium and identify the

socially valuable projects or borrowers that are denied credit, leading to under-investment

and welfare loss.

The result that a monopolist credit market produces under-investment is expected,

but not trivial. It is well known that there is no welfare loss or under-investment when a

monopolist can engage in price discrimination.1 Moreover, the existence of a separating

equilibrium and price discrimination are well established results in the monopolistic

insurance market (Stiglitz, 1977, Chade and Schlee, 2012) that features a similar adverse

selection problem. In our framework, this would mean that if a monopolist could screen

(hence discriminate between) different types of borrowers using collateral, there might not

be under-investment because the monopolist finds opportunity for higher profits in serving

every socially productive type. However, we prove that even if collateral is available, the

monopolist bank does not separate the types and offers only a pooling contract. We show

that diminished access to credit is due to the more fundamental problem that collateral is

1More precisely in our model there might still be a welfare loss but no under-investment when the
monopolist could successfully discriminate. This welfare loss is due to our assumption that collateral (and
hence screening) is costly for the bank. If screening is costless then there is no welfare loss with monopoly
discrimination. But as we explain later, this assumption plays no role in our results.
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an ineffective screening device for the monopolist bank.

In our model, borrowers differ in their ability to run a project and this gets reflected

in their probability of default. Their return conditional on success, however, is identical

between types. The types can therefore be ordered according to the expected payoff of

their projects, and low-risk borrowers first-order stochastically dominate the distribution

of the returns for the high risk borrowers. A similar set-up has been used extensively in

the literature (De Meza and Webb, 1987; Besanko and Thakor, 1987; Freixas and Rochet,

2008, pp. 153-157, Sengupta, 2014). This way of characterizing risk differs from Stiglitz

and Weiss (1981) model where firms have the same expected value of the project but differ

with respect to the riskiness of the project. In particular, they assume that the returns

distribution of a low-risk borrower second-order stochastically dominates the returns

distribution of the high-risk borrower. We also allow for existence of socially undesirable

borrowers as in De Meza and Webb (1987). They show that in a competitive market there

can be over-investment in the sense that even socially undesirable projects get access to

credit.We show that a monopolist will never lend to such projects. Further, in contrast to

the competitive screening models of credit market (Bester, 1985, Besanko and Thakor,

1987) that may suffer the problem of existence of equilibrium à la Rothschild and Stiglitz

(1976) and Riley (1979), we show in our model the equilibrium exists under very general

conditions.

Our result that a monopolist bank offers only zero-collateral contracts has significant

implications for the discussion on growth and its relation with access to credit. The

traditional development literature explains that growth is intricately linked to inequality

as the poor entrepreneurs lack assets that can be pledged to access credit, resulting in

loss of output. This view was remarkably challenged by De Soto (2000) who claimed that

people cannot access credit not because they lack assets but because they lack title (or

property rights) to use their assets as collateral. We show that if there is a monopolist

bank, then whether the borrowers own any asset with or without a title to use it as

collateral does not matter. This is because the bank does not require collateral. The

limited access to credit in our model results from the monopoly power of the bank and not
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from the lack of collateralized assets. This implies that the policy of formalizing ownership

or land titling may not be sufficient in enhancing growth. Considering that banks do use

collateral in a competitive environment, policies of formalization asset ownership need to

be complemented with strengthening competition in the credit market.

2 Setup of the model

We use a static model of monopoly credit market under adverse selection. There is a risk

neutral monopoly bank (principal) facing a set of risk neutral small firms (agents) as

potential borrowers. Each firm can run a risky project that requires one unit of capital.

However, the firms do not own any capital and therefore need to borrow one unit from

the bank if they decide to run the project. The project returns are stochastic. For a firm

indexed by θ, the project fails with probability θ, giving zero return. With probability

1−θ, the project is successful and generates returns worth Y . The borrower can repay

the bank if and only if the project is successful. θ is therefore also the probability that the

firm defaults on its loan. θ is private information, and is distributed according to θ iid∼ F.

F is common knowledge. The support of F is Θ⊆ [0,1].

If a firm does not run the risky project it earns non-stochastic return V on some

outside opportunity. The monopolist bank enjoys all the bargaining power and offers to

each firm a take it or leave it contract (R,C), outlining the gross rate of return, R, and

collateral, C Ê 0. It is assumed that the borrowers are identical in terms of their capacity

to offer collateral. This set-up can be thought of as one involving small entrepreneurs

as potential borrowers, in a developing country where entrepreneurs may own land or

house that are essential commodities and not-liquid and therefore can not be used as

capital but can be pledged as a collateral. We assume there is a dichotomy in collateral

valuation between borrowers and the bank, where bank valuation of the collateral C is

always βC, with β< 1. Thus, the bank, in case of a default, receives only a fraction β of

the value of the collateral. This may reflect liquidation costs the bank faces in case of

default (Besanko and Thakor, 1987, Sengupta, 2014). If a firm accepts the offer of the
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bank, it never defaults willfully and always repays if the project is successful. The cost of

capital and intermediation by the bank per unit is assumed to be constant, ρ Ê 1 (supply

of deposits is infinitely elastic).

