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ABSTRACT

The purpose of this paper is to provide a simple model in which limited
rationality endogenously generates incomplete contracts. I model limited
rationality as in Lipman [1991, 1992], focusing on the idea that boundedly
rational agents do not necessarily know every implication of their knowl-
edge, but may, at a cost, compute these implications. This assumption
implies the existence of subjective uncertainty in addition to the objec-
tive uncertainty the agents are contracting over. The presence of noncon-
tractable subjective uncertainty can lead to contracts which are incomplete
with respect to the contractable objective uncertainty. The most surpris-
ing result is that strategic bargaining over contracts can lead to incomplete

contracts even with infinitesimal computation costs.
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I. Introduction.

The existence of incomplete contracts — that is, contracts which do not
specify an agreement for every relevant contingency — has long posed a
quandary in economics. Despite the fact that such contracts are generally
Pareto inefficient, they certainly exist. In fact, it seems likely that most
real contracts are incomplete! The possibility that incompleteness is due to
bounded rationality has long been noted. Many economists (see Williamson
[1975], for example) have argued that bounded rationality makes it impossi-
ble for agents to completely foresee all relevant contingencies and therefore
contracts must be incomplete. However, this, by itself, is not an adequate
explanation. It is, in fact, trivial to write a complete contract: on the last

“... and if none of the contingencies named above

line, one simply writes
occurs, the outcome we agree to is z.” This contract specifies an outcome
in every possible contingency and so is complete. Of course, the only prob-
lem is that it may be difficult to know what a good choice of z is. In other
words, writing a complete contract is easy, but writing a good complete con-
tract may be very hard.! As a result, agents may agree to an incomplete
contract knowing that there is a complete contract which strictly Pareto

dominates it because it is too hard to find the better contract.

The purpose of this paper is to provide a simple model in which limited
rationality endogenously generates incomplete contracts. I model limited
rationality as in Lipman [1991, 1992],2 taking the view that limited ra-
tionality means that agents do not necessarily know every implication of
their knowledge, but may, at a cost, compute these implications. It is

these costs which make writing a “good” complete contract hard. This

1 The same observation is made by Hart [1987].

2 Many alternative approaches have been proposed recently. Examples include Abreu and
Rubinstein [1988], Binmore [1987], Fudenberg and Kreps [1988], Geanakoplos [1989],

Kalai and Stanford [1988], Radner and Van Zandt [1992], and Rubinstein [1992].



assumption implies the existence of subjective uncertainty in addition to
the objective uncertainty the agents are contracting over. It is easy to
show that if computation costs are high, this noncontractable subjective
uncertainty can lead to contracts which are incomplete with respect to the
contractable objective uncertainty. In this situation, the agents agree to
an incomplete contract though they know it is suboptimal because it is too
costly to find a better complete contract. The more intriguing result is that
strategic bargaining over contracts can lead to incomplete contracts even
with infinitesimal computation costs. The intuition behind this result is
also straightforward: in a strategic setting, getting better information can
be harmful since it causes opponents to behave differently. As I show by
example, one player’s bargaining position may be harmed if he becomes
better informed, thus endogenously generating a cost of acquiring infor-
mation even when computation costs are negligible. To create this effect
in the simplest possible way, I assume that computation or information
acquisition is observable. As I explain in the conclusion, one obtains the
same result when computation is not an observable action if the number of

contingencies is large enough relative to the cost of computation.

While I stress the limited rationality interpretation of the model, this
interpretation is not necessary. An alternative story is that contracts cannot
be contingent on court rulings regarding provisions of the contract, but that
the parties can hire lawyers who can predict these rulings. The key to the
model, under either interpretation, is that there is some uncertainty which
is not contractable but can be resolved at a cost and that this uncertainty
leads the parties to write contracts that are incomplete with respect to the

contractable uncertainty.

As mentioned above, I will say that a contract is incomplete if it in-
cludes fewer contingencies than are relevant to the parties to the contract
— either because the relationship between the parties is expected to last
longer than the contract or because there are some relevant possible events

for which the contract does not specify anything. As I use the term, then,



with an incomplete contract, the parties must either renegotiate or aban-
don the relationship in situations not covered by the contract. Of course,
a contract which covers every relevant state of affairs can always imitate a
contract covering fewer contingencies. Hence for any incomplete contract,
we can always find a complete contract which weakly Pareto dominates
it. Incomplete contracts can be strictly Pareto inferior to complete ones
for many reasons. First, risk sharing with incomplete contracts is gen-
erally suboptimal since renegotiation takes place after the uncertainty is
resolved and hence at a point at which risk sharing considerations are no
longer relevant. Second, as noted by Williamson [1979, 1983], Tirole [1986],
Crawford [1988], and others, incomplete contracts can lead to underinvest-
ment in relationship—specific capital. On the other hand, Hart and Moore
[1988], Huberman and Kahn [1988], Malcomson and Spinnewyn [1988], and
Fudenberg, Holmstrom, and Milgrom [1990] show that in some settings,

renegotiated incomplete contracts are as efficient as complete contracts.

There are other ways to define incompleteness. Anderlini and Felli
[1992]’s definition is that a contract is incomplete if the parties could be
made better off by conditioning more finely on the contingencies. For ex-
ample, suppose there are only two possible events and that the optimal
contract calls for different outcomes in these two contingencies. Anderlini
and Felli would say that a contract which stipulates a single outcome in
either event is incomplete, while my definition would call this a complete
contract. With their approach, an incomplete contract is inefficient by

definition.

There are very few models which predict incomplete contracts under
either definition, so that in most of the literature on incomplete contracts,
the nature of the incompleteness is assumed, rather than derived. As a
result, predictions are necessarily conditional on the validity of assumptions
about variables that are actually endogenous. By contrast, a model which
predicts incomplete contracts can generate predictions about what kinds

of contingencies will be omitted and how this incompleteness affects the



specification of the contract for the contingencies which are included.

One well-known approach to this problem (see, for example, Grossman
and Hart [1986] or Hart and Moore [1988, 1990]) is to assume that all
limitations on the completeness of contracts are limitations of verifiability.
That is, the parties observe certain variables which they would like to write
contracts based on, but they are unable to do so since it is impossible to
verify these observations to the court for enforcement. These limitations
on verifiability may be due to the difficulty of specifying the exact state of
nature in enough detail for the court to unambiguously recognize the intent
of the parties or simply because the parties cannot prove to an outsider what

they have observed.

A few authors have put forth alternative explanations of incomplete-
ness. The first to do so was Dye [1985], who studied optimal contracts when
there is a fixed cost per contract contingency. With high enough costs, op-
timal contracts are incomplete. Dye’s model is similar to mine in that my
model also includes a cost per contingency, but in my model, it is the cost
of determining the best way to include the contingency. Also, I assume that
the contingency can be included without paying this cost, though only at
the risk of specifying an inefficient agreement for that contingency. Further-
more, since Dye’s costs are purely exogenous, optimal contracts converge
to complete contracts as these costs go to zero. In my model, there is an

endogenous component to these costs which may not converge to zero.

More recent papers have tried to explain incompleteness without re-
course to exogenous contracting costs — in particular, Hermalin [1990],
Allen and Gale [1992], Busch and Horstmann [1992], and Anderlini and
Felli [1992]. Hermalin [1990] and Allen and Gale [1992] consider signaling
models in which offering a complete contract is a negative signal about the
offerer. Hence incomplete contracts may be chosen instead. I assume that
information acquisition or computation is observable, but my results do

not change qualitatively if computation is unobservable. In this case, my



results become analogous to those of Hermalin or Allen and Gale: offering
a complete contract signals that computation has been carried out and this

signal hurts the proposer.

