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I. INTRODUCTION

In his famous 1929 paper, "Stability in Competition" [121],
Hotelling presents a model of two firms competing to sell a homogeneous
product to customers spread evenly along a linear market. In equilibrium
the two duopolists locate very close to each other at the centre of the
market rather than being 1in the locations that would minimize
transport costs. Hotelling originally suggested that his model
explained a wide variety of social phenomena.

So general is this tendency that it appears in the

most diverse fields of competitive activity, even

quite apart from what is called economic 1ife. In

politics it is strikingly exemplified. The competition

for votes between the Republican and Democratic parties

does not Tead to a clear drawing of issues, an adoption

of two strongly contrasted positions between which the

voter may choose. Instead, each party strives to make

its platform as much 1ike the other's as possible.

Boulding [ 5].who appears to have been the originator of the

term-principle of minimum differentiation (called MD hereafter) to

describe Hotelling's result, is even more extravagant in his suggestions
as to the range of phenomena that are explained by the simple theoretical

modeI.(] )

This is a principle of the utmost generality. It
explains why all the dime stores are usually
clustered together, often next door to each other; why
certain towns attract large numbers of firms of one
kind; why an industry, such as the garment industry,
will concentrate in one quarter of a city. It is a
principle which can be carried over into other "differ-
ences" than spatial differences. The general rule for
any new manufacturer coming into an industry is "make
your product as Tike the existing products as you can
without destreying the differences." It explains why
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all automobiles are so much alike and why no manhu-

facturer dares make a car in which a tall hat can be

worn comfortably. It even explains why Methodists,

Baptists, and even Quakers are so much alike, and

tend to get even more alike.

Professor Hotelling's model has been criticized and extended in
the 40 odd years since its publication. It has also been applied to a number
of specific cases. Professor Steiner [23], for example, successfully uses it
to explain the similarity between the T.V. programs produced in Britain under
conditions of duopoly (with each duopolist controlling one channel) and the
variety of radio programs produced under monopoly (with the monopolist control-
1ing three stations).

In our own research we have set ourselves the task of examining
in a more systematic fashion than has been done to date the cases in which
the principle of minimum differentiation does or does not apply and of discov-
ing other principles applicable to small-group competition where neither MD
nor socially-optimal differentiation seems to occur. This paper reports on
our theoretical work and, although basic, we view it as pfe?im-
inary to the systematic empirical applications that are necessary to remove
the principie from the status of an interesting theoretical curiosity, with
facts used as illustrations rather than as controls for the formulation of a
satisfactory theory.

As a first step we consider how robust is the tendency toward MD in
the face of changes in the specification of the model that seem empirically
relevant, or otherwise interesting. Five assumptions in the Hotel 1ing model
seem critical:

(a) the nature of the consumers' demand (either one unit per period at

a parametric price or completely inelastic);
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(b) each firm adopts zero conjectural variation with respect to
the behavior of the other firm;

(c) the number of firms is restricted to two;

(d) the firms compete in a one-dimensional space that has boundaries
in each direction; and

(e) the customers are evenly spread throughout the market.

In this paper we study variations in assumptions (b), {(c), {(d), and

(e). Since the effects of altering assumption (a) have already been studied

;2;22%1V81y’ only cross-references plus very brief discussions are provided in this
We develop both one and two-dimensional models. Within each we
distinguish (a) bounded, (b) unbounded but finite, and (c) unbounded, infinite
spaces. Among other things,we show: in one-dimension the nature of the space
is not, as many investigators have thought, critical; in two-dimensions, how-
ever, the very existence of equilibrium is seen to depend upon the nature of
the space; the commonly-used rectangular customer density function yields
results that do not generalize to any other density function; the existence
of multiple equilibria in both one and two-dimensions is a pervasive phenomenon
in any of the spaces studied and MD occurs only when the number of firms is
restiteted to two.
Although the analysis and discussion are in terms of location theory
and are concerned with the relationship between equilibrium configuration of firms
and the transport-cost minimizing configuration, many of the results generalize
to other forms of differentiation. The conditions under which the results general-
ize are considered in the concluding section of the paper.

The paper is divided into parts: one-dimensional markets and two-

dimensional markets. It is necessary to consider one-dimensional markets at
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some lengthy first, because the analysis of such markets, although extensive
in the existing literature, is both incomplete and contains some serious
errorsy and, second, because the one-dimensional market provides a relative-
ly simple benchmark for comparison and contrast with the effects of relaxing
certain key assumptions in the context of two-dimensional markets. Neverthe-
less we have organized the paper so that the analysis of the two-dimensional
market is self-contained {other than for comparisons with the one-dimensional
case).

We first Tay out the assumptions of the basic model. All of these
assumptions are maintained throughout the paper except where brief consider-

ation is given to the effects of relaxing assumptions (ii) and (vi).

(i} Customers are distributed throughout the market according to a
customer density function c¢(X), in one dimension, and c(X,Y) in two dimensions
(where X and Y are distances measured from an aribitrary origin). The function

is assumed to be intégrable and once differentiable. Customers do not move.(z)
(i1) Each customer purchases one unit of the homogeneous product per

(3)

unit of time.

(ii1) The customers pay transport costs which are the same increasing

function of the distance from each firm to each customer.

(iv) Customers always buy from the firm that quotes the lowest delivered

price (mill price plus transport cost) no matter how small is the difference

(4)

between the delivered prices of different firms.

(5)

(v} A1l firms charge the same parametric mill price.
(vi) Production is at constant marginal cost which is Tess than the mill
price. Thus, the profit maximizing firm seeks to maximize the number of

(6)

customers that it serves.




-5 -

(vii) There are no costs of entry and the number of firms in the market
is arbitrarily restricted.(7)

(viii) There are no costs of relocation. Presented with the chance of
changing its Tocation to change its market from M] to MZ’ the firm will move
if M2 is preferred to M1; it will remain where it is if M1 is the same as or

preferred to MZ'
(ix) No more than one firm can occupy & given location.

{x) In choosing its location, the i-th firm conjectures either (a) that
all other firms will leave their own location unaltered; or (b) that some
other firm will change its location in a way that causes the maximum possible
reduction in the i-th firm's market. In case (b)'the i=th firm adopts a
minimax strategy (MM) seeking to retain the largest possible market after the

other firm has made its conjectured move.

Assumption {x) is crucial. Many writers are not explicit on this
important point, particularly in "free entry" mode]s.(8)The omission of an

assumption about conjectural variations is serious since equilibrium must

be undefined in the absence of such an assumption. How could one establish

an equilibrium without knowing the assumptions on which firms base their
behaviour? 1In most free entry models it is merely asserted, without an explicit
conjectural: variation assumption, that entry will proceed until profits dis-
appear. The correct procedure is to make some assumption about the firm's
behaviour and to deduce the equilibrium level of profits that results from
unrestricted entry. In fact, if firms have zero conjectural variations (ZCV)

in either one or two-dimensional space, free entry does not drive profits to
zero.(g)

Where conjectural variations have been used, the two assumptions

of ZCV and MM are frequently empToyed.(]O) Although not applicable
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" in all situations, ZCV -is' a reasonable assumption, either where the
equilibrium is approached very rapidly so that firms dé not have time to
leamntheir opponents reactions, or where relocation occurs with a long
time Tag (because, e.g., it is very costly) as with many locational
problems.

Before commencing our analysis a few terms that are used through-

out the paper need to be defined.
The market: The space over which potential customers are located.

The market boundaries: Limits beyond which the market does not extend.

A firm's market: The portion of the market within which the firm sells.
In our model this is the set of points closer to the firm than to any

other firm.

The i-th firm's market boundary: ({a) an interior boundary is the locus of

points that are equidistant from the i-th firm and one other firm, and not
closer either to any other firm or to some portion of the market boundary;
{b) an exterior boundary is that portion of the market boundary that is

closer to the i-th firm than to any other firm.

An interior firm: A firm whose entire market boundary is an interior

boundary.

A peripheral firm: A firm whose market boundary is an exterior boundary

over some of its range.

A firm's neighbours: A1l those firms with whom the firm shares a common

boundary.

Paired firms: Two firms are said to be paired when the distance between

them is as small as is permitted. The minimum permitted distance, &, is




arbiteary and its size is unimportant as long as it is "small" in relation
to the overall size of the market. What is important is that no third
firm can locate between two paired firms. Firms that are paired are also

said to be located back-to~back.

