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ABSTRACT

This paper explores the natural resource consumption behaviour of a
competitively determined economy relative to a socially planned
benchmark when agents are characterized as having finite lifespans
which overlap. A general equilibrium model of a production economy
which uses inputs from a finite stock of an aggregate natural resource
is formulated and solved for the rates of resource extraction
associated with the competitive outcome and the socially planned one.
It is shown that resource extraction in the competitive economy can

exceed that of the socially planned optimum and that intergenerational
inequites result.
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Introduction

The study of the use of so called "natural resources"”, and particularly
of "exhaustible" natural resources, has a long history rife with debate along
both normative and positive lines. In 1931, Harold Hotelling published a
classic paper which examined a social planner’s problem of maximizing welfare
from the production of a minerals industry. Hotelling’s results at this
industry level where extended to a perfectly competitive environment where he
showed that the same rule for the individual firms optimal extraction path
resulted, given the same extraction costs and if the participating firms had
perfect foresight about minerals prices. This rule, subsequently called
Hotelling’s rule, stated simply that a finite stock of a homogeneous resource
be depleted at a rate such that the rate of price increase of the resource
over time be exactly equal to the appropriate rate of discount. In other
words, the capital gain, or instantaneous return from leaving a dollars worth
of the resource in the ground is equal to the instantaneous return available
by extracting and selling the resource on the margin and investing that dbllar
in the alternative asset.

This result is very well known and indeed reappears in many subsequent
analyses with appropriate modifications. Stiglitz (1974), for example derives
a variant of Hotellings rule as a social optimum in a growth economy, where
the comparative rate of return is given by the marginal product of capital.
Hotelling himself investigated the case of a monopolistic firm where
equalization of the rate of change of marginal revenue and the rate of return
on an alternative asset define the optimal extraction path.

Indeed this result may be robust even to the optimization criterion
chosen. Solow (1974) shows that a social planner using the Max-Min criterion

(i.e. maximizing the minimum level of consumption, C for any "generation"

for t € [0,0)) also will choose an extraction tpath characterized by
equalization of returns (measured in production of consumption units), on
alternative assets.

The choice of an optimization criterion and the labelling of a particular

extraction path as optimal are.of course based upon normative arguments which
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in turn are mostly concerned, in the exhaustible resources literature, as we
are here, with the concept of intergenerational equity.

John Rawls (1971) has argued strongly against the conventional
utilitarian approach to these problems suggesting that in the context of an
economy accumulating capital “the utilitarian doctrine may direct us to demand
heavy sacrifices of the poorer generations for the sake of greater advantages
for latter ones..." Rawls then goes on to sometimes advocate a Max-Min
principle and other times a more vague principle aiming at intergenerational
equity by balancing what an individual would feel was appropriate to ask of
his parents with what he would be willing to provide for his children.

Other normative arguments center around the use of a social discount
factor (Q) of less than one, to discount the utility of future generations in
the formulation of the social optimand. It has been argued, as by Ramsey
(1928), that certainly any current generation (and thus any planner) does not
have the "right" to treat different generations asymmetrically. Further it
can be argued that for individuals to have private rates of discount (B) of
less than one would be irrational. Rational agents, it is argued, would
recognize that when tomorrow arrives an additional unit of consumption will
very likely be valued as highly as it is today or was yesterday.

On the other hand there is a rational interpretation of a social (or
private) discount factor of less than one as reflecting the positive
probability of extinction (or death) in the next period. In the case of
society of course one might argue that we cannot derive an objective
probability to reflect the likelihood of extinction. This does not suggest
that we set Q = 1, however, only that a best subjective probability be
applied. The later argument will be adopted here.

As mentioned already, Solow shows that the Max-Min principle results in
the same optimal extraction path as the utilitarian (at least with zero
technical progress and =zero population growth) while the difficulty in
deriving an objective and tractable formulation for the vaguer criterion
proposed by Rawls leaves us to set it aside for future normative discussion.