Busch and Horstmann [1992] analyze a bargaining model in which in-
complete contracts can emerge in equilibrium. As in my model, incomplete
contracts are signed because they are preferred by one party as a way of
making the “disagreement payoffs” favor him. A crucial assumption in their
model, however, is that the parties must decide at the outset whether to
bargain over complete contracts or incomplete contracts and this decision
is irrevocable. Hence in equilibrium, the parties may sign an inefficient
incomplete contract even though the identity of a complete contract which
is strictly Pareto superior is common knowledge. In my model, the parties
agree to an incomplete contract knowing that there is a complete contract
which Pareto dominates it, but they do so because the identity of the pre-

ferred complete contract is not common knowledge.

Anderlini and Felli [1992] analyze contracting where both the contract
and the choice criteria for the contract are required to be computable. They
show that the optimal contract under these constraints may be incomplete
(according to their definition of incompleteness). While their motivation is
similar to mine in that both models focus on a form of bounded rationality

and its effect on contracting, their approach is quite different.?

In the next section, I present the model and the intuition behind it. In
the basic model, I do not specify the procedure by which renegotiation takes
place in contingencies which were not included in the contract. Instead, in
Section III.A., I treat the outcome of renegotiation in omitted contingencies
as exogenous and characterize equilibrium contracts as a function of these

outcomes. In Section III.B., I specify a simple and plausible renegotiation

3 In a related vein, see Holm [1992] for an analysis of the computational complexity of

writing contracts.



subgame and characterize the equilibrium renegotiation outcomes. I then
use this to show in the context of an example that incomplete contracts are
possible. As I also show, renegotiation outcomes with infinitesimal com-
putation costs can differ dramatically from the outcomes with zero com-
putation costs, causing important differences in equilibrium contracts. In
particular, with the renegotiation game I analyze, every equilibrium with
zero computation costs has complete contracts, while, for some parameter
values, every equilibrium with infinitesimal computation costs has incom-
plete contracts. In Section IV, I discuss the roles of some key simplifying

assumptions. All proofs are contained in the Appendix.
II. Contracting with Limited Rationality.

As argued above, it is easy for agents to write complete contracts; what is
hard is writing good complete contracts — that is, contracts which specify
“acceptable” or “good” outcomes for each possible contingency. Implicit in
this statement is the view that an agent must compute or think in order
to know what he would like in a given contingency. Paraphrasing, the
agent has subjective uncertainty about his preferences as a function of the

contingency.

To be more concrete, I assume there are two agents, 1 and 2, also
called the seller and the buyer respectively. The seller can produce one
unit of an indivisible good which the buyer can consume. S is the set of
possible contingencies. A contingency should be interpretted as a complete
specification of all objective variables of relevance to the contract — the
prices and availability of each of the seller’s inputs, the prices of substitutes
for the seller’s product, etc. Such a complete specification determines the
value of the object to the buyer and its cost to the seller. A contract is a
mapping from some subset of S into agreements. That is, for contingencies
included in the contract, the contract specifies whether or not the seller
produces the object for the buyer and the amount the buyer pays the seller.
More formally, a contract is a triple ¢ = (.§', a(-),p(-)) where § C S,4: 5 —



{0,1} gives the number of units sold to the buyer, and p : SR gives the
price paid by the buyer. Since a contingency is a complete specification of
all relevant factors, it determines the utility buyer and seller obtain from

any given agreement in that contingency.

However, knowing the description of a contingency and how to use
that to compute the utility of an agreement in that contingency does not
imply that the utility of the agreement in that contingency is known. If
computation is costly, one may not wish to compute this quantity. More
formally, let £i(c,s) be the utility of 7 under contract ¢ in contingency
s. While s may completely determine the quantity ;(c,s), this does not
mean that the agents immediately know this number for any given s. If
they do not know it, presumably, they have beliefs about it. That is, they
have subjective uncertainty regarding this objective quantity. I model this
subjective uncertainty by supposing that there is a set of subjective states
(states for short), ©, and that the utility of a contract c in contingency s to
agent ¢ depends on which state obtains — 1i.e., utility is a function of ¢, s,
and 6.* Each agent can learn about the subjective state by computation,

but computation is costly and so will not always be optimal.®

Lipman [1991, 1992] develops in more detail the argument that a cru-
cial aspect of bounded rationality is the fact that real people are not logically

omniscient — that is, a real person can know a fact without knowing all

4 Kreps [1988] derives a representation of preferences in the presence of unforeseen con-
tingencies which is quite similar to this. See Lipman [1992] for a different axiomatic

treatment.

Subjective uncertainty could enter into the model in other ways as well. For example, one
could suppose that the utility associated with a given contract in a given contingency
is known, but the agent is unsure of the utility of the contract prior to knowing the
contingency. Intuitively, the agent may find it hard to aggregate this information —

i.€., hard to integrate utility as a function of S to obtain expected utility.



its logical implications. Under this view, people often have subjective un-
certainty about things which objectively cannot be stochastic. Objectively,
there is a single fixed number which, when cubed, yields 1343. Subjec-
tively, however, there may be several numbers which one gives a positive
probability of possessing this property. I do not wish to claim that this
is all of what bounded rationality is; however, it is the aspect of bounded
rationality I will focus on. Hence for my purposes, the difference between
boundedly rational agents and perfectly rational agents is that the latter

find it costless to learn the logical implications of their information.

It is easy to see intuitively that this formulation could generate incom-
plete contracts. If there are many contingencies, it may be very costly to
compute a Pareto optimal contract. Hence the parties may prefer to ob-
serve the realization of s and then compute an optimal agreement for that
contingency alone, as this presumably involves less computation. This is
true even if there are advantages to contracting in advance, such as risk
sharing. Intuitively, the parties trade off the advantages of contracting in
advance against the costs of complete computation and this tradeoff may
lead to an interior optimum — i.e., an incomplete contract. I will show
that with a simple model of strategic bargaining over contracts, incomplete

contracts may emerge even with infinitesimal computation costs.

Remark 1. One may object to this formulation on the grounds that truly
complete contracts have been precluded by assumption. In a sense, the true
set of contingencies is not S but S x ©. Hence a truly complete contract
would specify trades and prices as a function of (s,0), not just s. There
are two counterarguments to this view. First, one could argue that con-
tracts which condition on the resolution of purely subjective uncertainty
are neither sensible nor enforceable. Recall that 6 captures the subjective
uncertainty generated by the need to compute ¢;(a,s) to know it. Hence
this information need not be verifiable and certainly is not costlessly ob-
served even ez post. Intuitively, writing a contract over such uncertainty

is like including clauses like, “If contract 1 would give the seller profits of



$100, then we agree to contract 1. Otherwise, we agree to contract 2.”
However, even if one views such contracts as feasible, there is a deeper
problem. To be concrete, let Cp denote the set of possible contracts as
defined above. Let ©p denote the set of subjective states relative to this
set of contracts. That is, the subjective uncertainty the agents have about
contracts in Cy is modelled by assuming that the utility of such a contract
depends on § € . If we enlarge the set of contracts to allow contracts to
depend on both s and 6, we must recognize that we have not yet modelled
the subjective uncertainty associated with the contracts we have added into
the choice set. More concretely, let C; denote the set of contracts which
specify a trades and prices for each (s, ) in some subset of S x ©g. Just
as above, the value of an agreement in (s, 6) is completely determined by
(s,8), but this does not mean that the agents know this value. Hence we
need to specify the subjective uncertainty associated with these contracts,
leading us to construct a larger set of subjective uncertainty, say ©;. Obvi-
ously, this procedure could be repeated ad infinitum. No matter where one
tries to truncate this construction (even if one carries it out infinitely or
transfinitely), in general, every contract will have the property that agents
have subjective uncertainty about that contract which is not covered by
the contract itself. (This is straightforward to show formally; see Remark
4 of Lipman [1991] for an analogous result.) In this sense, noncontractable

subjective uncertainty is unavoidable.

In the rest of this section, I will add more structure to the problem so
that I can provide a more concrete characterization of equilibrium contracts.
I assume that there are T > 1 different types of contingencies, with a
continuum of each type. Only the type of the contingency is directly payoff
relevant. As will be seen, the continuum assumption is analytically very
convenient. The assumption that only the type of the contingency is payoff
relevant is a common one in the literature with a continuum of states. More
specifically, S = {1,...,T} x [0,1]. If s = (¢,z) for some z € [0,1], I will
say that s is of type ¢, or ¢ = t(s). The probability of this event is ¢x.

