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Abstract

This paper evaluates the finite sample performance of various tests for
cointegration by Monte Carlo methods. The evaluation takes place within the
linear quadratic model. The results indicate sharp differences in the tests
to detect cointegrating relations especially when the cost of adjustment term
and the number of regressors are large. Although no single test dominates
for all the parameter settings considered, overall the augmented
Dickey-Fuller and the 2, test of Phillips (1987) seem the most reliable in
terms of test size and power.




Testing for Cointegration in Linear Quadratic Hodels

. 1. Introduction

The theory of cointegration has been a powerful tool in economics to
analyze relationships between nonstationary or integrated time serles. The

getting is very natural since departures f{rom equilibrium relatlions are

permitted in the short run but not in the long run. While many methods are

available to test for cointegration (or more correctly non-cointegration),

there have been few attempts to compare the finite sample properties of the
various tests in an economically meaningful envlronment‘. From the
perspecti;e of applied work the tests are rather straightforward to calculate
go that there is relatively little to recommend one test over another.

The purpoée of this paper 1s to use Monte Carlo nethods to evaluate the
relative finite gample performance of varlous tests for cointegration. The
evaluation takes place within the class of linear quadratlic models that has
been extensively employed 1in the rational expectations literature (see
Sargent, 1987). These econonies are the only class of optimizing models that
give rise to linear decision rules (in the variables) and hence have
uell-understood properties for the integrated variables. Comparing finite
sample test performance {n an economic model rather than some (arbitrary)

statistical model is then likely to provide the most compelling guidance to

the applied researcher. The partlcular tests of colntegration we compare are

finite  sample
run equilibrius
concerned

1(iouz.tw (1989) and Stock and Watson (199%) ltwuv.lglu“ the
properuu of alternative methods of estimating :bo .p"nq v e
reolations using statistical models. In this pap;“ p.v“uum " Celative
ith testing for colntegrating relations pather  than o ire . the
;roportte- of alternative ostimators ©of the ﬁ:t:::qr:::?q orv.oc:u;.. e, in
ve
. tu:;r H:M ll:: “::::::or ortho“‘::::u:‘fu the tests for colntegration tn whioch
this ¢

case there are hO colu'.oqnunq relations.



those of Engle and Granger (1987), Hansen (1990), Johansen (1988 and 1990),
Park, Ouliaris and Choi (1988), Phillips (1987), Phillips and Ouliaris (1990)
" and Stock and Watson (1988).

The organization of this paper is as follows. Section 2 develops the
linear quadratic model and provides the motivation for the various tests for
cointegration. Section 3 describes the tests for cointegration and Section 4
outlines the estimator of the long-run covariance matrix which plays such a
prominent role in the various tests. Section S discusses the Monte Carlo

design and presents the results. Section 6 concludes.

2. Linear Quadratic Models and Cointegration

The linear quadratic model is a popular and tractable dynamic model in
which agents minimize a multi-period quadratic cost function (see Sargent,
1987). Agents are assumed to track the long-run target variable y%* as given
by a static equilibrium theory and choose the actual Ys so as to minimize the
weighted sum of the costs of being away from equilibrium (ys - y*) and the

costs of adjustment (ys - yes-1). The problem is:

t

o s- 2 2
min E. L B [8(ys - y¥) + (ys - Ye-1) 1, (2.1)

{ys} s=t
for s = t, where the expectation is taken with respect to information
available to the agent at time t (F.), B € (0,1) is a discount factor and
é >0 is a weighting factor (see Kennan, 1979). The static equilibrium
relationship is y¥ = xI @ + ey, where ey is a mean zero, independently and
identically distributed error with variance ¢2, and x. is a (kxl1) vector of

forcing variables. We assumé that ey is in Fy but unknown to the



investigating econometrician whose information set is G; ¢ th.

The forward solution to (2.1) is:

[}
Ve = A yer + (1 = 2) (1 - BA) E¢ £ (BA)®™t y* | (2.2)

s=t

where A < 1 is the stable root of the Euler equation obtained from the
first-order conditions.

The model has been used to explain, for example, the demand for labor by
firms (Sargent, 1978, Hansen and Sargent, 1980), the demand for labor and
capital by firms (Meese, 1980), the demand and supply of labor (Kennan, 1979,
1988), natural resource extraction (Hansen, Epple, and Roberds, 1985), the
demand for money (Cuthbertson and Taylor, 1987, Domowitz and Hakkio, 1990,
and Gregory, Smith, and Wirjanto, 1990), and the supply of money (Mercenier
and Sekkat, 1988). Hansen and Sargent (1988) have also analyzed and
developed software for computable general equilibrium 1linear quadratic
models.

The Wiener-Kolmogorov prediction formula can be used to replace the
expectations in (2.2) given the law of motion for the forcing variable (see
Sargent, 1987). In this paper we shall be concerned with the case where x:
is a kxl1 vector of integrated processes of order 1 denoted I(1):

(I -L) AlL)xy = &, (2.3)
where {€;} is independently and identically distributed with a mean of 0 and
variance of £ and the roots of A(L) = I-AL-...-AL? lie outside the unit

circle. To simplify the description of the solution of the model we will

If we assume et is observable by the econometrician then Yt is a

deterministic function of the information set. In order to keep the
informational issues as simple as possible we assume et is serially
uncorrelated.



assume that x. is scalar (k = 1)3.

Given the stochastic process for x:; in
(2.3), equation (2.2) can be solved. For instance if Ax, = €, (k = 1) then

the error correction model (ECM) can be obtained as:

Ay = (A = 1)(ye-1 = 6%Xg-1 ) + (1 = 2)0 Axy + (1 = BA)(1 - A)ey. (2.4)

Alternatively with Ax, = pAx.-; + €, and |p| < 1, then:

Ay: = (A=1) (y4-1-6%¢-1) + (1-2)0 Axy /(1-pAB) + (1 = BA)(1 - A)ey. (2.5)

In general, ‘the solution will depend upon the serial correlation properties
of Ax.. However regardless of the exact nature of (2.3), the following
relation always holds:

Ye = 0 Xy + ¢, t=1,...,T (2.6)
where 7my is a stationary error. Hence y. and x. are cointegrated and 0 is
the cointegrating vector. Tests for cointegration using (2.6) are then
applied as a weak test of the model (2.1) without having to know (2.3) with
solutions such as (2.4) or (2.5).%

The general form for 7 (k = 1) is:
ne = [W(L) A/7(1-AL)] &y + [8 A/(1-AL)] ey, (2.7)
where ¥(L) depends upon the nature of x: in (2.3). For instance Ax, = &,

¥(L) = -6 and for Axy = pAx¢.y + €y, V(L) = -0(1-pB8)/[(1-pBA) (1-pL)].

