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Abstract
The EMS is modeled as imposing dual reflecting barriers on the exchange rate
process. This policy leads to a state-dependent conditional variance for

exchange rate changes. This variance is always less than that under a pure
free float regime. A Method of Simulated Moments procedure is employed to
estimate the parameters of the model. Simulations with the estimated
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characteristics diminish with aggregation.
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I. Introduction

Stochastic models of exchange rate behaviour under different policy
regimes are by now common. In this literature, the exchange rate is modeled
as being determined by stochastic (and often unspecified) market fundamentals
which are themselves regulated according to some policy rule. Thus for
example, Buiter (1989) modeled the shadow exchange rate under a Gold
Standard regime as Brownian motion between two absorbing barriers,1 Flood and
Garber (1983) and Smith and Smith (1990) modeled the pound-dollar rate prior
to Britain’s return to the Gold Standard in 1925 as a process approaching an
absorbing barrier, Krugman (1990) modeled a Target Zone regime as two
reflecting barriers around a driftless Brownian motion process, Miller and
Weller (1989) used a process with drift to explain exchange rate hysteresis
in that regime and Flood and Garber (1989) related target zones with discrete
intervention to speculative attacks. Bertola and Caballero (1990) and
Svensson (1990) have recently used the same methods to model the Exchange
Rate Mechanism of the EMS.?

While the theoretical literature is now extensive and growing rapidly,
much less effort has been devoted to the empirical examination of the
relevance of these models. This is the motivation for this paper. The
objective is to determine the consistency of a simple stochastic model with
the observed characteristics of exchange rate behaviour in the EMS. Section
II presents summary statistics on daily and weekly exchange rate levels and

changes during a period since the last major realignment of the system. A

1
For an introduction to the theory of regulated stochastic processes see Cox

and Miller (1965), Harrison (1985) and, for a more advanced treatment,
Karatzas and Shreve (1987).

2
See Giavazzi and Giovannini (1989) for a description and history of the EMS.



model of the EMS must be able to match these statistics.

In keeping with the literature, the EMS is modeled as a regime in which
the nominal exchange rate is a stochastic process between two reflecting
boundaries. Froot and Obstfeld (1989) provided a simple method for solving
for the exchange rate equation in such a regime under the assumption that
there is full commitment to defending the announced bands. This model is
described and solved in Section III. In Section IV the model is tested by
simulation. Here a wide variety of parameter values are used to generate
averages across many realizations of the same moments and test statistics
presented in Section II. The model is shown to be roughly consistent with
the data over wide ranges of parameter values. In Section V a Simulated
Method of Moments estimation strategy is used to estimate the free parameters
of the model. The estimated parameters are then used to simulate the model.
These simulations also are consistent with the behaviour summarized in

Section II. The paper concludes with a discussion in Section VI.

II. Summary Statistics on EMS Exchange Rates

Table I summarizes the behaviour of selected EMS exchange rates during
the period January 14, 1987 to September 22, 1989° based on daily
observations. The table gives the first four moments of the levels and
changes in the logarithms of Deutschemark exchange rates and test statistics

for non-normality and conditional heteroskedasticity in the distribution of

.

3
This period was chosen because the model presented below corresponds to a
world in which the authorities are never expected to change the central

parity rate. Thus, this period is chosen because it is longer than any
interval between previous realignments and ends well before any subsequent
realignment (in fact the next realignment did not occur wuntil more than three
months later, and that involved only the narrowing of the Dm/Li band). Thus,

it is hoped that this period reasonably approximates a regime of full
commitment to the announced bands.



exchange rate changes.This was a period of relative strength for the
Deutschemark as shown by the mean deviation from the parity rate and the
skewed distribution for the exchange rate levels. There are three clear
observations to be drawn from these tables. First, the distribution of daily
exchange rate changes is not normal. The Bera-Jarque test statistics all
reject normality at the 1% level. This non-normality appears to be due
almost entirely to excess kurtosis which is significant for each series.
Only two of the series exhibit any skewness in changes. Second, this
distribution is also nonstationary. The test statistics for the simple ARCH
parameterization of conditional heteroskedasticity at various 1lags all
strongly reject the null of constant conditional variance. Finally, both the
non-normality and the non-stationarity appear to diminish with aggregation.
Table 2 presents the same statistics for mid-week observations. Now for the
Dm/Ffr rate for example, the null hypothesis of conditional homoskedasticity
cannot be rejected at any lag length even at the 10% level, and for the Dm/Li
and Dm/Kr rates this hypothesis is rejected only at shorter lag lengths.
These three observations constitute the kind of behaviour that any model
of the EMS must predict. Therefore, the model described below will be tested

for its consistency with these facts.

III. A Model with Full Commitment to Intervention
The 1logarithm of the exchange rate is assumed to satisfy the

asset-pricing relationship

e(t) = k(t) + «E(de(t)sdt|¢(t)) (1)

where e(t) is the spot exchange rate, k(t) is the market fundamental, « is



constant,4 E is the expectations operator and ¢(t) = ¥ v B, is the
information set in which ¥, is the filtration generated by {k(t): T =
0,1,....,t} and B describes the contingent exchange-rate policy. The
solution to equation (1), in the absence of bubbles, is the forward-looking

equation,

00
e(t) = %[ eltms)e E[k(s)|¢(t)]ds (2)

t

which simply equates the current exchange rate to the expected discounted
value of future fundamentals.

Define a pure free float as a regime in which the authorities never
intervene to offset shocks to the fundamentals and therefore always allow
these to be reflected in changes in the spot rate. The fundamentals are

assumed to evolve as Brownian motion adapted to %:
dk(t) = ndt + odz(t) (3)
where 2z(t) 1is a standard Wiener process5 and m and o are constant

instantaneous drift and variance parameters. Under a pure free float the

exchange rate equation reduces to

4
For example, in the monetary model k(t) is a linear combination of

cross-country differences in money supplies and rates of income and & is the
interest semi-elasticity of money demand.

S

A standard Wiener process has i.i.d. normal increments. By the Central
Limit Theoremn, if the changes in k are the result of a large number of
unobserved, independent random shocks then the increments in k should be

normally distributed, which justifies the use of a Wiener process.



e(t) = k(t) + an (4)

which is linear in k. By differentiating (4) a diffusion equation for the

exchange rate under a pure free float is obtained:

de(t) = ndt + odz(t) = dk(t). (5)

So the exchange rate and the market fundamentals share the same dynamic
properties: that 1is, the exchange rate follows a random walk and its
increments are Normally distributed with constant conditional mean 7m and

i 26
variance o .