Minimum Differentiation: This is said to occur when all firms in the

market are separated from their neighbours by the distance é&.

Equilibrium: The i-th firm is in equilibrium when there is no location

that is preferred to its present location. The whole market is in equilibrium

whenever all n firms are individually in equilibrium.

II. ONE-DIMENSIONAL MARKETS

In the first part of our paper we analyze one-dimensional markets.

Some further definitions are required.

The i-th firm's market segment: If the i-th firm is an interior firm, its

market extends half the distance to its two neighbours. The length of an

interior firm's market is thus half the length of the interval between

its two neighbours wherever the firm locates within that interval. If it

is a peripheral, firm, its market extends all the way to the market boundary

in one direction and half way to its one neighbour in the other direction.

The sides of the i-th firm's market segment: The location of the i-th firm

divides its market segment into two sides. Where the two sides are unequal

they are referred to as the long and short sides of the firm's market. Each

side is also réferred to as a half-market (whether or not they are of equal

length).




The market areas of paired firms: When two firms are paired, the short

side of each of their markets #f &2. It is assumed for ease of analysis
that the short side of the market is zero for paired firms (actually it

goes to zero as § - o).

MODEL 1: The assumptions that distinguish this model are ZCV and a rectang-
ular customer density function (i.e., the customers are evenly spread along
the 1ine).
Definition: A firm is in equilibrium under ZCY when there is no move that
will increase the number of customers that it serves.

We first apply model 1 to a line of finite length which gives us
Hotelling's model. The length of the market is taken as unity, and its
boundaries are at 0 and 1. A1l distances are measured from the origin.

We refer to this type of market as bounded one-dimensional (B, 1-D), since

if we proceed far enough in either direction we eventually encounter a boundary
beyond which the market does not extend.

Figure 1 illustrates our definitions in this market. The firms
numbered 1 and 2 are paired; 1 dis a peripheral firmand 2 is an
interior firm. The boundary between firms 1 and 2 1is located at a point
Y distance from the market boundary. The long side of 1's market is Y
(equals 1's whole market). Firm 3 s located at 3Y. The boundary between
2 and 3 is at 2Y. Firm 2's Jlong $ide is thus Y (equals its whole
market) while the left hand side of 3's market is also Y (its right hand
side is not determined until firm 4 is located).

The necessary and sufficient conditons for equilibrium are:

(1-1) no firm's whole market is smaller than any other firm's half market;

(11)

(1-11) the two peripheral firms are paired.




The necessity of the two conditions is established by showing
that if they do not hold some firm will wish to move. Any firm can, by
a suitable move, capture a market equal in length to either half market of
any other firm, (e.g., if firm i pairs with firm j, firm j's relevant
half market becomes i's whole market.) Thus firm 1 must want to move
if its whole market is less than any other firm's half market (condition 1-1).

Since an unpaired peripheral firm can always increase its market by moving

toward its neighbour, it cannot be in equilibrium uniess condition (1-11)
holds.

Sufficiency of the two conditions is established by showing that
if they do hold no firm will wish to move. First consider a move within
the interval defined by the firm's present neighbours. The definition of
the i-th firm's market area shows that interior firms never gainby such
a move, and that peripheral firms always gain by a movement away from
- the market boundary and towards their one neighbour. There is, however, no

" scope for such movements by peripheral firms once condition (1-11) is
established. Second, consider a movement to an interior interval between
new neighbours j and k. Firm i would obtain half of that interval
as its market which is the same as the existing {equal) half markets of
§ and k within that interval. But by (1-i) firm 1i's present whole
market cannot be less than either j or k's relevant half markets. Thus
i cannot gain by a move to any other interior interval if (1-1) holds.
Finally, consider a movement into either of the peripheral market segments.
The best firm i could do would be to pair with the existing peripheral
firm gaining its relevant half market which by (1-i) cannot be larger than

i's present whole market.
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The application of these equilibrium conditdons to various
situations distinguished by the number of firms in the market is tricky.

It is necessary to consider some of the cases individually.

One Firm: The location of one firm is indeterminant. It captures the whole
market wherever it goes, and there is nothing in the model to make it prefer

one Tocation to another.

Two Firms: Both firms are peripheral firms and therefore, by condition (1-11)
they must be paired. Condition (141) dictates that they be paired at the

market's centre. This is Hotelling's MD case.

Three Firms: It is impossible to satisfy the equilibrium conditions when
there are three firms in the market. The only way to satisfy conditon (14i1)
is for both peripheral firms to be paired with the interior firm. But this
leaves the interior firm with a market area of virtually zero - a violation of
condition (1-i).(12)

Four Firms: Condition (1-i1) requires that the peripheral firms be paired

and condition (1-i) is satisfied only if the pairs are located at the

first and third quartiles. In this configuration, which is illustrated in
Figure 2(a),all four firms have equal market areas wholly concentrated in

their Tong sides.

Five Firms: The only possible equilibrium pﬁttern for five firms is obtained
by making firms 3 and n-2 in Figure 1 coincident - i.e., they are the
same firm. The resulting configuration is shown in Figure 2(b). The periph-
eral pairs are Tocated at 1/6 and 5/6 and one firm is in the centre of the
market. Firm 3 has a market of 1/3 divided into two half markets of 1/6.
Each of the other four firms has a market of 1/6 concentrated wholly on its

long side. This configuration gives - no incentive for any firm to move.
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Six Firms: With six or more firms the equilibrium configuration ceases to

be unique. Two 1imiting cases are shown in Figure' 2 (c) and (d). Both of these
exhibit the necessary symmetry shown in Figure 1. The first case, however,
minimizes the distance between the third and fourth firms and thereby maximizes
the market lengths of the four firms in the peripheral pairs. The second

Case maximizes the distance between 3 and 4 and thereby minimizes the

(equal) market lengths for peripheral pairs. 1In the first case, all six

firms have equal markets and in the second case the four firms in the

peripheral pairs have markets of 1/8 while the inner two firms have markets

of 1/4, and since they are located at the middle of these, theip half

markets of 1/8 just give no incentive for one of the outer firms to relocate

to capture one of them.

In equilibrium, firms 3 and 4 can be Separated by any distance

. between fhé éxfremes bf ¢ and ]/4!13) Firmé 3 ahd 4 mﬁsi bdfh Be §epéféted

from their heighbouring peripheral pair by the distance 2Y, but they can be
separated from each other by any distance up to 2Y. (If they are separated
by more than 2Y this gives them a long side of more than Y and creates an
incentive for the other firms to locate in the interval between 3 and 4.}

This means that firms 3 and 4 can have any market(]4)between 1/6 and 1/4]

The general case for six or more firms: In general there is an infinite

number of equilibria for each n > 5. The two extreme cases (and an intermediate
case) are illustrated for seven firms in Figure 2 (e), (f) and (g). 1In the
intermediate case the middle firm, firm 4, can be located anywhere between

4/9 and 5/9 without violating the equilibrium conditions.

To compiete the analysis of six or more firms, three questions need

to be answered. First, what is the range of possible market Tengths for the
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various firms that is compatible with equilibrium? Second, what are the
equilibrium configurations that minimize, and that maxfmize transport costs.
Third, how do total transport costs compare with the transpprt costs in the
socially-optimal configuration {the configuration that minimizes total trans-
port costs).

Two propositions follow 1mmediéte1y from the equilibrium conditions.
(1) No firm can have a market more than twice as Targe as any other firm's
market. (2} No firm can have a market smaller than Y - the market Tength
of the firms in the peripheral pairs.

The minimum and the maximum possible sizes of the i-th firm's
market depend upon the number of firms in the market, and upon whether or

not the i-th firm is a member of a peripheral pair. The bounds are(ls)

1 L 1
-4 - = P = n

1 L. 2
7n-6 = 1 s

where Lp is the Tength of the market of each of the firms in the peripheral

pairs and Li is the length of the market of any other single firm.(]ﬁ)

We now answer the second and third questions. The configuration
that minimizes transport costs(]7): has all firms spread out along the
Tine serving equal markets of length 1/n divided into equa@ half markets
of 2/n. Because the peripheral firms must be paired, this socially-optimal
configuration is not an equilibrium one. The equilibrium configuration

with the Towest transport costs has two firms paired at each end of the
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market and all other firms spread evenly throughout the market (for example,
(d) and (f) in Figure 2). The transport costs are at the minimum that would
be attainable if there were only n-2 firms in the market. What the config-
uration does is to'waste' the transport-cost-reducing potential of one of the
two firms in each of the peripheral pairs.