However when we develop the tests and perform the Monte Carlo analysis we
consider vector X

4Smgle equation estimation of the linear quadratic model with integrated
processes have been considered by Dolado, Galbraith and Baner jee (1989) and
Gregory, Pagan and Smith (1990) using methods developed by Phillips and
Hansen (1990).



We can make some predictions regarding the tests for cointegration in
the linear quadratic model by noting the relationship between the relative
 cost parameter 8 and the stable root A. The stable root A < 1 satisfies:

A2B+1 = A+AB+AS, (2.8)
where A » 1 as 8 » 0. That is, as the cost of adjustment gets large (a small
8) the stable root approaches 1 and 7m¢ in (2.6) is nearly integrated. 1In
these circumstances we might expect that tests for cointegration in 1linear
quadratic models (like augmented Dickey-Fuller, see also Phillips and
Ouliaris, 1990 and references therein) would encounter difficulties in
detecting a cointegrated relation like (2.6) when the stable root (high cost
of adjustment) 1is near unity. Despite the fact that such tests are
asymptotically appropriate with serially correlated errors, finite sample
evidence in Schwert (1989) for unit root tests suggest a lack of power if =
is nearly integrated. Unfortunately, applied work has yielded point
estimates for the root that have typically been 0.9 or greater (see for
example, Meese, 1980; Mendis and Muellbauer, 1982; ﬁickell, 1984, 1986 and
Sargent, 1978).

It is also quite clear that systems approaches like Johansen (1988 and
1990), Phillips and Durlauf (1986), Stock and Watson (1988), and Phillips and
Ouliaris (1988 and 1990) may suffer similar problems to the single equation
methods when the stable root is near unity. The procedures of Johansen
(1988 and 1990) and Stock and Watson (1988) examine the system of equations

in vector autoregressive form which for independent Ax:; is:

Yt = A Ye-q + (1-2) 0 Xeoq + (1-2) 0 €, + (1-BA) (1-A) e (2.9)

Xy = Xg-9 + €8¢ .



Let zy = (y., xt)T. The tests for cointegration of Johansen (1988 and 1990)
and Stock and Watson (1988) for (2.9) consider:

2y = RZyoq + vy, (2.10)
and test whether R = I. Clearly from (2.9) as A approaches one this
restriction is closer to being true and the tests should do poorly. Another
multivariate approach due to Phillips and Ouliaris (1988 and 1990) is to
examine the long-run covariance matrix of Az, (the spectrum of Az, at

frequency zero) for singularities. With independent Ax. we have:

(171-AL) (1-2) (1-BA) (ey—ee-y) + (1/1-AL) (1-A)6 e

e . (2.11)

(>
N
o
[}
——A—
£ 2
o
————
nn

If Eleser] = 0, for all s and t, the long-run covariance matrix of Az,

denoted by Q is (with the variance of Ax:; equal to o2):

2 2 2
Q = [9 oz @ °'=], (2.12)

which is clearly singular. From (2.11) it is also evident that the closer is
A to one, the more difficult it will be to estimate the long-run relation and
hence to detect such singularities as (2.12).

In the next section we describe the tests for cointegration that are
used in the Monte Carlo analysis. The descriptions are brief and the
interested reader is advised to consult the original sources for further

details.



3. Tests for Cointegration
(1) Augmented Dickey Fuller (ADF) Test:

The most widely used cointegration test is the augmented Dickey-Fuller
(ADF) t-ratio test (see Said and Dickey, 1984), recommended by Engle and
Granger (1987). Its asymptotic properties have been studied by Phillips and
Ouliaris (1990). The test is based on the residuals from a cointegrating
regression and is constructed to test the null hypothesis of no cointegration
by testing the null of a unit root in the residuals against the alternative
that the root is less than unity. One first estimates the cointegrating
regression (2.6) by ordinary least squares (OLS) and tests the null
hypothesis of no cointegration using a scalar unit root test t(a) on the
residuals:

A ~

ANy = @ Ney +‘¥1¢i ANe-y + Dy, (3.1)

where the lag length m is chosen sufficiently large in order for 5¢ to be
serially uncorrelated. The distribution of t(a) depends upon the number of
regressors in (2.6) with asymptotic critical values provided in Engle and Yoo
(1987) and Phillips and Ouliaris (1990). In the Monte Carlo work we take
m =1 and 6 and denote them as ADF; and ADFg respectively.

(ii) Phillips’s 2, and Z. Test:

Closely related to the the ADF tests are those suggested by Phillips
(1987) and Phillips and Perron (1988). Equation (2.6) is estimated by OLS,
the residuals are obtained and the following test regression is run:

N = & Ny + &y . (3.2)
Again we test the unit root hypothesis on the residuals. The test statistics

are:



T -1
Zo = T (@-1)-} [03-6F] (172 £ #.1), (3.3)

and

2. = [(@-1) ( Z.32)Y/ 6|4 [68-68] @ T2z e (3.4)
t=2 §UR ¢ te2 o ’ )

where ¢§ = T”t%1§§ and @7 is an estimator of the spectrum of  at frequency
zero (the long-run variance). In the Monte carlo experiments we estimate the
long-run covariance matrix using kernel estimators due to Andrews (1991) and
Andrews and Monahan (1990). Exact details of this calculation can be found
in Section 4. The critical values for the limiting distribution of (3.3) and
(3.4) again depend upon the number of regressors k and can be found in
Phillips and Ouliaris (1990).
(iii) Stock and Watson’s Minimum Eigenvalue Test:

The next two multivariate tests (Stock and Watson; 1988 and Johansen;
1988 and 1990) are especially useful in determining the number of
cointegrating relations in situations where the researcher does not wish to
assume that the x’s (k>1) themselves are not cointegrated. This generality
certainly is an advantage over the other tests where the only possible
cointegrating relation is between the y and the x via (2.6).