For any t, the conditional distribution of s given that ¢(s) = ¢ is uniform

9



on {t} x [0,1]. An alternative interpretation is that there are at most T
periods to the relationship and the contingency in period t is uniformly
distributed on [0,1] for each t. Under this interpretation, ¢: can be thought

of as discounting period ¢ returns to the present.

For each possible s, there is a random variable, 8, which describes the
subjective uncertainty about contingency s. The 8,’s are iid and take on
values in the set ® = {1,...,M}. That is, © = ©5. The iid assumption
implies® that exactly the fraction Pr(f, = 1) of the type t contingencies
have a realization 8, = 1,7 exactly the fraction Pr(f, = 2) have 6, = 2, etc.
Thus there is no “aggregate” uncertainty; the only thing which is uncertain
is precisely which of the type ¢ contingencies have §, = 1, not how many of
them do.

The value of the object to the buyer in contingency s if the realization
of 4, is 6, is given by v(4)(6s) while the cost to the seller is cy,)(6s). To
simplify some expressions, I assume Egv; > Egc, for all ¢t. (It is straight-
forward to modify the results for the case where this does not hold.) I do
not require v; and ¢; to be independent or to have any particular form of

correlation.®

The seller is risk neutral, while the buyer is risk averse. Because of
this, they have an incentive to contract prior to the realization of the con-
tingency: the seller can insure the buyer. It is useful to describe the bargain-

ing game and the information of the players before discussing preferences

6 As Judd [1985] shows, the iid assumption does not literally imply this statement, but is

not inconsistent with it.

7 Throughout, a 0 with a tilde will denote a random variable, while one without a tilde

will denote a typical realization.

8  As Vincent [1989] has shown, the existence of correlation between ¥ and € has important

consequences in standard bargaining models.
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in more detail. The game is divided into two stages. In the first stage,
the players do not know s. I also assume that player 1 (the seller) does
not know any of the 6,’s, but player 2 (the buyer) knows the realization
of 6, for every s € S. (The results generalize in a simple but notationally
tedious way to the case where the players are symmetrically informed at
the outset.) Player 1 moves first at stage 1. First, he can compute é, for
whatever values of s he likes. Computing 6, means that he learns the ex-
act realization of the random variable 8,. The interpretation is that the
seller uses his information about s to deduce the value of the good to the
buyer and its cost of production for contingency s. For simplicity, I assume
that the seller’s computation choices are observable. As discussed in the

conclusion, one can obtain similar results if computation is unobservable.

Next, the seller makes an offer to the buyer. An offer is a triple
(S’ ,a(+),p), where, as in the definition of a contract, S§CSanda:S —
{0,1}. However, unlike the way a contract was defined, p is a number.
Player 2 observes the computation choices of player 1 and his offer and
then can either accept or reject the offer. If he accepts, he chooses any p(-)
function such that E,[p(s) | s € §] = p. (Since player 1 is risk neutral,
he cares only about the expected price. Hence it seems only reasonable to
allow player 2 complete latitude in determining the prices in the different
contingencies given a fixed mean. The role this assumption plays in the
analysis is discussed in Section IV.) In this case, the players have agreed to

the contract (5, a(-), p(-)). If player 2 rejects the offer, there is no contract.

At the beginning of stage 2, the players learn the true contingency, say
s. If the players agreed to a contract (5’ ,a(+),p(-)) and s € S, then the buyer
pays the seller §(s) and, if a(s) = 1, the seller provides the good. If s ¢ §
or if they did not reach an agreement on a contract, then they renegotiate.
In what follows, I will derive the equilibrium contract as a function of
the outcome of this renegotiation under some innocuous assumptions. In
Section III.B., I illustrate these results with a very simple and reasonably

natural specification of the renegotiation subgame — namely, where player 2

11



makes a take-it—or-leave-it offer to player 1. AsIshow, there are parameter
values for which every equilibrium in this case has incomplete contracts if

computation costs are infinitesimal.

The payoffs of the two players depend on whether or not trade occurs,
the price, the value of s, the value of 6,, and the computations performed.
Suppose player 2 pays player 1 p, a is the number of units traded (either 0
or 1), the contingency is s where s is of type ¢, and the realization of 6, is
6. Then the payoff to player 2 is u(av(6) — p). I assume that u(-) is twice
continuously differentiable, strictly increasing, and strictly concave and that
u(0) = 0. I consider two alternative specifications of player 1’s payoffs,
which I refer to as costless computation and almost costless computation.
As we will see, the difference between these two specifications is relevant
only in renegotiation; consequently, it will only appear in the analysis when
a specific renegotiation subgame is discussed in Section III.B. However,
for the sake of completeness, I will define these terms here. With costless
computation, player 1’s payoff in this event is p—ac(6), regardless of the set
of s such that he computed f,. With almost costless computation, player 1’s
preferences are lexicographic. In comparing any two strategies given some
strategy for player 2, player 1 strictly prefers the strategy yielding the higher
expected payoff based on costless computation. If the two strategies yield
equal costless computation payoffs, he strictly prefers that strategy which
involves less computation. Here the notion of “less computation” is defined
in the weakest possible way — strategy 1 computes less than strategy 2 if
the set of s such that strategy 1 computes 8, is a strict subset of the set of

s such that strategy 2 computes 6,.°

Recall that the difference between completely rational and boundedly
rational agents in this framework is that completely rational agents have
zero computation costs. Thus I interpret the costless computation case as

a model of completely rational agents and the almost costless computation

More precisely, strategy 1 computes less if this is true at every information set.

12



case as a model of agents who are arbitrarily close to completely rational.

As we will see in Section III.B., these two cases can be quite different.

Remark 2. The informational assumptions and the assumptions on the
bargaining game are certainly not the most general possible ones. However,
my purpose is to illustrate how incomplete contracts can be generated from

bounded rationality, not to provide a definitive analysis.

I consider the set of pure strategy sequential equilibria which satisfy
two conditions. First, no player ever uses a weakly dominated strategy.
(This requirement only plays a role in the analysis of Section III.B.) Second,
I impose a certain stationarity on strategies; namely, I focus on equilibria
in which the renegotiation strategies for a contingency s not included in
the contract only depend on whether or not the seller computed 8,, on t(s),
and, if known, on 6,, not on the seller’s first period contract offer nor s

(except for its type).1?

In light of this stationarity assumption, the outcome of renegotiation
in contingency s can be summarized by four functions for each ¢, two giving
the outcome if the seller did compute 6, in the first stage and two giving
the outcome if he did not. If s is of type ¢ and the seller did compute 6,,
d¢ : © — {0,1} gives the trade decision from renegotiation and p¢ : & —» R
the price, where both are functions of the realization of 6,. Similarly, dpe

nc

and p7° will give the renegotiated trade decision and price as a function
of the realization of 53 if the seller did not compute é, in the first stage.

Throughout the analysis, I assume

(A1) EO) =1 = v(6) 2 pi(8) 2 ci(6).

10 Implicitly, this assumption requires that the renegotiation game itself — so far left

unspecified — satisfies a certain stationarity. If, for example, the rules for renegotiation
were to vary with the first period contract offer, then it might be impossible for this

stationarity condition to be satisfied.

13



In words, (A1) simply says that if the seller computed , in stage 1 and
second stage negotiations do lead 1 and 2 to trade in contingency s, then
they must trade at a mutually beneficial price. It seems clear that any
' reasonable bargaining game will have this property. Also, I assume that for
each t, the gamble d§(v; — p§) is nondegenerate. That is, for each ¢, there
exists 0, ' such that

(A2) di(0)[ve(8) — pz(0)] # di(6')[ve(6") — pE(6"))-

Intuitively, (A2) simply says that renegotiation, by itself, does not perfectly
insure the buyer. Hence it guarantees that contracting in advance has the
advantage of allowing for better risk—sharing. As explained above, I derive
the equilibrium contract as a function of the renegotiation outcome. In Sec-
tion III.B., I will illustrate these results under a specific renegotiation game
in which (Al) and (A2) are satisfied and show that incomplete contracts

can emerge.
ITI. Results.
A. Equilibrium Contracts Given Renegotiation Outcomes.