As a convention for this paper we will denote firm expected surplus by ‘u’, and the

bank’s profit by ‘π’. The expected surplus of a borrowing firm of type θ from a contract

(R,C), is defined as its expected profit in excess of the outside opportunity V ,

u(R,C,θ)= (1−θ)(Y −R)−θC−V ,

while the expected surplus of the bank from the same contract is its expected profit

π(R,C,θ)= (1−θ)R+θβC−ρ.

3 The efficient allocation

3.1 The social planner

Let us start by analyzing, as a benchmark, what a benevolent social planner endowed

with full information would choose. The social planner would maximize the expected net

social surplus defined as the sum of expected surpluses for firms and the bank. The net

social surplus from a contract (R(θ),C(θ)) is equal to (1−θ)Y −V −ρ− (1−β)θC(θ). This is

clearly maximized at C(θ)= 0. Since the collateral imposes a deadweight loss, the social

planner would choose zero collateral for all θ. Therefore, under first best, the expected

social value of a firm with default probability θ is (1−θ)Y −ρ−V . Firms with default

probability

θ É θsoc := 1− V +ρ
Y

(1)

have a non-negative social value. We call such firms ‘socially desirable.’

Assumption 1 In order to make sure that there are socially profitable projects that need
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financing, we assume that V +ρ < Y (so that θsoc > 0) and that F(θsoc) > 0. This implies

that there are some firms with sufficiently low θ that are socially desirable.

The social planner finances all projects in Θsoc := [0,θsoc], while projects in Θ\Θsoc are not

financed.

3.2 Monopoly with full information

If the monopolist bank is equipped with complete information, it can offer personalized

contracts to each type of firm in such a way that the firms will accept the offer, but the

bank collects the entire surplus. We assume that if a firm is indifferent between borrowing

and not borrowing it chooses the former.

Proposition 1 With full information, the monopolist bank offers type-specific contracts

(
Rfb(θ),Cfb(θ)

)
=

(
Y − V

1−θ ,0
)

(2)

to all firms θ ∈ Θsoc and these firms accept. The bank does not offer contracts to firms

θ ∉Θsoc and these firms therefore do not receive finance.

Proof. It can be easily shown that the fully informed monopolist will extract the whole

surplus by offering type-specific contracts, (R(θ),C(θ)), such that each firm earns a zero

surplus i.e. u(R(θ),C(θ))= 0. Therefore, the expected profit of the bank from a contract

is (1−θ)Y −V −ρ− (1−β)C(θ), which is, as in the social planner’s problem, maximized

by setting C(θ)= 0. This implies (2). Further, the monopolist will finance all firms that

provide a non-negative expected profit. The bank does not offer any contract to firm

θ ∉Θsoc since it earns negative expected profit from them. Consequently, the bank will

finance only socially beneficial firms, θ ∈Θsoc. Since all the firms with θ ∈Θsoc earn their

reservation pay-off by borrowing at (2), they accept the offer. QED

The proposition establishes two things: First, the fully informed monopolist bank does

not use collateral. Second, it implements the same allocation as the social planner, in the
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sense that the same firms receive finance. There is no efficiency loss. The bank’s profit in

this case is

πfb =
∫
Θsoc

[
(1−θ)Y −V −ρ]

dF(θ)

= [
(1− θ̂)Y −V −ρ]

F(θsoc)=Y (θsoc − θ̂)F(θsoc)> 0, (3)

where θ̂ := ∫
Θsoc

θdF(θ)/F(θsoc)= E [θ | θ ∈Θsoc]. The bank’s profit in (3) is also equal to the

social welfare in this situation because all the borrower surplus is transferred to the

monopolist bank.

The contract in (2) shows that with complete information, the better borrowers

(with lower θ) end up paying higher interest rate than the worse borrowers (with higher

θ). This is so because the monopolist captures the entire surplus possible in the trade, and

since the lower θ type borrowers generate more surplus than the high θ type borrowers,

the bank charges a higher interest rate to the former types.

3.3 Informationally-constrained efficient allocation

The informationally-constrained efficient allocation — or second best, as it is sometimes

called — is the allocation that a social planner would chose if it was subject to the same

informational constraint as the principal, in this case, as the monopolist bank. The social

planner maximizes social welfare. It is obvious that it will still not use collateral as

collateral entails a social loss. In fact, it can easily be seen that the social planner can

implement the first best in this game. The social planner could offer the contract (Rsoc,0)

to all agents where,

Rsoc := Rfb(θsoc)=Y − V
1−θsoc

= ρY
ρ+V

. (4)

This is a pooling situation where the same contract is offered to all agents. Collateral is

not used, and the interest rate is determined by the marginal socially valuable project

θsoc.