Let z, = [yt,xI]T and estimate:

2y = ﬁ Ze-q *+ Ve . (3.4)

00
Obtain an estimate of V = Z E[vtvI_i] say using Andrews (1991) and find the
i=1

k+1 vector of eigenvalues from:

-1
[T‘2 Z¢Zyq- T"VT] [T'Z zt-1zI-1] ) (3.5)

Let ﬁm;n be the minimum real of that vector. Under the null of no

cointegration the estimated minimum eigenvalue should be insignificantly



different from one. The test statistic suggested by Stock and Watson (1988)
is:
SW = T(Amin-1). (3.6)
The critical values for SW depend upon the dimension of z and are in Stock
and Watson (1988).
(iv) Johansen’s Likelihood Ratio Test:
A closely related test to (3.6), derived by Johansen (1988 and 1990) is
a likelihood ratio test for cointegration. This is not to say that the other
tests presented in this paper could not be viewed as likelihood ratio tests.
However, since the Johansen test is so firmly ground in likelihood theory, we
have reserved this label for these tests. Suppose the data generating
process for z,; may be written as a m'" order vector autoregression:
2y = M2Zeoq + Moz + |, + MpZ¢-m + Yo (3.7)
where Y, is independent mean zero with a constant covariance. We may rewrite
(3.7) as:

Azy = T1AZ¢-q + ToAZio + ... + Tno18Zi-mer + Tm Zt-m + V4, (3.8)
where I'1y =-I1 + 1) + ...+ M;, i=1,...m and I, = I-M[1-...-M,. The intuition
behind the test is simply to test the rank of [,. If Ty has rank of zero
then the null hypothesis of no cointegration cannot be rejected. The test of

Johansen (1988) is a likelihood ratio obtained as:
K+1

LR =-T Z 1In (1-4,), (3.9)

i=1

where A are the eigenvalues from solving (called squared partial canonical
correlations or reduced rank regression):

|A Swm= Smo Soé Som| = O, (3.10)
where we define 2ot = A2y, 2yt = [AZ¢oq,...,8Z¢ome1], Zwn = Zt-m and the

following moment relations:



T

T'Y 2y 250" i,j=0,1,...m (3.11)
t=1

X
(5%
1

Siy = My~ MyM7iMy i,J

"
o
=

The critical values depend on the number of regressors and are in Johansen
(1988). In the Monte Carlo analysis we set m = 2 which is sufficient to
ensure that Y. is serially uncorrelated in all experiments. Notice also that
this test is a multivariate unit root test. As mentioned above Johansen’s
tests may used to test for other possible cointegrating relations in the
vector x . We investigate the finite sample performance of this test which
is, strictly speaking, not directly comparable to the other tests in this
study which only allow for one cointegrating relation between y and the
vector x. However Johansen (1990) and Johansen and Juselius (1990) suggest a
test which is a special case of (3.11) designed for testing for one
cointegrating vector in a system of equations. It involves only the maximum

eigenvalue in the vector A in (3.10):

LRy = =T 1n(1-Amayx) - (3.12)
Compare (3.12) with the Stock-Watson test (3.6). In order to be appropriate
for the critical values supplied in Johansen and Juselius (1990, Table A2) a
constant has been added to (3.8) so that z;; would also have a one in it.
(v) Park, Ouliaris and Choi’s Spurious Regressors Test:
Park, Ouliaris and Choi (1988) have developed a variable addition test
in which additional regressors (powers of time trends) are added to a
(potentially) cointegrating regression. If the variables do indeed define a
cointegrating relation then additional variables should have no explanatory

power. On the other hand, if the regression is spurious (no cointegration),

10



results from Phillips (1986) indicate that F tests on additional trend terms
should diverge. Park, Ouliaris and Chol (1988) obtain a limiting distribution
' by dividing the usual F test by the sample size. Unlike all the other tests
of cointegration discussed in this paper, the Park, Ouliaris and Choi (1988)
test can be formulated with a null hypothesis of no cointegration or a null
of cointegration (see also Hansen, 1991). However since we wish to make
direct comparisons with the other tests we choose the formulation with the
null hypothesis of no cointegration.

The unrestricted least squares regression is:
q
ye =) at! + %8 + 7, (3.13)
i=0
and denote the residual sum of squares as RSS,. The Park, Ouliaris and Choi

test statistic is:

J(0,q) = (RSS,-RSSq)/RSS,, (3.14)
where RSSy; is the (restricted) residual sum of squares from regressing y: on
Xy and a constant. Critical values are given in Table 1 of Park, Ouliaris
and Choi (1988) and again depend upon the number of regressors. For the
Monte Carlo analysis q = 3 and is denoted as J.

(vi) Hansen’s Cochrane-Orcutt Technique:

All of the tests for cointegration share the feature that the limiting
distribution of the test statistic depends on the number of regressors in the
cointegrating relation. The tests proposed by Hansen (1990) are based upon
the Cochrane-Orcutt technique and yield limiting distributions which are
invariant to the number of regressors. Consider equation (2.6) with the

following relation for the error structure:

Ye = xtT 0 + 1 ’ (3.15)
N = PNe-q1 + & .

11



Estimate sequentially @ and p by OLS. Quasi-difference the data using the
A estimated ﬁ:

Yt=PYt-1 (3.16)

x¥ = X¢—pXe-1,

<
2 ]
"

and estimate:

yE=xt 8+ T . (3.17)
We may iterate this procedure or follow some finite sample modifications
suggested in Hansen (1990). In the Monte Carlo work we iterated five times
which resulted in the convergence of p. Tests for unit roots can now be
applied to the residual 7. from the transformed estimated equation (3.17)
(instead of 7. from (2.6)). In the Monte Carlo work we consider ADF;, 2.,
and Z; which we denote by HADF,, HZ, and HZ, respectively.

The advantage of these tests is that the limiting distribution does not
depend on the number of regressors and the distributions for the HADF, and
HZ:; and HZ, are the the Dickey Fuller t-test and coefficient distribution for
the unit root hypothesis respectively. The intuition behind this invariance
is that the limiting distribution of & in (3.17) converges to a constant and
not a random variable as in the since under Hy, p » 1 and thus y¥ and x¥ are
asymptotically first differences. Hansen (1990) has observed that the
standard residual based tests suffer a considerable loss of power as the
number of regressors increases and that tests based upon 7. may be more
powerful.5 We check this statement in the context of the linear quadratic

model.

s

In private correspondence Professor Johansen has suggested that the
Cochrane-Orcutt procedure may in fact have little local power in certain
directions.

12



(vi) Phillips and Ouliaris’s Trace and Variance Ratio Test:

Phillips and Ouliaris (1990) suggest examining the long-run covariance
' mﬁtrix of Az,, denoted as Q, for singularities. The tests they propose do
not estimate Q from Az; (which would in fact lead to an inconsistent test,
see Phillips and Ouliaris, 1990, Theorem S5.3) but instead are based on the
residuals from the following first-order vector autoregression:

zy = fizeey + Ve (3.18)

Let Q be the estimated long-run covariance matrix (the estimated spectrum of
vy at frequency zero)s. If the variables are cointegrated then there should

be singularities in Q (Phillips and Ouliaris, 1988). The trace test is:
P,=T tr[ﬁ M;;] , Mzz = TS zeze (3.19)
and the variance ratio test is:
P, = T[‘,,—ﬁI, azl ﬁ,y] / T'zR3, (3.20)
where ﬁt is the residual from the cointegrating relation (2.6). The critical

values for both (3.19) and (3.20) are in Phillips and Ouliaris (1990) and

depend upon the dimensionality of z;.