In this subsection, I derive equilibrium contracts as a function of the rene-
gotiation outcome functions. The difference between costless computation
and almost costless computation plays no role at all in this section; conse-
quently, it is simpler to focus on the costless case. In the next subsection,
I illustrate these results by making specific assumptions about the renego-
tiation subgame and characterizing the equilibrium renegotiation outcome
functions. There, the difference between costless and almost costless com-

putation will be crucial.

To derive the equilibrium contract, let u{ denote player 2’s expected
payoff in a contingency of type ¢t which is not included in the contract given

that player 1 computes 6 for that contingency in stage 1. That is,

ug = Eglu(di(ve — pi))]-
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(Throughout, I will include the 6 argument of functions only when neces-
sary.) Similarly, let up® denote 2’s expected payoff when player 1 does not

compute 6, in stage 1, i.e.,
ug® = Eplu(dy*(ve — p;°))]-

Also, let +; give the socially optimal trading rule — that is, ¥4(8) = 1 if
v¢(0) > c4(6) and ¢¢(0) = 0 otherwise.

To understand the way the equilibrium contract is determined, notice
that player 1’s computation has two effects. First, of course, it gives player
1 more information to use in determining his contract offer. In particular,
for those contingencies for which he computes 8,, he learns which have the
buyer’s valuation larger than his productions costs and hence he learns how
to specify a(-) efficiently for these contingencies. Notice that this is the only
useful information computation gives him, however. By the iid assumption,
there is no aggregate uncertainty in the sense that the fraction of type t
contingencies that have a given realization of 8, is known. Since the optimal
choice of the set of contingencies to include in the contract and the optimal
price are both functions of aggregate information, player 1 knows enough

to determine these without computation.

The second effect of player 1’s computation is to alter the renegotiation
subgame, at least potentially. This changes the disagreement payoffs and, as
will be seen starkly in the next subsection, can improve player 2’s bargaining
position in the first stage. If so, first stage computation has an endogenous
cost to player 1: it forces him to offer player 2 a larger share of the gains

from trade.

These facts have two important implications. First, we can determine
the optimal set of contingencies for player 1 to include and the optimal
price for him to offer as a function of the set of computations he performs,
without regard to the outcome of those computations. Second, if player 1

computes 6,, he should include contingency s in the contract, regardless of
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what he learns from the computation. The cost of computing will be sunk
(both the exogenous and endogenous portions) and so there is no point
in not reaping the benefits of including s in the contract. Note, though,
that the reverse need not be true, however — player 1 may include s in a

contract offer without computing 6,.

To simplify further, notice that for any given ¢, player 1 has no reason to
favor some contingencies of type t over others. Hence we can simply reduce
player 1’s choice of a contract to a choice of how many type ¢ contingencies
to include, how many of these to compute 8, for, and what price to charge.
Of the contingencies for which he computes f,, the contract he proposes
specifies trade iff it is efficient — that is, iff t,)(6s) = 1. It is not hard
to show that the assumi)tion Eg(v¢ — ¢¢) > 0 implies that the seller should
propose trade in every s included in the contract for which he has not
computed 6,. Summarizing, then, player 1 chooses numbers a; and 3; for
t =1,...,T satisfying 0 < ay < 8; < 1. He then computes 8, for each
s = (t,z) such that ¢ < ay. Letting z(s) give the second component of s,
we can write this as z(s) < ay(s). Less formally, o gives the fraction of the
type ¢ contingencies for which he computes 8,. The contract he proposes
has a(s) = 1 if 2(s) < ay(s) and thy(4)(0s) = 1 or if z(s) € (ay(s), Pi(s)]- The
contract includes all those contingencies s with z(s) < By — that is, §;
is the fraction of the type ¢ contingencies included in the contract. The
price is the largest price player 2 will accept given player 1’s choice of the
ay’s and B¢’s. These simplifications provide a very straightforward way to

characterize equilibrium contracts.

Given a choice of (o, ) = (a1,...,ar,p1,...,0r) and p, if player 2
accepts the contract offer, he chooses p(s) so that his utility is constant
across contingencies included in the contract. Hence his expected payoff

from accepting the contract offer is

Yu (% Z ¢[asEg(prve) + (Bt — at)Eg(ve)] — p) + Z $e(1 = Be)ui®

where v = ), ¢:f: is the probability that the contingency is one which is
16



included in the contract. Player 2’s expected payoff from rejecting the offer
is

> eloeus + (1 - ar)ufe].
t

Clearly, given (a, 3), player 1 sets p so that 2 is indifferent between accept-

ing and rejecting the contract. Solving, we see that

e 8) = = 3 dedaiBa(roe) + (B — a)Ea(v)]

~u7? (% > delosui + (B: — ‘“)u?c]> '

For convenience, let U(-) = u~!(-). Finally, 7(a, ), player 1’s expected
profit given that he chooses (a, 8) and 2 accepts the contract offer, is

m(a, B) = 7p(a, B) — Z d¢[atEo(ece) + (Bt — at)Eg(ct)]
+ Z¢t(1 — Be)Eq[dF (P — ct)]-

Substituting for p and rearranging yields:
m(a, B) = Z¢t{atE0['/)t(Ut —ct)]
t
+(B: = ag)Ba(on — )+ (1~ BB (71 - c0)
1 [+ nc
—’YU(; D belagus + (Be — ae)uy ])-
t
Theorem. In equilibrium, player 1 chooses (a,3) to maximize n(a, )

subject to the contraints that 0 < oy < f; < 1 for all t. He computes 53 for
every s such that z(s) < oy(,) and offers the contract (S, a(+), p) satisfying:

s€S = z(s) < Buys),

p = p(a, B),
17



1, if z(s) < oy, and Pys)(6s) = 1;
a(s) = 1, if ays) < z(s) < Bys)s
0, otherwise.

Player 2 accepts the offer.

Let of and B denote optimal values of a; and f;. (These will not
necessarily be unique.) As noted above, in his choice of a;, the seller has
to trade off the worsening of his bargaining position with the ability to
offer a better contract. Not surprisingly, that tradeoff can lead the seller
to choose af < Bf. It is also easy to see that this might lead to gf < 1.
When af < ff, the seller is not able to perfectly specify which type ¢
contingencies are the appropriate ones to trade in. Hence if he includes
many type t contingencies in the contract, there are many contingencies in

which inefficient trade occurs. Obviously, this is costly to the seller.

Another way of looking at why incomplete contracts may emerge is
given in Proposition 1. Let r§ and r7° denote the risk premia for the buyer

for the gambles 1;(v¢ — ¢;) and d¢(v: — p¢) respectively. That is,
u(Eg[the(ve — cr)] —rf) = ug
and
u(Eg[di(ve — pe)] — i) = ug®.
By (A2) and the strict concavity of u, r{ > 0. Also, the concavity of u

implies r7*¢ > 0.

Proposition 1. If 8} < 1 for somet such that r¢ > 0, then it is common
knowledge that there is a complete contract which strictly Pareto dominates
the seller’s offer. That is, given the true § € ©5, both parties would be

strictly better off. However, the identity of that contract is not common
knowledge.

In other words, the seller makes an offer he knows to be Pareto suboptimal

because he does not know what contract would be Pareto superior. He
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does not wish to learn what contract would be Pareto superior because this
strengthens the buyer’s bargaining position so much that the buyer would
no longer accept this contract. (Note that if r7*¢ = 0, then the anticipated
renegotiation itself insures the buyer, so an incomplete contract could be

Pareto optimal.)

In the remainder of this subsection, I develop conditions which are
sufficient for either 8f = 0 or B = 1. These conditions do not charac-
terize the equilibrium contract for all parameter values. The proposition
below gives two simple conditions, either of which is sufficient for all type

t contingencies to be included in the contract.

