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Abstract

In this paper, we study a two-period common-value auction model in which
the seller possesses some private information about the value of the object
being sold. Even though the probability of revealing hié information in a
later period could be different, the seller’s equilibrium strategy is similar
and information revealing: sell late if and only if the information is
favorable enough. We also show that it is the seller’'s best policy to always
reveal his private information in some equilibria but not in others. One
implication of the model is that the owner’s ability to sell on more occasions

generally reduces his expected revenue.

JEL No. 026
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1. Introduction

There is a large literature on auctionsl. Most papers deal with the
private information of the bidders. Some deal with the private information of
the seller. Milgrom and Weber (1982), for example, prove that the owﬁer of
an auctioned object should reveal truthfully any private information he
possesses, if he can commit to the policy he chooses. In the model, the
seller has strong incentive to cheat after he receives his private
information. Kyle (1985), as another example, examines the revelation of
information in dynamic trading in which an informed trader’ private
information is completely incorporated into prices by the end of the trading
process. It is assumed that other agents in the market are noise traders.

Under circumstances that all traders are rational and the seller cannot
commit to any policy that is not ex post revenue maximizing, we may ask the
following questions: What is our prediction about the seller’s behavior? How
is the private information of the seller revealed from his behavior? Can
information revealing increase the seller’s revenue? Can the seller be
benefited from having the option of selling in one more period if he cannot
sell it successfully in previous periods?

Our paper answers these questions. Specifically, a two-period model is
studied. In the model, the owner has an indivisible common-valued object for
sale. The owner offers to sell it to the highest bid in an auction, if that
bid is above his reservation price. If the highest bid is too low, he can
sell it in a second-period auction. Participants in those auctions are
assumed to be the same for notational simplicity. In the model, whether or
not the owner can sell the object successfully in the first period reveals
some of the owner’s private information. Potential buyers compete with each

other in the auctions. Their bids for the asset, of course, depend on what



information about the asset they can infer from the actions of the owner and
other private information they themselves have. We allow for the possibility
that the seller’s information is revealed before the next auction starts if
the seller does not sell the object successfully in the first auction. More
importantly, the potential buyers are assumed to get more private information
from exogenous sources as time passes by. When the buyers get additional
private information, they tend to receive more of the surplus, which means
that the owner loses more on average. Therefore, the owner of the asset faces
an interesting tradeoff as a result of his private information: if he sells
it low in the current auction, the bidders infer that the owner’s private
information is likely to be unfavorable; if he sets a high reservation price
and cannot sell it until next auction, they get more of the surplus.

We find that no matter what the exogenous probability the seller’s
information will be revealed later, in equilibrium the owner sets a low
reservation price and sells successfully in the first period when he receives
unfavorable information about the asset and sets a high reservation price and
sells late when he receives favorable information. There could be many such
Nash equilibria in the two-period game. The best equilibrium for the owner is
always to sell the asset in the first period auction; but this may not be
revenue maximizing ex post and may not survive if we impose certain intuitive
restrictions on the bidders’ beliefs. We define a sequential Nash equilibrium
for the two-period game and argue that sequential equilibrium is more
appropriate than Nash equilibrium for analyzing this model. If we consider
only the profit maximizing equilibrium among those sequential equilibria, we
find that the revenue to the seller is an increasing function of the
probability of publicly revealing of the seller’s private information. This
is not true, however, if we consider other sequential equilibria in the game.

Our results suggest that if the seller can somehow commit himself to



always sell in one auction, then he will get more out of the sale. This can
prevent buyers from getting more private information. Thus by committing
himself to a quick sale, he at the same time benefits himself.2 Other
evidence that favors a quick sale includes "must sell"s of
"out-of-business-sale" in advertising. This also provides a justification for
auctions: quick sale--it prevents bidders from getting more private
information.

We have made some simplifying assumptions to make the analysis tractable.
Although these assumptions limit the direct applicability of the model, it is
suggestive of certain principles concerning the sale of a house, a used car, a
share of common stock, etc., when the owner possesses some private information
that the potential buyers do not have at the time of sale, and when the
potential buyers can acquire more private information as time passes.

The paper is organized as follows. In Section 2, we examine the
properties of the equilibria in the two-period auction game. In Section 3,
we investigate the effect of information revelation on the seller’s revenue.

Section 4 contains a summary.
2. The Model

Consider the following two-period auctioning model: There are n bidders,
named 1, 2, ..., n, and the owner of an asset is named 0. The asset has a
common value V (which is random) to every bidder. The owner can sell the
asset in either of the two periods by means of a first-price, sealed-bid
auction in each period.3 Bidders have identical information before the first
auction starts; the common prior among these bidders is given by a cumulative
distribution function H(v). In the first period, bidders receive no private

. . 4 . . .
information”. The owner, however, receives a private random signal I0 € ¥ and



determines a reservation price for the auction in the first period. If he
sells successfully, the game ends. If the asset is not sold in the first
period, then it must be sold in the second period. In the second period, each
bidder, say i, receives some private information denoted by the random
variable IieQ, where ieN={1,2,...,n} is the set of bidders. At the end of the
second period, the value of the asset is realized. For simplicity, assume
that there is no discounting.