8



The result is, as in the full information case (sections 3.1 and 3.2), that only projects

with θ É θsoc are funded. However, now the reason is that firms with θ > θsoc do not apply

for credit at contract (Rsoc,0). The marginal project θsoc makes a net surplus of 0, earning

an expected profit of just V , equal to the outside option. The better projects, θ < θsoc,

together collect an informational rent,

Rent=
∫
Θsoc

u(Rsoc,0)dF(θ)=
∫
Θsoc

[
θsoc −θ
1−θsoc

]
V dF(θ)

= V
1−θsoc

(θsoc − θ̂)F(θsoc). (5)

In addition, the social planner makes a profit of

Profit=
∫
Θsoc

(
(1−θ)

(
Y − V

1−θsoc

)
−ρ

)
dF(θ)

= (θsoc − θ̂)
(
Y − V

1−θsoc

)
F(θsoc)> 0. (6)

Total social surplus in the informationally-constrained efficient allocation is therefore

Welfare=Rent+Profit= (
(1− θ̂)Y −V −ρ)

F(θsoc), (7)

which is, not surprisingly, the same as the first best welfare, and identical to the profit of

the monopolist bank with full information. This is so because, in the three cases discussed,

no deadweight loss is incurred as collateral is not used and the allocation is the same (the

same projects are financed). Only the sharing of the welfare is different.

It is noteworthy that in this game the second best allocation is identical to the first

best allocation. There is no intrinsic efficiency loss induced by the asymmetric information.

The reason for this result is that all players — the bank and the borrowing firms — are

risk neutral. There is no conflict between allocating capital and allocating risk. In this

sense, this is a rather benign situation.

Yet, it is not clear that there is a market mechanism that can implement the

efficient allocation. Benevolent dictators or social planners are technical tools used by the
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economists, but are, maybe unfortunately, not available in real life.

4 The monopolist bank with incomplete information

If the bank tries to offer the full information contracts when the types are not observable,

all the borrowers would pretend to be the marginal borrower that is still financed in the

first best (the θsoc type), because this type gets the cheapest credit. All the borrowers

would therefore pool at the contract (Rsoc,0) and we would end up in the second best

situation described in section 3.3, with the role of the planner taken over by the bank.

In other words, the bank could implement the efficient allocation if it wanted to. But it

is not clear that this is the best the bank can do for itself. Given that under the second

best, the firms earn informational rents, the bank would want to capture some of it to

increase its profits. The monopolist bank may want to employ collateral as a measure

to sort different types of borrowers, by offering lower rate of interest along with higher

collateral requirements. In this section we provide two important results. (i) We show the

monopolist never uses collateral and therefore a separating equilibrium, where the bank

could design a self selecting menu, does not exist, implying if there is any equilibrium

it must be pooling. (ii) A pooling equilibrium indeed exists and even though it does not

involve any costly collateral, it is generally inefficient as it sets too high an interest rate

that some socially productive firms cannot access the credit market.

4.1 Collateral is not used

The bank profit maximization problem can be formulated using the revelation principle

(Myerson, 1979) where we concentrate only on the menu of contracts that induce truth
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telling by the borrowers. The bank problem, thus, can be stated as follows:

sup
R(·),C(·)

∫
Θ∗

[
(1−θ)R(θ)+θβC(θ)−ρ]

dF(θ) subject to (8)

(1−θ)(Y −R(θ))−θC(θ)Ê (1−θ)(Y −R(θ′))−θC(θ′) ∀θ,θ′ ∈Θ∗ (9)

(1−θ)(Y −R(θ))−θC(θ)ÊV ∀θ ∈Θ∗ (10)

(1−θ′)(Y −R(θ))−θ′C(θ)<V ∀θ′ ∈Θ\Θ∗ and ∀θ ∈Θ∗ (11)

where Θ∗ ⊆Θ and C(·)Ê 0.

Constraints in (9) are the incentive compatibility constraints (ICs) that ensure that

for each borrower truth-telling is optimal (i.e. firms willingly pick the contract that was

designed for their type). Constraints in (10) are the participation constraints (PCs) that

ensure that running the project is at least as good in expectation as the next best activity,

for all borrowers in Θ∗. (11) could be called non-participation constraints (Non-PCs). They

ensure that none of the firms not contained in Θ∗ find any contract designed for firms in

Θ∗ worthwhile. (10) and (11) together make sure that the population of firms that apply

for credit is identical to the population the bank has designed the contracts for.

In what follows we show, through a series of results, that the monopolist does not

use collateral in any equilibrium. This is a generalization of Besanko and Thakor (1987)

result to any arbitrary type distribution and to all possible equilibrium types. Denote by

θ∗, the highest θ type contained in Θ∗.

Lemma 1 IC for θ with respect to θ∗ in (9) and PC for θ∗ in (10) imply that the PC for

any θ < θ∗ is redundant.

Proof. Consider a θ < θ∗.

V É (1−θ∗)(Y −R(θ∗))−θ∗C(θ∗) [using (10) for θ∗]

< (1−θ)(Y −R(θ∗))−θC(θ∗) [since θ < θ∗]

É (1−θ)(Y −R(θ))−θC(θ) [using (9) for θ with respect to θ∗]
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This implies V < (1−θ)(Y −R(θ))−θC(θ). QED

This implies that the domain of contracts served by the bank is an interval that includes

the best firms with θ É θ∗.