Clearly, such a model cannot be reconciled with the
observations of non-normality and non-stationarity in this distribution made
in Section I. In this framework, the EMS policy cannot easily be specified
in terms of bounds on the exchange rate itself since to do so would introduce
an important indeterminacy into the problem. Since the exchange rate is a
function of future values of the fundamentals variable, any announcement of
an intervention policy would have to include an announcement of the extent of
intervention when the exchange rate reaches one of its limiting values. At
the very least, therefore, the announcement of bounds on the exchange rate
would have to include an announcement of the extent of intervention. Since
the relationship between k(t) and e(t) is one-to-one, an announcement of
exchange-rate boundaries is equivalent to an announcement of boundaries on
the fundamental variables. I will therefore assume that the policy

announcement includes information on the boundaries on k(t) and on the extent

of marginal intervention. The latter would take the form of an announcement

The constancy of the conditional mean and variance is due to the assumed
constancy of the drift and variance parameters in (3). Normality 1is due to
the assumption that z(t) is a Wiener process.

6



that intervention will be of a sufficient magnitude just to prevent the
fundamentals from leaving the band [g,i].7 I will also assume that the
authorities are understood to have fully committed themselves to defending
these boundaries.®

The general expression for the exchange rate in this case is:

e(t) =E [lj e k(s)|%., k(s) € [5,121] (6)

t
Solutions to this equation will be of the form

e(t) = k(t) + an + Ajexp(Ak) + Asexp(Azk) (7)

A2 = -n/o £ (00t + 2/a0°)?
where the constants of integration A; and A, are determined by the boundary
conditions. These are the smooth-pasting conditions for infinitesimal
intervention (see Krugman (1988) or Dumas (1989)), which are a consequence
of continuity and rational expectations (no anticipated discrete jumps in e
are allowed):

de/d8k = 0 = de/dk. (8)

Imposing these boundary conditions on (7) yields the saddlepath equation for

the exchange rate (see Froot and Obstfeld (1989)):

7
What 1is important here 1is that the authorities do not cause a discrete jump

in the fundamentals upon intervening. For the solution in that case see
Flood and Garber (1989).

This assumption rules out the effect of anticipated realignments. This
possibility will be considered below.



e =k + an + Ajexp(Aik) + Asexp(Ak) (9)

2 - -

A = %%— exp(Azk) - exp(Ak)|a, < 0
ac? [ = ]

Az = 51— |exp(Ak) - exp(Ak) A, > 0

A = [exp(Ak+a2k) - exp(Aqk+Azk)] > O

Note that (9) has two parts, the linear pure free-float solution and the two
nonlinear terms that arise due to the anticipation of intervention. If
intervention 1is never expected to occur (as if the ©boundaries are
infinitely-distant) the last two terms disappear and the solution reverts to
the pure free float case as expected. Note that the distortion of the
exchange-rate equation occurs even between the boundaries (i.e. even if these
boundaries are never reached). Equation (9) describes an upward-sloping
S-shaped curve in (k,e) space which is horizontal at k and k. It can be
shown that 0 = de/8k = 1 so that the saddlepath under the EMS regime is
everywhere flatter than under the pure free float (where de/8k = 1). This
result is important because differentiating (9) yields the diffusion equation

for exchange rate changes under the EMS regime:
o2
de(t) = [ne' () + z—e”(k)]dt + e’ (K)odz(t). (10)

Now the conditional variance of exchange rate changes is o2[e’ (k)1? which is
less than 02, the conditional variance of changes in the purely free-floating
rate. In fact since the saddlepath is horizontal at the boundaries, this

conditional variance approaches zero as the fundamentals approach their



boundaries.9 In this sense, the EMS rules exert a stabilizing influence on
the exchange rate. Alternatively, since the the slope of the saddlepath is
lower in the EMS regime than in the pure free float regime, the EMS exchange
rate always responds less to a change in the fundamentals variable than does
a purely free-floating exchange rate. These two interpretations provide
theoretical support for the empirical evidence that the EMS has succeeded in
reducing the volatility of nominal exchange rates (see Artis and Taylor
(1988), Giavazzi and Giovannini (1989))'°. It is also clear that exchange
rate changes are conditionally heteroskedastic in this model even though the
conditional distribution for changes in k has constant variance. It is worth
emphasizing that these results are not trivially due to limits on the values
that the exchange rate may take, but due to the changes in the relationship
between the fundamental variables and the exchange rate and so should be
observable even if the exchange rate never reaches its limiting values. The

instantaneous rate of change of the exchange rate in the EMS is

2
Ne = N + NM\1Aexp(A1k) + A Asexp(Azk) + g—[A$A1exp(A1k) + ASAzexp(Azk)]
0‘2A1 O‘ZAZ
=7 + A,Azexp(h1k)[n * = ] + A2A2exp(hzk)[n * = ] (11)

9,
This property of the model has been criticized by Bertola and Caballero
(1990) who argue that the evidence suggests that exchange rates are actually

more volatile near the boundaries than in the middle of the band. They claim
that a model with repeated realignments will correct this difficulty. In
fact, as I show elsewhere (Spencer (1990)), what is needed 1is a time-varying
probability of realignment. Under general conditions, allowing for

realignment with a constant probability will still yield a model which
displays the properties described above except that the conditional variance
of exchange rate changes will be non-zero at the announced boundaries.

10
Svensson (1990) demonstrates that this exchange rate stability will likely
be at the expense of interest rate instability.



which towards the lower boundary is greater than n and in the upper region is
less than 7, the instantaneous rate of change of the purely free-floating
rate. The intuition behind these results is as follows. As the exchange
rate rises towards the upper boundary value, agents are forced to revise
downwards their forecasts of future exchange rates (and exchange rate
changes). This causes the exchange rate to respond less to changes in
current fundamentals, or to "slow down". Conversely, towards the lower
boundary, the reverse happens and the speed at which the lower boundary is
reached falls as the expectation of intervention increases. This means that
even if the drift rate of the fundamentals process is constant, the drift in
the exchange rate is time—dependent.11

A further observation that can be drawn from equation (10) is that the
conditional mean and variance of the EMS exchange-rate changes are both
state-dependent, unlike those of the purely free-floating rate. Thus, some
kind of conditional heteroskedasticity should be expected. A common
specification of conditional heteroskedasticity which has been observed in
exchange rate data is autoregressive conditional heteroskedasticity (ARCH)
due to Engle (1982) or a more general specification (GARCH) due to Bollerslev
(1986). One characteristic of ARCH is that it exhibits the "clustering"of
conditional variances that appears to be present in the data. Equation (10),
while not necessarily predicting conditional heteroskedasticity of this form,
may nonetheless provide an appealing explanation for such behaviour. The
conditional variance is much lower near the boundaries than it is in the

middle of the band (since 8e/8k = 0 at the edges of the band). Thus the

11

Note that U] represents the drift in k relative to the boundaries.
Therefore, a regime of sliding parities can easily Dbe incorporated into this
framework.

10



conditional variance of exchange-rate changes will be lower during periods
when the exchange rate is close to the edges of the band than when it is in
the middle of the band. This may be an explanation of the "clustering" of

conditional variances which would result in a positive test for ARCH.