We make the following additional assumption on the information bidders
have about the value of the auctioned asset in the second period: the owner’s
private information I0 is revealed to the bidders with probability « before
the second-period auction starts. Bidders are Bayesian and update their prior
beliefs using whatever information is available to them.

The following assumptions in no way affect the qualitative results of
our paper but simplifying the analysis greatly: the support of V is {0, v}
(where v>0); the support of Ii is Q={0,1}, VieN; the support of I0 is Z=[s,s];
the distribution of I, given V is atomless; I ...,In are mutually independent

0 1’

, 1I_are

and identically distributed conditional on V; and I I n

o 1

affiliated with V according to the definition below:

Two random variables X and Y are affiliated if V x>x’, y>y’, where x,x’
are in the support of X, y,y’ are in the support of Y,

Pr{x/y}Pr{x’/y’} = Pr{x’/y}Pr{x/y’},

where the respective conditional probabilities are properly defined.s

The concept of affiliation has been introduced into auction theory by
Milgrom and Weber (1982). We use a simple version of their definition. The

following lemma will be needed; its proof and a more detailed treatment of

affiliation can be found in their paper.



Lemma 1
Assume that X and Y are affiliated and that all the following conditional
probabilities are properly defined. Then V y>y’,
i) EMX/y) =z E(X/y’);

ii) Vx, Pr{Xzx/y) = Pr{Xzx/y’}.

Let q0=Pr{Il=O/V=0}, q1=Pr{Il=1/V=v). Since V and I1 are affiliated, from

Lemma 1, we have Pr{Ilzl/V=v} = Pr{1121/V=0}; i.e., q0+q121.

Since the bidders have no private information in the first period, in any
equilibrium, because of competition the bidders will pay the expected value of
the asset conditional on the event that the asset is sold successfully in the
first period. Given this form of strategy of the bidders, the seller’s choice
reduces to choosing whether or not to sell in the first period, given IO' A
reservation price in the first-period auction will not convey more information
to the bidders than simply a choice of whether or not selling in the first
period. In the case of anonymous reservation price, bidders will simply pay a
single price in the first period. Thus, the seller will set a reservation
price higher than that price if he prefers to wait, and set the reservation
price lower than that if he prefers to sell it right away. The situation is
more complicated in the case when the seller announces his reservation price
publicly in the first period. Bids from bidders may depend on the announced
reservation price. But if the seller would like to sell it in the first
period, then he would announce the reservation price that induces the highest
payment in the first period. If he would like to sell in the second period,
then he would like to announce the price that induces the highest expected
payment in the second period. Thus, the effective decision space is virtually

a set of {1,2}, where 1 indicates that he sells in the first period, and 2



indicates that he sells in the second period.

A pure strategy for the owner in this two-period game is thus given by a
function that maps his set of possible private information signals £ into
{1,2}.

A mixed strategy for the owner is given by a function y: =x[0,1] -» {1,2}.
Let U0 serves as a randomizing device for the mixed strategy (following the

notation of Aumann (1964)), where U, is uniformly distributed on [0,1] and

0

independent of I ’In’ and V. Then the owner’s decision is

0,Il,...
characterized by the function w(IO,Uo). If w(IO,U0)=1, he sells in period 1.
If w(IO,Uo)=2, he sells in period 2.

Suppose that Ul""’Un’ are the randomizing devices for the bidders,

.,1 ,V and
n

where Ui’ ieN, are mutually independent and independent of IO’Il"'

UO' In the case that I0 is not revealed, bidder i’s strategy is given by a

pair of functions bil’biz’ such that if the owner sells the asset in the first
period, he will bid bil=bil(ui)’ and if the owner sells it in the second
period, he will bid biz(Ii’Ui) or giz(IO,Ii,Ui) depending on whether I0 is
revealed or not. The payoff to any bidder is the expected value of the asset
conditional on all information available to him multiplied by his winning
probability minus his expected payment.

Suppose that the owner’s equilibrium strategy is to sell in the first
period if and only if (IO,UO)esl, i.e., w(o,u0)=1 if and only if (c,uo)esl.
Suppose also that this occurs with positive probability. Because of
competition between bidders who possess identical information, the equilibrium
price in the first period is equal to the expected value of the auctioned
object conditional on S, or E(V/(IO’UO)ESI)'