Lemma 2 In any solution to the maximization problem (8) subject to (9), (10) and (11),

the PC for θ∗ in (10) will bind.

Proof. Suppose we have a solution satisfying (9), (10) and (11) in which (10) for θ∗

does not bind. Then (1−θ∗)(Y −R(θ∗))−θ∗C(θ∗)−V = ε > 0. Consider the alternative

strategy where the bank offers a new contract (R(θ),C(θ)) for all θ ∈Θ∗, where R(θ) =
R(θ)+ε/(1−θ∗) and C(θ)= C(θ). The new contract preserves the participation constraint

for θ = θ∗ and does not affect any incentive compatibility constraint. Further, at the

new contract, all the non-participation constraints, (11), are satisfied, as in the original

contract. This alternative strategy increases profits for the bank by ε
1− θ̌
1−θ∗ F(θ∗) > 0

where θ̌ := ∫
Θ∗ θdF(θ)/F(θ∗)= E [θ | θ ∈Θ∗], leading to a contradiction. QED

Lemma 3 Lemma 2 and IC for θ∗ in (9) imply that all the Non-PCs in (11) are redundant.

Proof. Consider a θ′ ∈Θ\Θ∗ and a θ ∈Θ∗. By Lemma 1 this implies θ′ > θ∗ Ê θ.

(1−θ′)(Y −R(θ))−θ′C(θ)< (1−θ∗)(Y −R(θ))−θ∗C(θ) [since θ′ > θ∗]

É (1−θ∗)(Y −R(θ∗))−θ∗C(θ∗) [IC for θ∗ with respect to θ]

=V [Lemma 2]

This implies (1−θ′)(Y −R(θ))−θ′C(θ)<V . QED

In order to show that the monopolist does not use collateral in any equilibrium

we employ the following strategy. We show that a bank profit maximization problem in

(8) subject to a fewer constraints than contained in (9) to (11) would generate strictly

lower profits for the bank, if the bank uses positive collateral for any borrower, than the

profit by pooling all the borrowers at the contract
(
Rfb(θ∗),Cfb(θ∗)

)= (
Y − V

1−θ∗ ,0
)
. Since
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the profit in a less constrained problem is at least as high as in the more constrained

problem, it follows that the profit in the original problem would be strictly lower than

pooling profits from the contract
(
Rfb(θ∗),Cfb(θ∗)

)
, if it involves any positive collateral.

Further, since this pooling contract satisfies all the constraints in the original problem, it

implies this contract provides a higher (pooling) profit to the monopolist than any other

set of contracts involving positive collateral.

Consider a relaxed maximization problem where we maximize (8) subject to the

following ICs,

(1−θ)(Y −R(θ))−θC(θ)Ê (1−θ)(Y −R(θ∗))−θC(θ∗) ∀θ ∈Θ∗ (9′)

V =(1−θ∗)(Y −R(θ∗))−θ∗C(θ∗)Ê (1−θ∗)(Y −R(θ))−θ∗C(θ) ∀θ ∈Θ∗ (9′′)

(10) and (11). (9′) and (9′′) together comprise only the incentive compatibility constraints

for all θ with respect to θ∗ and vice-versa, which are fewer constraints than (9). At the

outset, note that results of Lemma 1 still apply in the relaxed problem as it can be checked

that the proof of this Lemma requires just (9′). Clearly Lemma 2 is also satisfied for the

relaxed problem as it holds true for any given ICs. Finally, Lemma 3 holds true as well

since its proof requires just (9′′) and Lemma 2. Thus, in the relaxed problem as well, the

PC for any θ < θ∗ and Non-PC for any θ > θ∗ are redundant.

Lemma 4 In any solution to the maximization problem (8) subject to (9′), (9′′), (10) and

(11), the ICs in (9′) will bind.

Proof. Suppose we have a solution satisfying (9′), (9′′), (10) and (11) in which (9′) for

some θ with a positive mass does not bind. Then (1−θ)(Y −R(θ))−θC(θ)− (1−θ)(Y −
R(θ∗))+θC(θ∗)= ε> 0. Consider the alternative strategy where the bank designs a new

contract (R(θ),C(θ)) for the firm indexed θ, where R(θ)= R(θ)+ε/(1−θ) and C(θ)= C(θ).

The new contract preserves the IC for θ while not affecting any other such constraint in

(9′). The new contract also satisfies (9′′) as the original contract and will also not affect

participation constraint for θ∗. However, offering this new contract increases profits for

the bank by εdF(θ)> 0 leading to a contradiction. QED
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Proposition 2 Any solution to maximization problem (8) subject to (9), (10) and (11) has

C(θ)= 0 for all θ ∈Θ∗.

Proof. Consider the relaxed maximization problem – (8) subject to (9′), (9′′), (10) and (11).