Thus, this paper adopts the utilitarian criterion for optimization in a
social planning context and sets Q equal to something less than one. These
choices coincide with the vast majority of the existing literature examining

the problems arising from the existence of a finite stock of resources which
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are required in production. This literature also usually characterizes
different generations as identical and existing atemporally. In this paper
however, a simple resource-based economy is developed in which agents exhibit
the fundamentally realistic and important heterogeneity that arises from the
existence of overlapping-generations.1

Both a competitively determined version of the economy and a
socially-planned one are formulated as dynamic’' optimization problens. The
solutions to these problems are examined with an aim towards characterizing
the implied resource extraction paths of each economy and the implications of
these paths on intergenerational equity and efficiency. It is shown that
although both economic systems produce Pareto-efficient extraction paths, the
one determined by the competitive system often results in the depletion of the
finite resource at rates which are far in excess of those determined from the
socially-planned system. Furthermore, the descrepencies that exist between
the rates of extraction determined in the two economies are not dependent upon
the existence of a gap between the social and private rates of discount.

The paper proceeds as follows:

Section 2 describes the economy to be analyzed and sets up appropriate
notation. '

Section 3 examines the socially optimal solution to the model of Section
2 while Section 4 discusses the competitive solution.

Section 5 compares the results from the competitive and social solutions

and Section 6 is a conclusion drawing suggestions for further work.

1
Other resource models incorporating the OLG concept are; Ivor Pearce (1975)
and Kemp & Long (1980).



Section 2: The Model

The model presented here is a variant of the Samuelson (1958) 2-period
lived overlapping generations model in discrete time. The competitive version
of the economy is discussed first as' it provides the most insight into the
assumptions and thus the characteristics of the model.

There is no uncertainty in the model, all agents have perfect foresight.
At any time t there exists both an old and a young generation where the
members of any generation live for at most two periods. Population is
constant and equal to 2N with N new agents being born at the beginning of each
period. Each individual (i) has utility described by the constant relative
risk aversion (CRRA) function;

(1-0) (1—0‘)) )

_ _ -1
Ut(cil’C12) =1 -0 (C11 * Bciz

ce(0,w), Be(0,1)

. Where C11 and C12 are consumption by individual i of the tth generation when
young (period t) and then old (t + 1), respectively. The parameter o,
describes the individuals risk aversion/intertemporal substitution
characteristics as is well known for this class of preference functions. B is
the individuals private discount factor derived from a pure rate of time
preference.

The non-storable consumption good is produced in this economy by
combining labour with a homogeneous resource which is non-renewable has well
defined property rights and exists as an aggregate stock Rt, at time t.
The production function for any individual (i), at time t, will be written as;

1-o_o

F(1 ,r ) =Al1 "r .
it’ it it it

This is standard Cobb-Douglas with constant returns to scale where lit is the
quantity of labour used in production and Tie is the quantity of the resource
used by the ith individual. Note that both factors are "essential" to the
production process. We also have; Rt = Rt_l- ZT=1rit_1, which implies that
the resources used in production in any period, are completely dissipated.

In this environment labour demand will be determined competitively.
Labour supply is assumed to be inelastic with each member of any generation

providing 1 unit of labour when young and zero when old.

’
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It will be assumed that the current old generation has claim to the
entire stock of the resource and thus own the rights to production. The old
generation may extract some (or all) of the resource at constant marginal cost
g, and produce output by combining it with the young generation’s labour in
production. In exchange for their labour the young are paid consumption wages
which they may then use for current consumption or to purchase rights to the
remaining resource stock from the old. These rights are the only form of
savings.

In the competitive environment then we may write individual i’® problem

as;
Max  U(C ,C ) = (1-0)t(c 7 4+ pc 17
€ .Cc ) t 11’ Ti2 i1 i2
i1’ 12
s. t. C11 = wt - 7tSIt
(2.1) sz = F(lit'rit) T8 - wt+11it+1 * 7t+1(slt~ rit+1)
r = Vit
it+1 it
N
Z1=1 it Rt vt

Where w, is the consumption wage paid for the supply of 1 unit of labour
and Sit is the quantity of resource purchased as savings at consumption price
yt per unit.

The social planner’s problem shares the same production and resource
extraction/stock characteristics as the competitive problem by virtue of the
constant extraction costs and CRS nature of the production function. The
ownership rights of the resource stock however and thus the rights to produce
are controlled by the central planner, whose interests are described by a
social welfare function.