With probability «, the private information of the seller (IO=S) is
revealed publicly at the beginning of the second period; with probability

l1-a, that information is not revealed. Let SZ=Zx[0,1]\S1 in the case when the



private information of the seller is not revealed and S, ={s}x[0,1] in the case

2
when that information is revealed. Thus, bidders update their prior according
to (IO,UO)GSZ, the common information in the second period. In addition to
this, each bidder receives some private information (a private signal of
either 0 or 1) about the value of the asset. As the signal space is discrete,
there is no pure-strategy equilibrium in the game. We outline below the proof
for the non-existence of pure-strategy equilibria in this second-period game.
Suppose that there were a pure-strategy equilibrium. Consider one of the
players, say 1. When player 1 receives signal 0, he must make non-negative
expected profits, since he can always do so by bidding 0. When he receives
signal 1, however, he must make strictly positive profits, since he can
cerfainly do so by making the same bid he makes at signal 0. But then there
must be another player, say 2, bidding the same amount conditional upon some
private signal as player 1 does upon seeing signal 1, since otherwise 1 could
lower his bid a bit and improve his payoff. Player 2, however, can improve
his payoff in this event by bidding a bit higher, since he could earn extra
profits by taking over player 1’s winning opportunities. Thus, the
hypothesized strategy combination cannot be an equilibrium. (A rigorous proof
can be found in Wang (1990).) We have the following lemma6 for the

second-period game:

Lemma 2
The second-period subgame has a mixed-strategy equilibrium in which each

bidder adopts the following strategy: bid x=E(V/I =In=0,(IO,U0)eSZ) if O

1=' . .
is observed; bid according to a continuous c.d.f. F(x) with an interval
support [x, x] if 1 is observed, where F(x) and X are given in the proof.

Proof

Given the strategy of the owner is w(IO,UO), bidders update their common

~7-



prior in the second period using w(IO,U0)=2.

We first construct a mixed strategy and then prove that if each player

uses this strategy, the resulting symmetric strategy combination constitutes

an equilibrium: upon observing 0, a player bids

(1-q1)nd°v
x = E(V/I,=0,...,1I =0,(I.,U.)eS,) =
- ! n 0.0 2 (1-q,)%d + q2(1-d)
1 0
where d = Pr{V=v/(IO,U0)ESZ}, and upon observing 1 a player bids x according

to the continuous c.d.f. F(x) with support [x,x], where F is constructed as

follows: The equation that describes the indifference of a player, say 1,

over the support of his mixture is

i

= Pr{1 wins /I

+ Pr{1 wins /I

=1,V=v, and 1 bids x}(v-x)Pr{v=v/I =1,(IO,U0)eSZ}

1 1

=1,V=0, and 1 bids x}(-x)Pr{v=0/1 =1,(IO,UO)ESZ)

1 1

dq1
dq1+(1—d)(1-qo)

= [qF(x) + (1—q1)1“‘1 (v-x)

+ [(1-q0)F(X) + qo] (—x) (1_d)(1_q0) + dql .

Since F(x)=0, this equation with x=x pins down the value of II, at

(l—ql)

1

n-1 n-1
a4y d(1-d) d5 * 9 1

[ QV N

(l-ql)nd + qg(l—d) (1-d) (1-q;) + d q,

and since F(x)=1, the equation similarly pins down the value of X.

For xe(x,Xx), rewriting the equation for 1I

1 generates the inverse

function:

vdlqF(x) + (1-q)1" 'q, - M [(1-d)(1-q,) + dq, ]

1

dlqF(x) + (1-q)1" lqy + (1-4) (1-q,) [(1-q)F(x) + q 1”7

-8-



It is easy to prove that the numerator is always positive for 0 = F(x) = 1;
and since qu(x) + (l—ql) is monotone strictly increasing and continuous as a
function of F(x) and

(1-qO)F(X) + qo

qu(x) + (l-ql)

is strictly decreasing and continuous in F(x) (since dy *+ 9, > 1), x is
strictly increasing and continuous in F(x). Therefore F(x) must be strictly
increasing and continuous in x on (x,x); hence F is a c.d.f.

To see that the symmetric strategy combination is an equilibrium, notice

that upon observing 1 a player receives constant profit II,>0 by bidding

1

anywhere on [x,x], less by bidding above X (since X wins with probability 1)
and zero by bidding below x. Upon observing 0, bidding above x is never
optimal for the bidder for similar reasons and bidding below X earns zero
expected profits, while at xelx,x], his profits are

Ho(x)=Pr{1 wins/11=O,V=v, and 1 bids x}(v-x)Pr{v=v/I =0,(IO,UO)ESZ}

1

+Pr{1 wins/I_=0,V=0, and 1 bids x}(-x)Pr{Vv=0/I =0,(IO,UO)GS2}

1 1
_ d (1-q,)
= [qu(x) + (1—q1)]n 1 (v-x) 1
d (1—q1) + (1—d)q0
(l—d)qO
+ [(1-qF () + q 1" (=x)

d (1-q1) *+ (1-d)q,

[d q+ (1-d)(1—q0)](1-q1)
= I
[d (1—q1) + (1—d)qO] q

1

-1 (1-d)[q, + q, -1]

- x[(1-q,)F(x) + q
° 0 [d (1-q,) + (1-d)qylq



which is a decreasing function of x. So, bidding x maximizes Ho(x) on [x,x]
and HO(K) = 0. Thus, each player using the constructed strategy constitutes

an equilibrium. [

A bidders makes zero expected profit when 0 is received. When 1 is
received, however, a bidder makes positive profit by simply bidding X. Given
that other bidders are bidding randomly over [§,§] when 1 is received, a
bidder bidding higher will have a higher probability of winning but at the
same time will pay more upon winning. Thus, by constructing a suitable
randomization, a bidder is indifferent to bidding any point in the support.
This payoff of the bidder is proved positive, which means that the seller does
not receive the full amount of the expected value of the object from the

auction.