There are some other tests for singularities in the long-run covariance

matrix of (1-L)z¢y suggested in Phillips and Ouliaris (1988) . A feature of
these tests is that the limiting distributions are unknown. We have done
some preliminary Monte Carlo work using the following test procedure: (1)

obtain ' the smallest eigenvalue of the ~estimated long-run covariance matrix
(11) use the empirical distribution function to construct critical values for
the smallest eigenvalue when the null hypothesis of no cointegration is true
and (111) test the null of no cointegration with data generated from the
linear quadratic model. Results from this test proved to be less powerful
than the others considered here and consequently this test was not pursued
any further.

13



The idea motivating (3.19) is that under the null of no cointegration
there 1is no singularity in Q and hence the ratio should stabilize
- asymptotically (the numerator is an estimate of tQ and the denominator is the
corresponding sample moment). P, in (3.20) tests whether the conditional

variance of y given x is significantly different from zero.

4. Estimating Long Run Covariance Matrices

The approach used throughout the Monte Carlo work for estimating
long-run covariance matrices is due to Andrews (1991) with some important
modifications in Andrews and Monahan (1990). Let V. be a nxl vector whose
long-run covariance matrix is given by Q. Prewhiten V. by a finite vector
autoregression. Obtain the residuals from this and use an automatic
bandwidth for a kernel estimator of the heteroskedastic-autocorrelation
consistent (HAC) variance covariance matrix. Recolor to obtain the estiméte
of the long-run covariance matrix.

First the prewhitening:
b

vt=ZZ\r Vep + V2 t = b+1...T , (4.1)

r=1
where Kr are nxn parameter estimates and V¥ are the corresponding residuals

(in the Monte Carlo work b = 1). The HAC estimator is in terms of Vi
T

. T"Z v? vl for j=0
trsn) = § k(i/sr) Be(g),  Peg) = e (4.2)
J==T+1 T“t V{,J*VI for j<O
t=-j+1

where Sy is the data dependent (automatic) bandwidth and k(.-) is the

real-valued quadratic spectral kernel:

14



sin(6mx/5)-cos(6mx/5) } . (4.3)

k(x) = 25/(12n°%x?) { E/S

For the quadratic spectral kernel Sy = 1.3221 (a* T)'/® where a* is obtained
by regressing V¥ on V#.; with associated coefficient matrix A (nxn) and

innovation covariance matrix £ and then calculating:

AT -~
o = 2 vec g Wr vec % - ' (4.4)
tr Wy (I +Kn,n) fef
where
f = 1/2n (1-R)7'§ (1-A)"" (4.5)
g = 1/2n (1-A)"2[AS+A28RT+A%8-6RASAT+£ (AT)2+AS (AT)2+8RT] (1-A1) 2

Wr is a n%mn® diagonal weight matrix with 2’s for diagonal elements that
correspond to diagonal elements of Q and 1's for diagonal elements that
correspond to non-diagonal elements of Q, vec is the vectorization operator,
® is the Kronecker cross-product and K,, is an n’xn? commutation matrix that
transforms vec(A) into vec(A'). Finally the estimate of the long-run
covariance matrix is obtained by recoloring:

d =0 a (s 87 and D= [1.] 3,]". (4.6)

r=1

To calculate V for the Stock-Watson test (3.6) we do not prewhiten but
follow Andrews (1991) directly. That is:

T-1 T
V== Z k(jssr) £(3) f(y = T"z Dy Dely . (4.7)

J=1 t=j+1
5. Monte Carlo Design and Results
In order to illustrate the issues in as clear a manner as possible we
outline the basic experiment whose results appear in Table 1. The design is
similar to Gregory, Pagan and Smith (1990) and West (1986). The computer

package used in the analysis is GAUSS386 and the programs are available from

15



the author upon request.
For each experiment we do 2500 replications with observation set

T

S0, 100 and 200. We first consider the effects from adding regressors

k

1,..., 4 with the corresponding vector 6 equaling 1. The stable root
A=.8 (implying a &8 =.06), B =.97, e and € are normally and
independently distributed with mean =zero, COV[et,eI] =0 for all t and s,
VAR[(1-2)(1-BA) e¢] =1 and VAR[e,] = I,. Thus we start with the situation
in which Ax: is exogenous. The variance for e; has been scaled up in order to
avoid singularities which would be caused by A approaching unity in the
cointegrating relation (see equation (2.11)). As Park, Ouliaris and Choi
have documented many of the tests become highly unstable when covariance
matrices have diagonal elements of highly unequal size. Moreover we think
the case with a (relatively) equivalent contribution from e; in the
cointegrating relation (2.6) is more realistic.

Since we intend to make power comparisons of the various tests to detect
cointegrating relations it is essential to adjust for differences in test
size. For the basic experiment we calculate the size of the test for each T

under the following data generating process:

Yt = Ye-1 + Ut Up = Augq + & (5.1)

Xt Xt-1 t+ €,

where &; = (ct,etT) ~ NID(O, Ix4+1). Clearly y, and X, are not cointegrated.
Notice that we calculate the size of the tests for cointegration with a
serial correlation in u. that roughly corresponds to the amount of serial

correlation in the cointegrating relation (2.6). Table 1 reports the
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rejection frequencies at the five percent level of significance7. SIZE
refers to the rejection frequency at the five percent level when (5.1) is
" true. Power is determined (using data generated from the linear quadratic
model) first (labelled POWER) on comparisons using the size-adjusted tests
(critical values are calculated so that each tests has the same rejection
frequency when the null hypothesis is true) and then against the asymptotic
critical values. These latter values appear in parentheses.

Before detailing the individual test performance it is worthwhile to
provide some overall assessment. First the tests produce roughly similar
results for k =1 and small sample size T = 50. Discrepancies occur as the
number of regressors #nd sample size increase. All tests share the feature
that power falls as k increases, although some more sharply than others.
Except for the LR and LR, tests of Johansen (1988 and 1990), tests sizes are
either close to the asymptotic values or undersized by T = 200 for all k.
This result is comforting in practice as comparisons are almost always
against the asymptotic critical values.

The ADF; size (power) falls as k increases with a bias towards the null
hypothesis of no cointegration. Despite this size distortion the power
properties are good. The ADFg is basically the same as ADF; with slightly
better size and sightly worse power (both size-adjusted and against
asymptotic values). The 2, and Z; follow a similar pattern to the ADF
tests: the bias is towards the null but there is still good power (size
adjusted and asymptotic) which does not diminish very much as k increases.

These tests are the best in this regard.