This planners function will be based upon the function;

_ -1 t _ -1 (1-0°) (1-07) t _ -1 (1-0°) (1-0°)
W=I_ Q-0 [c,, '+ BC,.. 1+ Z“t":on (1-0)7[C, ™+ BC, .o ].

hhere o, and B, are as in the competitive problem. Qe(0,1) is taken as
the social planners subjective probability that the society will exist next
period. C1t and C2t+1 are the aggregate consumption levels of generation t

when young and then old respectively. The social planner is interested in
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maximizing W with respect to the aggregate consumption levels of each
generation in each of their two periods of life subject to the appropriate
resource and production constraints, from t=0 on. The reverse discounting of
the 1lifetime utilities of those currently alive and those past may seem
strange when the planner is concerned with welfare only from the present on,
however it is necessary in this context in order to ensure the time
consistency of the optimal intertemporal allocations. As pointed out by Calvo
and Obtsfeld (1988), "unless those alive and those to be born are treated
symmetrically, the planner has an incentive to change the consumption
previously planned for unborn generations once they come into existence."

This planner’s problem can be decomposed into 3 separate parts. The
first is the optimal distribution of consumption among the members of any one
generation. Implicit in the functional form given by W is the equal weighting
of all individuals of any generation and thus the solution Ci£= c’

1t
Cit V i, je(1,N) and Vt is implied for this first problem. The second problem

and C;t=
is the optimal allocation of consumption between generations while the third
is the optimal depletion of the resource stock.

Writing out the social planner’s problem then for a finite time interval
and noting that the social planner has a total of N units of labour available

to use in production in any period, we have;

Max ) (1_051[ Q-1BC(1-0~)+ cl1-o BC(H”+ ac1-o) QBC(H”+ ]

(c } = 2t 1t 2t+1 1t+1 2t+2
1t’ 2t’t=0

s. t. C1t+ C2t < F(N,rt) - gr,
(2.2) C1t+1 * C2t+1 = F(N,rt+1) T Bl

Where r. is aggregate extraction of the resource in period t.



Section 3: The Socially Optimal Solution.

Rewriting the problem (2.2) by substituting for C,4, Cit+1, etc., from
the aggregate budget constraints and using a Lagrangian to impose the

aggregate resource constraint we have;

Max (1-0)7" [ o 'gci!"+ (F(N,r) - gr - c_ )2
c.r }t=m 2t t t 2t
t tit=0
(1-0) (1-0°)
(3.1) *OBC,, Q(F(N,rt+1) 41 C2t+1) * ]

+ AR -L7 rt).

0 t=0

The following five equations are some of the first order conditions from this

problem.

(3.2) C, Q'gc = c.?

(3.3) r,o c? = A[F_(N,r) - g]™
(3.5) T ac{, = A[F (N,r, ) - g™
(3.6) A R = ¢ r

0 t=0 t

Equations (3.2) and (3.4) are familiar expressions giving the conditions
for optimal intergenerational allocations. Equations (3.3) and (3.5) are
expressions relating the marginal costs of extraction of an additional unit of
the resource with their utility benefits. Equation (3.6) is of course Jjust

our ultimate resource constraint repeated.

As mentioned in the introduction, the extraction path implied by 'the
solution to these first order conditions is of major interest to us in this

paper. In following with this then, using equation (3.2) and a rewritten

budget constraint we write;

\

(3.7) c, = 277" Qi/w)‘l[F(N,rt) - gr] vt

(3.8) C 1/0‘( 1/O‘+ 1/0‘)-

2t

BTV @) FIN ) - gr] vt
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Equations (3.7) and (3.8) give the social planner’s optimal division of

net output for consumption between the current young and current old.

Now, from equations (3.3) and (3.5) we can eliminate the Lagrange multiplier A
to yield;

= _ -0 _
(3.9) Cu[Fr(N.rt) -g] = czcmi[Fr(N,rm) g].

Substituting into equation (3.9) with equation (3.7) written for times t and

t+1 we derive the following expression;

-c _ _ -0
(3.10) [F(N,rt) - grt] [FI(N.rt) -g] = Q[F(N,rm) gr ] [F!(N,rt+ )

) -8l

t+1

Now, substituting into equation (3.10) with F(N,rt) = AN(l_a)r:‘ our CRS

Cobb-Douglas production function and letting g = O we can derive a closed form

expression for the socially optimal rate of extraction of the resource. We

have;
[AN(l—oc)ra]-o[aAN(l-cc)r(cc—l)] - Q[AN(i—oc)roc ]-O'[aAN(l-a)r(cc—l)]
t t t+1 t+1
. . _ _ 1/ (1-0+0(0°)
which yields p = rtﬂ/rt = Q .
By definition we have L Rt+1_ Ru2 Vt, and therefore using the
s _ - _ - ol/U-aro0) .
above we may write; R“1 Rt+2 (Rt Rtﬂ)ep, where ¢ Q < 1.
This last expression may be rewritten to yield;
Rt+2 Rt.
(3.11) 1 - 5 = " -11 e
t+l t+l
Defining N = Rt+1/ Rt, we can write equation (3.11) as;
(3.12) B~ 1-o¢/u.