Let I'(s;Z’) denote the owner’s revenue from the second-period auction
when bidders’ common prior is {IOEZ’}, whereas in fact Io=s. From Lemma 2,
each bidder bids x with probability Pr{11=0/IO=s}, and bids x € [x,x]
according to a c.d.f. F(x) with probability Pr{11=1/IO=s}. Because of

from Lemma 1 Pr{I_,=0/I

0’ 1 0=s} is decreasing in s

affiliation between Ii and I

while Pr{11=1/I0

bid by any bidder. Then for x = x,

=s} is increasing in s. Let Bs(x) denote the c.d.f. of the

Bs(x) = Pr{11=0/10=s}+F(x)Pr{Il=1/Io=s} = (1-F(x)) Pr{11=0/10=s} + F(x)

Bs(x) is decreasing in s, so that [Bs(x)]n, the c.d.f. of the highest bid must
also be decreasing in s. Thus the distribution of the highest bid is first

order stochastically monotone increasing in s. Therefore we have:

Lemma 3

F(s;Z’) is increasing in s.

-10-



For £’ =[s’,s”], we have the following additional property:
Lemma 4

F(s; [s’,s”]) is increasing in s’ and s”.
Proof

We index x, x, and F(x) by s’ and s” for £’=[s’,s”]. With probability
Pr{Il=O/IO=s}, a bidder bids x(s’,s”); with probability Pr{Il=O/Io=s}, a
bidder bids xelx(s’,s”),x(s’,s”)] according to F(x;s’,s”). Since these
probabilities do not change as s’ and s” change, we only need to prove that
F(x;s’,s”) is first-order stochastically increasing in s’ and s”. Because of
the affiliation between I0 and V, x(s’,s”) must be increasing in s’ and s”.

F(x;s’,s”), however, is determined by the following equation:

H1= Pr{1 wins/11=1, V=v, and 1 bids x} (v-x) Pr{V=v/Il=1,Ioe[s',s”]}

+

Pr{1 wins/I,=1, V=0, and 1 bids x} (-x) Pr{v=0/I =1,Ioe[s’,s”]}

1 1

[ q,F(x;8”,s") + (1-q,) ]n-l (v-x) h(s’,s"”)

+ [ (l-qO)F(x;s’,s”) *+ q ]n_l (-x) (1-h(s’,s”))

)n—l n

(v-x(s’,s”)) h(s’,s”) + qo-1 (-x(s’,s")) (1-h(s’,s”))

(1-q1

where h(s’,s”) = Pr{V=v/Il=1, Ioe[s’,s”]}. It follows from the affiliation
properties that h is increasing in s’ and s”.

Let

>4
|

= {[ qFlxs’,s7) + (1-q) 177 (vx) - (1—q1)n_1(v-§(s',s”))} h(s’,s")

+ {[ (1-q,)F (x;8",5") + g ]n—l (-x) - qn_1

0 (—§(s',s”))} (1-h(s’,s”))

]
o

-11-



We have
gﬁ = {[ qu(X;S’,S”) + (1_q1) ]n_l (V—x) - (1—q1)n_1(v_§(sl’sll))}

- {[ (1-q0)F(x;s’,S”) +qq ]n-l (-x) - qg_l(-f(s',s”))}

._1 ’ ” n-1 n-1 , ”
= h(S'.S”) [[ (l_qo)F(x;S » S ) + qo] X - qo E(S , S ) ] >0

-2
—g§~ = h(n-1) q1[q1F(x) + (l—ql)]n (v-x)
+ (1-h) (n-1) (1-q ) [ (1-q IF(x) + q.1%2 (=x)
0 0 0
(1—q0)(n—1) ql[(l-qO)F(x)+q0] n-1
= *h [qu(x)+(1—q1)] (v-x)
(1—qO)F(x) *+ q (1—q0)[q1F(x)+(1—q1)]
n-1
+ (1-h)[(1—q0)F(x)+q0] (-x)
(1—q0)(n—1)
> i >0
(l-qO)F(x) *+qq
oA _ _. yn-1 _ n-1
3§ = h(1 ql) + (1-h) qO >0
From
dA oA dh A dF aA dx
0 = = — — + — ( ) + — —
ds’ oh ds’ oF ds’ ox ds’
dx
aA dh aA aA -

-12-



dF(x;s’,s”) _
we can conclude that <0 V xelg,sl.
ds’

Similarly,

dF(x;s’,s”)

<0 V xels,sl].
dsll

Thus, F(+;s’,s”) is first-order stochastically increasing in s’ and s’.