The configuration that maximizes transport costs has all firms
paired (or all but one if n is odd). The pairs of firms are located
at the socially-optimal Tocation for n/2 firms. This configuration thus
wastes the cost-reducing potential of every other firm and gives transport
costs that are exactly (n even) double those resulting from the socially-
optimal configuration.

We now test the basic conjecture that the behaviour of this model
depends critically on the nature of the space by transferring model 1 to
a circle whose circumference is uhity. This is a one-dimensional space, but
if we continue to move along it in one direction or the other we do not
encounter a boundary but instead return to our starting place. We refer to
this market as being unbounded, finite, one-dimensional (U, F, 1-D). Because
there are no boundaries, there are only interior firms; there are neither
peripheral firms'h§§?;ﬁé§%5§;iécaﬁ56hﬁi§féduéfeﬁéﬁéé;ﬁeéftézEdQﬁéafyfi;C§;§§tion
{1-1) is now the neéégéaf& aQGZSUfFTCiéhf céﬁ&{éfén"fof7e§Uf11brium;- |
One Firm: As on the Tine, the location of one firm is indeterminant, what-
ever the firm's location it gets the whole market.

Two Firms: Mo matter where the second Firm locates {t gets half the circle
as its market. Thus in contrast to (B, 1-D) space, any configuration is an

equilibrium one.

Three Firms: Unlike (B, 1-D) space, equilibrium configurations are possible
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for n = 3. The arc in which the third firm enters depends on the Tocation

of the first two firms. Place the first two firms arbitrarily at A and

B on the circle in Figure 3. C will now wish to enter on the longer of

the =two arcs between A and B and wherever it locates it gains half of

the arc as its own market. Some locations on this arc produce equilibrium

configurations; others do not. To identify these two sets of locations for

C in Figure 3, draw a diameter through A and a diameter through B 1inter-

secting the circle at C' and C". Any location for C in the arc C' C"

produces;éﬁ;equilibhﬁumtéﬁnffgﬁration;jfﬁﬁy‘iocation for € 1in the arc

BC' puts B inté disééu{iiﬁr;ﬁm;rénd”any location in the arc A C" puts

A into disequi]ibrium.(]s)
The multiplicity of equilibria persists as n 1is increased. As

with the 1ine for n > 5, all we can do is to place some limits on the size

of the firm's market. These bounds are

1 2
1) B S

where L is the length of the market arc for a single firm.(19)

Finally, we determine the minimum and maximum possible displacements
from the cost-minimizing location that are compatible with equilibrium on the
circle. Unlike the 1ine, the socially-optimal configuration is compatible with
equilibrium: all firms are equally spaced around the circle at a distance 1/n
apart and no firm has an incentive to relocate. The cost-maximizing Tocation
is the same as on the line: all firms are paired (nieven). The cost-reducing
potential of half the firms is wasted so that transport costs are twice what

they need to be.
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Hotelling's model has been important in the historical development
of the subject, and it is an interesting special case that has been applied
successfully to certain situations. For these reasons it may be worth

summarizing our conclusions.

(1) The boundedness of the space, does exert some influence-on the
behaviour of the model because it imposes the symmetrical configuration at
the market boundaries illustrated in Figure 1. A1l of the special results
on the Tine for n < 5 follow from the influence of the boundaries. (a) On
the circle, one or two firms are in equilibrium whatever their locations and,
for n > 2, there is an infinite number of configurations that fulfilltthe one
equilibrium condition (and an infinite number that do not). On the line one
firm is in equilibrium whatever its location; when n = 2, 4 or 5 there is
an unique equilibrium; when n = 3 there is no equilibrium. For n > 5 there
are more half markets than are required to produce the symmetry in Figure 1
and accordingly there is an infinite number of equi]ibria.(zo) (b) On the
Tine no firm can have a market smaller than the market of the four firms in
the peripheral pairs. There is no analogue to this result on the circle.

(c) On the circle, the socially-optimal configuration can be achieved for
any n. On the bounded line the pairing of the peripheral firms makes this
impossible (for any n > 1). Al1 firms other than those in two perﬁphéra1
pairs can, however, be spread out so as to be in the middle of equal markets.

Thus as n increases, the ratio of minimum transport cost consistent with

equilibrium / minimum transport costs attainable by imposing the socially-

optimal configuration diminishes steadily as n increases, and goes to unity

as n goes to infinity. (d) The nature of the space makes no difference,

however, to the equilibrium configuration that maximizes transport costs. All




- 16 -

possible firms are paired and transport costs are twice what they could
be.

(2) Some results apply equally to the circle and to the Tine. (a)
The markets of individual firms can be different from one another provided
that no firm's whole market is more than twice another firm's whole market,
and that no firm's half market is more than another firm's whole market.
(b) The principle of minimum differentiation is not compatible with equil-
ibrium for apy n > 2. The least differentiation that is possible has all
firms paired.(Z])

Our conclusions suggest rejectionnof two fundamental canjectures.

First, the nature of the space is not critical to the behaviour of the modelgzz)
as n increases beyond 5 the behaviour on the 1ine becomes increasingly

similar to that on the circle. Second, MD is not a characeristic configur-

ation of the linear model for n > 2.

MODEL 2: This is the same as model 1 - a bounded 1linear market with a rec-
tangular customer density function - except that the firms adopt the minimax
(MM) strategy. The market remaining to any firm, i, after one other firm,
J, has made the move that is maximally damaging to i is, of course, the

smaliler of 1i's two half markets.

Definition: A firm is in equilibrium under MM when it has no move available
to it that will increase the smaller of its two half markeéts.
Under ZCV an interior firm is indifferent between any of the locations
within the interval between its two neighbours, while peripheral firms wish
to be paired with their neighbours. Under MM in model 2, a firm's location
is uniquely determined within any interval in which it Tocates. The firm

maximizes its short side by locating in the middle of its own market and this
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implies that interior firms locate at the mid point between their two
neighbours and that peripheral firms locate one third of the distance
from the market boundary to their one neighbour.

This single propositdon determines the unique equilibrium con-
figuration for any n. The firms will be spaced aiong the 1ine so as to
have equal market areas of 1/n and equal half markets of 1/2n. If this
were not true, at Teast one firm would not be in the middie of its market
area and hence the configuration could not be an equilibrium one.(23)Thus
(with the one exception described in the footnote) a minimax strategy leads
the firms to locate in the socially-optimal configuration; this configuration
occurs whether the firms are guarding against the damage that could be done
by a new entrant or by a move from some of the existing firms.(24)

Two firms, j and k, can always pair on either side of a
third firm, i, thus reducing i's market to virtually zero, no matter
where i is located. For this reason any MM model becomes completely indeter-
minant in a 1-D market if firm 1 Tooks ahead to the maximally damaging moves
to be taken by two other firms.

We now transfer model 2 to the (U, F, 1-D) market of the circumfer-
ence of a circle. Since peripheral firms are not paired on the bounded line,
the removal of the boundaries has little effect on the behaviour of the model,
There are a few differences, however, when n = 1 or 2. Unlike the 1ine, when
n =1 the location of the firm is not determined on the circle. Since there
are no market boundaries, one firm loses half its market to a new entrant

wherever either of the firms locate. As with the 1ine, the location of the

two firmsiis3determiﬁed,1and,jsusocjéily;oﬁtﬁma];fwhen»they éte‘gﬁa}ding?agaihst
entry by a third firm. (2%
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In summary, MM (with firms Tooking only one move ahead) produces
the socially-optimal configuration.(ZG)There is no absence of equilibrium for
n =3, nor any special cases for n > 2. Also the conjecture that the nature
of the space critically affects the behaviour of a linear model with a MM

strategy must be rejected.(27)

MODEL 3: This is model 1 - ZCY in a (B, 1-D) market - but with customer density

functions that are not rectangular. We originally conjectured that the ‘assumption

- of a rectangular density function was not criticé] on the arguments that Tocal
clusters could always be created by méking the density function multi-modal

and that, while a uni-modal distribution might pull the firms in towards the
centre, it would not seriously upset any configuration established for a rec-
tangular function. (The general acceptance of some such conjecture seems
necessary to explain the considerable attention that continues to be paid to
rectangular customer density functions.) This conjecture, however, is mistaken.
In fact with a uni-modal density function there can be no equilibrium for more
than two firms!