Since all the results derived in Lemmas 1 to 4 apply to this relaxed problem, we have

R(θ∗)=Y − 1
1−θ∗V − θ∗

1−θ∗ C(θ∗) [Lemma 2]

and (1−θ)R(θ)= (1−θ)R(θ∗)−θC(θ)+θC(θ∗) [Lemma 4]

⇒ (1−θ)R(θ)= (1−θ)Y − 1−θ
1−θ∗V − θ∗−θ

1−θ∗ C(θ∗)−θC(θ) (12)

Using (12) in (8) and (9′′) we can write the relaxed problem as,

π1 = sup
R(·),C(·)

[
(1− θ̌)Y − 1− θ̌

1−θ∗V − θ∗− θ̌
1−θ∗ C(θ∗)−ρ

]
F(θ∗)− (1−β)

∫
Θ∗
θC(θ)dF(θ),

subject to C(θ∗)Ê C(θ) ∀θ ∈Θ∗

where θ̌ := ∫
Θ∗ θdF(θ)/F(θ∗)= E [θ | θ ∈Θ∗]< θ∗.

It is notable that π1 is decreasing in C. Now we show that offering the pooling

contract

(R(θ),C(θ))=
(
Rfb(θ∗),Cfb(θ∗)

)
=

(
Y − V

1−θ∗ ,0
)

∀θ ∈Θ∗ (13)

gives the bank a higher profit than π1 . Note that all the constraints in the relaxed

problem are satisfied at this contract. Using (8) again, the profit for the bank at this

contract is

π2 =
∫
Θ∗

[
(1−θ)Y − 1−θ

1−θ∗V −ρ
]

dF(θ)

=
[
(1− θ̌)Y − 1− θ̌

1−θ∗V −ρ
]

F(θ∗).

Clearly, π2 > π1 if C(θ∗) > 0 or if C(θ) > 0 for a non-zero mass of θ ∈Θ∗. Further, note

that the pooling contract
(
Rfb(θ∗),Cfb(θ∗)

)
also satisfies all the constraints in the original
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problem as well. Using this and the fact that the profit under the more constrained

maximization problem — (8) subject to (9), (10) and (11) — would be less than or equal to

π1, we conclude that this pooling contract, involving no collateral, dominates any contract

involving positive collateral for any borrower. QED

The significance of Proposition 2 is this: we have shown that the monopolist bank

will never use collateral and since collateral is the only device for the bank to enforce any

separation, this result implies that if there is an equilibrium, it must be pooling involving

zero collateral. Notably, this non-separation result is true irrespective of the distribution

of types in the population.

The monopolist does not want to charge collateral for two reasons: (i) collateral does

not effectively work as a sorting device and (ii) collateral use is costly.

Reason (i) highlights the fundamental problem in the designing of self-selecting menu

in this set-up. In the usual principal-agent model, a monopolist uses a sorting device

to introduce a distortion in the first best contract for the agent who every other agent

wants to imitate under asymmetric information (called the ‘bottom agent’). Doing so gives

monopolist an opportunity to capture bigger share of the informational rent (and of the

trade surplus) from the better agents by inducing them to rather choose the contracts

designed for them even though sometime it may mean a loss of efficiency.

In our set-up, the bottom agent is the firm with the highest default probability that

is served by the monopolist i.e. the firm indexed as θ∗. Starting from the first best contract

for the θ∗ firm, distorting its contract by an increase in the collateral and decrease in the

interest rate would not help to separate the other agents because it makes the distorted

contract even more desirable for the better type agents (θ < θ∗) resulting in a loss for

the monopolist. Another kind of distortion– viz. increasing interest rate and decreasing

collateral requirement for the θ∗ agent is not feasible as the first best contract is in the

corner in our case because of β< 1.

Notably, even if it was feasible (i.e. if β= 1 so that any point on the participation

constraint for θ∗ were first best) collateral will still be ineffective in separating the types.

Again, starting from the first best contract, increasing collateral and decreasing interest
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rate will not be profitable for the same reason as above. Also, even if the first best contract

is not in the corner now, it is worthwhile for the monopolist to charge the highest interest

rate possible to the θ∗ type, as now if better borrowers (θ < θ∗) imitate the θ∗, they pay

higher interest rate as well. The monopolist obviously prefers this as it wants to charge

the better borrowers a higher interest rate given they produce bigger surplus (as they are

less likely to fail). This implies that θ∗ pays the highest interest rate it can pay (Rfb
m(θ∗))

implying a zero collateral requirement for θ∗. The similar reasoning when extended to

the marginally lower θ borrower than θ∗ vis-a-vis other better borrowers would imply

a zero collateral requirement for that borrower too. This means that all the borrowers

except the best must be required to put zero collateral. If β= 1 the bank might charge

a positive collateral to the best borrower (“top agent”) as there is no better borrower to

be extracted informational rent from. However, with β < 1 this one possibility is also

ruled-out. As with β< 1 there is always an efficiency loss in charging positive collateral.

Thus, the costly collateral makes any collateral use not worthwhile for the bank.