Proposition 2. If

(1) re > Bo[dy*(py°® — ct)] + Eg[dg(ve — pf) — $e(ve — ct),
or

(2) re® > Eo[(1 — di®)(ct — vt))

then Bf = 1.

Intuitively, both conditions say that the buyer is willing to pay a lot to
insure against risk on the type ¢ contingencies. Recall that it is the possibil-
ity of such insurance that makes complete contracts optimal. Proposition

2 has two very intuitive corollaries.

Corollary 1. If¢; =1 and rg° > 0, then B = 1.

Proof: Suppose 9: = 1. For any 6 such that df°(f) = 0, we have
(1 —dpe(0))(ce(8) — v¢(0)) < 0. Hence Eg[(1 —dP®)(ct —v¢)] < 0,50 7€ >0
implies (2). |

If ¢ = 1, then there is no need for player 1 to compute to choose an
efficient contract; he knows he should offer a(s) = 1 for all s. Further-

more, the fact that r7¢ > 0 means that he cannot insure the buyer through
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renegotiation — he can only provide insurance with a complete contract.
Therefore, there is no tradeoff between efficiency and his bargaining po-
sition. Put differently, if ¥y = 1 and r?¢ > 0 for all ¢, an incomplete
contract cannot be an equilibrium contract since it is common knowledge
what the strictly Pareto dominating complete contract is. When v, # 1,

the existence of such a contract is known, but not its identity.
Corollary 2. If p?° = ¢, then f = 1.

Proof: By (A1), for any 6 such that d$(6) = 1, we must have ;(6) =1
and p§(0) > c:(0). Hence for such a 6,

d5(6)[ve(6) — p{(0)] — p(6)[ve(6) — ct(6)] = c:(6) — p(6) < 0.
For any 6 such that d§(6) = 0,
d5(6)[ve(6) — p(0)] — e(6)[ve(0) — ce(6)] = —e(6)[ve(6) — ce(6)] < 0.

Hence the second term on the right-hand side of (1) is nonpositive. If
PE¢ = ¢y, the first term on the right-hand side of (1) is zero. Hence r§ > 0
implies (1). |

When pf¢ = ¢, player 1 has no bargaining advantage to lose by com-
puting. Hence he has no reason not to find the optimal complete contract

and offer it.

In light of Proposition 2, a necessary condition for 8 <1 is
(3) Eg[d;“(pt® — ct)] > Eg[the(ve — c¢)] — Eg[dz(ve — pt)]-
Also, if r7¢ > 0, then Bf < 1 also requires
(4) Eo[d}°(ve — ¢t)] > Eglve — 4.

(If rp¢ = 0, then (4) modified by replacing the strict inequality with a weak
one is necessary.) The following proposition shows that if (3), (4), and one

other condition hold, then g7 = 0 if the buyer is not too risk averse. Let

W= max v¢(0) — ().
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Proposition 3. If (3) and (4) hold and if u§ > u}¢, then there exists a
€ > 0 such that if
u'(w)

G

< €t,

then By = 0.

Since u(:) is strictly concave, we must have u'(0) > u'(®w) or 1 —
[u'(w)/u'(0)] > 0. However, the closer u(-) is to a linear function, the
smaller 1 — [u'(w)/u'(0)] will be. Hence, intuitively, 1 — [u'(@)/u'(0)] < &
says that the buyer is “close” to risk neutral.!! Just as with Proposition 2,
this result says that the key tradeoff for the seller is the bargaining advan-
tage of incomplete computation versus what he can earn by insuring the

buyer.

Note that this proposition also assumes uf{ > up® — that is, that
first stage computation by player 1 improves player 2’s bargaining position,
at least weakly. Clearly, if player 1’s computations hurt 2’s bargaining
position, then player 1 has no disincentive to compute. Hence he would

certainly compute all the 8,’s and offer a complete contract.
B. Results for a Specific Renegotiation Game.

It is certainly not obvious that player 1’s first stage computation would
affect renegotiation. Intuitively, perhaps 1 is better off being uninformed
since this might force player 2 to try harder to induce him to accept an
agreement. On the other hand, when computation costs are zero or in-

finitesimal, it is hardly clear that this would be true.

In this subsection, I consider a very simple and reasonably natural

specification of the renegotiation subgame and show that it implies (A1),

11 Given the normalization that U(O) = 0, U is determined up to a linear transformation.

It is easy to see that u’(w)/u’(O) is invariant with respect to such transformations.
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(A2), and u§ > uP°. Furthermore, I give a simple parametric example in
which conditions (3) and (4) hold for that renegotiation game. In light of
Proposition 3, then, if the buyer is sufficiently close to risk neutral, the
equilibrium contract must be incomplete in this example. As we will see,
the distinction between almost costless computation and costless computa-
tion will be crucial in the renegotiation stage. In particular, with costless
computation, the equilibrium contract is complete, while, as noted, with

almost costless computation, it may be incomplete.

The renegotiation game is very simple: in a contingency which is not
included in the contract, player 2 offers a price, player 1 can compute if
he likes, and then player 1 accepts or rejects the price. If he accepts, then
trade occurs at the offered price; otherwise, no trade occurs. I also make
some additional assumptions on v; and c; for the analysis of this game. Let
Vi (resp. C:) denote the set of realizations of v¢(f,) (resp. ct(8s)), where
I assume #V; > 2 and #C; > 2. I also assume that for each ¢, the set of
realizations of (vt(éa), ct(é,)) is just V4 x Cy — that is, the support of v, is
independent of ¢; and vice versa. For simplicity, I assume that V; N C; = ()
for all t. Let o; (resp. ¢:) denote the largest element of V; (resp. C).
Finally, I assume that v; > ¢;.

To analyze this subgame, suppose that the contingency is s and that
s is not covered by contract. Let ¢ denote the type of contingency s. First,
suppose that if the seller has already computed ,. In this case, of course,
computation costs are irrelevant. Clearly, we are effectively in a complete
information game. Hence if v¢(6) > c¢¢(6), the buyer will offer a price of ¢;(6)
and the seller will accept. Otherwise, there will be no trade. Therefore,
with this renegotiation game, df = v; and p§ = c;, implying that (Al) is
satisfied. Also, to see that (A2) holds, note that the fact that the support
of v; is independent of ¢; together with v, > ¢; implies that there exists a
0 such that

$1(0)[ve(8) — ce(0)] = B — &
But since #C; > 2, the support independence also implies that there exists
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¢ < ¢; and @' such that
Pe(6")[ve(6') — ce(6")] = B¢ — ' # B¢ — &,

implying (A2).

Next consider the case where the seller has not computed ,, first under
the assumption of costless computation. No matter what offer the buyer
makes, any strategy for player 1 which does not involve computing 6, is
dominated.'? Hence player 2 knows that player 1 will learn 6,. In effect,
then, we are in a complete information world again, so the outcome is the
same. By Corollary 2 to Proposition 2, we see that we must have complete

contracts in equilibrium if computation is costless.!3

Finally, suppose the seller has not computed 8, and computation is al-
most costless. To characterize the equilibrium outcome in this case requires
some additional notation. Let é; be the smallest ¢ € C; such that for all
v € V; with v > ¢, it is true that v > ¢;. Since ¥y > ¢; by assumption, ¢;
is well-defined. More intuitively, if there are values of v between the two
highest possible values of ¢, then é; = ¢. If not but there are values of

v between the second and third highest values of ¢, then é; is the second
highest ¢ € C}, etc. Finally, let

(")t = {0 € é | vt(G) > Et and ct(0) 2 ét}

The following lemma is an extension of results in Lipman [1990].

Lemma. p}° and d}° must satisfy

(L1) V6 € ©,, d'(6) =1 and p"*(8) = &,

12 More precisely, this is true when the price offered by player 2 is between the largest and

smallest elements of Ct.

13 1t is worth noting that this is the only result which uses the elimination of dominated

strategies.
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and

(L2) Ve, di°(6)lpt°(6) — ()] 2 0.