Now, K, is identically equal to 1 - ¢t, where ¢t = ry/Ry is the rate of
extraction of the resource, so a steady state in M, implies a steady state.in
¢t and vice-versa. Letting U R Vt, then, we can derive the following
quadratic expression for a steady state in the optimal social rate of
extraction of the resource.

(3.13) p2 - (1+p)p + ¢ = 0.

Equation (3.13) has two solutions; p = 1 or p = ¢. The first of these
solutions is ruled out as it would imply ¢ =1 - p = 0. That is, a zero rate

of extraction of the resource which implies zero consumption and thus can

'
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clearly not yield a maximizing solution to the social planning problem. Thus
the optimal steady state social rate of extraction will be given by the second
solution to equation (3.13), pu = ¢ which yields an optimal social rate of
extraction given by;

¢ = 1 - Ql/(1-a+ow~)

s

Clearly for Qe(0,1), we will have ¢se(0,1), and the extraction path will
be characterized by declining quantities of extracted resources 1in each
period. That is, in each period we will have r‘t+1 < rt. This of course is
an intuitive result which implies that the social optimum be characterized by
an asymptotic depletion of the initial stock of the resource at the constant
rate ¢s.

Note that if Q = 1 then T =T Vt is the path implied. But clearly
this path will violate the resource constraint of equation (3.6) and thus
cannot represent a solution to the problem. It is also interesting to note
that the extraction path implied by ¢s is relatively unchanged for even large
changes in production and/or preference parameters but is very closely related
to the social rate of discount, Q. That is, the elasticity of the rate of
extraction with respect to either « or o is less than that with respect to Q,
in absolute value terms.

The simplicity of the above result (which of course depends upon zero
marginal extraction costs) unfortunately will not be repeated in the case of

the competitive economy.
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Section 4: The Competitive Solution.

Rewriting the competitive problem (2.1) by substituting for the

appropriate constraints we have individual i’s problem, at time t.

-1 (1-0)
Max \ (1-0)" {(w - 7S ) + B(F(11t+1’r1t+1)

(1-0")
- gr -—w 1 + s -r .
g it+1 t+1 1t+1 7t+1( it xt+1)) }

(4.1) {Slt’rit+1’llt+1

The first-order conditions from problem (4.1) can be written as;

-0 - Lo)d
(4.2) S, (c,) B(7,,,/7.)(C,;)
(473) Titer’ Fr(11t+1'rit+1) =8tV
(4.4) lit+1; Fl(lit+1’rit+1) = Yn

Equations (4.3) and (4.4) are written having assumed that the marginal
utility of consumption by the old is not identically zero, or alternatively,
given the structure of preferences, that C12 # o, a rather perspicuous
assumption.

Equation (4.2) 1is a familiar expression describing the optimal
intertemporal relationship between consumption in the two periods of the
agents life. Clearly he will desire to equate his discounted marginal
utilities in each period where in this case the agent also takes into account
the potential for capital gains in holding (or purchasing) savings, as given
by the ratio of resource prices Wbu/%t' Recall that there is no uncertainty
in the model.

Equation (4.3) is an expression characterizing the agents optimal
resource use and is easily recognized as a variant of Hotellings rule. The
equation simply states that resources will be extracted by the agent up to the
point at which marginal benefits from extraction (given by the marginal
product of the resource) are equal to marginal costs. In this case costs
include both the direct extraction cost g and the opportunity cost in forgone
sales to the young generation at price ¥, PET unit. In terms of Hotellings
rule again we have the instantaneous return from leaving a unit of the

resource in the ground (i.e. g + 7t+1) set equal to the instantaneous return

’
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from extracting the resource and investing in its alternative use, that is,

using it to produce consumption goods with a return of Fr(l ), the

1ts1° Titen
marginal product of resources in period t+1.

Equation (4.4) is the standard competitive result determining labour
demand.

Now, substituting for F(llt,ru) with our CRS Cobb-Douglas functional
form and noting that with the inelastic labour supply llt= 1 V i,t we can

write the system of first-order conditions and budget constraints as follows.

