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Abstract: The majority of classic SPC methodologies assume a steady-state (i.e., static) 

process behavior (i.e., the process mean and variance are constant) without the influence 

of the dynamic behavior (i.e., an intended or unintended shift in the process mean or 

variance). Traditional SPC has been successfully used in steady-state manufacturing 

processes, but these approaches are not valid for use in dynamic behavior environments. 

The goal of this paper is to present the process monitoring and adjustment methodologies 

for addressing dynamic behavior problems so that system performance improvement may 

be attained. The methodologies will provide a scientific approach to acquire critical 

knowledge of the dynamic behavior as well as improved control and quality, leading to the 

enhancement of economic position. The two major developments in this paper are: (1) the 

characterization of the dynamic behavior of the manufacturing process with the 

appropriate monitoring procedures; and (2) the development of adaptive monitoring 

procedures for the processes [for example, using trend charts (e.g., linear model) and time 

series charts (e.g., ARIMA models)] with a comparison between univariate and multivariate 

control charts. To provide a realistic environment for the development of the dynamic 

behavior monitoring and adjustment procedures, the cold rolling process is adopted as a 

test bed. 
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1 Introduction 

Statistical process control (SPC) has played a major role in controlling the product 

quality for decades since Shewhart (1931) illustrated the technique of the control 

chart by applying statistical concepts in the manufacturing process. Driven by 

global competition and evolving customer needs and expectations, manufacturing 

systems today have witnessed a significant increase in dynamic behavior and 

unstable state (i.e., an attempt to shift the process from one operating level to 

another).  

The majority of the body of SPC methodologies assume a steady-state process 

behavior, i.e., without the influence of the dynamic behavior (Grant & 

Leavenworth, 1996; Box & Luceno, 1997). Traditional SPC has been successfully 

used in the steady-state manufacturing processes, but recently these approaches 

are being reevaluated for use in the dynamic behavior environment. Quality control 

activities should not disturb the flow of the production process. That is, the way by 

which the process control approach collects, stores, analyzes and presents quality 

related information must cope with the nature of the process. Recently, the use of 

SPC methodologies to address the process that are in dynamic behavior mode has 

started to emerge. 

The standard assumptions in SPC are that the observed process values are 

normally, independently and identically distributed (IID) with fixed mean μ and 

standard deviation σ when the process is in control. Due to the dynamic behavior, 

these assumptions are not always valid. The data may not be normally distributed 

and/or autocorrelated, especially when the data are observed sequentially and the 

time between samples is short. The presence of autocorrelation has a significant 

effect on control charts developed using the assumption of independent 

observations. Alwan (1992) investigated the impact of autocorrelated data on the 

traditional Shewhart chart and reported an increased number of false alarms. 

Elsayed (2000) suggested that there is a tremendous need for improvement in the 

http://www.jiem.org
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area of SPC in industries such as the food, chemical, automotive and 

manufacturing industries, given that these industries inherently deal with 

numerous variables which are highly correlated. 

In many publications, various authors such as Coleman (1997) and Box and Luceno 

(1997) showed that normality cannot exist in practice. These authors stress that 

recent developments on control charts still have a “potential drawback” due to the 

fact “that they are based on the assumption of normal process data”. Coleman 

(1997) strongly believes that in industry the normality assumption is unbelievable, 

therefore as he has stated “distribution-free SPC is what we need” to remove the 

normality assumption required in current methods.  

In reality, manufacturing systems are often influenced by many known or unknown 

disturbances. The process means may even be subject to non-stationary drifts 

(Box & Kramer, 1992). For the specific problem of dynamic behavior, Nembhard 

and Mastrangelo (1998) and Nembhard, Mastrangelo, and Kao (2001) proposed an 

integrated process control (lPC) technique that combines engineering process 

control (EPC) and SPC on noisy dynamic systems. There is a research topic that 

has targeted the detection of a linear trend using EWMA and CUSUM control charts 

(Bissell, 1984; Aerne, Champ, & Rigdon, 1991). Ogunnaike and Ray (1994) 

proposed an additive stochastic disturbance assumption for the dynamic process. 

This assumption is widely used in modeling dynamic industrial processes. 

A cold rolling process is an integral part of this paper because it (as most metal 

forming processes) undergoes many disturbances and dynamic behavior during the 

production, so it provides a real environment for the development of dynamic 

behavior monitoring and adjustment procedures. Some software packages such as 

MINITAB 14, Statgraphics Centurion XV, and SolidWorks 2007 were used in this 

work. 

2 Univariate control charts 

One major drawback of the Shewhart chart is that it considers only the last data 

point and does not carry a memory of the previous data. As a result, small changes 

in the mean of a random variable are less likely to be detected rapidly. 

Exponentially weighted moving average (EWMA) chart improves upon the detection 

of small process shifts. Rapid detection of small changes in the quality 
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characteristic of interest and ease of computations through recursive equations are 

some of the many good properties of EWMA chart that make it attractive.  

EWMA chart was first introduced by Roberts (1959) to achieve faster detection of 

small changes in the mean. The EWMA chart is used extensively in time series 

modeling and forecasting for processes with gradual drift (Box, Jenkins, & Reinsel, 

1994). It provides a forecast of where the process will be in the next instance of 

time. It thus provides a mechanism for dynamic process control (Hunter, 1986). 