We first state the necessary and sufficient conditions for equilibrium
in Model 3. Since, however, we only need the necessity of these conditions for
our subsequent analysis, we omit the proof of their sufficiency. The conditions
are:

(3-1) no firm's whole market is less than another's half market;
(3-ii) peripheral firms are paired;
(3-1i1) if i 1is an unpaired interior firm c(BL) = c(BR);

(3-iv) if 1 s a paired firm c(BSS) 3-C(BLS); where B, and B

L R

denote the lefthand and righthand boundaries, and BSS and BLS denote
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the shortside and longside boundaries.

PROOF: The arguments for the necessity of (3-i) and (3-1i) are identical to
those given for model 1. To establish the necessity of (3-iii), form the
expression for the i-th firm's market area (MAi): when the i-th firm is
located at Xi

X. B

i R
MA'E = fC(X)dX + fC(X)dX (Egn. 1)
BL Xi
= C(BR) - C(BL)
where C{X) = f c(X)dX . We know that BE = (X1_1+ xi)/z and BR= (Xi+1+ xi)/z.

Differentiating MAi with respect to Xiz

oMA 1. -

s ) (8

The first order condition for a maximum is then c(BL) = c(BR) which establishes
the necessity of (3-iii). To establish the necessity of (3-iv) let a paired
firm consider moving within the interval between its two neighbours. By assump-
tion it cannot move closer to the firm with which it is paired. Let it consider

moving away from that firm. By the argument immediately above the rate change

of its market area is

MA, - g 1
X 2¢(Bg) - elBgg)
If the inequality in (3-iv) holds then oMA; 0 for movements away from the
X,

i

firm with which 1 1is paired, and if the inequality does not hold BMAi > 0

BXi
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for such movements. This establishes the necessity of (3-iv).

| Now consider possible equilibrium configurations. Whatever the
shape of the customer density function, there is always an equilibrium for
n = 2; the two firms are paired at the median of the density function. Also,
there is never an equilibrium for n = 3 since the pairing of both peripheral
firms violates condition (3-i) for the interior firm.

There are no other possible equilibria on a customer density function
that is strictly monotonic increasing from each market boundary tc a single
mode. It may be helpful to consider the example of four firms locating on a
symmetric uni-modal customer density function. (There is a unique equilibrium
with n = 4 and a rectanguiar density function.) The only configuration that
satisfies (3-1) and (3-ii) has the firms paired at the quartiles of the density
function. This is illustrated in Figure 4 where the areas R, S, T and U are
equal. But this configuration leaves condition (3-iv) unsatisfied for the two
interior firms. By relocating at the mode either firm can satisfy (3-iii).
Assume that C makes this move before D, it will now pay D to relocate out-
side B; but it also pays A to come back and pair with C, after which it
pays B to cross over to pair with A, and D will then come in to pair with
C. This creates a grouping of the four firms at the middle of the market and an
outward leapfrogging of pairs of firms towards the quartiles begins. The out-
ward movement continues until one of the interior firms can gain more by moving
)back to the mode rather than relocating on the periphery of the market. The
collapse to the centre of the market described above then reoccurs (although
it happens before the firms have reached the quartiles).

We now consider variable density functions more generally and begin

by establishing the following theorem.
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Theorem: With a variable customer density function that is not rectangular
over any finite range of X, a necessary condition for equilibrium is that
the number of firms does not exceed the number of modes.(zg)
Proof: Equilibrium condition (3-1ii} implies that the market interval of any
unpaired firm must contain at Teast one turning point as an interior point

in the interval. Furthermore, the turning point must be a maximum since if

it were a minimum

2
3°MA, - 1 BC(BR) _ 1 Bc(BL) < 0
oK.2 2 3X. 29X,

1 1 1

which means that the firm's market area is a minimum. Equilibrium condition
(3-iv) implies that any paired firm whose customer density is increasing away
from the firm in the direction of the firm's long side market boundary must
have a maximum point in the customer density function as an interior point in
that firm's market. Since it must always be true for one of any pair of firms,
not located at a mode, that c(X) is increasing for a movement away from the
firm's Tocation towards its long side boundary, the Tong side of the market
of one of the firms in each pair must 5nc1ude a mode. Since every unpaired
firm and one member of every paired firm must have a market that includes the
mode as an interior point (or as a short side boundary if the firms are paired
at the mode) it is impossible to fullfill this necessary condition with n > 2M.
n < 2M is only a necessary condition. For density functions with
M > 1 there may or may not be stable equilibrium configurations even if
4 <n 5_2Mg29%verything depends on the precise shape of the function. A com-
plete taxonomy would be tedious but two examples of the absence of equilibrium
in bimodal distributions with n = 4 are illustrated in Figure 5. In each case,

the firms are shown paired at the quartile of the density function (the areas
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R, S, T, and U are equal). In Figure 5(a) conditions (3-1) and (3-iv) are
not satisfied for firm C, while in Figure 5(b} conditions (3-i) and (3-i4)
are satisfied for all firms but condition (3-iv) is not satisfied for either

firms B or C.

A further point relating to the dynamics of a disequilibrium system
such as the one considered above for the uni-modal density function is worth
noting. If a firm enters the market, or considers moving, and its market
is not to include the mode as an interior point it will always wish to pair
with another firm. When the system is necessarily in disequilibrium {(n > 2M)
some firms musf always be unable to include the mode in their markets and so
will always seek to pair with another firm (who will then wish to move away
from that firm). This phenomenon of pairing in disequilibrium situations is
so pervasive, especially in 2-D markets, that it seems reasonable to refer

to a principle of pairing as a basic characteristic of disequilibrium models.

When the number of firms is 2M, conditions (3-iii) and (3-iv) require
that the firms all be paired. Thus transport costs are necessarily twice their
socially-optimal level. When n < 2M, there is some indeterminancy in the
lTocation of some of the firms (at least for some density functions) and a

full taxonomy of locations and transport costs does not seem worthwhile.

We now transfer model 3 from the bounded line to the circum-
ference of the circle. Condftion;(3-i), (3-iii) and {3-iv) == but not (3-11)
- are the necessary and sufficient conditions for equilibrium on the
circle. Since the proof that n < 2M is a necessary condition for equilibrium
does not employ condition (3-i1) this result generalizes immediately to the

circle.
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Consider for example equilibrium with a customer density function
that 1is strict]ynmnotonic-increasing in both directions around the circle
from a single minimum to a single maximum. The maximum number of firms
-compatibie with the existence of equilibrium is again two. The two firms

must be paired, and their Tocation is uniquely determined by the condition
that there should be equal areas under the density funct1on over the two
semi-circles defined by drawing a diameter from their point of location.
If the density function is symmetrical about its maximum (and thus alse
its minimum) the two firms locate at the mode. If not, the firm whose
customer density is increasing away from the firm towards its long side
boundary must have the mode as an interior point in its market area.

Thus, the change from bounded to unbounded finite space in no way
affects the behaviour of the mode] with ZCVY and a variable customer density
function. The variable customer density function does, however, produce
results that differ significantly from those obtained for the rectangular
‘density function (which can now be regarded as a special case of the variable

density function in which the number of modes is infinite).

MODEL 4: Model 4 combines the MM strategy with a variable customer density
function and is applied first to the bounded linear market. With a variable
density function it is necessary to distinguish between the length of a firm's
market segment and the number of Customers in that segment, Just as the firm's
Tocation divides its market segment into a long and a short side, its Tocation
divides the distribution of its customers into a Jlarge and a small market.side.
In order to establish the conditions for equilibrium with a variable
density function we first distinguish between a local equilibrium (no move 1in
the neighbourhood of the firm's present Tocation will increase its short-side

market) and a gTobal equilibrium (no move will increase the firm's own short-
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side market.) We turn first to conditions for a local equilibrium. There

are two distinct possibilities for local equilibrium,

Type I Tlocal equilibrium conditions: The i-th firm is located at Xi such that

Xi BR
Jemax - Seax . (4-1)
B X,
For interior firms
2 c(Xf) < c(BL), c(BR) . (4-ii-a)
For a left-hand peripheral firm
2 C(Xi) < c(BR) (4-11-b)
For a right-hand peripheral firm
2 c(Xi) < c(BL) . (4=ii-c)

If these conditions hold, a small move in either direction will
decrease the firm's short side. If condition (4-1) does not hold, condition
(4-11) does, the firm cannot be in equilibrium since it can always increase
either one of its market sides (and hence its small side if there is one) by
moving towards the boundary of the other of 1ts market sides. If condition
(4-i) holds but- (4 11) does not ho1d for one: boundary, the firm can increase
both sides of its market by moving towards the boundary for which c(B) > 2 c(Xi).
Let this boundary be By so that c(BR) > 2 c(Xi) and C(BL) <2 c(Xi). It follows
‘from :equation (1) (and the fact that By = (Xi+1+ Xi)/Z)

that aMA? : |
W = geclBy) - c(X;) > 0
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OMAT :
= c(X;) - —-c(BL) > 0 (where superscripts on MA

BXi i 2

and

identify left and right hand half-markets). Thus Xi cannot represent an
equilibrium location for the firm.