IV. Testing and Estimation

By assumption the fundamental variable follows the Brownian process (3),
between reflecting barriers, so its unconditional distribution is exponential
for non-zero drift and.uniformtif n = 0. Since the exchange rate saddlepath
is continuous and monotonic in k the Jacobian of the transformation from k to
e exists and a change of variables would allow for the derivation of the
unconditional moments of the exchange rate as functions of the parameters.
However, this exercise is not carried out because the unconditional moments
are of less interest than the conditional ones. Furthermore, the conditional
distribution of k 1is sufficiently complicated and the Jacobian of the
transformation is sufficiently non-linear that the derivation of the
conditional distribution is intractable. Therefore, these moments will be
estimated by simulation. Simulation estimation has the added advantage that
it does not require an exact specification of the fundamentals and so permits
the level of generality employed above.

The estimation strategy employed is the Method of Simulated Moments.
Here, a discrete approximation to the diffusion process (3) is used to
generate simulated series of exchange rates from (9). Sample moments are
calculated and contrasted to the observed sample moments in a loss function.
The parameter estimates are those that minimize this loss. Testing the model
then amounts to generating 100 replications with the estimated parameter

values and calculating the same sample moments and test statistics. Then,

11



using the actual values as critical values, p-values for the simulated data
are reported. Thus, the p-values will typically report the proportion of
simulated values that exceed the actual value. A value greater than 0.95 or

less than 0.0S would imply a poor fit.

IV.1 Testing the Model with Arbitrary Parameter Values

The first question to be addressed is whether or not the model can match
the observed properties of exchange rate levels and changes. This is
essentially a question about the statistical properties implied by the DGP,
equation (9). This will be pursued by assigning arbitrary values to the
parameters of the model and simulating the model a number of times to
calculate estimates of these sample moments. This will also provide some
insight into the properties of the model. There are five parameters in the

2

model: «, 7, o, k and E.lz For a given set of parameter values 100

replications of 500 observations of the simulated exchange rate series were
generated and sample moments calculated. Table 3 reports the mean value and
the (bootstrap) standard deviation for each of the first four moments of the
simulated exchange rate levels and changes processes for nine different sets
of parameters.13

The sensitivity of the moments to different parameter values is shown in

this table by considering different combinations of parameter values. Thus,

121n fact there is a sixth, K,, but K, kKo and K only describe (k - ko) and (ko
- l(_), so to eliminate the indeterminacy, I have set ko = 0 1in all of the
simulations.

13

The intent of Tables 3 and 4 1is partly to examine the general properties of
the model. Since equation (10) shows that exchange rate changes are
conditionally heteroskedastic ARCH test statistics are not generated for
these simulations.

12



in the second column under 'Case 1' I show a benchmark case against which all
other cases will be compared. For each sample moment, simple one-sided
p-values are shown in order to compare the performance of the model against
the actual dail& Dm/Ffr experience of Table 1. These are simply the
proportion of replications in which the simulated value exceeded the observed
value. In this sense, the first case performs quite well, since all eight
moments are consistent with the model’s predictions at the 1%. In case 2,
the effect of doubling the width of the band is considered. This has little
effect on the properties of the exchange rate levels but greatly impairs the
model’s ability to explain the behaviour of the second and higher moments of
exchange rate changes. Note one interesting result from this case: the
kurtosis of exchange rate changes is significantly lower when the band is
widened. Compared to the benchmark, cases 3 and 4 consider progressively
higher values for 02. This greatly increases the p-values associated with
the two variances and with the kurtosis of exchange rate changes. These
cases display much greater variability than the first two in the sense that
the variances of exchange rate levels and changes are much larger than
observed. However, for moderate values of 02 the kurtosis of exchange rate
changes is greatly increased so that simulated values are nearly always
greater than the observed value. Cases S and 6 consider the effect of
increasing n from -0.00001 to 0.0 and then to 0.00001. These changes do not
have significant effects on the results. However, in case 7 when 7 Iis
greafly reduced to -0.0001 the p-values for the variance and skewness of
exchange rate levels and of the variance, skewness and kurtosis of changes
are all greatly increased. Finally, cases 8 and 9 consider the effect of
increasing «. Lowering the discount rate lowers the variance of the exchange

rate level and also the mean, variance and kurtosis of changes.

13



While joint tests on these moments have not been performed, the model
appears to perform quite well in that it appears that it is possible to find
parameter values for which the model will predict small-sample moments
similar to those observed. Even with substantial changes in parameter values
the simulated moments often remain consistent with the observed data. Note
especially that the kurtosis in the distribution of exchange rate changes is
significantly different from 3.0 in seven of nine cases even though in most
of the replications the boundary values were never hit. This demonstrates
that the model can predict this characteristic of exchange rates without a
large number of 'hits'. Table 3 also shows a disturbing feature of the
model: the large standard errors associated with the simulated moments.
Table 4 provides an even more worrying feature of the model — its
sensitivity to changes in the simulation sample size. In this table exactly
the same tests are performed, but with a sample size of 2000 observations.
Increasing the sample size greatly increases the variances of exchange rate
levels and changes, and lowers the kurtosis of exchange rate levels and the
mean rate of change. This greatly changes the performance of these cases in
their ability to explain the properties of exchange rate levels and changes.
For example Cases 3, 4 and 7 appear to have lost any explanatory power since
most of the p-values indicate that simulated moments differ systematically
from observed moments.

The differences between Tables 3 and 4 illustrate an important problem
with simulations. There is large sampling variability in the sample moments
and there are likely to be significant changes in the observed moments as
longer data sets are considered. This means that the choice of sample size
in the simulations is not innocuous. A short sample size may well yield mean

values for moments and test statistics very close to observed values, but

14



will also 1likely yield greater standard errors and less efficient, and
perhaps biased, parameter estimates. Also, since the simulations are making
a discrete-time approximation to a continuous-time process, a small sample
size makes this a less acceptable approximation. Unfortunately, I am aware
of no convention upon which to base my choice of sample size. However, the
role played by sample size is an important one since one of the
characteristics of exchange rate behaviour is that the non-normality and
non-stationarity in the distribution of exchange rate changes diminish with
aggregation. Furthermore, since there is no way to know how many simulated
observations correspond to the actual sample size it is important to try to

discover the effect of changing the simulation sample size.

IV.2 Simulation Estimators14

Estimation by simulation is a natural way to proceed since the model can
be completely parametrized, the fundamental variable is unobserved, and the
distribution of the exchange rate is unknown, so that analytical derivation
of moments is not possible. Estimation by simulation proceeds along the

following steps:

1. Generate a series of T random elements, {ui}, from a Standard Normal
distribution.

2. A simulated sample {et} of length T is generated from (9) using
the initial condition k, = 0 and arbitrary parameter values. The
fundamentals process {ki} was generated according to the
approximation:

14
For more on simulation estimators see McFadden (1990) and Duffie and

Singleton (1989).