This result can also be understood by contrasting it with the literature on monopoly

screening with countervailing incentives for example in Sengupta (2014) and in Freixas

and Rochet (2008, pp. 153-157). In such environments the reservation utility of the

borrowers depend on their types in such a way that it makes the first best interest rate

for the low θ borrowers smaller than the first best interest rate of the high θ borrowers.

Consequently, in such models the θ∗ is not the bottom agent, it is rather the lowest θ firm

and thus the high θ borrowers have the incentive to pretend like the low θ borrowers if

the first best contracts were offered. In this case the monopolist may use the collateral

as a separating tool even if it is costly. The reason is that now by distorting the contract

for the low θ borrowers it can make the more risky borrowers rather choose their own

contract capturing a part of their informational rent albeit at the cost of efficiency due to

distortions.

Note we have not shown that the zero collateral pooling contract in (13) is an

equilibrium. It is a contract that breaks any menu of contracts that use positive collateral

ruling out the possibility of a separating equilibrium. Whether a pooling equilibrium in
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this problem exists or not is the next issue we deal with. We show a pooling equilibrium

exists under all distribution types and we also characterize it.

4.2 Existence of a pooling equilibrium

An equilibrium requires all players not to have a profitable deviation from the equilibrium

strategy. For firms, the only options they have is accept the universal contract or refuse

it. The principal (the bank) could offer a menu of contracts instead, but we know from

Proposition 2 that the equilibrium, if it exists, involves no collateral. Further, since the

bank can not sort borrowers using the interest rate as all firms have an incentive to

pretend to be the worse type, the bank profit maximization problem reduces to choosing a

maximum default probability that it would allow in its set of borrowers and an interest

rate where it would pool all the borrowers. Thus, restricting ourselves to pooling equilibria,

the bank’s problem is

(θmon,Rmon)= arg max
θ̃,R̃

F(θ̃)
((

1−E[
θ | θ É θ̃

])
R̃−ρ)

(14)

subject to

(1−θ)(Y − R̃)ÊV ∀θ ∈ [0, θ̃] (15)

(1−θ)(Y − R̃)<V ∀θ ∈ (θ̃,1] (16)

It is easy to see the the participation constraint, (15), for θ̃ implies that it is

redundant for all θ < θ̃. Further, using arguments similar to Lemma 2 we can show that

PC for θ̃ will bind. Further, since (15) is satisfied with equality for θ̃, all the constraints

in (16) are redundant. Using these results, we can reduce the bank’s problem into an

equivalent maximization problem of choosing the highest default probability it would

allow in its set of borrowers.

θmon = arg max
θ̃∈Θ

F(θ̃)
((

1−E[
θ | θ É θ̃

])(
Y − V

1− θ̃

)
−ρ

)
(17)

and Rmon = Rfb(θmon)=Y − V
1−θmon

.
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A pair (Rmon,θmon) is a pooling equilibrium if θmon is a maximizer of (17) and

Rmon =Y −V /(1−θmon). In such an equilibrium, all borrowers θ É θmon borrow from the

bank at the rate Rmon, and borrowers with θ > θmon do not.

The allocation in a pooling equilibrium is generally inefficient because there is no

reason to expect that θmon = θsoc. Some socially beneficial projects might not receive

funding from the monopolist bank. The section on examples elaborates on the exclusion

of socially desirable firms by the monopolist. Before that we show a pooling equilibrium

exists under any arbitrary type space.

4.2.1 Continuous distribution

We deal with the easiest case first and assume that the distribution function is continuous.

This implies a continuous type space and a domain in the form of an interval, Θ= [0,1]. It

also rules out atoms in the distribution.

Proposition 3 Suppose F is continuous. Then a pooling equilibrium (Rmon,θmon) exists.

Proof. We only need to show that (17) has a maximum. Note that the objective function

is continuous and the domain Θ is compact. Hence, Weierstrass’ Maximum Theorem

applies. QED

4.2.2 Discrete distribution

A discrete type space means that there are discrete types with individual probabilities.

The support of F is a finite, or countably infinite set Θ⊆ [0,1]. Let us denominate these

atoms in their natural order, θ1 < θ2 < ·· · . If the set is finite, there is a highest point θn.

We denote the probabilities of these types with p1, p2, . . . , with
∑

i pi = 1. Equivalently, we

could define an extension of the distribution function to the convex hull of its support,

Θ = [θ1,sup{θ1,θ2, . . . }], as F(θ) = ∑ j(θ)
i=1 pi, where j(θ) is the smallest integer such that

θ j(θ) É θ.

Proposition 4 Suppose the domain Θ of F is a countable set. Then a pooling equilibrium

(Rmon,θmon) exists.
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Proof. The maximization problem boils down to choosing an index m such that Θmon =
{θ1, . . . ,θm}. If Θ is a finite set, Θ = {θ1, . . . ,θn}, one can compute the bank’s profit for

the n+1 different possibilities (for m varying from 0 to n), and then trivially pick the

index that produces the greatest profit. If Θ is countably infinite, we are guaranteed the

existence of maximal element by Zorn’s lemma. QED

4.2.3 General existence result

In general, a distribution can have an uncountable domain, and still feature some atoms.