Therefore, I'(s; [s’,s”]) is increasing in both s’ and s”. I

Recall that I'(s;[s’,s”]) is the expected revenue to the owner when the

Oe[s’,s”], and Io=s. An increase in s’ or s”

represents a higher expectation in V, since I0 and V are affiliated. Thus it

bidders’ common prior is I

is intuitive that I'(s;[s’,s”]) is increasing in both s’ and s”. Together with

Lemma 3, I(s;[s’,s”]) is increasing in all of its arguments.

Let IOEZ' be the common belief of the bidders in the second period when
Io=s is not revealed (with probability 1-a«). Io=s is known with probability
«. Let S*={s*:(1—a)F(s*;[s*,§])+aF(s*;[s*,s*]))=E(V/Ioe[§,s*])} v {s,s} be
the collection of s at the intersections of v, = (1-a)T (s, [s,s])+al(s; [s, s])

and vy = E(V/Ioe[g,s]), together with the two extreme points of Z. The

following theorem characterize the equilibria in the two-period auction game:

Theorem 1

In every Nash equilibrium, the seller uses a pure strategy characterized
by some s* € S* having the form: sell the asset in the first period if I0 €
[s,s*], otherwise sell in the second period. In each such equilibrium, in the
first period the bidders bid E(V/Ioe[g,s*]) if s* # s, and bid 0 if s* = s; in
the second period the bidders use the symmetric mixed strategy detailed in

Lemma 2 if s* # s, and bid 0 if s* = s.

-13-



Proof

Suppose that the owner uses the following mixed strategy: sell the asset
in the first period if and only if (IO,UO)eslc2x[O,1]. The equilibrium price
must be E(V/(IO,UO)Esl) in the first period because of competition and the

fact that they all have the same information. Suppose that (sl,uo)eS then

1;
. _ L

it must be true that E(V/(IO,UO)esl) > aF(sl,[sl,sll) + (1 a)F(sl,Z ),
otherwise the owner would wait and do better. From Lemmas 3 and 4, the right

hand side is increasing in s So E(V/(IO,UO)esl) > aF(sl,[sl,sll) +

1
(l—a)F(sl;Z’) Vs<s1, which means that there are no Sy» Sy and Uy uo’, such
that s1>52, (sl,uo)eS1 but (s2,u0 )eSl. So the owner’s strategy must be

(essentially) a pure one and have the form: sell the asset in the first period
if I0 € [s, s*], otherwise sell in the second period. Notice that the owner
is indifferent between selling in the first period or second period if

Io=s*e(§,§), since
E(V/Ioe [s, s*]) = al(s*, [s*,s*]) + (1-a)T(s*; [s*,5s]).

He could equally well randomize in this event, but the event has probability
zero of occurring. It is easy to check that any s* € T satisfying the above
equation can be used to construct such an equilibrium.

We have not yet considered, however, the cases s* = s and s* = s. If s*
= g, then Pr{Ioe[g,s*]}=0. Competition in the first period does not
necessarily lead the bidders to all bid E(V/Ioe[g,s*]). The bidders bidding
zero in the first period supports the Nash equilibrium characterized by s*=s.

Similarly, s*=s, the owner always selling in the first period and all

bidders bidding O in the second period is another Nash equilibrium. l

The intuition for the structure of the seller’s strategy is that given
any bidder’s belief, the owner’s revenue in the second period is an

increasing function of his private signal. Since bidders pay a single price
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in the first period, it must generate more revenue to the owner to sell in the
second period when he receives a more favorable signal than a less favorable
one. There are two Nash equilibria which might not satisfy sequential
rationality: the owner never sells in either of the periods; bidders pay zero
in that period. We shall discuss this in more detail later in the paper.

In the equilibrium characterized by s*eS*, the owner’s expected total

revenue is

M(s*, o) = E(V/Ioe [s,s*1) Pr{Ioe [s,s*1}

+ I {(1—a)F(s;[s*,E])+aF(s;[s,s])}dGo(s) , (1)

se[s*, s]

where GO(S) is the c.d.f. of IO.
Since the distribution of Io conditional on V is atomless, any interior

s*eS* must satisfy the following equation:
E(V/1,els,s*]) = (1-a)F(s*;[s*,5 1) + ol (s*; [s*,s*]) (2)

The left-hand side is increasing in s*; from Lemmas 3 and 4 the right-hand

side is also increasing in s*.

Suggestive sketches of y, = E(V/Ioe[g,s]) and Y, = (1-a)T'(s; [s,s]) +
ol (s; [s,s]) are drawn in (s, y) space in Figure 1. Both curves are
increasing. Given that bidders presume that the owner sells in the first
period if and only if Ioe[g,s] and the owner receives a private signal IO=s,
the first curve represents the owner’s revenue from selling in the first
period, while the second one represents his revenue from selling in the second

period.
(Insert Figure 1 about here)
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As we argued before, allowing the owner to set a reservation price
(publicly or secretly) in the first-period auction neither adds equilibria to
nor eliminates equilibria from those characterized by Theorem 1. In the first
period, bidders always bid the expected value of V conditional on the event
that the owner sells his asset successfully in the first period, taking into
account the owner’s reservation price. This event can be characterized by an
equation of the form W(IO,UO)=1, where the owner sells successfully in the
first period if and only if (IO,UO) satisfies this equation. Thus, there is
no difference in the conditions that characterize the equilibria with or
without reservation prices.