Combining (L1) and (L2), the seller’s expected profits must be strictly
positive if there are values of 6 € O, such that c¢;(6) < ¢;.

To see the intuition behind this result, return for a moment to the
case where computation is costless. For expositional ease, suppose that
v¢(8) > c¢(0) for all 6. As explained above, the seller must compute , in
stage 2 when computation is costless. This leads the buyer to offer a price
equal to the seller’s costs. Hence in equilibrium, the seller carries out the
computation necessary to learn his costs, even though this information is
revealed to him by the buyer’s offer. When computation is costless, the

redundant computation does not hurt the seller, so his strategy is optimal.

However, when computation is costly, even infinitesimally so, this is
not optimal for the seller. Hence we cannot have an equilibrium in which
for each realization of 8, the buyer offers a price equal to the seller’s costs.
To see why, suppose this is the buyer’s strategy. If computation is costly,
the seller’s best reply is to accept the offer without computation. But the
buyer’s best reply to this strategy is to offer a price equal to the lowest
possible value of the seller’s costs, regardless of the true value of the seller’s
costs. Consequently, in equilibrium, there must be some realizations of 6,
for which either no trade occurs or trade occurs at a price strictly above
the seller’s costs.!* As the Lemma indicates, depending on the relationship
between the possible values of v; and ¢, it may be true that the latter must

occur in equilibrium.

14 As this discussion suggests, there may be mixed strategy equilibria as well. See Fishman
[1992] for an analysis of the mixed strategy equilibria of this game. Also, the results
of Cremer and Khalil [1992] in a different context seem to be driven by very similar

reasoning.
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It is easy to see that we must have u§ > up® with this specification of
renegotiation. Using the definition of u§ and the characterization of d and

p§ above,
u§ = Eglu(whe(ve — c0))] = Y _ Pr{f, = 6Ju[h(6)(ve(6) — c4(6))]-
6€6

Since the buyer would not accept a price above his valuation, (L2) implies
that trade never occurs in states where v; < ¢;. However, dy° may not
specify trade for some 6’s for which trade would be efficient. Hence the fact

that u(z) > 0 for all z > 0 implies
uf 2 ) Prf, = 6luld}(8)(ve(6) — c(6))]-
6€0

Finally, using v’ > 0 and (L2),

ug 2 Ep[u(ds(ve — py))] = ui®

I now give a simple example in which conditions (3) and (4) hold. Fix
any integer k* strictly between 1 and M. Choose any c(6) function such

that c:(k*) < ¢; and let ¢, = ming c;(f). Choose any v; function such that

vt(G){<gt’ if 0 < k*;

> ¢, otherwise.

In other words, every possible v lies either below all possible values of ¢ or
above all possible values. Note, then, that for any value of ¢ € C, every

v > ¢ must exceed ¢. Hence é; = ¢, so that ¢;(§) > é for all §. Also,
v¢(6) > ¢; iff 6 > k*. Therefore,

0, = {k*, k* +1,...,M}.

It is easy to see then that the lemma implies

neray ) 1, if 62> k%
di*(0) = {0, otherwise,

and py¢(0) = ¢, for 6 > k*.
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Since this bargaining game implies that d{ = v; and p§ = ¢, (3) holds
iff
Eo[dy“(pt® — ¢t)] > 0.

Substituting, we see that this holds iff

> Prlf, = 6][c; — c:(6)] > 0.

k>k*
Since ¢; > c¢(k*), this inequality is satisfied, so (3) holds. Substituting into
(4), we see that it holds iff

> Pr{f, = 0][ve(6) — c(6)] > Y _ Pr{f, = 6][ve(6) — c4(6)]

0>k* 0

or

> Prlf, = 6][ve(6) — ct(8)] < 0.

0<k*
This inequality holds by the assumption that v¢(6) < ¢, < ¢4(6) for all
0 < k*. Hence with the v; and ¢; functions specified above and almost cost-
less computation, all the conditions of Proposition 3 are satisfied. There-
fore, if the buyer is sufficiently close to risk neutral, we must have gy = 0.
Since this renegotiation game implies complete contracts with costless com-
putation, we see that almost costless computation and costless computation

yield dramatically different conclusions.
IV. Conclusion.

I have provided a simple model of how limited rationality can lead to in-
complete contracts. While it is clear that this might occur with high com-
putation costs, the surprising result is that strategic bargaining can lead to

incomplete contracts even with infinitesimal computation costs.

The model is quite simplistic in many respects. In this section, I wish
to discuss the roles played by some of the simplifications. One important as-
sumption is that computation is observable. Under certain conditions, the

main conclusions still hold without this assumption as is shown in earlier
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versions of this paper. The key to the analysis with unobservable computa-
tion is the credibility of incomplete computation. In particular, suppose we
have very low computation costs and unobservable computation. Imagine
that we have an equilibrium in which the seller does incomplete computa-
tion and offers an incomplete contract. Suppose he deviates to complete
computation and uses the following strategy. He “admits” his deviation
and offers a complete contract if he finds that he can do better this way.
Otherwise, he pretends to be ignorant and sticks to the incomplete contract.
If computation is unobservable, no deviation is observed by the buyer if the
seller sticks with the incomplete contract. Hence the seller may gain from
this deviation if the cost of the extra computation is outweighed by the
expected gain. With a continuum of contingencies, one can show that the
probability of gain this way is zero. Hence for any computation cost, even
infinitesimal, the cost outweighs the gain with a continuum of contingen-
cies. More generally, as the number of contingencies goes to infinity, the
probability of a gain goes to zero. Hence if the number of contingencies is
sufficiently large relative to the cost of computation, incomplete computa-

tion will be credible and incomplete contracts possible.

Another important assumption is that the seller proposes an expected
price rather than a price function. Without this assumption, the contracts
the seller can offer with incomplete computation would be worse for the
buyer than the contracts analyzed here since the seller would not know
how to choose p(s) to insure the buyer. It is worth noting that if the seller
could offer either an expected price or a price function, he would always
choose the former since it enables him to offer the buyer a better contract
(and hence enables him to charge a higher price) without computation

which would erode his bargaining position.

Notice that an analogous device for a(s) would not satisfy this con-
dition. That is, suppose the seller offered the buyer the right to choose
a(s) subject to a constraint regarding the fraction of the contingencies in

which trade occurs. Since the seller knows exactly how many contingen-
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cies he should trade in, he can set the level of the constraint appropriately
without computation. However, the buyer would specify trade in those
contingencies in which his valuation is highest, without regard to whether
his valuation exceeds the seller’s costs. Hence, in general, the seller would

not wish to offer such a choice to the buyer.

This should also clarify the role of the seller’s risk neutrality. In part, of
course, this simplifies the determination of the optimal complete contract.
In addition, risk neutrality makes the seller willing to allow the buyer to
determine how risk will be shared. I expect that if the seller were risk
averse and the definition of an offer modified so that the seller offers a price
function, then it would be more difficult to get incomplete contracts (since
contracts without computation would be less desirable) but not impossible.

The analysis would certainly be more complex, however.

Finally, the structure of the bargaining game and the informational
assumptions used are very simplistic. The key to the analysis is that the
seller may make himself worse off if he reveals that he has acquired informa-
tion. While the particular renegotiation game in Section III.B. generates
this strategic disadvantage to information in a simple way, it is hardly nec-

essary for this effect.
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Appendix
Proof of Theorem.

Let y denote the set of s such that player 1 computes 6,. The sta-
tionarity restriction implies that, along the equilibrium path, second stage
strategies in a contingency not covered by contract depend only on (s),
whether or not s € y, and 6, if known. Let d§, d?¢, p§, and py¢ be defined

as in the text.