15



k if 7 + kg +0‘2utZE
ke = kK if m+ ke +oouy Sk (12)
n+ Keoq + 02ut otherwise
3. Simulation sample moments are calculated and the loss function
Ley = T (£)9 - £,)? (13)

i

is evaluated, wheretthe ff’ are the si@plated momﬁgts from the jth
simulation in the r~ replication and f; is the i~ observed moment.

4. Repeat steps 2 and 3 for J different values of one parameter,
holding all other parameter values fixed.

S. Select 6., the parameter value which achieves the lowest value for
the loss function. .
6. Repeat steps 1-5 for R replications (i.e. R different series {u}).

7. The parameter estimate is then given by

6z = (1/R) ¥ o, (14)

r

8. Repeat steps 1-7 for each parameter in turn.

In practice this procedure must itself be repeated a number of times in order
to search over a finer and finer grid and because substituting in the new
parameter estimate will often greatly affect the loss - minimizing values of
the other parameters. This procedure was initially conducted over a
relatively wide grid with R = J = 10 and T = 2000, and ultimately over a much
narrower grid with R = 25 and J = 20. The estimation procedure was halted
when it became obvious that further refinements would not significantly
affect the parameter value or the loss. Provided the sample size in the
simulation is sufficiently large, this procedure will lead to a unique
estimate of the true parameter which is consistent, asymptotically normally

distributed, but inefficient relative to a procedure which incorporated

16



analytical information about the population moments.15

IV.3 Estimation

There are in general five parameters to be estimated. However, only
three need to be estimated by this procedure in this case because k and k can
be calculated, for given values of «, 7 and 02, from the smooth-pasting
conditions. In this section the results from the simulation estimation
procedure are reported. Two different estimation exercises are summarized,
corresponding to the use of two slightly different loss functions. In method
1 the parameters «, 7, and 62 are estimated by imposing the actual exchange

rate boundaries and minimizing the loss function:

L, = (mean(Ae(t)) - mean(Ae(n)))? + (var(Ae(t)) - var(Ae(n))?) +
(skew(Ae(t)) - skew(Ae(n)))? (15)

In Method 2 the same parameters are estimated using the loss function'®:

L, = (mean(Ae(t)) - mean(de(n)))? + (var(de(t)) - var(de(n)))? +

(var(e(t))-var(e(n)))? (16)

This second loss function is employed for three reasons. First, the sampling
variability of the skewness of exchange rate changes is likely to be higher

than that of the variance of exchange rate levels, making it less desirable

15
See Duffie and Singleton (1989).
6 ¥
Note that while the exchange rate process is clearly not covariance

stationary, the presence of boundaries makes it an ergodic process so its
variance is not unbounded.

17



as a means for estimating parameters. Second, the variability, however
defined, of exchange rates is of common concern, so including both variances
in this function makes that an important characteristic to be included in the
estimation strategy. Third, for purely methodological purposes it is of
interest to see how the estimates obtained from this procedure depend on fhe
specification of this function.

Table 5 reports the results of the estimation procedure for the two
cases. In each case the standard deviation is reported below the parameter
estimate. This is the standard deviation of the 6. around the point estimate
éR. The k and k values reported are the values given by the smooth-pasting
conditions evaluated at the estimated values of the other parameters.

The first observation to be made is that the estimated values of a« and 7
under the two methods are very close, well within two standard deviations of
each other. The difference between the two sets of results are in the implied
width of the band on the fundamentals and on the variance parameter. This

should be noted when the implications of these two sets of estimates are

compared below.

IV.4 Testing with Estimated Parameters

Given estimated parameters, attention now turns to evaluating the
ability of the estimated model to explain the behaviour of exchange rates:
specifically, whether the moments not used to estimate the parameters are
captured by the model. This question is again addressed by simulation.
Since more moments and test statistics are calculated than are used for
estimation the remaining statistics can be used as tests of the model. One
hundred replications of the model, with 2000 observations, were simulated

using the estimated parameters. Table 6 presents the mean, standard

18



deviation and prob-values for the first fdur moments of exchange rate levels
and changes and also for the LM tests for ARCH effeéts. The prob-values (in
square brackets) indicate the proportion of replications in which the
simulated moment or test statistic had a value greater than the value
observed. In the case of skewness, kurtosis and ARCH statistics, a second
p-value is reported. This indicates the proportion of replications in which
the simulated value exceeded the critical value at the 1% level.'”

The simulations of the Method 1 estimates generally predict much higher
means and variances for exchange rate levels and changes than are actually
observed, but match the higher moments well. The Method 2 results are more
encouraging except that it too predicts a higher mean rate of change. The
main difference between the two methods 1is demonstrated by the great
difference in the variance of exchange rate changes, which is much lower in
the second case. While 98 of the observations exéeed the actual value under
Method 1, only 19% exceed it under Method 2. Thus, in terms of matching the
first two moments the second method appears more consistent with the data
than the first.

The first important result that comes out of this table is that the
model predicts highly significant kurtosis 1in exchange rate changes
regardless of which estimation method is considered. In each case the average
kurtosis value was significantly different from 3.0 at the 1% level and the
majority of values (100% for Method 1 and 83% for Method 2) exceeded the
observed value.

More generally, the model predicts significant non-normality in the

17

For skewness this is a one-sided test against significant skewness with the
sign observed in the data (i.e. positive for levels and negative for
changes).
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unconditional distribution of exchange rate changes as reflected in the
Bera-Jarque test statistics. In Method 1 all of the simulated statistics
exceeded the critical value at the 1% level and for Method 2 83% did. Thus,
in general the model strongly rejects normality for exchange rate changes,
and the results for the individual moments suggest that this rejection is due
almost entirely to excess kurtosis.

The second important result concerns the implied test statistics for
conditional heteroskedasticity of the ARCH form. For Methods 1 and 2 all of
the statistics were significant at the 1% level of test. However, the values
for Method 1 are rarely consistent with the observed values of these
statistics. Those for Method 2 are more consistent with actual values, with
at least 5% of the simulated values exceeding the actual values at all lags
greater than 1. Thus, the model is also generally consistent with the
observed conditional heteroskedasticity in exchange rate changes.