Test results for the one percent and ten percent were also calculated. For
the most part these results are qualitatively similar to those at the five
percent level and are available upon request.
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The LR and LR, tests have a tendency to overreject when the null is true

and the rejection frequency rises in k. The overrejection occurs even at

" T =200 for k = 3 or 4. The size results are somewhat better for the maximum

eigenvalue test, LR; than the trace test LR which uses all the eigenvalues.
Despite this overrejection the size adjusted power is quite good producing
similar results to the ADF’'s, Z, and Z; tests. As would be expected given
the size results, the power against asymptotic critical values is the highest
for the larger k.

The SW test is undersized and has slightly worse power than ADF,, Z, and
the Z; especially against the asymptotic critical values for large k. The J
test is undersized for all experiments but appears to approach asymptotic
size in a monotonic fashion (unlike many of the other tests). The test has
the smallest power for k =1 but the power is remarkably constant as k
increases.

Hansen (1990) has suggested that one potential advantage of his test is
that power may be better as the number of regressors in the cointegrating
regression gets large since the limiting distribution of the tests based upon
the Cochrane-Orcutt transformation are invariant to k. For the linear
quadratic model the power does indeed stay relatively constant for all the
HADF,, HZ, and HZ, but these same tests are not as powerful as their
untransformed (regressor dependent) counterparts. Also for large k there is
some tendency to overreject for HADF; and HZ, with T = 50.

Both P; and P, are undersized and have comparable size-adjusted power
with 2, and Z; for k = 1. However both size-adjusted and nominal power drops

rapidly as k increases.
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This completes the basic experiment and now we consider the performance
of the tests under some different parameter settings. To keep the number of
- exXperiments down we restrict attention to the situation of k = 1 and only the
changes that appear in the column heading are made. That is, all other
parameters are set as in the basic experiment in Table 1 column 1. Size
again is determined according to (5.1) with the appropriate changes noted in
the columns of the tables.

In Table 2 rejection frequencies are reported for experiments that have
differing amounts of serial correlation. The first two columns have A = .9
and A = .7 respectively. As expected, test performance deteriorates for
A = .9 (particularly the Hansen tests and the P, and P, up to T = 100) but
improves for the smaller cost of adjustment (A = .7). At sample size T = 100
with A = .9 we see over a 50 percent fall in power for almost all of the
tests. On the other hand, with A = .7 and T = 200 all of the tests reject
the null hypothesis of no cointegration at least 87 percent of the time.
Positive serial correlation in Ax; (column 3 in Table 2, p = .8) tends to
raise the test size and lower power (both size adjusted and nominal). The
latter observation is especially true for the ADF, Z, and 2. tests. Negative
serial correlation (p = -.5) produces similar results to Table 1 column 1 for
all the tests except SW. The SW tests with negative serial correlation
reject the null too frequently (15 percent at T = 200) and there is a
substantial loss of power (size adjusted) at T = 100.

In Table 3 we no longer assume that the regressor x. 1is strictly
exogenous. We know that endogenous regressors creates additional nuisance
parameters for statistical inference on the cointegrating vector (see
Baner jee, Dolado, Hendry and Smith, 1986; Phillips, 1991; Phillips and Hansen

1990; Saikkonen, 1990 and Stock and Watson, 1991). Four experiments are
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considered with different settings for the covariances (the variances are
unchanged).

Denote the covariance between e and € as 6... The four experiments are
Cec = .2, -.2, .8 and -.8; the size of the tests are calculated using these
values for oy in (5.1). We see that with increased positive covariance the
ADF, 2o, 2¢, P; and P, have higher test sizes and some loss of power (size
adjusted). Interestingly all of the Hansen tests have the highest power with
virtually unchanged test sizes for o.. = .8. The J test also has increased
in power but to a lesser extent than the Hansen tests. Negative covariance
has little effect on the tests both in terms of size and power; the exception
is the P, whose power is less than the size for c¢.. = -.8.

In Table 4 alternative values for the cointegrating vector are
considered.® The first two columns (with k = 1) double (8 = 2) and halve
(6 = .5) the coefficient compared to the base case. The only test to be
affected appreciably by changing the magnitude of the cointegrating vector is
the P, test in which power falls (rises) as 6 rises (falls).

The last two experiments in Table 4 investigate the loss in power from
faulty inclusion. For each case the true cointegrating relation has only one
variable but additional I(1) variables (k = 2 and k = 3) are included in the
test regression (6; = 1 with all other coefficients set to =zero). As
expected power falls for both of these experiments compared to Table 1 column
1. The power loss is generally comparable to the corresponding values in
Table 1 for k =2 (6, =62 =1) and k =3 (6 = 8; = 65 = 1); the principal

exceptions are the three Hansen tests. Overall, if we compare these results

8

There are no corresponding size results since we used those from the Dbase
experiment in Table 1 column 1. However with different values for e the
variance changes and this could effect size.
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to those in Table 2, we see that the power loss from additional regressors is

much less than the loss due to a high stable root in linear quadratic models.

6. Conclusion

The purpose of this paper has been to evaluate the finite sample
performance of various tests for cointegration under the class of linear
quadratic models. The results indicate sharp differences in the tests to
detect cointegrating relations especially when the cost of adjustment and the
number of regressors are large. For all experiments considered we found that
no one test dominates in terms of test size and power and hence it is
difficult to give clear advice. Nevertheless our overall impression is that
at least for the linear quadratic model the ADF tests and the Z, test appear
to be the most reliable in terms of test size and power.

In addition we find that for sample sizes of around one hundred
observations (a typical macro data set), with several regressors and high
costs of adjustment the tests lack power. Unfortunately economic data seems
to be characterized by slow speeds of adjustment (high stable roots). This
suggests a flaw in the strategy of pretesting for cointegration and then
estimating a linear quadratic model only if the null hypothesis of no
cointegration is rejected.