The Exponentially Weighted Moving Average (EWMA) is a statistic for monitoring 

the process that averages the data in a way that gives exponentially less and less 

weight to data as they are further removed in time. EWMA is defined as: 

1)1( −−+= iii ZXZ λλ   with   0 ≤  λ < 1,  00 µ=Z   (1) 

It can be used as the basis of a control chart. The procedure consists of plotting 

the EWMA statistic 𝑍𝑍𝑖𝑖 versus the sample number on a control chart with center line 

CL= 𝜇𝜇0 and upper and lower control limits at  

2
0 [1 (1 ) ]

2
i

XUCL k λµ σ λ
λ

= + − −
−

     (2) 

2
0 [1 (1 ) ]

2
i

XLCL k λµ σ λ
λ

= + − −
−      

(3) 

The term [1- (1 - λ )
i2
] approaches unity as i gets larger, so after several sampling 

intervals, the control limits will approach the steady state values 

0 2XUCL k λµ σ
λ

= +
−        

(4) 

0 2XLCL k λµ σ
λ

= −
−        

(5) 

The design parameters are the width of the control limits k and the EWMA 

parameter λ. Montgomery (2005) gives a table of recommended values for these 

parameters to achieve certain average run length performance. 
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Rather than basing control charts on ranges, a more modern approach for 

monitoring process variability is to calculate the standard deviation of each 

subgroup and use these values to monitor the process standard deviation (σ). This 

is called an S chart. When an S chart is used, it is common to use these standard 

deviations to develop control limits for the control chart. Typically, the sample size 

used for subgroups is small (fewer than 10) and in that case there is usually little 

difference in the control charts generated from ranges or standard deviations. 

However, because computer software is often used to implement control charts, S 

charts are used quite commonly (Montgomery & Runger, 2003) 

Let the sample mean for the ith sample be iX . Then we estimate the mean of the 

populationµ , by the grand mean 

∑
=

==
m

i
iX

m
X

1

1µ         (6) 

Assume that there are m preliminary samples available, each of size n, and let 𝑆𝑆𝑖𝑖 

denote the standard deviation of the ith sample. Define: 

∑
=

=
m

i
iS

m
S

1

1         (7) 

Now, once we have computed the sample values 𝑋𝑋� and 𝑆𝑆�, the center line and upper 

and lower control limits for 𝑋𝑋� control chart are: 

SAXUCL 3+=  XCL =  SAXLCL 3−=    (8) 

The center line and upper and lower control limits for S control chart are: 

SBLCLSCLSBUCL 34 ===     (9) 

where the constant A3, B3 and B4 are tabulated for various sample sizes. 

The LCL for S chart calculated by equation (9) may be negative when the sample 

size is small. In this case, it is customary to set LCL to zero. X-bar and S control 

charts are preferred when the sample size is greater than 10. 

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n3.p464-498


 
doi:10.3926/jiem.2009.v2n3.p464-498  ©© JIEM, 2009 – 2(3): 464-498 - ISSN: 2013-0953 

 

Univariate and multivariate control charts for monitoring… 469 

S. Haridy; Z. Wu 

In many situations, the sample size used for process control is n = 1; that is,  

the sample consists of an individual unit (Montgomery & Runger, 2003). In such 

situations, the individuals control chart is useful. The control chart for individuals 

uses the moving range of two successive observations to estimate the process 

variability. The moving range is defined as 𝑀𝑀𝑀𝑀𝑖𝑖 = |𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑖𝑖−1| and an estimate of σ is 

128.12

^ MR
d
MR

==σ         (10) 

because d2 is equal to 1.128 when two consecutive observations are used to 

calculate a moving range. It is also possible to establish a control chart on the 

moving range using D3 and D4 for n = 2. 

The center line and upper and lower control limits for a control chart for individuals 

are 

128.1
33

2

MRX
d
MRXUCL +=+=   XCL =   

128.1
33

2

MRX
d
MRXLCL −=−=  (11) 

and for a control chart for moving ranges 

MRMRDUCL 267.34 ==     MRCL =      03 == MRDUCL  (12) 

3 Multivariate control charts 

Multivariate analyses utilize the additional information due to the relationships 

among the variables and these concepts may be used to develop more efficient 

control charts than the simultaneous operation of several univariate control charts. 

The most popular multivariate SPC charts are the Hotelling's T2 and multivariate 

exponentially weighted moving average (MEWMA) (Elsayed, 2000). Multivariate 

control chart for process mean is based heavily upon Hotelling's T2 distribution, 

which was introduced by Hotelling (1947). Other approaches, such as a control 

ellipse for two related variables and the method of principal components, are 

introduced by Jackson (1956) and Jackson (1959). 

Hotelling's T2 distribution is the multivariate analogue of the univariate t 

distribution for the use of known standard value µ or individual observations 
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[(Sultan, 1986), (Blank, 1988), and (Morrison, 1990)]. One of the first researchers 

in the area of multivariate SPC was Hotelling (1947) whose research explored 

multivariate quality control.  