Attention has already been drawn to the importance of sample size in
this model. The results so far are obtained in a moderately-sized sample of
2000 observations. This sample size was chosen because it was hoped to be
large enough to yield relatively reliable estimates and was small enough to
be computationally manageable. A striking way to see the difference between
the small-sample properties of the model and the population properties is to
compare the moments and statistics obtained by the model with each set of
estimated parameters with a small sample size (T=500) and a very large sample
size (T=10000) which is taken as an approximation to the population. Results
from one replication are given in Tables 7 and 8. These two tables, combined
with Table 6 (T=2000) indicate that as the sample size increases, ARCH
effects become more significant and the kurtosis in the distribution of

exchange rate changes is greatly increased.
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Finally, Tables 1 and 2 demonstrate that if exchange rates are sampled
at a lower frequency then their rates of change exhibit less significant
non-normality and non-stationarity. This property was investigated by
skip-sampling the simulations used to derive Table 6. The results are given
in Table 9, where only every tenth observation was sampled. These results
show that while the distribution of exchange rate levels is unaffected, the
mean rate of change and its variance are both much higher. More importantly,
the kurtosis in this distribution 1is significantly 1lower as 1is the
Bera-Jarque test statistic for non;normality. Both, however, still reject
normality at the 1% significance level. Also, all of the ARCH test
statistics are significantly lower than in Table 6 and none are significant
at the 1% level. The p-values reported in this table are for comparisons
with the data in Table 2 and these show that both methods fit the data very
well. Thus, the model does a good job of matching the effects of time
aggregation.

The issue of the appropriate simulation sample size has already been
raised and deserves final comment here. While it is not possible to know
what the number of simulated observations should be in order to simulate a
given exchange rate series, it is possible to draw conclusions from the
relative sample sizes of two data sets. Table 2 shows that the skip-sampled
data exhibit less significant excess kurtosis and conditional
heteroskedasticity in the distribution of exchange rate changes than the
daily data. Table 9 shows that this model has the same property, although
with the sample sizes chosen this is less marked in the simulations. Also, a
similar result holds when a shorter sample is chosen from a data set sampled
at the original frequency (compare tables 7 and 8).

The choice of loss function used in the estimation procedure is also not
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of crucial importance. While the two loss functions do appear to lead to
slightly different sets of parameter estimates, especially the estimate of
¢2, these differences do not appear to be qualitatively important. In the
simulations, the two sets of estimates 1lead to essentially the same
predictions of exchange rate behaviour. All of the moments and test
statistics implied by each method’s results are well within two standard
deviations of each other. This is perhaps not too surprising since in Tables
3 and.4 it has been observed that even much greater differences in parameter
values often did not lead to great differences in the implied exchange rate
behaviour. For this reason, rather than sampling repeatedly from the
empirical distribution of the parameter estimates the simulations held the
parameters fixed at their point estimates and sampled from the distribution
of z(t). Thus, it may appear that this approach will underestimate the true
variability in the system. While this possibility is not rejected, it would
appear from Tables 3 and 4 that allowing for small differences in parameter
values as implied by their empirical distributions would 1lead to
insignificant changes in simulated statistics so this omission does not

appear to have been important.

V. Conclusion and Discussion

This paper has investigated the properties of a simple model of exchange
rate determination with a stylized EMS intervention policy. The results
indicate that this simple model is able to predict behaviour of exchange rate
levels and changes that is similar to that which is observed. The analytical
results demonstrate that the conditional mean and variance of exchange rate
changes are both time-varying, which provides one explanation for the

conditional heteroskedasticity in observed series. The conditional variance
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is shown to be bounded from above by the conditional variance of exchange
rate changes under a pure free float regime, thereby providing theoretical
support for the observation that the EMS has "stabilized" exchange rates.

Further investigation of the model was conducted by simulation. Four
clear results emerged. First, the model clearly rejects normality of the
unconditional distribution of exchange rate changes and this is almost
entirely due to excess kurtosis. Second, the model also strongly rejects
conditional homoskedasticity for exchange rate changes. Third, these results
are not due in any sense to the exchange rate having hit the boundaries a
large number of times. For example in Table 8, there is strong rejection of
normality and conditional homoskedasticity by the simulation of the results
of Method 2 even though there are only a total of 807 hits over a sample of
10,000 observations. Finally, when the data are sampled at a lower frequency
the non-normality and non-stationarity in the distribution of exchange rate
changes are less significant. These four properties mimic those of actual

EMS exchange rate data.
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Table 1: Summary Statistics on Selected Daily EMS Exchange Rates
versus the Deutschemark

Dm/Ffr Dm/Lit Dm/Bfr Dm/Kr Dm/F1
parity(ec)¥ -1.2101 -6.5802 -3. 0265 -1.3388 -0.1193
mean(e-e.) -0. 00601 -0.01317 -0.0121 -0. 0060 0.0002
variance(e) 0.7287E-4 0.2115E-3 0.2681E-4  0.1343E-3 0.6616E-5
skewness(e) 0. 3755* 0.3115* 0.6769* 0.3911* 0.2569*
kurtosis(e) 1.8516 2.0440 2.7081 2.0954 3.9254*
mean(Ae) -0.2339%E-4 0.2658E-4 0.1046E-4  0.3236E-4 0. 3849E-5
variance (Ae) 0.2261E-5 0.7887E-5 0.1089E-4 0.1237E-4 0. 4980E-5
skewness (Ae) -0.6131* 0.0417 0.0165 -0. 2283 0.0594
kurtosis(Ae) 9.1170* 7.3022* 4.7084* 7.4741% 10.546*
NRSQ(1) 91.948* 116.66* 188.41* 170. 66* 167.57*
NRSQ(2) 93. 452* 122, 35* 231.55%* 207.47* 230. 66*
NRSQ(3) 94.224%* 127.19* 244, 94%* 220.78* 250.24*
NRSQ(4) 96.368* 133.58% 253.00* 221.39* 261.15*
NRSQ(5) 95.977* 132.72* 258.25% 220.81* 265.28%
NRSQ(8) 97.273* 136.54* 273. 12* 223.88* 280. 66*
NRSQ(12) 99.067* 137.00* 281.13* 223.47* 290. 43*
NRSQ(24) 102. 82* 121.09* 276.59* 219.94* 293.57*
BJ(Ae) 1096. 29* 521.53* 82.24* 569.70* 1604.27*
Data: Logarithms of daily exchange rate observations over the period

Jan. 14,

1987 to Sept. 20,

1989, taken at 3:00 PM E.T. by the First

American Bank, New York, reported by the Wall Street Journal.