Lastly a word of caution. Econometricians are quite familiar with test
conflict: we calculate two (or more) tests and find one test rejects the null
hypothesis (at some significance level) while another does not. For example
in testing linear hypotheses we have the inequality of the Wald, likélihood
ratio and Lagrange multiplier tests which on occasion gives rise to test
conflict. The evidence presented in this paper suggests the instances of

test conflict are likely to be more numerous than is usually encountered.
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For this reason we think it is of considerable practical importance to
calculate and report several tests for cointegration in applied studies. Of
- course, tests for cointegration are just one part of the model evaluation

process that should be conducted in any specification analysis.
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Table 1: Comparisons of Tests for Cointegration: A = .8 (5% level)

ADF,
T=50
T=100
T=200

ADFg
T=50
T=100
T=200

o

T=50

T=100
=200

T=50
T=100
T=200

=50
T=100
T=200

T=50
T=100
T=200

SW
T=50
T=100
T=200

T=S0
T=100
T=200

k=1

SIZE POWER

.04 .38 (.30)
.03 .89 (.81)
.03 1.0 (1.0)
.06 .14 (.17)
.05 .49 (.49)
.05 .96 (.96)
.02 .58 (.33)
.01 .98 (.87)
.01 1.0 (1.0)
.07 .41 (.49)
.04 .94 (.91)
.04 1.0 (1.0)
.12 .21 (.38)
.08 .80 (.86)
.07 1.0 (1.0)
.12 .12 (.23)
.08 .58 (.71)
.08 1.0 (1.0)
.00 .54 (.13)
.01 .95 (.70)
.02 1.0 (1.0)
.01 .16 (.04)
.02 .30 (.24)
.03 .48 (.31)

k =2 k=3 k =4
SIZE POWER SIZE POWER SIZE POWER
.03 .31 (.17) .02 .19 (.10) .01 .20 (.07)
.02 .78 (.54) .01 .66 (.33) .01 .53 (.21)
.01 1.0 (1.0) .01 1.0 (.95) .01 .99 (.83)
.03 .13 (.09) .02 .10 (.05) .01 .09 (.03)
.04 .29 (.26) .03 .23 (.13) .02 .18 (.07)
.04 .85 (.83) .03 .72 (.60) .02 .58 (.39)
.02 .37 (.19) .01 .24 (.08) .00 .21 (.04)
.01 .89 (.63) .01 .76 (.40) .00 .60 (.25)
.01 1.0 (1.0) .01 1.0 (.97) .01 1.0 (.90) -
.04 .37 (.31) .04 .25 (.20) .03 .24 (.16)
.03 .84 (.73) .02 .73 (.53) .02 .61 (.41)
.02 1.0 (1.0) .02 1.0 (.99) .01 .99 (.94)
.19 .11 (.34) .35 .09 (.47) .55 .07 (.59)
.12 .59 (.77) .18 .50 (.77) .26 .40 (.79)
.08 1.0 (1.0) .12 .97 (1.0) .16 .98 (1.0)
.16 .06 (.17) .24 .04 (.21) .35 .05 (.37)
.09 .28 (.44) .13 .18 (.33) .17 .35 (.64)
.06 .96 (.97) .09 .84 (.92) .12 .99 (1.0)
.00 .24 (.04) .00 .17 (.00) .00 .14 (.00)
.01 .60 (.30) .01 .40 (.14) .01 .26 (.06)
.01 .98 (.95) .01 .86 (.89) .01 .71 (.52)
.01 .27 (.06) .01 .19 (.05) .01 .20 (.04)
.02 .32 (.13) .02 .22 (.10) .02 .19 (.07)
.04 .44 (.32) .03 .31 (.21) .03 .31 (.18)

See notes at the bottom of Table 1.
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Table 1: Continued

k=1 k=2 k =3 k=4
SIZE POWER SIZE POWER SIZE POWER SIZE POWER
HADF,
T=50 .08 .31 (.40) .11 .26 (.41) .14 .21 (.43) .18 .18 (.45)
T=100 .05 .42 (.42) .06 .28 (.31) .08 .23 (.27) .08 .21 (.27)
T=200 .05 .47 (.47) .05 .24 (.25) .06 .28 (.31) .06 .14 (.15)
HZ,
T=50 .02 .52 (.42) .04 .43 (.36) .04 .40 (.37) .06 .31 (.35)
T=100 .01 .51 (.40) .02 .35 (.27) .02 .30 (.21) .01 .28 (.20)
=200 .02 .52 (.44) .03 .26 (.21) .02 .17 (.13) .02 .13 (.10)

HZ.
=50 .10 .34 (.47) .13 .27 (.45) .17 .21 (.48) .23 .15 (.49)

T=100 .06 .42 (.44) .06 .30 (.32) .07 .25 (.29) .08 .22 (.29)
T=200 .05 .47 (.47) .05 .25 (.25) .06 .16 (.17) .06 .14 (.15)
P,
T=50 .02 .22 (.05) .01 .09 (.01) .00 .06 (.00) .00 .03 (.00)
T=100 .01 .86 (.33) .01 .43 (.11) .00 .26 (.02) .00 .15 (.00)
=200 .01 1.0 (1.0) .01 .98 (.93) .01 .83 (.43) .00 .61 (.18)
Py
T=50 .02 .35 (.07) .01 .20 (.01) .00 .15 (.00) .00 .13 (.00)
T=100 .01 .90 (.53) .01 .46 (.10) .01 .30 (.02) .00 .14 (.00)
T=200 .02 1.0 (1.0) .02 .98 (.82) .01 .78 (.30) .01 .40 (.06)
Notes:
SIZE refers to the number of rejections when the null hypothesis of no
cointegration is true using the asymptotic critical values. POWER refers to
the number of rejections for the size-corrected tests. Beside these in
parentheses are rejection frequencies when asymptotic critical values are
used. ADF4 and ADFg are augmented Dickey-Fuller tests (Engle and Granger,

1987) with 1 and 6 lags respectively; 2y and 2Z¢y are the tests of Phillips
(1987), LR is the Johansen (1988) likelihood ratio (trace) test, LRy is the
likelihood ratio test based on the maximal eigenvalue (Johansen, 1990), SW 1is
Stock and Watson (1988) minimum eigenvalue test, J is the cubic trend
regression test of Park, Ouliaris and Choi (1988), HADFy, HZ, and HZ{y wuse the
Hansen (1990) Cochrane-Orcutt procedures, Py and Py are the trace and
variance ratio tests in Phillips and Oulliaris (1990). For the 2o, 2¢, HZ,,
HZ¢, Pz and P, the long-run covariance estimators are due to Andrews (1990).
They are obtained from a prewhitened quadratic spectral kernel with a vector
autoregression of order 1 for the prewhitening (Andrews and Monahan, 1990)
and an automatic bandwidth estimator which 1is also a vector autoregression of
order 1 (Andrews, 1990). For each experiment there are 2500 replications.
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ADF,
T=50
T=100
T=200

ADFg
T=50
T=100
T=200

Za
T=50
T=100

=200

2y
T=50
T=100
T=200

T=50
T=100
T=200

T=50
T=100
T=200

T=50
T=100
T=200

T=50
T=100
=200

See notes at the bottom of Table 1.