(4.5) C: = B(7t+1/7t.)c;g

(4.6) rl“::) = 8¢ LAY

(4.7) (1-oc)Ar“:‘tl'1 = o,

(4.8) C11 = o - 7tsit

(4.9) C12 = Arf+1 - grt+1 N wt+1 * 7t+1(sit - rt+1)

Equations (4.6) and (4.7) substituted into the two budget constraints
(4.8) and (4.9) give the following expressions for consumption when young and

old respectively.

(4.10) C11

(4.11) C12 = 7t+1sit'

a
(1—oc)Art - Wtsit

Equation (4.11) 1is a result of zero profits in the competitive
environment and thus indicates that consumption in the second period of 1life
for any agent will be out of savings only.

Now using equations (4.10) and (4.11) in equation (4.5) we can derive the

following expression characterizing these savings.

-1/ 1)/ -
(4.12) s, = (v/7,)[8"7 (2,,,/7,) 77 + 1]

Clearly savings are a positive function of the marginal product of labour
(wages) the usual pure income effect. Further, noting that Wbu/%t is the
gross, rate of return on savings we differentiate equation (4.12) with respect

to this rate to derive;
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as,, -1 g1 4-2
promordl BV A (6% (3,,,/3)7% +1] % L (o /5)
7t+1 7(:
Which is greater or less than zero as ¢ > 1 and is equal to zero at ¢ = 1.

This is also a standard result reflecting the relative strength of income and
substitution effects under the CRRA preferences.

Equilibrium in the savings market requires that the sum of all savings
equal the quantity of the resource remaining to carry over to the next period.
That is:

S r = R .
1=1" it t i=1 it t+1

Since all agents are assumed to be identical this can be rewritten as;
NS = R - Nr
t
or as;

(4.13) St = ﬂt - T,

Where R is the stock per-capita of the resource at time t, S and r are the
representat1ve agents level of savings and resource extraction respect1vely

Now equating (4.13) and (4.12), letting g=0 and using equation (4.6)
written at time t and time t+1 we may write;

(4.14) Rt -r, =

-1
(B) o oAr ((c-1)(x-1)) /0 (oc 1) /0
t+1 t

-1
+ aAr“-q (1-a)Ar”®
t t

Solving for T, We have;

1

(1/0) (T+1) =

(4.15) Tisy = B (1 a)rt - gl T t
a(R -r) t
t t
where t = [(&L(@D 0.
c

Rearranging the identity ﬁt = 5&31 - T, and substituting into equation

(4.15) we arrive at the following second-order difference equation in terms

of resource stocks per capita.
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1
(1/0) T+1 —
t2=?t1 - B (1 a)(Rt Rtu) -B
+ + R

t+1

(4.16) R (1/0)

T
(Rt—Ru_ .)

As with our analysis of the social optimum here we are interested in

the rates of extraction implied by this result. Accordingly we make the

definition; p = —2tt

a1 Re = 1 - ¢tc' Rewritting equation (4.16) in terms of

this ratio we obtain a first-order difference equation which characterizes

the extraction rate of the competitive economy.

1 -a- 11 -
(4.17) m = 1 - B(1/ro) [ K, ]; [ M, ]

t+1 04
“t “t

It is unfortunately the case that equation (4.17) does not yield a closed
form solution for the competitive extraction rate despite the number of
simplifying assumptions already made. However one immediate implication of
equation (4.17) is that we must have = (1 - «) Vt in order for M, to be
defined. By the definition of M, then this immediately implies that the
smallest extraction rate possible in order for this economy to have a
well-defined equilibrium path, is ¢c = «. This result together with the
well-known properties of the Cobb-Douglas functional form suggests that the
competitive version of this economy will always extract the resource at a rate
greater than or equal to the share that said resource represents in
production.

We turn now to a discussion of the dynamics of the extraction rate paths
implied in the above competitive economy solution. We will be able to show
that a steady state extraction rate does exist and this will allow us to make
some comparisons of this rate with that implied by the social optimum of
Section 3 when we come to Section 5.