N = 676 obs

NRSQ(p) is the LM test for conditional heteroskedasticity (ARCH) at p lags
* denotes significance at the 1% level
* the Lira fluctuates within a band * 6% about the parity rate, while the

others have a band of width % 2%

¥ central parities as of January 12, 1987
BJ(Ae) is the Bera-Jarque test statistic for normality



Table 2: Summary Statistics on Selected Weekly EMS Exchange Rates
versus the Deutschemark

Dn/Ffr Dm/L1i Dm/Bfr Dm/Kr Dm/F1
mean(e-e.) -0.00611 -0.01326 -0.01215 -0. 00602 0. 00037
variance(e) 0.7401E-4 0.2031E-3 0.2554E-4 0.1346E-3 0.8264E-5
skewness(e) 0. 4225* 0.3761* 0.6063* 0.3744* 0.6444*
kurtosis(e) 1.8753 2.0542 2.7613 1.9754 = 4.7636*
mean (Ae) -0.8272E-4 -0.7388E-4 -0.6985E-4 -0.1281E-3 -0.8224E-4
variance(Ae) 0.6228E-5 0.1238E-4 0. 1269E-4 0.1418E-4 0.8877E-5
skewness (Ae) -1.8357* -0.7830* -0.1678 -0.5603* -0. 0987
kurtosis(Ae) 11.732* 5.9891* 5.0754* 5.4533* 9.0348*
NRSQ(1) 3.7330 12.441* 34.257* 10.014* 29.813*
NRSQ(2) 4.7071 12.407* 44.026* 11.310% 37.688%
NRSQ(3) 5.9839 12.437* 48.517* 11.356* 42.710%
NRSQ(4) 6.6620 12. 367 51.188* 12.134 43.636*
NRSQ(5) 6.6271 13. 055 52.189* 12.862 45.841*
NRSQ(8) 10.533 13. 395 52.588* 14. 266 46.248*
NRSQ(12) 13.096 15.713 54.017* 16.454 47.682*
NRSQ(24) 14.832 20.733 59.632* 37.533 46.362*
BJ(Ae) 523. 408* 66. 425* 25.783* 42.434* 212.670*
Data: Logarithms of Wednesday observations over the period Jan. 21, 1987

to Sept. 22,

and reported by the Wall Street Journal.

N = 140 obs.

1989 taken at 3:00 PM E.T. by the First American Bank

NRSQ(p) is the LM test for conditional heteroskedasticity (ARCH) at p lags
* denotes significance at the 1% level

BJ(Ae) is the Bera-Jarque test statistic for normality



Table 3: Testing the Model Against the Dm/Ffr Rate (T = 500)

Actual Casel Case2 Case3 Case4d
(wider band) (larger ¢“) (largest o¢°)
mean(e) -0. 0060 -0. 4868E-3 -0.8048E-3 -0.1991E-3 0.2952E-3
(0.00847) (0.0129) (0.0035) (0.00021)
[0.89] [0.80] [1.00] [1.00]

variance(e) 0.7287E-4 0.7818E-4 0.7614E-4 0.2372E-3 0.2542E-3
(0.701E-4) (0.534E-4) (0.336E-4) (0. 195E-4)

[0. 28] [0.39] [1.00] [1.00]
skewness(e) 0. 3755* -0.0176 -0.0239 -0.0244 -0. 0262
(0.602) (0.424) (0.364) (0.209)

[0.22] [0.19] . [0.18] [0.02]

[0.29] [0.28] [0.26] [0.12]
kurtosis(e) 1.8516* 2.4000 2.2759 1.7096 1.5639
(1.014) (0.502) (0.253) (0.128)

[0.74] [0.80] [0.20] [0.03]

[0.08] [0.03] [0.00] [0.00]
mean(Ae) -0.2339E-4 -0.6117E-5  -0.2912E-S  -0.3946E-5 -0.1496E-S
(0.273E-4) (0.431E-4) (0.296E-4) (0.319E-4)

[0.40] [0.37] [0.34] [0.36]

variance (Ae) 0.2261E-5 0. 1499E-5 0.1018E-5 0. 3358E-4 0. 1007E-3
(0. 155E-5) (0.279E-6) (0. 823E-5) (0.151E-4)

[0.15] [0.01] [1.00] [1.00]

skewness (Ae) -0.6131* -0. 0026 -0. 0051 0.0430 -0. 0437
(1.188) (0.201) (0.639) (0.276)
[0.95] [0.99] [0.86] [0.96]
[0.12] [0.03] [0.31] [0.20]

kurtosis(Ae) 9.1170* 8.6353* - 3.2309 12.617* 7.349%
(14.29) (2.264) (2.948) (0.779)
[0.20] [0.01] [0.89] [0.01]
[0.30] [0.03] [1.00] [1.00]

Hits at e 0 0.13 0.0 2.99 10. 11
(0.42) (0.0) (1.60) (2.98)

Hits at e 0 0.15 0.0 3.17 9.09
(0.41) (0.0) (1.56) (2.54)

() denotes a sample standard degiation [ ] denotes a prob-value

Case 1: aa = 0.03 7 = -0.00001 o, = 0.001 é = 0.0225 e = -0.0225

Case 2: aa = 0.03 7 = -0.00001 o, = 0.001 e = 0.05 e = -0.05

Case 3: a = 0.03 =7 = -0.00001 02 = 0.005 e = 0.0225 e = -0.0225

Case 4: « = 0.03 71 = -0.00001 o = 0.01 e = 0.0225 e = -0.0225



Table 3 Cont’d:

Case S Caseb Case7 Case8 Case9
(n = 0) (n = 0.00001) (n = -0.0001) (a = 0.1) (¢ = 1)
mean(e) 0.6398E-3 0.001617 -0.003398 -0.7344E-3  -0.5600E-3
(0.00816) (0.00814) (0.00546) (0.00912) (0.00823)
[0.94] [0.94] [0.90] [0.86] [0.91]
variance(e) 0.7941E-4 0. 8045E-4 0.1736E-3 0. 6045E-4 0. 3064E-4
(0.739E-4) (0.801E-4) (0.811E-4) (0.574E-4) (0.182E-4)
[0.30] [0.23] [0.82] [0.21] [0.05]
skewness (e) -0.0376 -0. 0209 0.3137* 0.0274 -0.0102
(0.582) (0.627) (0.545) (0.628) (0.503)
[0.21] [0.23] [0.38] [0.24] [0.22]
[0.30] [0.29] [0.12] [0.30] [0.29]
kurtosis(e) 2.3872 2.5927 2.2508 2.4701 2.3112
(0.844) (1.093) (0.954) (1.136) (0.619)
[0.77] [0.75] [0.59] [0.75] [0.78]
[0.10] [0.13] [0.08] [0.09] [0.06]
mean (Ae) -0.3816E-6  0.2012E-5 0.3789E-5 -0.2582E-4  -0.2215E-5
(0.293E-4) (0.286E-4) (0.299E-4) (0.293E-4) (0.259E-4)
[0.29] [0.25] [0.22] [0.32] [0.26]
variance(Ae) 0.1667E-5 0. 1546E-5 0.2674E-5 0.9799E-6 0. 4398E-6
(0.185E-5) (0.141E-5) (0. 187E-5) (0. 646E-6) (0.292E-7)
[0.17] [0.18] [0.47] [0.06] [0.00]
skewness (Ae) -0.2142 -0. 3989* 2.2837* -0. 0249 0.0079
(1.198) (1.634) (2.255) (0.663) (0.126)
[0.89] [0.84] [0.97] [0.95] [1.00]
[0.17] [0.17] [0.05] [0.08] [0.04]
kurtosis(Ae) 9.5568* 11.7997* 33.2072* 5.5875* 3.2181
: (15.998) (20.529) (27.776) (7.301) (0.529)
[0.21] [0.27] [0.77] [0.12] [0.00]
[0.33] [0.34] [0.82] [0.25] [0.14]
Hits at e 0.11 0.09 0.85 0.05 0.01
(0.34) (0.32) (0.54) (0.22) (0.10)
Hits at e 0.16 0.18 0.10 0.04 0.0
(0.42) (0.41) (0.33) (0.19) (0.0)
* denotes significance at the 1% lgvel of test
Case 5: « =0.03 70 =0.0 ¢, = 0.001 e = 0.0225 e = -0.0225
Case 6: a = 0.03 7 = 0.00001 o, = 0.001 e = 0.0225 e = -0.0225
Case 7: a = 0.03 7 = -0.0001 o, = 0.001 § = 0.0225 e = -0.0225
Case 8: a = 0.10 7 = -0.00001 o, = 0.001 e = 0.0225 e = -0.0225
Case 9: a =1.0 7 = -0.00001 ¢° =0.001 e = 0.0225 e = -0.0225