In Hendricks, Porter, and Wilson (1990), it is assumed that the
reservation prices of the government in the offshore oil lease auctions are
random and affiliated with the bids of the informed bidders. Our analysis
shows that this may be the result of the strategic considerations of the
government to maximize the sale revenue. Since the governmént can offer the
unsold tracks for sale at a later date, the reservation prices in an auction
is affiliated with the private information of the government. Even if the
government does not have any private information before the auction starts,
the bids in the auction are informative and the government can base her
estimate on those bids. Thus, from the point of any particular bidder, the
reservation prices are seen to be affiliated with his private information.
Since bids are usually increasing functions of the private information in
equilibrium, the reservation prices must be affiliated with the highest bid in
an auction.

There are many Nash equilibria in the game, but some of them are
unreasonable. By imposing a criterion of "rational" beliefs along the lines

of sequential equilibrium concept in Kreps and Wilson (1982), some of the
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equilibria may be eliminated. We define a rational belief about I0 of a
bidder in either period of the two-period game given the owner’s strategy as:
i) the Bayesian updated distribution whenever the probability of the event

that the owner sells in that period is positive; ii) any distribution on T if

that probability is zero.

Definition
A Nash equilibrium is called a sequential equilibrium in this game if
given the owner’s strategy, there exist rational beliefs about I0 for each

bidder in both periods, and given these beliefs and other players’ strategies,

each player is acting optimally.

Notice that sequential equilibrium is a weak refinement of Nash
equilibrium for this game. For any Nash equilibrium characterized by an
interior s*eS*, s<s*<s, it is easy to see that the conventional Bayesian
beliefs are rational. For the Nash equilibria characterized by the two
extreme points, however, the probability of selling in one of the periods is
zero. Taking the equilibrium characterized by s*=s, for example, the most
unfavorable rational belief for I0 is IO=§ with probability one. With this
belief of the bidders, the owner’s revenue from selling in the second period
when IO=§ is I'(s; [s,8]). So if I'(s;[s,s]) is greater than E(V), which is the
selling price in the first period in this case, then this Nash equilibrium
cannot be a sequential equilibrium. This is quite intuitive: the expected
selling price is at least I'(s;[s,s]) in the second period when IO=§ since
bidders will believe that I0 is at least g even though the probability of

selling in the second period is zero. Identical arguments apply for the case

when the Nash equilibrium is characterized by s*=s.
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Let S* be S* but excluding {s} if E(V/I,=s) > ol(s; [s,s]) +
(1-a)T(s; [s,s]1), and excluding {s} if ol (s;[s,s]) + (1-a)T(s;[s,s]) > E(V).
We characterize all sequential equilibria in the two-period game in the

following proposition:

Proposition

Every sequential equilibrium is characterized as in Theorem 1 by some s*
e S*,
Proof

It is easy to see that any sequential equilibrium must be characterized
by some s*eS*. For an interior s* € s*, all bidders bidding E(V/Ioss*) in the
first period and using the mixed-strategy in Lemma 2 with the updated
distribution of V conditional on IOZS* combined with the conventional Bayesian
updated beliefs constitutes a sequential equilibrium.

For s* = s, however, the owner sells in the second period with

probability zero. Given the bidders’ most unfavorable belief about I0 is I.=s

0
with probability one if the seller sells in the second period, the revenue for
the owner when IO=§ is al'(s; [s,s]) + (1-a)C(s; [s,s]), which must not exceed
E(V), the revenue of selling in the first period, in a sequential equilibrium.
So s* = s is not a part of any sequential equilibrium if o (S;[S,s]) +
(1-a)T(s; [s,8]1) > E(V).

For similar reasons, s* = s is not a part of any sequential equilibrium

if E(V/1,=s) > ol (s; [s,81)+(1-a)T (s; [s,51). |

Notice that E(V/Ioe[g,s*]) is increasing in s*, and (1-a)T(s; [s*,s]) +
ol'(s; [s,s]) is increasing in s* and is always less than E(V/Ioe[g,s*]) for
s<s*. The owner’s revenue in the equilibrium characterized by s*eS* must then

be increasing in s*. Therefore, the Nash equilibrium characterized by s*=s

-18-



generates the most revenue (which is equal to E(V)) to the owner. In any
other equilibrium, the owner’s expected revenue is less than E(V), the selling
price in a single auction. This leads to the conclusion that the flexibility
of the owner of being able to sell in more possible auctions is generally not
good to him.