An important point to note is that the buyer’s first stage response to
the seller’s offer necessarily reveals no information about contingencies not
included in the offer. To see this, recall that, except for a set of measure
zero, every realization § € ©° has exactly proportion Pr[é, = 1] of the
type t contingencies with 6, = 1, etc. Let L denote this set of realizations.
Without loss of generality, we can restrict attention to § € L. Therefore,
there is no aggregate uncertainty. Hence the only way the buyer’s response
could signal information about the contingencies not covered would be if it
revealed which contingencies are associated with which possible values of
6. Since the buyer’s payoff only depends on aggregates, this cannot happen

in equilibrium.

So suppose the seller has computed 8, for every s € y and that the
payoffs in the second stage in a contingency not included in an offer are
determined by d7¢, pf¢, d¢, and pf. What is the optimal offer for the seller
to make as a function of the realizations of 6, for s € y? Let S denote the
set of contingencies included in the optimal offer and let a(-) be the trading
rule specified. Clearly, given S and a(+), the seller sets the expected price
to leave the buyer indifferent between accepting and rejecting. This is true
because, without loss of generality, we can assume that the seller is best off
if the buyer accepts his offer. If the seller wanted the buyer to reject, he

could simply set S = 0.
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Next, consider the optimal choice of a(-) given S, y, {6s | s € y}, and
the way p is determined. Suppose that there is a set of strictly positive
measure included in y N S such that the optimal offer has a(s) # Yi(s)(0s)-
Call this set I. By the finiteness of T' and ©, there must be a (v, ¢) € V; x Cy
such that I has a subset, I', with strictly positive measure such that every
s € I' is of type t and has (v¢(6;),ct(6s)) = (v,c¢). Suppose v > ¢ and
a(s) = 0 for s € I'. Let  denote the measure of S and 7' the measure
of I'. Let p be the price offered. Consider the alternative offer which is
identical to this one except that a(s) = 1 for all s € I' and the price is
changed to p where p leaves the buyer indifferent between accepting and
rejecting the offer. It is easy to see that p — p = 4'v/7y. Hence the increase
in the seller’s expected revenue from the contract, y(p — p), is ¥'v. The
seller’s expected costs increase by 4'c, so v > c¢ implies that the seller’s
profits increase. A similar argument shows that the seller can do better
if v < ¢ but a(s) = 1 for all s € I'. Hence, up to a set of measure zero,
a(s) = Py(s)(6s) for all s € yN S. A slight variation on this argument shows

that Eg(v: — ¢;) > 0 implies that, up to a set of measure zero, a(s) =1 for
alls € §\y.

Now let us consider the optimal § given y, {6, | s € y}, and the
way G(-) and p are chosen. It is easy to see that this solution must be
independent of the realizations — that is, it is only a function of y itself. To
see this, note that the fact that there is no aggregate uncertainty makes the
objective function for the seller independent of these realizations. In other
words, given the choice of a(-), the seller’s expected profits depend only on
aggregates and hence is independent on the exact realizations {6, | s € y}.
Hence given y, we can compute the optimal set of contingencies to include,
the optimal a(-) given this and the realizations, and the optimal p given all
this.

A convenient fact about the optimal S is that it necessarily contains y
(up to a set of measure zero). To see this, let n’; denote the measure of type

t contingencies in SNy, n?,, the measure of type ¢ contingencies in y\ 5,
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the measure of type ¢ contingencies in §'\ y, and nt,, = 1 —n¥; — nt, — 1%,
As in the text, let a; denote the measure of type t contingencies in y. Of

course, 1, = a; — n};. It is easy to see that p must solve

u (% Z e[nciEo($rve) + npiEo(ve)] — P) = ;yl' Z be[nius + nhiurc]
t t

where v = 3, ¢:(nk; +nt;). Solving for p and computing the seller’s profits

gives:

T = E ¢t{77f;iE0[¢t(vt — ct)] + nbiEe(ve — ct) + ni,Eoldi(pf — c1)]
i
C 1 C nc
ot Eeld2(p2° — ct)]} U (; S gelbous +ntud ]).
1

I now show that, holding a; fixed, the seller’s profits are strictly increasing

in nf;. The derivative is

5‘?,,1 - @{Ea[wt(vt — )] — Eolds(z — co)] + (v — ud)U"(y) U(y)}

where

1 nc
y = 5 E Pe[niiug + nyurel.
t

Viewing 97 /0n}; as a function of y, we see that the derivative with respect
to y is (y — u{)U"(y). Since u is strictly concave, U is strictly convex, so
U" > 0. Hence this is negative for y < u{ and positive for y > ug, so that
O /0n}; is minimized at y = u§. Therefore, if the derivative is positive
when we substitute u$ for y, the derivative is necessarily positive at the

correct value of y. Hence a sufficient condition for dn/dn!; > 0 is
Eo[1h¢(ve — c1)] — Eg[di(pf — c0)] — U(ug) > 0.
By definition,
U(ug) = Eoldg(ve — pt)] — 7%,
so this condition reduces to

(5) r¢ > Ep[(d — %) (v — ct)]-
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For any 6 such that d$(6) = 1, assumption (A1) implies ¥;() = 1 so that
d$(0) — ¥:(6) = 0. For any 6 such that d§(f) = 0, we must have

—¢(0)[ve(6) — ce(6)] < 0.

Hence

Eo[(df — ¥¢)(ve — c)] < 0.

As mentioned in the text, (A2) and the strict concavity of u imply r{ > 0,
so (5) must hold. Hence, given y, the optimal n’; is a;. Therefore, y C S.

All that remains is characterizing the optimal y. As noted in the text,
the symmetry of the contingencies of a given type implies that we can
characterize y by focusing only on the a;’s, where a; denotes the measure
of the type t contingencies in y. We now see that we can reduce the seller’s
choice of S to a choice of fB; for t = 1,...,T, where, as in the text, §; is
the measure of type ¢ contingencies in S and where f; > o for all . Given
the results shown above regarding the optimal a(-) and the optimal p, it is
easy to see that the seller’s profits are given by 7(a, §) as in the text, so

that his maximization problem is as described there. |
Proof of Proposition 1.

Suppose f; < 1 for some t. Consider the following alternative con-
tract. The set of contingencies included in the contract is all those with
2(s) < Bys) where B: € [B:,1] for all t. Also, a(s) is unchanged for the
contingencies included in the seller’s offer and is given by a(s) = ¢(s)(0s)
for any additional contingencies included in this contract. Finally, p(s) per-
fectly insures the buyer over the contract contingencies with an expected

price of p where p solves
(3 30 1lBe— B + aDEaeoe) + (57 - 0?)Ba(o0)] ~ )
+Y b1 - Beup® =Y delatui + (1 — af)uy”]
t t
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where 4 = ), ¢+B:. The right-hand side gives player 2’s expected pay-
off in the equilibrium, while the left—-hand side gives his payoff under this
alternative contract. Hence the alternative contract does not change his

payoff.
The seller’s payoff under this contract is
560 (B = 81 + aDEal(ve — 0] + (87 — 0)Eo(ve =<0
t
3 nc(, nc N 1 * C a *\, nc
+1 - BOBaldre (i el 50 (3 3 bdaiut + (- e
t

If B, = Bf for all ¢, then this contract is identical to the seller’s equilibrium
offer. I now show that for each ¢ such that f; < 1, the seller’s profits are
strictly increasing in 3; throughout the range [8%,1], establishing that the
alternative contract with Bt =1 for all ¢ yields strictly higher profits. Note
that

g_gt = ¢t {Eo[the(ve — co)] — Eo[dy(p7° — co)] + (9 — u)U'(9) — U(9)}

where

i=2 3 ot + (Be — a)up]
t

2| =

Analogously to the reasoning used in the proof of Theorem 2, this derivative
is strictly positive if it is positive when we substitute uy® for §. Hence a
sufficient condition for 87 /8f; > 0 is

Eg[the(ve — c1)] — Eg[di*(pi* — c0)] — U(u) > 0.
But U(uf®) = Eg[d}¢(ve — p?€)] — rg¢. Substituting and rearranging yields:
(6) re° + Eol(¥¢ — di°)(ve — )] > 0.
For any 6 such that 1:(0) = 0, v4(8) < c¢(6), so

[%:(6) — d7°(0)][ve(6) — cx(6)] = —dy*(6)[ve(6) — cx(6)] 2 0.
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For any 6 with ¢(0) =1,
[%:(6) — d7°(0)][ve(6) — ce(6)] = [1 — d7*(6)][ve(6) — cx(6)] 2 O.