Under the null hypothesis of the process being in control and the assumption  

of independent identical multivariate normality, the chart statistic follows 

Hotelling's T2 

2 ' 1
, 1

( 1)( 1)( ) ( )
1

i i p mn m p
p m nT n x x S x x F
mn m p

−
− − +

− −
= − − ≈

− − +    (13) 

Alt (1985) pointed out that it is important to carefully select the control limit to 

guarantee the process is in control in Phase I. After parameter estimation, a 

preliminary charting for Phase I samples should be run to see whether the chart is 

well constructed, before stepping into Phase II to monitor the future samples. The 

control limits are set according to the specified level of significance: 

, , 1
( 1)( 1)

1 p mn m p
p m nUCL F
mn m p α − − +

− −
=

− − +      
(14) 

And since usually the shift in mean vector and the increase of covariance are of 

interest, LCL=0. The chart signals when T2 > UCL. After confirming the process is 

in control, then in Phase II, the Hotelling T2 becomes, with future sample mean 

(�̅�𝑥𝑗𝑗 ), of size n: 

2 ' 1
, 1

( 1)( 1)( ) ( )
1

j j p mn m p
p m nT n x x S x x F
mn m p

−
− − +

− −
= − − ≈

− − +    (15) 

Similar to that in Shewhart chart, although the Phase II samples and their 

mean, �̅�𝑥𝑗𝑗 , are independent, the T2 for different Phase II samples are not 

independent of each others because they share the same Phase I grand mean x  

and pooled covariance matrix 𝑆𝑆̅  . 

In Phase II, however, the statistic still has an F distribution: 

2 ' 1
,2

( 1)( 1)( ) ( )j j p m p
p m mT x x S x x F

m mp
−

−

+ −
= − − ≈

−
    (16) 
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But usually )(2 pχ  can be used to approximate the distribution when m is large. 

This chi-square approximation makes more conservative control limits than the 

original F distribution. 

A straightforward multivariate extension of the univariate EWMA control chart was 

first introduced by Lowry, Woodall, Champ, and Rigdon (1992). They developed a 

multivariate EWMA (MEWMA) control chart. It is an extension to the univariate 

EWMA, 

1)( −Λ−+Λ= iii ZIXZ        (17) 

Where I is the identity matrix, 𝑍𝑍𝑖𝑖 is the ith EWMA vector, 𝑋𝑋�𝑖𝑖 is the average ith 

observation vector i = 1, 2, ..., n, Λ  is the weighting matrix. 

The plotting statistic is 

iZii ZZT
i

1'2 −Σ=         (18) 

Lowry, Woodall, Champ & Rigdon (1992) showed that the (k,l) element of the 

covariance matrix of the ith EWMA, ZiΣ , is 

lk
lklk

i
l

i
k

lkZi lk ,][
])1()1(1[

),( σ
λλλλ
λλ

λλ
−+

−−−
=Σ      (19) 

where ,k lσ  is the (k,l)th element of Σ , the covariance matrix of the X 's. 

If 1 2 ....... Pλ λ λ λ= = = = , then the above expression is simplified to: 

Σ−−
−

=Σ ])1(1[
2

2i
Zi λ

λ
λ        (20) 

where Σ is the covariance matrix of the input data. 

There is a further simplification. When i becomes large, the covariance matrix may 

be expressed as: 

Σ
−

=Σ
λ

λ
2Zi         (21) 
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Process variability is defined by the covariance matrix, p p×Σ where the main 

diagonal elements are the variances of the individual process variables, and the 

off-diagonal elements are the covariances. There are two procedures to control the 

process variability: the first procedure is a direct extension of the univariate S2 

control chart and the second one is based on the sample generalized variance S . 

This statistic, which is the determinant of the sample covariance matrix, is a widely 

used measure of multivariate dispersion. Montgomery and Wadsworth (1972) 

suggested a multivariate control chart for process dispersion based on the sample 

generalized variance, S . The approach uses an asymptotic normal approximation 

to develop a control chart for S . For this method the parameters of the control 

chart are (Montgomery, 2005): 

( )( )1/2
1 1 2/ 3UCL S b b b= +  

CL S=         (22) 

( )( )1/2
1 1 2/ 3UCL S b b b= −  

where: 

1
1

[1/ ( 1) ] ( )
p

p

i

b n n i
=

= − −∏        (23) 

and 

2
2

1 1 1

[1/ ( 1) ] ( )[ ( 2) ( )]
p p p

p

i j j

b n n i n j n j
= = =

= − − − + − −∏ ∏ ∏    (24) 

4 SPC of autocorrelated observations 

Conventional control charts are based on the assumption that the observations are 

independently and identically distributed (IID) over time. With increasing 

automation, however, inspection rates have increased. Consequently, data are 

more likely to be autocorrelated, which can significantly deteriorate control 

charting performance. It was shown that autocorrelation deteriorates the ability of 
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the Shewhart chart to correctly separate the assignable causes from the common 

causes (Alwan, 1992). 

There are circumstances where the underlying independence assumptions for the 

Shewhart control charts are violated, i.e., the observations are autocorrelated. This 

is a common consequence of processes that are driven by inertia forces in process 

industries and frequent sampling in the parts industries (Montgomery, 2005). 

Several authors including Alwan and Roberts (1988), Alwan (1992), and Harris and 

Ross (1991) have shown that in the presence of autocorrelation, the traditional 

control charts will increase the false alarm rates. When applying control charts to a 

process, it is pertinent to understand the process characteristics and acknowledge 

the violations of the assumptions. Given measurements, Y1, Y2,..., YN at time X1, 

X2, ..., XN, the lag k autocorrelation function is defined as 

∑
∑

=

−

= +

−

−−
= N

i i

kN

i kii
k

YY

YYYY
r

1
2

1

)(

))((
      (25) 

Two approaches have been advocated for dealing with the autocorrelation. The first 

approach uses standard control charts on original observations, but adjusts the 

control limits and the methods of estimating parameters to account for the 

autocorrelation in the observations (VanBrackle & Reynolds, 1997; Lu & Reynolds, 

1999). This approach is particularly applicable when the level of autocorrelation is 

not high. A second approach for dealing with autocorrelation fits time series model 

such as ARIMA models to the process observations. The procedure forecasts 

observations from previous values and then computes the forecast errors or 

residuals. 