The possibility of condition (4-ii) being unsatisfied when (4-1)
is satisfied (because the density function is "two steeply sloped") gives rise

to the second type of MM equilibrium.

Type IT Tocal equilibrium conditions

An interior firm, i, must satisfy either

C(Xi) = %éc(BR) and c(Xi) < %-C(BL) (4-1ii-a)
or

c(X;) = ge(B)and clx) < 5 c(Bg) . (4-1i1-b)
A right-hand peripheral firm must satisfy

c(X;) = gc(By) . (4-iv-a)
A left-hand peripheral firm must satisfy

c(X;) = Fe(B) . (4-iv-b)

As firm 1 approaches its right hand neighbour BR - Xi approaches
8/2 (where & 1is the arbitrary distance separating paired firms). Thus provid-

ing that c(X€+1- §) < 2 c(xi+1 - f) equilibrium type II is established
: 2

before the i-th firm becomes paired with its neighbours. The possibility of
pairing is ignored in what follows.

Now consider the existence of global equilibria. Such equilibria can
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be shown to exist for some dens1ty funct1ons An examp]e can be obtained
from Figure 6(3 )by cutt1ng the F]gure off at X and assum1ng that 3 66 is
the modal point of a symmetrical d1str1but10n whose left hand 51de is
shown by the Figure over the range [0, XSJ.

Global equilibrium configurations do not always exist for any n on
any density function. Figure 6 provides an example. Seven firms are located
in the left hand side of a particular symmetrical density function in the
unique configuration that satisfies the local equilibrium conditions. (The
seventh firm is at the mode and the remaining six firms are not shown.) Al-
though the Tocal equilibrium conditions are everywhere satisfied, firm 1
is not in global equilibrium at X1 since its two equal half-markets (of .50)
are less than the two equal half markets it could obtain by locating between
firms 6 and 7.(31)

Finally, we turn to the relationship between the MM equilibria and
the transport-cost-minimizing configurations.

Theorem: The MM equilibrium minimizes transport costs if and only if each

firm is in type I Tocal equi]ibrium.(32)

Proof: Total transport costs for n firms are:

X B

i
fcf(:X) (Xi_ X) dx  + f:(x) (X - X,) dX (Egn. 2)

1
BL Xi

There are n necessary conditions for minimizing transport costs involving

nunknowns, X.» (i = 1, ..., n) that can be generated from (2):
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If i is an interior firm, the terms involving 4§ in equation {2) are:

(X, + xi)/z X + x }/2

1= 1 1
ﬂ(X) (X-X;_ ) dx + fc(X) (X,-X) dX f(x) (X-X,) dX
(X * X3)/2

+ fc(x) (Xg, %) dX

(X'i+1+ X'i)/2

since the boundary between two firms is at the midpoint of the interval between
them. Letting G(X) = S Xc(X)dX and C(X) = 7/ c(X)dX the above terms can

be written as

X+ X. )
- - LI bl N -
X;_ C(X:_ ) G(Xi_l) xi_lc( 5 too2X,C(Xy) 26(X,)

X.+ X. X.+ X, X.+ X, X.+ X,
- A T=) R b A 1-3 1 1+
xic ( 5 ) xic ( 5 ) + 2G ( > ) + 26 ( 5

bifferentiating with réspect to Xi and simplifying, we obtain the i-th

transport minimizing condition:

X.+ X, X.+ X,
1 1~3 1 1+ -
2o - o (1) C(—z——) = 0

This can be written
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X+ X, X+ X,
C(Xx,) - c(—’é——‘—'-i—) = 0(12 Lhed R c(x,) . (Ean. 3)

1

(3) is immediately seen to be equivalent to condition (4-1)§33)Thus, if
type I equilibrium prevails, it is transport-cost minimizing. Finally, if
type II equilibrium prevails for any firm, that firmé* half markets are not
equal. Hence the configuration is not transport-cost minimizing.

We have thus shown that for a given n and a given density function,
the minimax strategy may or may not Tead to an equilibrium configuration, and,
if 1t does, the configuration may or may not be the transport-cost minimizing
configuration.

Model 4 can be transferred to a circle without changing any of the
results that we have reached for the 1ine. (a) Global equilibria are possible
for some n on at least some density functions. (Assume for example, that
Figure 6 depicts one half of a symmetrical density function on a circle with
a minimum at X = 0 and a maximum at X = 3.66 and that there are nine firms in
the market. (b) For some n and some density functions global equilibrium
is impossible. (Assume, for example, that Figure 6 depicts one half of a
eircle that goes as far as 4.66 on either side of the minimum at X = 0 before
reaching its single maximum point, and that there are 13 firms in the market. )
(ii1) Equilibria of type I are, while equilibria of type II are not, transport-
cost minimizing configurations.

Again, a change in the nature of the space from bounded to finite

unbounded does not exert a major influence on the behaviour of the model.

Models 1 - 4 Applied to Unbounded, Infinite, 1-D Space: If we remove the

bounds from the 1ine (or what is the same thing, Tet the circumference of the
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circle go to infinity) we obtain an infinitely extensible 1-D space in

which travel in a straight 1ine neither encounters a boundary nor returns

to the starting place. Infinitely extensible space is historically a very

important case in the development of 2-D locational models and we have

several new results to add for 2-D space. For completeness, we should extend

the four basic 1-D models to unbounded, infinitely extensible, 1-D space.
Fortunately, infinite 1-D space poses no serious problems. With

a rectangular customer density function the results for ZCV and MM are the

same as on the circle. For ZCV, an infinite number of configurations is

possible providing no firm's whole market: is smaller than any other firm's half

market. For MM, the firms must be in the middle of their individual market

segments and this requires that all firms have equal markets.(34)
Variable customer density makes no sense in this space unless there

is some function defined over a finite segment of the Tine that merely

repeats itself idefinitely in either direction. The result then follows

that with ZCV, the number of firms in any interval of the line, that is con-

sistent with equilibrium cannot exceed twice the number of modes in that

interval. For MM, results analogous to those for the 1ine and circle can be

established.

CONCLUSIONS FOR ONE-DIMENSIONAL SPACE: This completes our study of one-

dimensional markets and some of the most important conclusions are summarized
below.

(1) The wide range of generalizations of the Hotelling model suggested
by Boulding and others appears suspect. The results are very sensitive to
changes in the number of firms, to changes in conjectural variation, and to

changes in the distribution of customers throughout the market. Surprisingly,
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however, only a few of the results appear sensitive to the existence or
non-existence of market boundaries.

(2) Genuine MD appears to be a very special case in the linear model,
existing only for n = 2. This suggests that a critical step is to test the
conjecture that MD will reassert itself when the market is extended to a two-
dimensional space.(35)

(3) With a rectangular density function, ZCV produces multiple equilibria.
The equilibrium set includes the socially-optimal configuration on the circle
but does not on the 1ine. With a rectangular density function, MM produces
a unique equilibrium which is the socially optimal configuration.

(4) The most surprising set of conclusions relates to the effects of
abandoning the rectangular customer density function. In the ZCV models
equilibrium cannot exist if the number of firms exceeds twice the number of

modes in the density function. Under MM equilibrium does not necessarily exist,

nor where it exists, is it necessarily socially-optimal.

ITI. TWO-DIMENSIONAL MARKETS

Having investigated in some detail how our models behave in one-
dimensional space it seems critical to see how their behaviour is affected if
competition occurs in a space of two dimensions. Most Tocational problems are
two-dimensional, and most problems of product differentiation are at least two-
dimensional.

Our objectives are, of necessity, much less ambitious in 2-D space,
than in 1-D space both because the literature in 1-D space is more extensive
and because the location problem is much simpler in 1-D space. Our two-dimen-
sional work is limited to the effects of transferring Model 1 =~ ZCV and a con-
stant customer density function [c(X, Y) = K]~=to 2-D space. We investigate

the questions of existence and uniqueness of equilibrium in (a) unbounded, infinite,
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and (b) bounded, finite two-dimentional space.