The time path of the extraction rate implied by equation (4.17) will
display either cyclical or non-cyclical behaviour depending upon the sign of
6ubu/3ut. It is easy to show that for the case of ¢ > 1 this derivative is

less than zero for all t, while for the case of ¢ < 1 this derivative is
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everywhere positive, and not surprisingly we have a”bu/%"t =0 for ¢ = 1.2

Under the assumption of ¢ > 1 then, the model will display cyclical

behaviour as in either of the two cases diagramed below.

t+1
1

Peos®™ g(ut)
A
45
T 1p
A: a“t+1 . 1. explosive . a“t+1 <1 convergent
’ 8pt ’ case ’ 3pt ’ case

As is obvious from a quick examination of the above diagrams a further
implication of the fact that autﬂ/apt < 0 VvVt is that a steady state
equilibrium must exist for extraction rates ¢ce(0,1L These steady states
occur at the intersection of the 45° line and the line labelled'ut*1= g(ut),
in both case A and case B. Clearly at these intersections we have Bo= M,
Vt. The difference between these cases is the out-of-steady-state behaviour
of the extraction rate variable which is determined by the magnitude of the
absolute value of the derivative apt+r/apt.

Case A represents the explosive case where any deviation from the steady

2
A proof of these results may be found in Appendix A.

~
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state results in extraction rates over time varying about the steady state in
larger and larger increments until eventually a viability constraint must be
violated.
Case B gives the stable case where variation around the steady state
decreases steadily as the extraction rate converges to this steady state.
Under the assumption of ¢ < 1 the model’s dynamics can be conceptualized

as in the next two diagrams.

Hevs
1
#tﬂ: g(“t)
| |
; I
A1) A '
| Yk |
0 n, T 0 TR g,
a“t+1 stable a“t+1 explosive
1; D: > 1;
apt case aut case

Case C represents the stable case for which any starting value of the
extraction rate between zero and one will converge over time to the steady
state rate at the intersection of the line Ko™ g(ut) and the 45° line.

Case D is the explosive case analogous to case A above, where only one
possible value for the extraction rate will lead to a steady state, that value
being exactly the one that occurs at the intersection of the two lines.

Note that for either of the latter two cases above the existence of a
steady-state value for p is not guaranteed. In particular a steady state does
not exist for case C if the line M= g(ut) should intersect the vertical

axis below the origin and a steady state will not exist for case D if the same
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line should intersect the vertical axis above the origin. An examination of

equation (4.17) shows that lim K., < 0 and thus it 1is clear that an
B, ©

equilibrium will exist if the model, for ¢ < 1 is of the type given by Case D

but will not exist if the model for ¢ < 1 is of the type given by Case C.

What becomes of critical importance for the model then is the magnitude

of the absolute value of the derivative aubu/auf

Our model is very nonlinear and indeed for arbitrary parameter values it
is not possible to derive the magnitude of the derivative 6ut+r/6pt,
analytically, even when evaluated at the steady state. Thus another approach
must be taken.

Differentiating equation (4.17) with respect to B, we obtain;

(4.18)

=8

6ut+1 %; 1—oc-ut % 1 a(1-¢)+(ut-1)
ap, [p ] (0-1)(1-a-ut) ’

Now consider the case of ¢ > 1 where a steady state, p,= = K= M must exist.

t+1
Imposing this steady state on equation (4.17) gives us;

_ Bi/ro[(l—a-u)]% (l-u]
o m

L}
[ey

(4.19) 1]

which yields;

1 - a - a(B)-l/O'”.(l-ai‘aU')/O'.

(4.20) M

Equation (4.20) shows very clearly what has already been noted about this
competitive solution, namely that it will always be characterized by rates
p =1 - «, which implies extraction rates ¢ > «. Beyond this however equation
(4.20) makes it a relatively simple matter to use numerical techniques to
calculate the steady state value of p for a range of parameter values a and o.
This gives us a series {p,a«,c} with which we may then calculate values of the
derivative aubu/%ut, using equation (4.18) and thus obtain some information
about the local stability properties of the model, for ¢ > 1, in the
neighbourhood of the steady state.

Applying the above technique for the case of ¢ < 1 might be construed as

’
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pulling oneself up by one’s bootstraps, however, it is much less than that.
If using equation (4.20) with ¢ < 1 yields a converged solution for p then it
must be the case that the absolute value of apbu/aut> 1 and we have case D~
above since clearly a steady state does exist. Indeed, calculating this
derivative after having found a i for ¢ < 1 would be redundant since we know
that such a p exists only in the explosive case and knowing the magnitude of
that derivative provides us with no more information.