5 Special control charts 

When the values of a variable are intended to have a special fit or trend, the 

standard control charts may not be suitable for monitoring this variable. In this 

case, a regression should be used to determine the best fit of the data. Then, a 

special control charts can be applied for monitoring the variable taking into 

consideration the best fit of the data. The most common special control charts are 

Trend control charts and ARIMA control charts which depend respectively on the 

linear models and ARIMA models. 
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Regression can be used for prediction (including forecasting of time-series data), 

inference, hypothesis testing, and modeling of causal relationships. These 

applications of regression rely heavily on how the underlying assumptions are 

satisfied. Regression analysis has been criticized as being misused for these 

purposes in many cases where the appropriate assumptions can’t be verified to 

hold. One factor contributing to the misuse of regression is that it can take 

considerably more skill to critique a model than to fit a model (Cook & Weisberg, 

1982).  

Box and Jenkins (1970) consolidated many commonly used time series techniques  

into a structured model-building process that emphasizes simple, parsimonious 

models. The time series models used in Box-Jenkins forecasting are called 

autoregressive-integrated-moving average models, or ARIMA models for short. To 

encompass the diverse forecasting applications that arise in practice, this class of 

models has to be, and is, very large. For example, that exponential smoothing, 

autoregressive models, and random-walk models are all special forms of ARIMA 

models. 

Box-Jenkins modeling relies heavily on the use of three familiar time series tools: 

differencing, autocorrelation function (acf), and partial autocorrelation function 

(pacf). Differencing is used to reduce non-stationary series ones. The acf and pacf 

are then used to identify an appropriate ARIMA model and the required number of 

parameters. After the model is identified, parameter estimates are obtained; that 

is, the selected model is fit to the available data. The algorithm is based on the 

least square concept and usually requires several iterations before producing the 

desired estimates. It is necessary, therefore, to rely on computer programs to 

implement the Box-Jenkins procedure. ARIMA is a mix of autoregressive, 

integrated, and moving average terms in the same model (Farnum & Stanton 

1989). Autoregressive-integrated-moving average model of order p, d, and q, 

ARIMA (p, d, q) is: 

1 1
1 (1 ) 1

p q
i d i

i t i t
i i

L L X Lθ ε
= =

   
− Φ − = +   

   
∑ ∑      (26) 
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where 

L  = Xt-1/Xt    (lag operator). 

Xt  = the actual value of the series at time t. 

Xt-1  = the value of the series at time t-1. 

𝜀𝜀𝑡𝑡   = the error terms.  

Φ𝑖𝑖 = the autoregressive parameter.  

𝜃𝜃𝑖𝑖 = the moving average parameter.  

i  = an integer counter from 1 to p and q. 

When plotting a certain data, if a definite upward trend over time is detected, it is 

reasonable to conjecture that the model should contain a trend component. The 

simplest model with a trend component is a linear trend model: 

tt btaY ε++=         (27) 

Yt is the dependent variable, t is the independent variable, a, b are the parameters, 

tε  is an error term, and the subscript t indexes a particular data point. If we 

believe that the data can be described by a linear trend model, the next step is to 

determine which values of a and b best describe the process.  

We can then use the model 

btaFt +=          (28) 

to forecast the future value of Yt because the errors are assumed to average zero. 

From elementary statistics we know that if a random variable Y is a linear function 

of some variable X-that is, Y= a+bX, then for a give set of n paired observations of 

the variables 1 1( , ),..........., ( , )n nx y x y , the least squares estimators for a and b are 

∑ ∑
∑ ∑ ∑

−

−
=

22 )()(

))(()(

ii

iiii

xxn

yxyxn
b        (29) 
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n
xby

a ii∑ ∑−
=         (30) 

So, for the linear trend process in equation (27) we can treat time t as the variable 

X and Yt as the variable Y (Martinich, 1997). 

6 Practical Application and Discussion 

Cold rolling is a metal working process in which metal is deformed by passing it 

through rollers at a temperature below its recrystallization temperature (Figure 1 

and 2). Cold rolling increases the yield strength and hardness of a metal by 

introducing defects into the metal's crystal structure. These defects prevent further 

slip and can reduce the grain size of the metal, resulting in Hall-Petch hardening. 

The aim of the rolling process is to reduce the thickness of a strip to a desired 

value with a good dimensional accuracy, surface finish, and good mechanical 

properties. This is done by applying a force to the strip while moving through the 

roll gap. The most effective parameters in cold rolling processes are: rolling force, 

strip speed, and the resulting strip thickness (Reed-Hill, 1994). 

 

 

Figures 1 & 2. “Cold rolling process” & “Solid model for cold rolling process”. 

The application study of this paper was carried out in Galvametal Company which is 

located in Egypt. The hot rolled coil (as a raw material) is passed through a 

sequence of processes in order to obtain the cold rolled coils or the galvanized cold 

rolled coils. This sequence of processes is shown in Figure 3. 

http://en.wikipedia.org/wiki/Metal_working�
http://en.wikipedia.org/wiki/Recrystallization�
http://www.jiem.org
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Figure 3. “A flow chart of the rolling and the galvanization for coils”. 

6.1 Run charts 

Due to the nature of the cold rolling process, there are always disturbances and 

dynamic behavior, especially in the start and at the end of the rolling pass (that is 

why the well-known companies discard the start and the end of the cold rolled 

sheet). 