Hence

Eo[(¢p¢ — di°)(ve — ¢t)] 2 0,

so r¢ > 0 implies (6).

Therefore, a complete contract exists which, given the true § € 07,
makes the seller strictly better off and buyer weakly better off than the

5  Furthermore, the fact that such a contract

seller’s equilibrium offer.}
exists is independent of § and hence is common knowledge. However, it is
easy to see that if, without additional computation, the seller could identify
a strictly Pareto preferred contract, he could strictly increase his profits by
offering it. Hence if 8 < 1 for some ¢, he must not know what contract

dominates his offer. |
Proof of Proposition 2.

Player 1’s choice of a contract must satisfy of = 8f if Or/0a; > 0 and
af = 0if Or/Oay < 0. Similarly, f =1 if

or Or on
(7 max{aﬂt, aﬂt+3at}>0
and By = 0 if this is strictly negative at the optimum. Computing the
derivatives:
67‘(’ 1 c nc
30, = Pt {Bel(1 = ve)(ee —ve)] = U (y)(us — ui%)}
(e
and
a7r nc nc nc !
a_,Bt = ¢+ {Ep[ve — ct] — Eg[dy“(py® —ct)] + (v —us)U'(y) — U(y)},

Since payoffs are continuous in P, it is obviously possible to construct a complete contract

that makes both parties strictly better off.
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where

1 ,,, *
v= o Do ddaiui + (8 — odui
t

and 7* = zt ¢t:3:

Analogously to the proof of Theorem 2, 0w /0f;, viewed as a function
of y, is minimized at y = u}®. Hence if this derivative is positive at y = u{®,
(7) holds at the optimum, so §f = 1. Hence a sufficient condition for gy =1

is
(8) Eg[ve — ¢t} — Eo[dy (P} — et)] — U(us®) > 0.
By definition of r¢,

U(ug®) = Eqldy“(ve — pi°)] — r¢°

Substituting into (8) and rearranging yields (2).

Similarly,

0 0
3_,37% + aT:t . ¢t{Eo[¢t(vt — ct)]

Eld(pp — e + (y — uS)U'(y) — U(y)}-

If this is strictly positive at y = u$, (7) holds, implying B = 1. Substitution
yields

Eg[tpe(ve — c¢)] — Eg[d7 (pf® — c1)] — {Eoldi(ve — p;)] — ¢} > 0.
Rearranging yields (1). |

Proof of Proposition 3.

Let § = u'(0) —u'(w). Since u is strictly concave, § > 0. Let k£ = u'(0).
Clearly, for all w € [0, @],

9) u(w) € [(k — 8w, kuw)]
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and
(10) u'(w) € [k—6, k]

Rearranging (9) and (10) gives

(11) U el¥, )
and
(12) U €lz, )

for all y € [u(0), u(w)]. Recall that

or ne
e, — {Bol(1 — ¥e)(ct — ve)] = U'(y)(ug — ui®)} -
By assumption, u¢ > up®. Using (9) and (12), it is not difficult to show

U'(y)(ug — ur®) 2 Eold;(ve — pf)] — Eoldy*(ve — p°)] — %Eo[di(vt - pg)l-

Hence
g_;: < ¢t{E9[(1 — ¥1)(ee — ve)] = Eold;(ve — p})]

FEdZ (o0~ 1] + EaldE (0~ )]}
Similarly, recall that
(19) 27 = g (Balox — e — Boldf (71 — 0] + (v — w0 (4) - Uw)).
Using (9) and (12),
(14) W) 2 (1 ) Boldr*(oe = pE°)
Also, note that yU'(y) — U(y) is strictly increasing in y, so
W'(4) - U(y) < u(@)U' (u(3)) ~ U(u()) = u(@)U'(u(3)) ~ .

Using (9) and (13),

| o>

yU'(y) = U(y) < ko (ﬁ) - = TR
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Substituting for yU'(y) — U(y) and from (14) into (13) and rearranging

yields

on ne

= < ¢t{Eo(vt—Ct) — Eg[d7(ve — c¢)]

0P+

6 nc nc (_S_ u—) —_—
+EE0[dt (ve —pg9)] + E1— (5/k)}
Hence
max{ or Or + 671'}
Bﬂt’ Bﬂt aat

)
S¢t ma.x{Eo(vt - Ct) - Eo [d;w(‘l)t - Ct)] + ZK1(6, k),
)
Eq[tpe(ve — ct)] — Eoldi(ve — pt)] — Eoldi“(py® — ct)] + £ K2(6, k)}
where K; and K, are bounded from above as §/k — 0. Hence if

max{Eg(vt —¢t) — Eg[d?¢(ve — ct)),
(15)
Eoltbe(ve — co)] — Bolds(vr — p5)] — Bold2*(pp° col} <0,

then

max{ar or + 67r}<0
aﬂt’ aﬂt aat

whenever §/k is sufficiently close to zero. Hence 8 = 0 whenever §/k is

sufficiently close to zero. But

§_w(0)-v(@) _, _v(®)
k '(0) w(0)

Clearly, (15) holds if (3) and (4) hold. |
Proof of Lemma. ,

Fix a contingency s not included in a contract where 6, is not computed
by the seller at stage 1 in equilibrium and fix any equilibrium strategies

for this event. I will say that a price is automatically rejected (accepted)

37



if the seller rejects (accepts) the offer without computing 6,. Let p' >
... > p* denote the prices offered by the buyer in equilibrium which are
not automatically rejected. It is easy to see that at most one of these
prices is automatically accepted — if two were automatically accepted, the
buyer would never offer the higher of the two. Similarly, if any of these is
automatically accepted, it must be p!. If the price which is automatically

accepted is lower, then p! would never be offered.

Suppose that none of these prices is automatically accepted. Since,
by hypothesis, none are automatically rejected, this means that the seller’s
response to each is to compute 8,. Since this is costly, for each p', there
must be some §' such that the buyer offers p’ when § = ¢’ but p’ < c¢(6').
Otherwise, the seller would not compute 6, in response to p'. This implies
p! < &, so the buyer’s payoff is zero for any 6 such that c;(6) = ¢;. Recall,
though, that v; > ¢;. Hence for any 6 such that (v¢(6),c:(0)) = (¢, Ce),
the buyer would be strictly better off offering a price of ¢; + €, as this is
necessarily accepted. This contradiction implies that p' must be accepted

automatically.

Since p? is not automatically accepted, we must have ¢; > p?. Suppose
that p? > é;. By the definition of ¢, then, for all v € V; such that v > p?,
we must have v > ¢;. Since it is a dominated strategy for the buyer to offer
a price above his valuation, this implies that whenever the buyer offers p?,
we must have v,(6) > ¢;. Suppose, then, that there is a 6 such that the
buyer offers p? but c¢() > p?. Since p? cannot be automatically accepted,
the seller’s response is to compute 6,. Hence for such a 0, the seller rejects
p?, yielding a payoff of zero to the buyer. But since v¢(6) > ¢, this cannot
be optimal as offering ¢; + € is better. Therefore, for any 6 such that p?
is offered, c¢;(6) < p?. But since computation is not costless, this implies
that it is not optimal for the seller to learn 8, in response to this offer, a
contradiction. Therefore, p? < é;. Hence for every 6 such that c,(8) > é,
the buyer’s offer is rejected unless he offers p'. Thus for every 6 € O, the
buyer offers p'. Clearly, p! < ¢;.
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Suppose there is a 6 such that d?°(f) = 1 and p?°(f) = p' < ci(6).
Player 1 could compute 8, whenever p' is offered and reject the offer for
such a 6. Since computation is almost costless, he would be strictly better
off, a contradiction. Hence (L2) holds. This implies p! = &, so (L1) holds. |
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