For instance, consider this distribution,

F(θ)=


θ/2 if θ < 1/2,

θ/2+1/2 if θ Ê 1/2.

This is a uniform distribution on the unit interval, with a mass of probability one half at

θ = 1/2. F is not continuous at this point, but F is also not a step function, so propositions 3

and 4 do not apply.

Consider another, more intricate example: Let αi = 1/i and pi = 2−(1+i) for i ∈ N.

Note that
∑∞

i=1 pi = 1/2. Let furthermore j(θ) be the smallest index such that α j(θ) É θ.

Then,

F(θ)= θ

2
+

j(θ)∑
i=1

pi

is a distribution with a continuous component, as well as infinitely many atoms.

We now show that existence of a pooling equilibrium extends also to these cases.

Proposition 5 A pooling equilibrium (Rmon,θmon) exists.

Note that this proposition places no restrictions on F. It need not be continuous, and may

or may not contain (in)finitely many atoms.

Proof. Proposition 3 covers the case if F is continuous. Proposition 4 covers the problem
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for a discrete type space. What remains is mixed cases with an uncountable support, as

well as atoms.

Denote the atoms and their probabilities with αi and pi, respectively, and ordered

according to their location (so αi <αi+1. If the set of atoms is finite, we add an ultimate

atom αn+1 = 1 with zero probability, pn+1 = 0. If α1 > 0, we add an atom α0 with probability

zero, p0. If α1 = 0, we relabel all atoms by decreasing their labels by one, αi 7→αi−1 and

pi 7→πi−1, for i = 1,2, . . . .

Consider now a restriction of the distribution to the set Θi := [αi,αi+1) and the profit

function from (17),

π(θ̃) := F(θ̃)
((

1−E[
θ | θ É θ̃

])(
Y − V

1− θ̃

)
−ρ

)
, (18)

but constrained to θ̃ ∈ Θi. π is continuous on this domain. Let Θ̄i be the compact

hull of Θi (so Θ̄i = [αi,αi+1]), and let π̄i be the continuous extension of π on Θ̄i (so

π̄i(αi+1)= limθ̃→αi+1
π(θ̃)).

The function π̄ is now a continuous function on a compact domain Θ̄i, and thus

attains a maximum

θ∗i = arg max
θ̃∈Θ̄i

π̄i(θ̃). (19)

We do this for all i = 0,1,2, . . . and therefore get a collection of local maximizers,

(θ∗0 ,θ∗1 ,θ∗2 , . . . ), and their corresponding maxima, (π̄0(θ∗0 ), π̄1(θ∗1 ), π̄2(θ∗2 ), . . . ). We pick the

interval i that features the largest local maximum and denote it with m, so π̄(θ∗m)Ê π̄i(θ∗i ),

for all i.

It remains to show that θ∗m is not the upper bound of Θ̄m, because the local upper

bounds were extended and are not true values for the profit function (18). In other words,

we have to show that the profit function does not ‘jumps down’ on atoms (it has to be
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right-continuous). To see this, note that (18) can also be written as follows,

π(θ̃) :=
∫ θ̃

0
ψ(θ, θ̃)dF(θ), where

ψ(θ, θ̃) := (1−θ)
(
Y − V

1− θ̃

)
−ρ.

Note that the integrand ψ is continuous. Consider an atom (αi+1, pi+1). As θ̃ ↑αi+1, ψ(θ, θ̃)

changes continuously. But in the limit, there is pi+1 more mass (the distribution function

F is right-continuous). As long as ψ(θ, θ̃)Ê 0, the profit function π cannot ‘jump down.’ In

fact, it will jump up by ψ(θ, θ̃)αi+1. ψ(θ, θ̃)Ê 0 is ensured by profit maximization. Hence,

if for some interval Θ̄i, the local maximizer θ∗i happens to be the extended point on the

upper bound of Θ̄i, i.e. αi+1, then Θ̄i cannot be the interval containing the greatest local

maximum (i 6= m), because π(αi+1)> π̄i(αi+1). QED

Proposition 6 θmon < θsoc. In words, the bank will never lend to θsoc type firms.

Proof. First note that θmon É θsoc. Because if θmon > θsoc, the bank can increase its profit

by charging a marginally higher pooling interest rate that would drive out the firms

producing negative surplus. By such an increase in the interest rate, the bank gains

not only because the loss making borrowers are driven out but also now it is charging

higher interest rate to better borrowers as well. What’s left to be shown is that θmon 6= θsoc.

Suppose θmon = θsoc. Let the bank marginally decreases the maximum default probability

it allows to lend by choosing not to serve θsoc. Note that the marginal social value of θsoc

is zero by definition. Therefore, the marginal loss in the expected profit of the bank by not

serving θsoc, by definition is 0. The marginal gain in the expected profit by not serving

θsoc is however strictly positive as Rsoc < Rfb(θ̃) ∀θ̃ < θsoc. Therefore, there is a net gain in

the bank’s expected profit if the bank chooses not to serve θsoc. QED

Proposition 6 shows there is always a potential inefficiency in the sense that θmon <
θsoc. Normally this will mean that there is a welfare loss as well, but it is possible that

the distribution is such that there are no agents in a neighborhood of θsoc. In such a case,
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the monopolistic equilibrium may deliver the same total surplus as the social planner

could provide. We present such an example later.