Run charts are constructed for the three variables in order to help in determining 

the zone of the pass (effective zone) in which the sheet is subjected to the actual 

deformation. 

From run charts, the common zone for the three variables was determined, and it 

will be the effective zone, which we will analyze. Random samples are taken from 

this zone at equal time intervals (25 samples of 5 observations each). 

Variables  
Characteristics Force (KN) Speed (m/min) Thickness (mm) 

Data of range 
368 observations  

ranging from 
703.0 to 963.0 

368 observations 
ranging from 
1.0 to 534.0 

368 observations 
ranging from 

0.874 to 1.068 
Median 888.5 457.5 0.97 

Table 1. “Range and median of force, speed, and thickness data”. 

http://www.jiem.org
http://dx.doi.org/10.3926/jiem.2009.v2n3.p464-498


 
doi:10.3926/jiem.2009.v2n3.p464-498  ©© JIEM, 2009 – 2(3): 464-498 - ISSN: 2013-0953 

 

Univariate and multivariate control charts for monitoring… 478 

S. Haridy; Z. Wu 

 

Figures 4 & 5. “Run chart for force” & “Run chart for speed”. 

 

Figure 6. “Run chart for thickness”. 

6.2 The descriptive method 

    Variables 

Lag 

Estimated Autocorrelation Coefficient 

Force Speed Thickness 

1 0.823852 0.187407 -0.134394 

2 0.797439 -0.0190827 -0.105766 

3 0.78677 0.263019 0.397511 

4 0.755361 0.0208762 -0.261638 

5 0.757208 -0.210713 -0.0582364 

6 0.69999 -0.035571 0.143712 

7 0.716157 0.246531 -0.304124 

8 0.694055 0.00438791 0.0749056 

9 0.667377 0.0831238 0.0606449 

10 0.673898 0.472185 -0.360614 

Table 2. “Estimated autocorrelation coefficients of force, speed and thickness”. 

http://www.jiem.org
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Figures 7 & 8. “Time series plot for force” & “Estimated autocorrelation for force”. 

 

Figures 9 & 10. “Time series plot for speed” & “Estimated autocorrelation for speed”. 

 

Figures 11 & 12. “Time series plot for thickness” & “Estimated autocorrelation for thickness”. 

These figures show the estimated autocorrelations between values of each variable 

at various lags. The lag k autocorrelation coefficient measures the correlation 

between values of each variable at time t and time t-k. Also shown probability 

limits around 0. If the autocorrelation estimate at a certain lag is outside the red 

95% probability limits on the autocorrelation graphs, then there is a significant 

autocorrelation at that lag. 

 

http://www.jiem.org
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6.3 Exponential weighted moving average (EWMA) charts 

         Variables 
Charts Force Speed Thickness 

S
 C

h
ar

t Period #1-25 #1-25 #1-25 
UCL:+3.0 sigma 4.37304 0.935127 0.00650956 
Centerline 2.09325 0.44762 0.00311595 
LCL:-3.0 sigma 0.0 0.0 0.0 
Out-of-control signals  0 0 0 

EW
M

A
  

C
h

ar
t 

Period #1-25 #1-25 #1-25 
UCL:+3.0 sigma 877.764 532.917 0.971954 
Centerline 876.768 532.704 0.970472 
LCL:-3.0 sigma 875.772 532.491 0.96899 

Out-of-control signals 6 above UCL 
16 below LCL 

0 above UCL 
2 below LCL 0 

Es
ti

m
at

es
 Period #1-25 #1-25 #1-25 

Process mean 876.768 532.704 0.970472 

*Process sigma 2.22693 0.476204 0.00331493 

Average S 2.09325 0.44762 0.00311595 

*Sigma estimated from average S with bias correction. 

Table 3. “EWMA and S charts parameters of force, speed, and thickness”. 

EWMA chart is designed to determine whether the process is in a state of statistical 

control or not. It is used for detecting small shifts. The control charts are 

constructed under the assumption that the subgroups are rationally formed and 

that the data is independent.  

 

Figures 13 & 14. “EWMA chart for force” & “S chart for force”. 

 

Figures 15 & 16. “EWMA chart for speed” & “S chart for speed”. 

http://www.jiem.org
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Figures 17 & 18. “EWMA chart for thickness” & “S chart for thickness”. 

6.4 Fitting models 

Variables 
 
 
Characteristics 

Force Speed Thickness 

ARIMA  
(3, 0, 2) 

Linear trend = 
867.919 + 0.140455 t 

ARIMA  
(3, 0, 2) 

ARIMA  
(3, 0, 2) 

S
ta

ti
st

ic
 

RMSE 2.46543 2.60214 0.414408 0.00280303 

MAE 1.98608 2.08854 0.332239 0.0021463 

MAPE 0.226464 0.238293 0.0623856 0.221233 

ME 0.169516 -7.18501E-14 -0.0001681 0.00000287 

MPE 0.0187374 -0.000870975 -0.0000887 -0.0004923 

P
ar

am
et

er
 AR(1) 0.099304  -0.0292211 -1.05671 

AR(2) 0.854016  -0.710946 -0.849484 

AR(3) 0.0789981  0.453948 0.133565 

MA(1) -0.050374  -0.296037 -1.1424 

MA(2) 0.817067  -0.82529 -0.926345 

Table 4. “Fitting models of force, speed, and thickness”. 