An important implication can be deduced from this result. A seller’s
power of selling is bounded by his ability'to commit. If the seller can
commit himself to always sell in the first period, then he can obtain the full
expected value of the object. Auctions can be used to bound oneself from
trading further. Those given rules of auctions are easy to monitor. The sale
is so quick that it prevents bidders from obtaining further private
information which is harmful to the benefit of the seller.

One may question the existence of equilibrium in the game. It is easy to
see that S* is never empty. This is because s ¢ S* if and only if E(V/Io=§) >
ol (s; [s,81)+(1-)T(s; [s,5]1). s @ S* if and only if af(S;[s,s]) +
(1-a)T(s; [s,s]) > E(V). From this, we have Y, > Y, at s=s, and y, <y, at
s=s. Because both curves are continuous in s, if s ¢ S* and s ¢ §*, they must
intercept at least once (cf. Figure 1).

We define the equilibrium that is characterized by the largest element in
S* as the optimal equilibrium in the game. This equilibrium generates the
most revenue to the seller among all sequential equilibria. From the
continuity of Yy and Y, and the compactness of I, S* must have a largest
element. Thus, an optimal equilibrium always exists in the game.

There may not be an s* satisfying (2) in general, and hence in some
examples the only sequential equilibrium has all trade occurring in either
period 1 or 2. This could occur since the private information of the owner
might not be explicitly revealed in the second period. One may wonder

whether there can ever be an interior equilibrium for some «, especially when
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«=0. The example below shows that there exists an interior equilibrium in

some cases even when a=0.

Example

Let @« = 0, let the support of I_ be [0,1], let the support of V be {0,1},

0
let f(s/0)=1+e-2se, Vse[0,1] be the density function of IO conditional on V=0,

and let
1-¢ 2se
+ , if 1-¢~ =z s = 0;
1+e (1+e) (1-€2)
g(s/1) =
2(1-€)
1+ —— [s - (1-82)], if 1 =2s > 1—82,
3
€

be the (continuous) density function of I_. conditional on V=1, where 0<e<1.

0]
It is easy to check that these are genuine conditional densities
satisfying the affiliation assumption plus the following conditions:
(i) f(os/0)/g(0/1) » 1 as € » 0;
f(1/0)/g(1/1) » 0 as € » 0;
(ii) Pr{V=1/IO=0} » Pr{v=1} as € » 0O;
Pr{V=1/IO=1} > 1 as € » 0.
That is, I0 = 0 provides little information about V, while IO = 1 almost
ensures that V=1 as € » 0. Thus, I'(0,[0,1]1) » I'([0,1];[0,1]) (i.e., the
revenue for the owner when bidders believe that 106[0,1] and it is really so),
and E(V/IOE[O,O]) » E(V). Since E(V) > I'([0,1];[0,1]1), as € » 0, T'(0;[0,1]) <
E(V/Ioe[0,0J). On the other hand, I'(1;[1,1]) » 1, while E(V/IOE[O,I]) =
E(V) = Pr{V=1} < 1. So as € » 0, I'(1;[1,1]) > E(V/IOE[O,I]L

Since both sides in (2) are continuous, there must be at least one s* e

(0,1) satisfying (2) for € small enough.
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3. The Effect of Information Revelation

In this section, we consider the effect of a change in the probability of
revelation of the seller’s private information. Even though this probability
does not affect the form of the seller’s strategy in equilibrium, it may
affect the revenue to the seller from the sale. Similar to the
well-established intuition that it is to the seller’s benefit to truthfully
reveal whatever private information he possesses, this is also true for the

optimal equilibrium in our dynamic game:

Theorem 2

The seller’s expected revenue is an increasing function of « in the
optimal equilibrium.
Proof

If E(V/Iels,s]) = ol (s; [s,s]) + (1-2)I(s; [s,8]), then the optimal
equilibrium is characterized by s*=s; that is, the seller always sells in the
first period.

If E(V/Ioe[§,§]) < al'(s; [s,s]) + (1-a)I(s; [s,s]), however, the optimal
equilibrium is characterized by the s* at the last interception between 2 and
y2. In this case, y2>y1at s=s. Thus, at s=s¥*, Yy must intercept y2 from

above; that is,

* *
ayl(s ) . 3y2(s )
ds ds
8y, 8y, -
But =0, =TI(s;[s,s]) - I'(s;[s,s]) < 0. We have
da da
- * * *

o - d(y1 y2) ) [ 6y1(s ) ) 8y2(s ) ] ds*(a) _ 6y2

da ds ds do da

for s*=s*(a) which is the last interception of Yy and Y, for «. Thus,
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ds*(«)/ds must be positive.