Nevertheless the above mentioned procedure was implemented in its entirety
using a variant of the Gauss-Seidel solution technique for values of the
parameters as follows. « from 0.005 to 0.505 in steps of 0.005, ¢ from 0.255
to 0.955 in steps of 0.1 and from 1.005 to 15.005 in steps or 0.5, and for Q
and B = 0.95 or 0.5. Thus some 15200 different solutions to the steady state
competitive rate of extraction were obtained. There was difficulty in
obtaining convergence only for those parameter combinations which yield very
low rates of extraction or fairly high ones. In all cases the calculated
derivatives at the converged values for the steady state were of magnitude
greater than one’. Some samples of these data are given in Appendix B.

It is apparent then that the competitive model with o > 1 exhibits
dynamics similar to Case A above in the neighbourhood of the steady state.
Furthermore, it is clear that a steady state does exist for the model with o
< 1 indicating that the dynamics in this case while not being of the cyclical
type are also explosive, as in case D above.

Indeed these dynamics are very interesting. Initially one might be
concerned about these predictions of a lack of stability in the resource
extraction paths implied by this model in the competitive environment.
However, under a rational expectations interpretation the existence of a
single steady state point in this one variable model is perfectly analogous to
the well known "saddlepath" equilibriums of many other familiar models. Under
such an interpretation the rate of extraction of the resource is a " jump"

variable which will be determined exactly every period dependent upon the

3Note . that as the parameter o) increases to higher and higher values the
magnitude of the derivative for small values of the parameter @ becomes quite
close to one. Extra computational work around these values never yielded a
value for the derivative of less than one. This work provides a falir level of

confidence that the approach of this derivative to the value of one is
asymptotic, rather than convergent.

’
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current state(s) of the economy.4 Thus the model will exhibit a rational
expectations equilibrium at the unique steady state with an extraction rate
given by 1-u, in the competitive environment.

In the process of computing the derivatives aubu/Bpt it was a simple
matter to also compute the values of ¢c and ¢s over the same range of
parameters and some of these values also are included in Appendix B. We now
turn to a comparative discussion of these two series which represent
extraction rates from the competitive and socially optimal economies

respectively.

4
For a discussion and example of this "saddlepath" property see Begg

(1982), chpt3.
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Section 5: The Socially Planned Versus The Competitive Economy.

As discussed already an immediate implication of equation (4.17) is that

@
t
always extract at a rate greater than that of the socially planned economy,

=1 -a Vt. This result suggests that the competitive economy will almost
c

and indeed a quick look at the data in Appendix B or the plots ‘in Appendix C
will show that this is the case. The solution to the competitive economy is
such that the economy extracts the resource at a rate proportional to the
resources productivity as measured by the coefficient « from the Cobb-Douglas
production function. This makes sense as the higher the value of «a the higher
is the marginal product of a unit of the resource in immediate production and
thus more of it will be extracted.

But what about its value in future use? Clearly this must also be
higher the greater is the resource’s productivity. As a consequence of this
the young generation seeking to purchase the remaining resource stocks as
savings should be willing to pay a higher price ¥ for each unit, not only
because of its higher productivity when they are old but because they should
recognize that the next young generation will also value the resource highly
and so will be willing to pay a high price for each unit as well. By
backwards induction then, one might be led to suggest that, given frictionless
markets etc., as are present here, that the current old generation would not
extract the resource at too fast a rate as its value in all future production
would be conveyed to them through the price . Thus the old generation would
be led to extract less in exchange for a higher price from the young
generations.

But clearly this is not the case in the model at hand. Where does the
above argument break down? The price y is denominated in units of the single
consumption good which are in turn produced only with the inputs of the
resource. Thus in order for the younger generation to be able to pay a higher
price for the rights to a quantity of the resource in aggregate, a higher
consuﬁption wage would have to be paid to them which implies the use of more
inputs in production. But labour inputs are fixed and so clearly additional
output can be had only through the extraction and use of more of the stock of

the resource. Indeed higher wages will be paid to the young workers when the
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productivity of the resource is higher and this is how a higher price for the
resource is sustained. Because future generations are not present to offer
additional labour of their own or some other form of payment to augment the
incomes of the current generations the backwards induction argument breaks
down. Higher real prices cannot be sustained without the production of more
and thus the use of more. As can be seen in the plots of Appendix C the
resource is used up at too fast a rate (relative to the social optimum)
whenever the share of the resource in production is anywhere above about five
percent.