(.25)
(.74)
(1.0)

(.19)
(.48)
(.96)

(.43)
(.90)
(1.0)

(.60)
(.95)
(1.0)

(.31)
(.77)
(1.0)

(.19)
(.S9)
(1.0)

(.37)
(.90)
(1.0)

(.14)
(.28)

Table 2: Serial Correlation (5% level)
k =

=.9 = .7 p=.8 p=-.5
SIZE POWER SIZE POWER SIZE POWER SIZE POWER
.03 .21 (.13) .03 .67 (.54) .06 .06 (.07) .03 .37
.03 .41 (.30) .04 .99 (.98) .06 .19 (.22) .04 .81
.03 .91 (.84) .03 1.0 (1.0) .05 .75 (.76) .03 1.0
.04 .14 (.12) .05 .22 (.24) .07 .09 (.13) .06 .17
.05 .24 (.22) .05 .65 (.66) .06 .27 (.29) .06 .44
.05 .71 (.64) .06 .99 (.99) .05 .78 (.77) .05 .97
.03 .25 (.12) .01 .88 (.65) .06 .04 (.05) .04 .47
.01 .68 (.32) .02 1.0 (.99) .04 .24 (.19) .03 .97
.01 1.0 (.86) .02 1.0 (1.0) .04 .84 (.76) .02 1.0
.05 .20 (.20) .04 .82 (.78) .10 .05 (.10) .10 .32
.04 .41 (.40) .04 1.0 (1.0) .07 .20 (.25) .08 .89
.04 .96 (.89) .04 1.0 (1.0) .06 .76 (.80) .06 1.0
.16 .06 (.21) .10 .41 (.56) .19 .34 (.66) .12 .16
.11 .31 (.47) .07 96 (.98) .11 .84 (.99) .09 .60
.07 .91 (.94) .08 1.0 (1.0) .08 1.0 (1.0) .06 1.0
.14 .04 (.13) .11 .21 (.35) .17 .19 (.43) .12 .09
.12 .16 (.29) .08 .87 (.92) .11 .84 (.99) .09 .46
.08 .72 (.83) .07 1.0 (1.0) .10 1.0 (1.0) .08 .99
.01 .24 (.04) .00 .78 (.35) .00 .32 (.01) .16 .05
.01 .57 (.20) .01 1.0 (.98) .00 .59 (.07) .17 .18
.01 .95 (.73) .02 1.0 (1.0) .00 .87 (.52) .15 .97
.00 .49 (.06) .02 .51 (.22) .01 .17 (.04) .01 .83
.00 .41 (.10) .03 .67 (.46) .02 .21 (.10) .02 .63
.03 .48 (.20) .04 .87 (.80) .04 .42 (.32) .03 .75
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HADF4
T=50
T=100
T=200

HZ,
T=50
T=100
T=200

HZ.
T=50
T=100
T=200

P,
T=50
T=100
T=200

Py
T=50

T=100
T=200

Notes: See notes at the bottom of Table 1.

Table 2:

Continued

A=.9

SIZE POWER

.10 .11 (.19)
.07 .10 (.13)
.05 .09 (.10)
.02 .26 (.17)
.02 .15 (.10)
.02 .12 (.07)
.13 .07 (.23)
.08 .10 (.13)
.05 .09 (.10)
.04 .0S (.02)
.02 .12 (.29)
.01 .89 (.60)
.02 .12 (.02)
.02 .30 (.09)
.02 .84 (.45)

SIZE

.08
.06
.07

.02
.02
.03

.09
.06
.06

.01
.01
.02

.01
.01
.02

= .7
POWER
.60 (.70)
.80 (.81)
.90 (.91)
.80 (.71)
.87 (.80)
.93 (.91)
.68 (.77)
.82 (.83)
.91 (.92)
.60 (.15)
.99 (.89)
1.0 (1.0)
.58 (.14)
.99 (.83)
1.0 (1.0)
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SIZE

.15
.10
.06

.04
.03
.03

.19
.10
.07

.04
.02
.02

.02
.02
.02

.8

POWER

.30
.44
.46

.06
.26
.43

.08
.37
.92

.08
.42
.95

.11(.35)
.25 (.41)
.43

(.45)

(.29)
(.38)
(.42)

(.40)
(.45)
(.46)

(.04)
(.16)
(.73)

(.01)
(.12)
(.7S)

p=-.5

SIZE POWER
.08 .24 (.34)
.06 .34 (.38)
.05 .42 (.41)
.03 .44 (.37)
.02 .45 (.37)
.02 .45 (.39)
.11 .31 (.42)
.07 .37 (.40)
.06 .40 (.41)
.02 .24 (.08)
.02 .81 (.62)
.02 1.0 (1.0)
.01 .42 (.06)
.01 .89 (.51)
.02 1.0 (1.0)



ADF,
T=50
T=100
T=200

ADFg
T=50
T=100
T=200

Zo
T=50
T=100

=200

T=50
T=100
T=200

=50
T=100
T=200

T=50
T=100
=200

SW
T=50
T=100
T=200

T=50
T=100
T=200

See notes at the

Table 3: Endogenous Regressors (5% level)

k =
Cee = .2 Ceg = --2 Cee = .8 Cee = -.8

SIZE POWER SIZE POWER SIZE POWER SIZE POWER
.03 .39 (.31) .08 .26 (.34) .06 .27 (.33) .05 .25 (.26)
.03 .88 (.81) .07 .30 (.33) .08 .69 (.83) .07 .68 (.77)
.03 1.0 (1.0) .04 1.0 (1.0) .08 1.0 (1.0) .09 1.0 (1.0)
.06 .15 (.18) .05 .17 (.18) .06 .15 (.20) .06 .13 (.15)
.05 .49 (.86) .05 .47 (.47) .06 .43 (.51) .06 .39 (.45)
.05 .95 (.96) .05 .95 (.95) .07 .92 (.97) .07 .93 (.96)
.01 .64 (.34) .02 .58 (.33) .05 .38 (.37) .04 .33 (.30)
.01 .99 (.86) .01 ..97 (.86) .06 .84 (.89) .05 .84 (.84)
.01 1.0 (1.0) .02 1.0 (1.0) 06 1.0 (1.0) .06 1.0 (1.0)
.04 .53 (.49) .05 .47 (.46) .09 .37 (.50) .08 .31 (.43)
.03 .95 (.91) .03 .93 (.91) .09 .82 (.93) .09 .78 (.90)
.04 1.0 (1.0) .04 1.0 (1.0) .09 1.0 (1.0) .09 1.0 (1.0)
.11 .16 (.30) .12 .28 (.48) .11 .11 (.21) .12 .87 (.95)
.09 .68 (.78) .08 .91 (.94) .08 .49 (.60) .08 1.0 (1.0)
.08 1.0 (1.0) .08 1.0 (1.0) .07 .98 (.99) .07 1.0 (1.0)
.11 .09 (.20) .11 .17 (.29) .12 .06 (.15) .11 .68 (.84)
.09 .46 (.60) .09 .72 (.83) .08 .28 (.40) .09 1.0 (1.0)
.08 .99 (.99) .08 1.0 (1.0) .08 .92 (.96) .08 1.0 (1.0)
.00 .59 (.14) .00 .52 (.12) .02 .34 (.15) .01 .31 (.13)
.01 .94 (.71) .01 .93 (.70) .03 .86 (.75) .03 .77 (.66)
.01 1.0 (1.0) .01 1.0 (1.0) .06 1.0 (1.0) .05 1.0 (1.0)
.01 .52 (.17) .01 .37 (.08) .02 .62 (.28) .01 .08 (.02)
.02 .57 (.32) .02 .39 (.18) .03 .66 (.52) .03 .10 (.05)
.03 .78 (.61) .04 .60 (.45) .04 .85 (1.0) .05 .24 (.23)

bottom of Table 1.
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HADF,
T=50
T=100
T=200