Some terms require redefinition in 2-D Space.

The boundary between any two firms: this is the locus of points that are

equi-distant from the two firms, and it is given by the perpendicular bisector

of the Tine joining them.

The i-th firm's market area: this is given by the convex set of points con-

tained within the set of boundaries that can be reached by travelling in a

straight line from the i-th firm without crossing a boundary.

MODEL 1 IN UNBOUNDED, INFINITE TWO-DIMENSIONAL (U, T, 2-D) SPACE: This is

the space considered by Lesch in his pioneering work [16] and it is the space
that has commanded most attention in location theory.(35)Because of its
historical importance we use it as our benchmark for comparison with bounded,
two-dimensional space. The market area now consists of an infinite]y'; exfensib]e
piane. |

Three possible configurations have beenconsidered in the 1iterature:
The firms are located so that each firm's market area is (a) an equilateral
triangle, (b) a square, and (c) a regular hexagon. We refer to these as

triangular, square, and hexagonal configurations. These are the only space-

filling, regular polygons in 2-D space. It is presumably because (a) theyare

_space-filling and (b) they leave all firms with identical markets that they' have
"received the almost exclusive attention of Tocation theorists. (37)Among the three

the hexagonal configuration minimizes transport costs, and a strong presumption

has arisen that it represents the unique equilibrium configuration. This

presumption has not been satisfactorily demonstrated - in fact, 1t has

not even been demonstrated that the hexagonal conf1gurat1on is an equllbrium
configuration. One reason for this failure is that ‘the concept of equilibrium

is not defined in many~of the existing Tocatqona1 mode]s. Locat1on theorists
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have not explicitly introduced a conjectural variation assumption - rather they have
imposed some form of "densest packing” and zero profits as conditions of equilibrium.
The correct prodedure is not to assert equilibrium conditions, but to Tay out the
behavioural assumptions of the mdodel and establish the equilibrium conditions. A
second reason for the failure is that it is extremely difficult to check that any
configuration fulfills condition (i) using conventional analytical means. This difficulty
can be overcome with numerical simulation techniques. The core of the simulation routine
is to discover the size of a firm's market if it locates at any arbitrary point (Xo’
YO) given that there are n - 1 other firms located at fixed points in the relevant
part of the space. The algorithm is described in Appendix.A.

Where there is an arbitrary number of firms, n, per unit of space the
equilibrium condition in model 1 is
(II-I): no firm can increase its market area by relocating.

We now consider the existence and uniqueness of equilibria where n s

arbitrarily determined. Let n firms be located in what we conjecture to be an

equilibrium configuration. Allow one firm to consider a large number of alternative

locations throughout the market. Calculate the firm's market area for each of these
alternative locations, The configuration is, in fact, an equilibrium one if the firm:
can finéﬁnarméve tﬁatriﬁcreééesréfs market area.

The firm can hove within fhe area defined by its present neighbours in
which case its own movement leaves a gap in the regular lattice of firms. It
could move beyond this area in which case it would have to fit into an already
complete lattice. Intuition suggests, and calculation confirms, that the
firm is always better to stay within the area defined by its present neighbours than
to invade any other part of the market. Within this area, calculations were made and
detailed maps drawn for the market the firm would obtain in up to 400 alternative
locations. The Figures reproduced here show the market area for only a small number of
representative locations. We refer to these Figures as market area maps.

Figures 7, 8 and 9 show market area maps when the firms are placed in the

triangular, the square and the hexagonal configurations and one firm considers
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alternative locations. The firm's neighbours are shown by circied crosses. The
unbracketed numbers indicate the market area that would be obtained by the firm in

its various alternative locations. (The bracketed numbers give the scales on the X

and Y axes.) The broken 1ines indicate the firm's market boundaries when it locates

at the origin, thus completing the reqular lattice of firms.

Figure 9 confirms that the Loschian hexagonal configuration is an equilibrium.

No firm can increase its market area by changing its location. Figure 8 shows, however,
that the same is true for the square configuration. Thus, although the hexagonal con-
figuration is an equilibrium configuration, it is not an unique one. Figure 7 shows that
the triangular configuration is not an equilibrium one: if all firms are placed in this
configuration, each would wish to change its location.

An even more striking result occurs if we consider configurations that give rise
to identical, but non-reguiar polygons. If we let firms be located so that their market
areas are identical rectangles, we discover that such configurations are (within Timits)
also equilibrium configurations. Figure 10 reproduces one such rectangular equilibrium
configuration. (The ratio of the long to short side of the rectangle is 9/5.) This
result is extremely surprising in the light of the existing literature; it is not so
surprising, however, when viewed against the infinity of equilibria established for

Model 1 in 1-D space.

Furthermore, note that the conditions that all firms should have
identical markets, or even equal market areas, is arbitrary. Condition II-i does not
appear to be sufficient to establish that gjthey qfwthggg”regtrjctions will hold in .
” éii“ééﬁfiib%%ﬁ%mgénfféu;;ffonsrr (This opens a range of hitherto unsuspected
locational equilibria which we have not yet considered.)
Two other questions should be asked. First, will any of these
equilibrium configurations be established by a dynamic adjustment process if
the firms are initially placed in a disequilibrium pattern? This is a very
difficult question in (I, U, 2-D) space §ince simulation of a dynamic process

with an infinite number of firms is inconceivable. Second, we could ask if
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some model in which firms enter until further entry is unprofitable would
produce the hexagonal (or any other) pattern as a unique equilibrium. This
seems to have been the belief of many writers. The consideration of free
entry requires a second equilibrium condition.

(IT-i1): No new entrant anticipates that it wilj earn positive profits. The
assumption in our models of constant marginal costs less than a parametric mill
price implies positive profits for any finite number of firms, and we must
restrict n arbitrarily. Thus we cannot handie free entry, but we do know
that it is possible to impose equilibrium configurations other than the hexa-
gonal one that give no incentive for entry. For example, any configuration
which satisfies conditon II-i and gives all firms equal market areas can be
forced to satisfy the free entry condition (condition II-i1) by imposing

- sufficiently large fixed costs of production {or for any given fixed costs
packing the space sufficiently densely with firms so that new entrants could

‘not expect to cover their fixed costs).
MODEL 1 IN FINITE BOUNDED TWO-DIMENSIONAL SPACE: Model T is now transferred

to a space that is the area contained within a unit circle, i.e., the space
is a disc. Since, if one proceeds in a straight Tine in any direction one
always reaches a boundary (rather than returning to ones starting point as

on the surface of a sphere), we refer to this space as bounded, two-dimensional

(8, 2-).(38)

One Firm: As with the 1-D markets, a single firm captures the whole market

wherever it Tocates in the disc and is thus in equilibrium wherever it locates.

Two Firms: There is a unique equilibrium with two firms. They are paired in
the centre of the market. To see this assume that firm A is located any-
where other than at the market centre and draw a diameter through A. If firm

B now enters the market and pairs with A focating on the diameter and Jjust

AT

.
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closer to the centre than A, firm B, then captures more than half of the

eﬁtire market. It now pays A to relocate on the same diameter but just

inside B, thus capturing more than half the market. If both firms are free

to move they continue to "leapfrog" inwards along the diameter until they

are located at the centre. At this point they split the market equally between

themselves and no relocation can increase either firm's market area.(39)
Thus two firms in the disc exactiy reproduce the Hotelling result:

B's entry creates MD even if no relocation is possible, and the equilibrium

with relocation produces MD with both firms Tocated at the centre of the

(40)

market.

Three or more Firms: If a third firm, C, enters, when A and B are in

equilibrium at the centre of the market, C will pair with either of the two
existing firms. The firm that is paired with both of the other firms now has
virtually no market and it will pay it to relocate outside of one of the other
two firms. This could produce a Teapfrogging outwards along a diameter that is
exactly analogous to what happens with three firms in the (B, 1-D)market. In
the 2-D market, however, the firms are not constrained to remain on a single
diaméter. Thus it is not obvious how three or more firms will behave in the
disc. Further analysis requires that we use the technique already applied to
infinitely extensible 2-D space: we conjecture an equilibrium configuration,
determine its exact location and then test the conjecture.