For ARIMA (3, 0, 2) model (where L = Xt-1/Xt): 

21321 )2()1(1])3()2()1(1[ LMALMAXLARLARLAR t ++≈−−−   (31) 

These models present the best regression for values of variables. The data cover 

125 time periods. An autoregressive integrated moving average (ARIMA) model 

has been selected for the three variables. This model assumes that the best 

regression for data is given by a parametric model relating the most recent data 

values to previous data values and previous noise. Also for the force data, a linear 

trend model has been selected. This model assumes that the best regression for 

future data is given by a linear regression line fit to all previous data. 

http://www.jiem.org
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Table 7 summarizes the performance of the currently selected model in fitting the 

historical data. It displays:  

(1)The root mean squared error (RMSE) 

(2) The mean absolute error (MAE) 

(3) The mean absolute percentage error (MAPE) 

(4) The mean error (ME) 

(5) The mean percentage error (MPE) 

The first three statistics measure the magnitude of the errors.  A better model will 

give a smaller value. The last two statistics measure bias. A better model will give 

a value close to zero. 

 

 

Figures 19 & 20. “Time sequence plot for force ARIMA (3,0,2) with constant” & “Estimated 

autocorrelation for force ARIMA (3,0,2) with constant”. 

 

Figures 21 & 22. “Time sequence plot for speed ARIMA (3,0,2) with constant” & “Estimated 

autocorrelation for speed ARIMA (3,0,2) with constant”. 

http://www.jiem.org
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Figures 23 & 24. “Time sequence plot for thickness ARIMA (3,0,2) with constant” & 

“Estimated autocorrelation for thickness ARIMA (3,0,2) with constant”. 

 

Figures 25 & 26. “Time sequence plot for force Linear trend = 867.919 + 0.140455 t” & 

“Estimated autocorrelation for force Linear trend = 867.919 + 0.140455 t”. 

ARIMA charts 

The ARIMA chart is designed to determine whether the process is in a state of 

statistical control or not. The control charts are constructed under the assumption 

that the data come from a time series set of observations. 

 

Figures 27 & 28. “ARIMA chart for force” & “MR(2) chart for force residual”. 

 

http://www.jiem.org
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         Variables 
Charts Force Speed Thickness 

M
R

(2
) 

C
h

ar
t 

Period #1-25 #1-25 #1-25 

UCL:+3.0 sigma 3.41748 0.48673 0.00411079 

Centerline 1.04597 0.148971 0.00125817 

LCL:-3.0 sigma 0.0 0.0 0.0 

Out-of-control signals 0 0 0 

A
R

IM
A

 C
h

ar
t 

Period #1-25 #1-25 #1-25 

UCL:+3.0 sigma 2.98774 0.638895 0.00444744 

Centerline 0.0 0.0 0.0 

LCL:-3.0 sigma -2.98774 -0.638895 -0.00444744 

Out-of-control signals 0 0 0 

Es
ti

m
at

es
 Period #1-25 #1-25 #1-25 

Process mean 868.112 532.694 0.9705 

*Process sigma 0.927276 0.132066 0.0011154 

Mean MR(2) 1.04597 0.148971 0.00125817 

*Sigma estimated from average S with bias correction. 

Table 5. “ARIMA and MR(2) charts parameters of force, speed and, thickness”. 

 

Figures 29 & 30. “ARIMA chart for speed” & “MR(2) chart for speed residual”. 

 

Figures 31 & 32. “ARIMA chart for thickness” & “MR(2) chart for thickness residual”. 
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The Trend chart  

Model I 

5
∑= iX

bar-X    i = 1 to 5    for 125 observations (32) 

i 0.140455  867.919XT +=   i = 1 to 125 observations  (33) 

 
X

bar-X iT
T 5
∑=    i = 1 to 5    for 125 observations (34) 

Tbar-Xbar-X(R) Residual −=       (35) 

1−−= jj RRMR    j = 1 to 25    subgroups  (36) 

/1.128)MR( 3-bar-X  LCL T=  

24
MR ∑= MR         (37) 

/1.128)MR( 3bar-X  UCL T +=  

Model II 

The model is provided by Applied Technology Company (www.e-AT-USA.com) for 

constructing Trend charts when a trend in the process is expected. 

           Variables 
Charts Model I Model II 

M
R

(2
) 

C
h

ar
t 

Period #1-25 #1-25 
UCL:+3.0 sigma 4.95552 4.95266 
Centerline 1.51671 1.51583 
LCL:-3.0 sigma 0.0 0.0 
Out-of-control signals 0 0 

Es
ti

m
a-

te
s 

Period #1-25 #1-25 
Process mean 876.7676 876.768 
*Process sigma 1.3446 1.34382 
Mean MR(2) 1.51671 1.51583 

*Sigma estimated from average moving range. 

Table 6. “Trend charts parameters of force”. 

http://www.e-at-usa.com/�
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The trend chart is designed to determine whether the process is in a state of 

statistical control or not. The trend control chart is used when a trend in the 

process is expected. X-bar, UCL, and LCL are constructed taking into consideration 

the linear regression line fit to all previous data to avoid any false alarms which 

may be resulted from the trend. 

 

Figures 33 & 34. “Trend chart (Model I) for force” & “MR(2) chart for force residual”. 

 

Figures 35 & 36. “Trend chart (Model II) for force” & “MR(2) chart for force residual”. 