5 Examples

In this section we elaborate on some concrete examples in order to convey some intuition

about the properties of the equilibrium.

5.1 Uniform and power distributions

Let Θ = [0,1], ρ = 1, V = 2, Y = 4, F(θ) = θn. n = 1 is the uniform distribution. Table 1

presents three cases with n = 0.5, n = 1 and n = 2. The efficient allocation is to finance

all projects up to default probability θsoc = 0.25. Few observations are clear: θmon < θsoc

for all the three cases as established in proposition 6. Rmon is decreasing in n as with

higher density at lower θ (i.e. with lower n) the bank has more incentives to charge higher

interest rate to the good borrowers. This means as n increases the difference θsoc−θmon

also becomes smaller and therefore the welfare loss in absolute terms is also lower.

Table 1: Welfare loss with power distributions

n 0.5 1 2
θsoc 0.25 0.25 0.25
Rsoc 1.333 1.333 1.333

welfare 0.3333 0.1250 0.0208
θmon 0.1130 0.1520 0.1880
Rmon 1.7452 1.6415 1.5369

bank’s profit 0.2284 0.0785 0.0122
firms’ rents 0.0571 0.0272 0.0055
welfare loss 0.0478 0.0192 0.0032

in % 14.35% 15.37% 15.40%

5.2 An example with discrete distribution and no welfare loss

Consider the discrete distribution with three types, (θ1,θ2,θ3) = (0,0.5,1). Each of the

types has equal probability. Y = 5, V = 1.5, and ρ = 1. The social surplus, (1−θ)Y −ρ−V ,
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of the three projects is, respectively, 2.5, 0, and −2.5. The social planner is therefore

indifferent between financing type 1 only or type 1 and type 2.

The monopolist bank can choose to finance none, only type 1, type 1 and 2, or all

three types. The interest rate of these three pooling contracts, and the resulting profit for

the bank, are shown in Table 2.

Table 2: Monopolist’s choice.

R π

none > 3.5 0
1 3.5 0.833

1 & 2 2 0.333
1 & 2 & 3 −∞ −∞

The monopolist bank will therefore finance only type 1. Financing type 1 and type 2

is strictly worse for the bank than financing only the best project. Yet, the social value of

these two allocations is identical because the social value of the type 2 project is zero (the

private value of financing type 2 as well is lower for the bank, because it would need to

lower the interest rate from 3.5 to 2.0 also for the type 1 projects). This is an example in

which the unregulated monopolist bank with incomplete information happens to choose

an allocation that maximizes social welfare.

5.3 Uniform distribution with atoms

Finally, we explore the case of a continuous distribution which also feature mass points or

atoms. We consider a simple example where we start with a discrete distribution and the
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uniform distribution,

F1(θ)=



1/10 if θ = 0

3/10 if 0< θ É 1/5

5/10 if 1/5< θ É 2/5

7/10 if 2/5< θ É 3/5

9/10 if 3/5< θ É 4/5

1 if θ = 1,

F2(θ)= θ.

We construct a mixed distribution by using a weighted average of these two,

F(θ)= wF1(θ)+ (1−w)F2(θ).

If w = 0 we have the uniform distribution, if w = 1 we have a purely discrete distribution.

For intermediate values, we get a distribution with a continuous type space but which

also contains some mass points.

Figure 1: Continuous distribution with a bunch of mass points.

Figure 1 shows the distribution and the bank’s payoff function for w = 0.5, ρ = 1,

V = 2, Y = 6. We see that the payoff function never “jumps down,” as shown in the proof
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of Proposition 5.

6 Conclusion

In this paper we have presented a model of monopolistic credit market under asymmetric

information that results in equilibrium under-investment explaining why market power

is associated with inefficiently low access to credit. We establish existence of equilibrium

under very general conditions. Our equilibrium has three important characteristics:

(i) The monopolist bank never uses collateral as a screening device implying it does not

indulge in price discrimination. (ii) Since the bank does not separate between borrowers

the only possible equilibrium is pooling with all the borrowers paying same interest rate.

(iii) The interest rate that the monopolist sets is in general quite high that some socially

productive firms can not access the credit.

Our model is a considerable generalization of the literature on banks in which the

borrower heterogeneities lead to ordering of return distribution in the first-order stochastic

dominance sense. In particular, we generalize Besanko and Thakor (1987) to completely

arbitrary distributions — discrete, continuous, or mixed. We also estimate the deviation of

the monopoly equilibrium from the social first best identifying ‘deserving’ firms that would

not be financed by the monopolist. These results point that the institutional reforms such

as formalization of asset ownership, most famously advocated by De Soto (2000), are not

enough for enhancing credit access.
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