Table 4: Testing the Model Against the Dm/Ffr Rate

(T = 2000)

Case 1 Case2 Case 3 2 Case 4 s Case 5
(wider band) (larger ¢°) (largest ¢°) (n = 0)
mean(e) -0.5249E-3 -0. 002528 -0. 1814E-3 -0.1371E-3 0. 6502E-3
(0.00585) (0.01661) (0.00181) (0.00106) (0.00574)
[0.97] [0.65] [1.00] [1.00] [0.98]
variance(e) 0. 1802E-3 0.4073E-3 0.2509E-3 0. 2587E-3 0. 1706E-3
(0.653E-4) (0. 349E-3) (0.153E-4) (0.975E-5) (0.706E-4)
[0.96] [0.97] [1.00] [1.00] [0.90]
skewness(e) 0.0941 -0. 0302 0.0175 0.0158 -0.0653
(0.596) (0.658) (0.182) (0.107) (0.601)
[0.29] [0.24] [0.01] [0.00] [0.29]
[0.25] [0.29] [0.05] [0.00] [0.38]
kurtosis(e) 2.2589 2.6188 1.5516 1.5072 2.2953
(0.7925) (1.294) (0.083) (0.044) (0.767)
[0.67] [0.79] [0.00] [0.00] [0.66]
- [0.06] [0.11] [0.00] [0.00] [0.04]
mean (Ae) -0.1722E-6 -0. 2598E-5 0.5634E-6 0. 1700E-6 0.1993E-6
(0.772E-56) (0.159E-4) (0.831E-5) (0. 754E-5) (0. 759E-5)
[0.00] [0.10] [0.00] [0.00] [0.00]
variance(Ae) 0. 2549E-5 0.2532E-5 0.3611E-4 0.9828E-4 0.2182E-5
(0. 134E-5) (0. 304E-5) (0. 443E-5) (0. 609E-5) (0.117E-5)
[0.54] [0.28] [1.00] [1.00] [0.38]
skewness (Ae) 0.2932 0.6211 0.0091 0.0032 -0. 4797
(1.278) (3.382) (0.265) (0.140) (1.373)
[0.82] [0.92] [0.99] [1.00] [0.66]
[0.25] [0.11] [0.14] [0.02] [0.49]
kurtosis(Ae) 34.8579*% 41.2092% 12.8577* 7.4121% 33.8760*
(18.552) (97.396) (1.237) (0.381) (21.162)
[0.89] [0.36] [1.00] [0.00] [0.82]
[0.91] [0.40] [1.00] [1.00] [0.14]
Hits at e 1.35 0.28 14.23 34. 36 0.88
(1.17) (0.51) (3.12) (5.04) (0.89)
Hits at e 1.05 0.22 13.99 34.23 1.23
(1.12) (0.48) (3.19) (4.69) (1.14)

() denotes a sample standard deviation
[ ] denotes a prob-value



Table 4 Cont’d

Case 6 Case 7 Case 8 Case 9
(n = 0.00001) (n = -0.0001) (¢ = 0.1) (¢ = 1)
mean(e) -0.3941E-3 -0.001354 -0. 7059E-3 -0.001781
(0.00592) (0.00339) (0.00719) (0.00975)
[0.98] [1.00] [0.95] [0.82]
variance(e) 0.1721E-3 0.2156E-3 0.1737E-3 0. 1024E-3
(0.673E-4) (0.329E-4) (0.734E-4) (0. 720E-4)
[0.91] [1.00] [0.93] [0.50]
skewness(e) 0. 0379 0. 1603 0.0479 0. 0542
(0.649) (0.339) (0.677) (0.756)
[0.31] [0.25] [0.38] [0.35]
[0.35] [0.14] [0.32] [0.26]
kurtosis(e) 2.4214 1.8264 2.3052 2.5778
(1.264) (0.313) (0.912) (1.409)
[0.66] [0.72] [0.36] [0.73]
[0.07] [0.00] [0.03] [0.10]
mean (Ae) -0.6291E-6 -0.2290E-6 ~0.6041E-6 -0.1373E-5
(0.779E-5) (0.781E-5) (0.848E-5) (0. 795E-5)
[0.00] [0.00] [0.00] [0.00]
variance(Ae) 0.2341E-5 0.2823E-5 0.1376E-5 0. 4564E-5
(0.114E-5) (0.945E-6) (0.750E-6) (0.216E-6)
[0.47] [0.72] [0.14] [0.00]
skewness (Ae) -0.1288 2.5334 0.1744 0.0387
(1.735) (1.333) (1.034) (0.368)
[0.69] [1.00] [0.88] [0.97]
[0.35] [0.01] [0.21] [0.05]
kurtosis(Ae) 33.8577* 46.5837* 18.7977* 6.5652*
(26.242) (18.676) (14.509) (5.525)
[0.85] [1.00] [0.70] [0.21]
[0.12] [0.00] [0.19] [0.62]
Hits at e 1.13 3.45 0.81 0.17
(1.03) (0.91) (0.79) (0.38)
Hits at e 1.17 0.36 0.54 0.11
(1.05) (0.66) (0.82) (0.31)

* denotes significance

at the 1% level



Table 5: Estimated Parameter Values for Dm/Ffr

=

(0.0000004)

0.0015264
(0.000119)

0. 02389807

-0. 02438652

Method 1 Method 2
o 0. 03536 0. 026040
(0.00648) (0.00687)
n -0. 000019394 -0.000014756

(0. 00000043)

0.000732
(0.000143)

0. 025338065

-0. 025831081




Table 6:

(

Simulated Sample Moments and ARCH Test Statistics

Method 1 Method 2

mean(e) -0.6863E-3 0.001045
(0.0033) (0.0065)

[0.94] [0.76]

variance(e) 0. 1583E-3 0. 1545E-3
(0.268E-4) (0. 730E-4)

[1.00] [0.82]

skewness(e) 0.0528 0.0533
(0.412) (0.705)