6.5 The multiple variable analysis 

               Variables 
Characteristics Force Speed Thickness 

Force 
Correlation  0.2623 0.0705 
Sample Size  (125) (125) 
P-Value  0.0031 0.4347 

Speed 
Correlation 0.2623  -0.0080 
Sample Size (125)  (125) 
P-Value 0.0031  0.9290 

Thickness 
Correlation 0.0705 -0.0080  
Sample Size (125) (125)  
P-Value 0.4347 0.9290  

Table 7. “Correlation coefficients of force, speed, and thickness”. 
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Table 7 shows the Pearson product moment correlations between each pair of 

variables. These correlation coefficients range between -1 and +1 and measure the 

strength of the linear relationship between the variables. 

 

Figure 37. “Scatter plot for force, speed and thickness”. 

6.6 Multivariate control charts 

T2 chart for the primary data  

         Variables 
Charts Force, Speed and Thickness 

T-
S

q
u

ar
ed

 

Alpha 0.0027 

UCL 14.8496 

LCL 0.0 

Out-of-control signals 15 above UCL 

G
en

er
al

iz
ed

 
V

ar
ia

n
ce

 

Alpha 0.0027 

UCL 0.0000803403 

LCL 0.0 

Out-of-control signals 0 

Table 8. “T2 and generalized variance charts parameters for primary data”. 

T2 control chart is constructed for the primary data of the three variables. Unlike 

most control charts which treat variables separately, this chart takes into account 

possible correlations between the variables. The control limits have been placed so 

as to give a 0.27% false alarm rate. 
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Figure 38. “Control ellipsoid for T2 chart for the primary data”. 

 

Figures 39 & 40. “T2 control chart for the primary data” & “Generalized chart for the primary 

data”. 

EWMA chart for the primary data 

         Variables 
Charts Force, Speed and Thickness 

M
EW

M
A

 
λ:

 0
.2

 

Alpha 0.0027 

UCL 3.39 

LCL 0.0 
Out-of-control 
signals 22 above UCL 

G
en

er
al

iz
ed

 
V

ar
ia

n
ce

 Alpha 0.0027 

UCL 0.0000803403 

LCL 0.0 

Out-of-control 
signals 0 

Table 9. “MEWMA and generalized variance charts parameters for primary data”. 
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MEWMA control chart is constructed for the primary data of the three variables. 

Unlike most control charts which treat variables separately, this chart takes into 

account possible correlations between the variables. The control limits have been 

placed so as to give a 0.27% false alarm rate. 

 

 

Figure 41. “Control ellipsoid for MEWMA chart for the primary data”. 

 

Figures 42 & 43. “MEWMA control chart for the primary data” & “Generalized variance chart 

for the primary data”. 

T2 chart for the regressed data 

T2 control chart is constructed for the regressed data of the three variables. Unlike 

most control charts which treat variables separately, this chart takes into account 

possible correlations between the variables. The control limits have been placed so 

as to give a 0.27% false alarm rate. 
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         Variables 
Charts Force, Speed and Thickness 

T-
S

q
u

ar
ed

 

Alpha 0.0027 
UCL 14.8496 
LCL 0.0 
Out-of-control 
signals 0 

G
en

er
al

iz
ed

 
V

ar
ia

n
ce

 Alpha 0.0027 

UCL 0.0000522935 

LCL 0.0 

Out-of-control 
signals 0 

Table 10. “T2 and generalized variance charts parameters for regressed data”. 

 

Figure 44. “Control ellipsoid for T2 chart for the regressed data”. 

 

Figures 45 & 46. “T2 control chart for the regressed data” & “Generalized variance chart for 

the regressed data”. 

Multivariate EWMA chart for the regressed data  

MEWMA control chart is constructed for the regressed data of the three variables. 

Unlike most control charts which treat variables separately, this chart takes into 

http://www.jiem.org
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account possible correlations between the variables. The control limits have been 

placed so as to give a 0.27% false alarm rate. 

         Variables 
Charts Force, Speed and Thickness 

M
EW

M
A

 
λ:

 0
.2

 Alpha 0.0027 
UCL 3.39 
LCL 0.0 
Out-of-control 
signals 0 

G
en

er
al

iz
ed

 
V

ar
ia

n
ce

 Alpha 0.0027 

UCL 0.0000522935 

LCL 0.0 

Out-of-control 
signals 0 

Table 11. “MEWMA and generalized variance charts parameters for regressed data”. 

 

Figure 47. “Control ellipsoid for MEWMA chart for the regressed data”. 

 

Figures 48 & 49. “MEWMA control chart for the regressed data” & “Generalized variance chart 

for the regressed data”. 

7 Results and discussions 

From the above analysis of control charts, the following results can be obtained: 
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Univariate control charts  

• The analysis indicates that the force data are autocorrelated, the data are 

not independent, as shown in Figure 8. This typically causes sigma to be 

underestimated and hence generates very narrow control limits. This is the 

reason why there are so any 'out-of-control' points on the EWMA chart 

(Figure 13). Consequently, the independence assumption is false, so we 

can’t use EWMA control charts to assess process stability and we have to 

select another type of control procedures such as ARIMA chart (Figure 27) 

or Trend chart (Figures 33 and 35) to handle the non-independent data. 

• Both ARIMA and Trend control charts work well in monitoring the stability of 

the force data, because they use the actual regression and the best fit of 

the data (see Figures 19 and 25). 

• The analysis also indicates that both speed and thickness data are not 

autocorrelated, the data are independent, as shown in Figures 10 and 12. 

As a result, the independence assumption is true, and we can use EWMA 

control charts (Figures 15 and 17) to monitor the stability of these 

variables. 

• Both speed and thickness data are not autocorrelated, so ARIMA charts 

(Figures 29 and 31) will not be significantly better than EWMA charts in 

monitoring these data.  