Three configurations seemed worth investigating as candidates for

equilibrdium. Configuration I: A1l firms are evenly spaced around a circle

whose radius is less than unity. Configuration II: This is the same as

Configuration I except that there is an additional firm located at the centre

of the disc. Configuration III: Those configurations that give equilibrium

in (U, I, 2-D) space.
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CONFIGURATION I: We conjecture that the firms will be regularly spaced around

a fairly small circle, concentric with the market boundary. The firms thus 1ie
at the tips of a regular, n-sided poTygon and their market areas are pieces
of pie all meeting at the centre of the market. To set the firms in this
configuration and check the conjecture, we need to discover the radius, r, of
their circle of location. This is done as follows.

Equilibrium in any configuration requires that if any firm is free
to move it will choose not to move. If Configuration I is to be an equilibrium,
then if n - 1 of the firms are located at the tips of an n sided regular poly-
gon, defined by the circle of radius r, the nth will choose to Tocate at the
vacant tip of the polygon. r 1is obtained by relying on this property of
equilibrium.

Let n firms be located at the points of a regular, n sided polygon
whose centroid is the origin. Rotate the axis so that one firm is located on

the Y axis, and let this firm consider alternative Toeations, but constrain

it to locate somewhere on the Y axis. 1In Figure 11 the firm's two neighbours

are located a distance r along rays through the origin which form angles of
2n/n with the Y axis. Let the nth firm choose any location, PO, on the Y
axis. Its market area, MA, is bounded above by the circle, on the left by the
Tine QR which is the perpendicular bisector of PO PZ’ and on the right by RS,

the perpendicular bisector of P0 P]. This area is a function of only three
variables, r, the radius of location, n, the number of firms (which determines
¢ and 6 in Figure 11}, and Z, the distance along the Y axis at which the n-th
firm locates. Only Z is within the control of the n-th firm and the first order
condition for maximizing MA with respect to Z 1is discovered by setting oMA/3Z
equal to zero. This produces the fairly formidable expression shown as equation

(5) in Appendix B.
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If our original conjecture is correct, the firm that can choose
its location along the Y axis will want to be the same distance, r,
away from the origin as the other firms, provided that r 1is at its
equilibrium value. If so we will have r = Z in equilibrium. Substituting
this equality into the first order condition given in the appendix produces

the expression

ro= 1/2;‘/ (1 + sin ¢)/2 . (Eqn. 4)

If r 1is set at any value other than that given by the above expression,
then dM/3Z#0 evaluated at Z = r, and any firm would wish to move.

To determine if the configuration is an equilibrium one with respect
to a small movement of the firm in ggx_directfon, is an almost impossible
task using analytical methods, and in any case much more is required to establish
global equi]ibrium.(4])We theréfore use the numerical methdds described in the
previous section. We Tocate n firms on a circle of radius r. We then allow
one firm to consider a Targe number of alternative locations and calculate its
market area for each of these.

The market area maps produced by this technique reveal that although
Configuration I is a local equilibrium, it is not a global equilibrium config-
uration. The four firm case is i]?ustrated(42)in Figure 12. Three firms are
lTocated on a circle of radius .354. The numbers in the diagram give Als
market area for each indicated location. (Since the disc is of unit radius
its area is m.) The diagram shows that the point (0, .354) is a weak local
maximum but that it is not a global maximum. Global maxima occur at two points
very close to the firm's neighbours. From n = 3 to at Jeast 17 the same problem
occurs: if the firms are located on a circle of radius r and any one is free
to move, it will wish to relocate next to either one of its neighbouring

firms.(43)
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Thus if we impose the circular configuration, it immediately breaks
up. The way in which it breaks up suggests a principle of pairing similar
to that foundjm (1-D)} markets. The sub-optimal differentiation is a dis-
equilibrium phenomenon since the other paired firm will immediately wish to
shift its location. Configuration I is thus rejected as a possible equilibrium

configuration.

CONFIGURATION II: One firm is located in the centre of the circle, the remain-

ing firms are regularly spaced out around a circle of radius r'. A procedure
analogous to that outlined in Appendix B was used to determine r'. We checked
this configuration for up to 17 firms and the results are as follows.

(1) The firm in the central Tocation is not even at a 1oca1:maximum'for
n=3. For 3 <n< 9 the central firm is at a Tocal maximum but not at a
global maximum: small movements lower its market area but its market is
maximized by moving just outside of one of the firms on the circle. For n > 8
the central firm is in a global maximum: a movement to any other position
reduces its market area.

(2) The n - 1 firms loeated symmetrically on the circle are always at
a local maximum but never at a global maximum for any n wup to 17. (It did
not seem worthwhile checking for larger value of n.) Any of the n - 1 firms
loses by a small movement in the neighbourhood of its present location but
gains by relocating very close to either of its neighbours.

We thus reject Configuration II as a possible equilibrium configura-
tion. (It is worth noting, however, that Configuration II provides a stronger
local maximum than does Configuration I in the two senses that in Configuration
IT the firms on the circle lose more for small movements away from their
symmetrical location, and gain less by moving to the global maximum than they

do in Configuration I.)




_39_

CONFIGURATION III: The hexagonal configuration (which provides the most

familiar equilibrium configuration in (U, I, 2-D space)} is adapted to the
disc in the following way. Populate an infinitely extensible 2-D space with
firms spaced out in the Loschian manner. Drop a circle centred on one firm.
The firms left outside of this circle cease to exist.

The first four configurations that are obtained in this manner are
of 1, 7, 11 and 15 firms. One firm is in equilibrium anywhere in the disc
but none of the configurations for n > 1 are equilibrium configurations. For
n = 7 Configurations II and III are identical. Figure 13 illustrates the
absence of equilibrium for n = 15. It shows the initial pattern and the con-
figuration after one round of relocations. Clearly, the Loschian pattern has
broken up completely: there are five closely grouped pairs of firms and one
group of three; only two firms are without a very near neighbour.(44)

Thus for n up to 15 we have discovered that the Loschian pattern
is not an equilibrium configuration in bounded (B, 2-D) space. We havezalso
transferred other patterns, such as squares and rectangles, that give equil-
ibrium configurations in (U, I, 2—D)space onto the disc using the techniques
described in the text. The patterns always break up and the reason is always
the same: firms on the periphery will prefer to pair with a neighbour rather
than stay where they are. The number of real cases for which the infinitely
extensible plane is the correct analogue must be rather small. The great
interest in the hexagonal configuration can only be explained by the assumption,
sometimes made explicitly but more often implicitly, that the results obtained
from (U, I, 2-D) space transfer to (B, 2-D) space. This assumption is mistaken.
The existence of boundaries to the market is critical to the behaviour of the

model in 2-D space {although not in 1-D space).(45)
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A1l three conjectured equilibrium configurations have been rejected
and we advance the hypothesis that there is no equilibrium configuration for
Model 1 on the disc for n > 2. It is now necessary to study the  dynamic
behaviour of the model. We do this for two reasons: (1) There may be
equilibrium configurations, the natdre of which we have not guessed, but to
which our dynamic model might quick]y converge; {2) if we discover a pattern
of perpetually recurring oscillations, we will have disproved the existence
of an equilibrium configuration that is obtainable independent of initial
conditions. Indeed, if our starting configuration is not just chosen hap-
hazardly, but is in some sense a likely configuration, we will have thrown
strong doubt on the possibility of ever attaining an equilibrium.

The procedure for studying the dynamic behaviour is as follows.

The first firm is placed in the centre of the market and the second firm

is allowed to pair with it. Each additional firm is then allowed to enter
the market one at a time in its market-maximizing 1ocatioq. Thus, the initial
conditions are those that arise if all firms enter the market in their best
LCY locations before any firm is allowed to relocate. After all n firms
have entered, the existing firms are aTlowed to relocate in the sequence in
which they entered. The first firm calculates it market areas for a large
number of possible Tocations spaced evenly over the disc and relocates where
its market is largest. The second firm then goes through a similar set of
calculations and relocates in its market-maximizing location, and so on.

Briefly our results are as follows. For n = 3 all three firms begin
on a diameter through the origin which we take as the X axis. They then
leapfrog outwards exactly as in the 1-D space. The outward movement continues

to a point where it finally pays one firm to depart slightly from the X axis.
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It then pays the next firm also to depart from the X axis. The third
firm then finds it most profitable to return to the centre of the disc.

The other two firms immediately follow recreating the MD grouping at the
centre., The outward leapfrogging then begins again and the pattern repeats
endlessly.