[0.21] [0.33]

[0.30] [0.39]

kurtosis(e) 1.8271 2.5769
(0.332) (1.129)

[0.41] [0.76]

[0.00] [0.12]

mean (Ae) 0.3212E-6 0.2348E-6
(0.676E-5) (0. 782E-5)

[1.00] [1.00]

variance(Ae) 0. 4745E-5 0. 1477E-5
(0. 154E-5) (0. 982E-6)

[0.98] [0.19]

skewness (Ae) 0. 1557 0.8636*
(0.812) (1.747)

[0.84] [0.92]

[0.31] [0.12]

kurtosis(Ae) 26.3383* 43.3427*
(7.146) - (31.013)

[1.00] [0.80]

[1.00] [0.83]

BJ(Ae) 50152.87 216229.3
(33345.9) (319102.0)

[1.00] [0.80]

[1.00] [0.83]-
Hits at e 2.87 0.97
(1.32) (0.83)
Hits at e 2.25 128.67
(1.26) (126.13)

) denotes a

sample standard deviation,

[ ] denotes a prob-value



Table 6 Cont’d

Method 1 Method 2

TRSQ(1) 8.4062* 13.729*
(12.102) (22.84)
[0.00] [0.02]
[0.38] [0.42]

TRSQ(2) 15.2535%* 26.396*
(14.514) (33.47)
[0.00] [0.04]
[0.52] [0.59]

TRSQ(3) 19.1731* 35.847*
(16.22) (36.76)
[0.00] [0.60]
[0.60] [0.69]

TRSQ(4) 23.7532* 44, 580*
(17.729) (42.17)
[0.00] [0.09]
[0.68] [0.74]

TRSQ(5) 27.3588* 49.979*%
(17.715) "(44. 46)
[0.00] [0.11]
[0.74] [0.78]

TRSQ(8) 35.9149* 67.103*
(19.825) (48.72)
[0.011] [0.23]
[0.74] [0.79]

TRSQ(12) 45, 607* 83.181*
(20.812) (56.96)
[0.02] [0.37]
[0.81] [0.80]

TRSQ(24) 68.767* 114.672*
(28.007) (71.46)
[0.10] [0.48]
[0.85] [0.81]

* denotes significance at the 1% level



Table 7: Small-Sample Simulated Moments and ARCH Statistics -- 500 obs.

Method 1 Method 2
mean(e) 0.01126 0.004981
variance(e) 0. 4501E-4 0.1321E-4
skewness(e) -0.4971% -0.2244%*
kurtosis(e) 1.9161 1.9738
mean (Ae) 0.3357E-4 0. 1358E-4
variance (Ae) 0. 1376E-5 0.5091E-6
skewness (Ae) -0.0106 0.1537
kurtosis(Ae) 3.7639* 2.9986
BJ(Ae) 12.166* 1.9696
Hits at e 0 0
Hits at e 0 0
TRSQ(1) '0.4824 0.2345
TRSQ(2) 1.6919 3.0031
TRSQ(3) 3.5453 3.5236
TRSQ(4) 8.2697** 7.7624
TRSQ(5) 11.522%%* 7.7141
TRSQ(8) 16.252%* 12.791
TRSQ(12) 25, 258%* 22.378%*
TRSQ(24) 40. 412%* 30.548

Table 8: Estimated Steady-State Moments and ARCH Statistics -- 10000 obs.

Method 1 Method 2
mean(e) -0. 3459E-3 -0. 00251
variance(e) 0.1817E-3 0. 1832E-3
skewness(e) 0.0127 -0.08894
kurtosis(e) 1.5342 1.8852
mean (Ae) 0.1047E-5 -0. 1329E-5
variance (Ae) 0. 3958E-5 0. 9405E-6
skewness (Ae) -0.2211 2.0742*
kurtosis(Ae) 35.289 76.941*
BJ(Ae) 434490. 0* 2285200. 0*
Hits at e 15 5
Hits at e 11 802
TRSQ(1) 6.9075* 71.964*
TRSQ(2) 7.0730* 75.474%*
TRSQ(3) 28.306* 77.054%*
TRSQ(4) 38.321%* 78.283*
TRSQ(5) 38.408* 86.386*
TRSQ(8) 57.452* 90.011*
TRSQ(12) 63.345* 146.56*
TRSQ(24) 88.582* 175.38*

* denotes significance at 1% level, ** denotes significance at 10% level



Table 9: Simulated Sample Moments and ARCH Test Statistics
for Aggregated Data

Method 1 Method 2
mean(e) -0.6819E-3 -0. 1044E-3
(0.00335) (0.00651)
[0.94] [0.76]
variance(e) 0. 1596E-3 0. 1559E-3
(0.274E-4) (0.737E-4)
[1.00] [0.82]
skewness(e) 0. 0503 0.0544
(0.413) (0.714)
[0.19] [0.28]
[0.28] [0.41]
kurtosis(e) 1.8222 2.5857
(0.329) (1.162)
[0.40] [0.74]
[0.00] [0.12]
mean (Ae) 0.7132E-5 0. 4566E-5
(0.684E-4) (0. 784E-4)
[0.87] [0.81]
variance(Ae) 0.4180E-4 0.1448E-4
(0.124E-4) (0. 985E-5)
[1.00] [0.79]
skewness (Ae) 0.2334 1.3805*
(0.976) (2.187)
[0.98] [0.95]
[0.66] [0.87]
kurtosis(Ae) - 12.8224* 24.3778*
(3.664) (17.419)
[0.54] [0.74]
[1.00] [0.83]
BJ(Ae) 947.9746* 6532.892*
(750.472) (9750. 47)
[0.66] [0.75]
[1.00] [0.81]

T 200 obs.
*

denotes significance at the 1% level



Table 9 Cont’d.

Method 1 Method 2

TRSQ(1) 2.1067 3.3911
(2.944) (4.806)

[0.21] [0.29]

[0.06] [0.11]

TRSQ(2) 4.2973 5.3452
(3.873) (5.934)

[0.37] [0.38]

[0.13] [0.18]

TRSQ(3) 6.2664 7.0417
(4.770) (6.436)

[0.42] [0.43]

[0.13] [0.15]

TRSQ(4) 8. 0668 9.0682
(5.501) (8.029)

[0.51] (0. 49]

[0.17] [0.21]

TRSQ(5) 9.4982 10. 3004
(5.752) (8.314)

[0.66] [0.66]

[0.14] [0.21]

TRSQ(8) 13. 6674 13.8358
(8.556) (6.702)

[0.59] [0.64]

[0.18] [0.19]

TRSQ(12) 18.1707 17.8159
(7.327) (9.157)

[0.74] [0.62]

[0.13] [0.16]

TRSQ(24) 28. 7406 29.0085
(8.481) (10. 755)

[0.96] [0.97]

[0.07] [0.11]