Multivariate control charts  

• For the primary data, T2 and MEWMA control charts (Figures 39 and 42) 

show that the process is out-of-control. This is caused by the fact that both 

force and speed, as individual variables are ‘out-of-control’. 

• There is a weak correlation between speed and force (Table 7) with a small 

value (r = 0.26). So, the problems that we have seen in EWMA charts will 

not be fixed when the data are collected together in a multivariate chart. If 

there is chaos (i.e., lack of control) in input variables, then a multivariate 

chart will also be unstable unless the correlation between the input variables 

cancels out the instability when we aggregate them, which is unlikely. 
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• For the primary data, T2 and MEWMA control chart are not good approaches 

to assess the process stability. However, they may be good choices if we 

could remove factors that are causing the force and speed variables to be 

unstable.     

• For the regressed data, T2 and MEWMA control charts (Figures 45 and 48) 

are good techniques to assess the process stability because they take into 

consideration the nature and the fit of data (trend, autoregressive, 

exponential, etc.) 

• The results of multivariate control charts illustrate the results of univariate 

control charts. The univariate control charts were not valid for monitoring 

the actual data while they were valid for monitoring the regressed data. The 

multivariate control charts were not valid for monitoring the actual data 

while they were valid for monitoring the regressed data.  

Finally, the application study presents an optimum approach for investigating and 

adjusting quality control methodologies to monitor the manufacturing processes 

specially that are in a dynamic behavior mode such as rolling process. Hence, the 

required quality improvement can be obtained with the least costs and efforts if the 

appropriate corrective actions will be taken.  

8 Conclusions 

The dynamic behavior is often viewed as a disruption to the normal operation and 

performance of the manufacturing system. Because the control of dynamic 

behavior has been challenging and often elusive in practice, some industries use 

traditional statistical process control techniques which are not valid for monitoring 

the dynamic behavior. Others rely on experience and guesswork. Due to poor 

understanding and control of the dynamic behavior, large product and dollar loss 

often results. This paper presents an adjustment framework to advance the 

understanding and opportunities for improving the operations of dynamic behavior 

nature, which are difficult to be handled using traditional statistical process control 

methods because of the problems of the dynamic behavior such as temporal trend, 

non-normality and autocorrelation. Thus, this study provides a framework for 

statistical process control methods of such manufacturing process situations and 

develops techniques in order to improve their detection speed, sensitivity, and 
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robustness. The cold rolling process was chosen as the practical application for our 

study because it provides a real environment for the development of dynamic 

behavior monitoring and adjustment procedures. Based on the results of this 

investigation, it can be concluded that: 

• The run chart is an important tool for determining the effective zone of 

manufacturing processes that are in a dynamic behavior mode. 

• An autocorrelation test should be applied as an initial step in any practical 

application in order to understand the nature of the data and to have a good 

background of the optimum approach for analyzing it. 

o In absence of autocorrelation, the independence assumption is not 

violated and the traditional control charts (e.g., Shewhart charts) 

can be used for monitoring the manufacturing process and to assess 

its stability.  

o In presence of autocorrelation, the independence assumption is 

violated and the traditional control charts (e.g., Shewhart charts) 

can’t be used to assess process stability, and we have to select 

another type of control procedures (e.g., ARIMA charts) to handle 

the non-independent data.  

• When the traditional control charts are invalid for monitoring a certain data 

set, regressed models (e.g., linear model, and ARIMA model) might be 

helpful in constructing a control chart (Trend chart, and ARIMA chart) that 

takes the regression and the fit of the data into consideration. In this case, 

the control chart reflects the actual behavior of the manufacturing process 

and corrects the false alarm rates.  

• A correlation test should be a first step in multivariate process control in 

order to have a good understanding of the strength of the correlation 

between the variables and to know to what extent the multivariate 

monitoring is related to the individual monitoring of the variables. 

• If there is chaos (i.e., lack of control) in the input variables, then a 

multivariate chart will also be unstable unless the correlation between the 

input variables cancels out the instability when we aggregate them. 
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• The comparison between the univariate and the multivariate control charts 

indicates that they act as a compatible system for monitoring the 

manufacturing process. If the multivariate control chart detects a change, 

then the univariate control charts will be helpful in determining the 

characteristic, which caused this change.  

• This paper lays a solid foundation for future research into statistical process 

control methods for manufacturing processes in order to improve their 

detection speed, sensitivity, and robustness. Advancement in these areas 

will improve quality as well as saving money and time. 

9 Future Work 

Design of experiments (DOE) techniques can be used to study the settings of the 

process and to determine which factors have the greatest impact on the resultant 

quality and to discard the factors with less effect on the process. Such a 

combination between DOE and quality control will result in increasing productivity 

and improving quality in any business. 

Multi-objective optimization might be an effective technique when studying the 

quality control for a process of simultaneously two or more conflicting objectives 

which are subjected to certain constraints. That will be a good application of the 

combination between quality control and operations research. 

In driving toward automation and computer integrated manufacturing (CIM), 

industries are constantly seeking effective tools to monitor and control increasingly 

complicated manufacturing processes. Neural Networks (NN) might be promising 

tools for on-line monitoring of complex manufacturing processes. Their superior 

learning and fault tolerance capabilities enable high success rates for monitoring 

the manufacturing processes with eliminating the need for explicit mathematical 

modeling. 

Finally, we propose a simulation for quality control systems using a suitable 

software package such as ARENA. 
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