The seller’s revenue is given by (1). Notice that V s<s*,
(1-a)I'(s; [s*,s])+al(s; [s,s]) < (1-a)F(s*;[s*,§])+aF(s*;[s*,s*])=E(V/Ioe[§,s*])
Moreover, I I'(s; [s*,s] dGO(s) = f L (s; [s,s]) dGO(S) .

se[s*,s] se[s*,s]

This is because the left hand side is the revenue to the seller given
se[s*,s], and the right hand side is the same revenue except that I0 is
revealed each time. Since IO is affiliated with V, from Theorem 17 in Milgrom
and Weber (1982), we conclude that the inequality holds. Together with

ds*(«)/da > 0, we conclude that M(s*(a),a) is increasing in a.l

Notice that an optimal equilibrium is characterized by s* which is either
s or the last interception of y1 and y2. As «a increases, Yo the revenue for
the s at margin, is decreased. This is because I'(s; [s,s])<I'(s;[s,s]). Since
Yy must cross Yo from above at s*, the interception moves towards a larger s¥*.
That is, there will be more occasions that the seller sells in the first
period, which is good for the seller. The result is consistent with the
well-establish result in auction theory: truthful revelation of seller’s
information increases the expected selling price (c.f. Milgrom and Weber
(1982)). In this model « is the probability of truthful revelation of
seller’s information. An increase in a lowers the payoff of selling in the
second period at the margin, and thus increases the probability of selling in
the first period. Since bidders receive no private information in the first
period, the seller receives the expected value of the object conditional on
successful sale in the first period.

Recall that the optimal equilibrium may not be the only equilibrium in
our game. In other equilibria, the direction of the change in the selling

revenue is not obvious. Circumstance may occur that an increase in the
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probability of releasing information in the second period hurts the seller, as
is explained by the following example: Consider the case when Yy intercepts
y, at s=s. s*=s is an equilibrium. As o« increases, y, decreases and
intercepts Yy at s’ < s. Since the seller receives full expected value of the
object from the equilibrium characterized by s*=s, he is worse off at the

equilibrium characterized by s*=s’. Thus, an increase in « does not always

increase the seller’s revenue.

4. Concluding Remarks

As we have shown in the above sections, all equilibria have similar forms
despite the different probability of the revelation of the owner’s
information: 3s*e[g,s], the owner sells early if and only if IOSS*. In a
sequential equilibrium, the expected revenue to the owner is less when he has
the option of delaying the sale after receiving his private information,
except for the equilibrium characterized by always selling in the first
period. Any Nash equilibrium that is not sequential is not a suitable
equilibrium in our model, because given that bidders have rational beliefs,
there are circumstances that it is profitable for the seller to deviate ex
post.

Given that the owner will sell in the first period only if he receives
unfavorable signal, potential buyers will not pay much for the asset in the
first period. When the seller delays his sale, he loses his flexibility and
has to sell the asset no matter what the price is. As bidders receive private
information in this period, they are able to make a profit out of their
private information, and the owner suffers a loss in revenue.

It is difficult to tell how the probability of information revelation

affects the set of sequential equilibria. We do know, however, that if the
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owner’s information is always publicly revealed in the second period, the
equilibrium characterized by s*=s is never a sequential equilibrium, whereas
if the information is never revealed it can be. Similarly, the equilibrium
characterized by s*=s is a sequential equilibrium in fewer circumstances for a
larger a, since I'(s;[s,s]) > I'(s;[s,s]). So, of(s;[s,s]+(1-a)T(s;[s,s]) =
E(V) is violated in more circumstances for larger «.

The analysis in previous sections can be extended to models in which the
asset is not completely common-valued. As long as there is a common part in
the valuation (say, for example, the value to a trader consists of a
common-value term plus an independent private-value term), the private signals
of the traders are affiliated. One can expect that the equilibrium strategies
will be similar: the owner sells early when the owner’s signal about the
common term is unfavorable, otherwise he sells late.

This model might also be extended to the case when the owner can delay
the sale for many periods and in each period, bidders receive some private
information. As long as bidders get more private information as they wait,
the equilibrium strategies of the owner in the multi-period game are
conjectured to be characterized by a reservation price in each period; these
reservation prices are increasing in the seller’s private signal. Thus, they
must also be affiliated with each bidder’s private information. This provides
a Jjustification for the random-reservation-price assumption in Hendricks,

Porter, and Wilson (1990).
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= E(V/Ioe[g,s])

Y,= (1-a)T(s; [s,s])
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Figure 1 The Owner’s Revenues in the First and the Second Period

at the Marginal Signal
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Endnotes

1See Milgrom (1989) or McAfee and McMillan (1987) for an excellent survey.

2Milgrom (1990) has found evidence that sellers may buy back the objects

being sold themselves, but they do it quietly. This should be regarded as
evidence to support, but not to oppose, this important feature of auctions.
3The results will not change if we change the selling mechanism to other types
of auctions.

4This assumption makes the analysis simpler. The qualitative results of the
model will be preserved, if we assume that bidders possess some private
information on some aspects of the object but not others, on which they will
get more information later.

5Refer to Wang (1990) or Shiryayev (1984) for a definition of conditional

probability when Pr{Y=y} or Pr{Y=y’} is zero.

6Maskin and Riley (1985) have constructed the equilibrium strategy for a

private-value auction game that is similar.
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