HZ
T=S0
T=100
T=200

HZ,
T=50
T=100
T=200

P,

T=50

T=100
=200

P,
T=50

T=100
T=200

Notes: See notes at the bottom of Table 1.

Cee = .2

SIZE POWER
.08 .40 (.51)
.07 .54 (.58)
.05 .66 (.67)
.01 .66 (.52)
.02 .65 (.57)
.02 .72 (.64)
.09 .44 (.57)
.07 .57 (.60)
.05 .67 (.67)
.02 .25 (.06)
.02 .85 (.53)
.02 1.0 (1.0)
.01 .41 (.08)
.02 .89 (.58)
.02 1.0 (1.0)

Table 3: Continued
k =

Cee = —.2 Cec
SIZE POWER SIZE
.08 .26 (.34) .09
.07 .30 (.33) .06
.07 .32 (.34) .05
.02 .39 (.33) .04
.02 .36 (.30) .02
.02 .34 (.31) .02
.10 .30 (.38) .10
.07 .31 (.34) .06
.06 .33 (.35) .06
.02 .20 (.05) .03
.01 .86 (.51) .03
.01 1.0 (1.0) .03
.01 .16 (.02) .03
.01 .58 (.17) .03
.02 .99 (.91) .04
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POWER

.57
.99

(S
[eNeNe]

.60
.99
1.0

.12
.74
1.0

.01
.23
.99

(.78)
(.99)
(1.0)

(.82)
(1.0)
(1.0)

(.88)
(1.0)
(1.0)

(.07)
(.56)
(1.0)

(.00)
(.07)
(.97)

Cee = ~-.8
SIZE POWER

.08 .20 (.26)
.06 .20 (.21)
.05 .18 (.18)
.04 .22 (.21)
.02 .18 (.16)
.02 .16 (.18)
.10 .20 (.28)
.06 .21 (.22)
.05 .18 (.18)
.04 .09 (.05)
.03 .64 (.47)
.03 1.0 (1.0)
.02 .00 (.00)
.03 .00 (.00)
.03 .00 (.00)



Table 4: Cointegrating Vectors (5% level)

k=1 k =2 k =3
e =2.0 e =.5 91=1, 92=0 91=1, 92=93=O
POWER POWER POWER POWER
ADF,
=50 .37 (.28) .39 (.30) .31 (.16) .26 (.12)
T=100 .86 (.79) .89 (.82) .77 (.59) .67 (.40)
T=200 1.0 (1.0) 1.0 (1.0) 1.0 (.99) 1.0 (.96)
ADFg
=30 .13 (.17) .15 (.19) .11 (.10) .12 (.05)
T=100 .43 (.45) .48 (.50) .33 (.28) .30 (.14)
T=200 .95 (.95) .95 (.96) .86 (.83) .75 (.65)
Zo
T=50 .57 (.30) .63 (.35) .40 (.18) .32 (.11)
T=100 .98 (.84) .98 (.87) .90 (.65) .77 (.46)
T=200 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (.98) .
2
T=50 .44 (.44) .49 (.48) .38 (.32) .31 (.25)
T=100 .92 (.89) .94 (.92) .83 (.75) .75 (.60)
T=200 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (.99)
LR
T=50 .52 (.73) .12 (.25) .07 (.26) .04 (.34)
T=100 .99 (1.0) .54 (.67) .39 (.58) .18 (.48)
T=200 1.0 (1.0) 1.0 (1.0) .97 (.99) .83 (.92)
LR,
T=50 .32 (.49) .0S (.16) .06 (.17) .05 (.22)
T=100 .95 (.98) .35 (.47) .29 (.44) .17 (.33)
=200 1.0 (1.0) .93 (.96) .97 (.98) .80 (.90)
SW
T=50 .52 (.13) .55 (.13) .25 (.03) .15 (.01)
T=100 .92 (.68) .96 (.71) .61 (.31) .46 (.15)
T=200 1.0 (1.0) 1.0 (1.0) .99 (.96) .92 (.81)
J
T=50 .22 (.04) .63 (.20) .40 (.10) .40 (.10)
T=100 .25 (.11) .66 (.42) .41 (.21) .39 (.17)
T=200 .45 (.30) .85 (.72) .63 (.42) .56 (.35)

See notes at the bottom of Table 1.
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Table 4: Continued

k=1 k=2 k =3
e =2.0 e =.5 91=1, 92=0 91=1, 92=63=0
POWER POWER POWER POWER
HADF,
T=50 .21 (.27) .47 (.63) .34 (.51) .36 (.62)
T=100 .23 (.24) .80 (.83) .45 (.52) .51 (.59)
T=200 .20 (.22) .94 (.95) : .47 (.48) .53 (.55)
HZ,
=50 .30 (.24) .81 (.67) .63 (.50) .65 (.59)
T=100 .23 (.20) .89 (.83) .58 (.48) .67 (.55)
T=200 .20 (.18) .97 (.94) .54 (.46) .61 (.52)
HZ,
T=50 .23 (.31) .51 (.73) .32 (.59) .29 (.69)
T=100 .23 (.24) .81 (.85) .47 (.53) .51 (.62)
T=200 .21 (.22) .95 (.95) .49 (.49) .55 (.56)
P,
T=50 .22 (.05) .26 (.06) .09 (.01) .07 (.00)
T=100 .81 (.48) .84 (.53) .47 (.14) .28 (.04)
T=200 1.0 (1.0) 1.0 (1.0) .98 (.85) .83 (.48)
Py
=50 .02 (.00) .59 (.14) .32 (.02) .42 (.00)
T=100 .09 (.01) .97 (.76) .68 (.18) .62 (.11)
T=200 .59 (.19) 1.0 (1.0) 1.0 (.92) .96 (.79)

See notes at the bottom of Table 1.
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