What can we say about this result in terms of Pareto optimality and/or
social welfare?. Since the consumption good is non-storable it is clear that,
given optimality and thus efficiency in every period, total consumption will
equal total output. This will be true for both the socially planned economy
and the competitive economy and is simply proven. Thus for any period t we

may write;
(5.1) Ct = F(N,rt)

where Ct is total consumption by both young and old at time t and r, is total

resource extraction in period t. From equation (5.1) we may write;
(5.2) dCt = FN(N,rt)dN + FP(N,rt)drt

which for zero population growth (dN = 0) becomes;

(5.3) dCt = FP(N,rt)drt.

Clearly then (given fixed technology and labour supplies) the only way to
increase consumption (and thus utility) in any period t is to increase the
quantity of the resource extracted and used in production of the consumption
good in that period. This fact together with the inherent finiteness of the

resource stock leads to the following proposition.

Proposition: The constant (steady state) extraction rates
derived from the competitive problem (4.1) and the socially
planned problem (3.1) imply sequences of quantities of extracted

resources {r:} and {r:} which satisfy the finite resource

constraint and yield Pareto optimal outcomes.
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Proof: Since it has been shown that ¢ and ¢ are both less than one and
we define ¢CR and r ¢th -1 Vt, it is clear that the finite resource
constraint w111 be satlsfled by asymptotic depletion for the sequences {r }
and {r } generated by ¢ ¢ and any R

Now, assume other than Pareto optlmality

Then there exists a sequence {r } of extraction quantities different from
the sequences {r } and {r } which satlsfles the resource constraint and allows
some 1nd1v1duals to be better off while leaving none worse off. In order for
this criterion to be satisfied equation (5.3) would imply that (using the
competitive case as an example);

r* = r: Vt and r: > r: for at least one t.

t
Clearly however this implies that;

Em Zm r’ = R

-ort > t=0 t 0
and thus the sequence {r:} must violate the resource constraint and this is a
contradiction. Q.E.D.

The implications of the larger than socially optimal extraction rates
found in the competitive environment for social welfare are fairly obvious.
Clearly the competitive economy extracting at too fast a rate will leave
future generations (perhaps only three or four periods off if the resource is
particularly productive) with a much smaller stock from which to produce
consumption goods. Indeed it is possible that in a very short time the stock
may have been depleted to almost nothing leaving all future generations with
extremely low levels of consumption. Given any positive weighting in the
social welfare function towards these future generations then it is obvious
that a welfare improvement could be obtained via a transfer of resource

consumption from the earlier generations to the later.
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Section 6: Conclusion.

A model of a resource economy with overlapping generations is developed
and solutions for extraction rates of the finite stock of the resource are
derived in both a competitive environment and a socially planned one. It is
shown that the competitive environment results in the extraction of the
resource at rates far outstripping those derived for the socially planned
economy. While the socially-determined rate of extraction is highly sensitive
to the rate of discount used, it is relatively constant across values of the
resource share in production. The competitively determined rate, on the other
hand is strongly increasing in the value of the resource share in production.
The discrepancies which arise between the two sets of extraction rates
determined are not a function of the existence of a gap between the social and
private rates of discount.

The excess initial consumption implied by the competitive solution would
lead to low levels of the productive resource stock in the future and thus low
future consumption and utility. A loss of social welfare can easily occur in
the competitive environment due to intergenerational inequities in the
extraction of the finite resource stock.

Future work on the model could include, the addition of labour in the
utility function and thus the introduction of a labour supply decision by
consumers. The addition of a production augmenting capital stock to the
model.5 The addition of population growth and/or technological change. The
examination of the possible policy options of a government attempting to alter
the competitive result to alleviate the intergenerational inequities

previously mentioned.

5
This work is currently in progress, preliminary papers are avalilable from
the auther upon request.

\
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Appendix A.

We have;

1 1= 1
TOo ut T

1_] a(1-0')+(ut-1)
[

. ou
A.1 = 2
(A.1) ou £ o K

. . (o-l)(l-a—ut)

Clearly since we must have H< o« - 1, and @« < 1 then for ¢ > 1 equation (A.1)
must be less than zero.

Now with ¢ < 1 it is no longer clear what the sign of the numerator in
the far right hand expression is. However, in order for this numerator to be
positive it must be the case that («a + M, - 1)>ac. But again we must have « +
ut— 1 < 0 and clearly ac > 0. Therefore it is not possible for said numerator

to be positive and we must have equation (A.1) greater than zero with o < 1.
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Appendix B: Data generated on extraction rates and derivatives over
a spectrum of preference and production parameter values
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