The four firm case is shown in Figure 14. The firms enter so as to
create an MD configuration which may be referred to as a "main-street". They
then leapfrog out along the diameter, but the pattern soon breaks up into
apparent confusion (but the principle of pairing remains clearly observable).
Soon, however, it pays someone to move hear the centre of the circle and the
others immediately follow. They line up on a new "main-street" and the out-
ward Teapfrogging begins again. The Figure shows one such sequence. After
four such sequences, however, they tine up in a "main-street" that exactly
reproduces the initial conditions.

Five firms is even more complex and we have taken the model through
70 individual moves. The firms leapfrog outwards, break up into apparent con-
fusion, and finally regroup in a main-street near the origin. This sequence
continues with each main-street configuration being near the origin but in a
slightly different location than the previous one. We have not carried the
dynamic model beyond n = 5.(46)

We strongly suspect, but as yet cannot prove, the non-existence of
any equilibrium configurations in the disc beyond n = 2. Certainly, for up

to n = 17 none of the three configurations that seemed Tikely to produce

equilibrium actually did so. Also up to n = 5 there appear to be regular, cyclic
oscillations.

?During the whole disequilibrium process the firms tend to be clustered into
several unstable groupings and all of the firms are well within the circle

the location on which would minimize the costs of transport.(47)This reinforces
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the conjecture that the principle of pairing (or possibly a more general

principle of "local clustering“)(48)

should replace the principle of minimum
differentiation. It also suggests the further conjectures that the absence
of equilibrium may be important in many Tocational contexts, and that sub-
optimal Tocations may be a persistent result through all of the dynamic

fluctuations in locational patteras.

IV. CONCLUSIONS

As the title and analytical structure of our paper indicate, we set
out to consider the principle of minimum differentiation when various assump-
tions in the Hotelling model were relaxed. Our conclusions with respect to
the principle of minimum differentiation can be succinctly stated: minimum
differentiation is a property of models in which firms pursue a strategy of
zero conjectural variation (ZCV) and where the number of firms is restricted
to 2. It does not occur in ZCV models when the number of firms exceeds two

and never occurs in the other models we have considered.

In the course of our analysis we did, however, discover a

more general phenomenon, the principle of pairing (or possibly of local

clustering). When a new firm enters a market, or when an existing firm
relocates, there is a strong tendency for that firm to locate as close

as possible to another firm. This principle is applicable both to
equilibrium and to disequilibrium situations. The principle of minimum
differentiation is thus a special case of the principle of pairing when the
number of firms in the market is restricted to two. The principle of pairing
applies in (1) one-dimensional markets with non-rectangular customer density
under ZCY, (2) in the bounded, two-dimensional market under ZCV, and (3) we
suspect that it also applies in unbounded two-dimensional market under ZCV

with a non-rectangular customer density function.
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We have several times discovered the existence of mu]tfp]e equilibria.
Under ZCY with a rectangular distribution of customers, an infinite number
of equilibria exist in unbounded, one-dimensional space, and in bounded one-
dimensional space when n > 5. More importantly, multiple equilibria exist
in unbounded, infinite, two-dimensional space under ZCY and an even - -
distribution of customers. The hexagonal market packing configuration
which has received so much attention in the Titerature is only one among an
infinity of possible equilibrium configurationsﬁ4gphe importance of the
multiplicity of equilibria is that the socially-optimal configuration,
the configuration which minimizes transport costs, will not, in general,

prevail.

We also encounter many situations in which no equilibrium exists.
For n.> 2 in the disc under ZCV and an even distribution of customers there do

not appear to be any equilibrium configurations. When the customer density
function in the one-dimensional models is non-rectangular the possibility of
perpetual disequilibrium exists. If firms adopt a ZCV strategy in a one-dimen-
sional market, the maximum number of firms consistent with equilibrium is twice
the number of modes in the density function. Even under the minimax strategy
_equ111br1um does not ex1st for some - ﬂ and some non-rectangu?ar dens;ty funct1ons
e suspect that a non-even d?str1but1on of custemers may remove the poss1b111ty 7
'“ef equ111br1um in unb@undeé two-d1mensaena1 markets.

The cond1t1ons under which our results generalize to non-spatial
forms of differentiation (product characteristics) are of some interest. It is
difficult to imagine unbounded product-characteristic spaces and so we restrict
our attention to bounded gpaces. Let the bounded Tine represent a continuum of
some non-spatial characteristic, colour for example, and let the Cartesian

coordinates of any point in a rectangle represent a combination of two characteristics,
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smoothne$§;and alcoholic content of whiskey, for exampie. Then let the
customer density function describe the distribution of customers' most-
preferred points through the appropriate space. A firm's location is also
described by the characteristic(s) of the product it produces. For our
results to generalize we require that consumers buy from the firm which is
nearest to their most-preferred point in the characteristic(s) space. In
one-dimension this requirement is easily understood, and in two the require-
ment implies that a monotonic transformation of the scales on either or both
of the axes can be found such than an individual's indifference curves are
circular around his most preferred point.

Our analysis of two-dimensional markets is obviously incomplete.

We should Tike to apply models 2, 3 and 4 to the disc but this requires a

more sophisticated numerical model than theoneused in this paper. We should
also 1ike to study the behaviour of all four models in an unbounded, finite

2-D space (e.g., the surface of a globe). It would be interesting to discover
if model 1_behaved on the globe as it does in the infinite plane (a multiplicity
~of equilibrium configurations) or as it does in the disc {apparently no equil-
ibrium configurations for n > 2) or in some other way (e.g., the socially-
optimal configuration is the unique equilibrium configuratdon).

Furthermore, we have at various points in the paper suggested possible
extensions of the analysis. We note here some of the extensions which seem to
us to be most important and which would give rise to models beyond the 4
considered in this paper. (1) The assumed inelasticity of demand ought to be
relaxed in order to investigate the conjecture that the introduction of a high ehough
elasticity in the individual demand functions may result in a stable but sub-
optimally differentiated configuration in bounded, 2-D space as it does in
1-D space. The requirement that customers always buy from the nearest firm

regardless of how small the difference in delivered price, ought also to be
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relaxed to test the conjecture that the introduction of a small "zone of
indifference" will tend to lessen the tendency toward pairing. (3) Our

models have abstracted from price competition byrequiring that all firms

charge the same mill price. The effects of price competition in these models
deserve attention. (4) The models assume that goods are transported in a
straight line from firm to customer. For analysis of the Tocation of retail-
ing industries, where customers must travel to the firm on streets laid out

in a block system, it seems more appropriate to measure distance from firm to
customer as the sides of a right triangle. (5) The assumption that each firm
has only a single plant is undesirably restrictive. (6) The nature of the
lTocation and product choice decision in higher spaces is of particular interest
since, as we have already discovered, the behaviour of a model in 1-D space

is not a reliable indication of how it will behave in 2-D space. We are
currently developing a more sophisticated simulation model which will facilitate
the analysis of most of these problems.

The wide variety of theoretical results suggests that careful and
detailed specificatdon of the behaviour of firms, of the nature of the space,
and of the distribution of customers is essential. Contrary to many of the
conjectures in the literature the results obtained from one model do not
easily generalize to other models. The principle of pairing in disequilibrium
systems is, however, suggestive of some real world behaviour. The frequency
with which the American automobile industry changes styles and the apparent close
similarity of certain models between firms at any point in time, together with
considerable but slow changes over time, seem to be consistent with the principle
of local clustering. The dynamic behaviour of the model in bounded, two-
dimensional space is suggestive of the patterns of the growth and decay of

retailing centres within urban areas. "Main-street" and a great deal of "local
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clustering", are recurring themes in the dynamics of these models. We emphasize
that these are only conjectures, and that careful theoretical and empirical work
is needed to establish the generality and explanatory power of the principle of

pairing and of local clustering.




The Location of Firms Near the Market Boundaries.

(Firms are indicated by numbers and the boundaries of the firm's market

by broken lines.)
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FIGURE 3

The Range of Indeterminacy for Three Firms on a Circle
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FIGURE 8

Market areas for alternative locations of one firm when all other firms are

placed in a square configuration.
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FIGURE 9

Market areas for alternative locations of one firm when all other firms are

placed in a regular hexagonal configuration.
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FIGURE

Market areas for alternative Tocations of one firm when all other firms are

placed in a rectanguiar configuration.
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FIGURE 11

The Determination of the Market Area for a Firm
located at P0 on the Y Axis
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