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Abstract

This paper provides a new explanation for “tax holidays,” as well as their subse-

quent removal in a tax reform stage. In a two-period model, I assume that perfectly
competitive foreign investors are uncertain about the host country government’s
propensity for public spending, and that infinitely divisible capital is subject to
strictly convex adjustment costs. The host country government’s current period
tradeoff between public spending and the associated deadweight loss from distor-
tionary taxation may signal the host’s type and spare the investors from an unan-
ticipated future tax hike. A separating equilibrium requires a deep tax concession
early on, which corresponds to a tax holiday. When there are overlapping genera-
tions of foreign investors the tax profile flattens out over time as the information
from tax holidays is exhausted; this is the tax reform phase.

JEL: 026, 321, 441
key words: foreign investment, signalling, tax holiday, time inconsistency
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TAX HOLIDAYS IN A BUSINESS CLIMATE

The willingness of potential investors to invest in a country
depends not only upon the list of advantages and disadvantages
in the tax laws and the rules of the game as they are today but,
perhaps to a greater extent, upon the degree of confidence of the
investor in the permanence of the arrangement. No investor can
afford to ignore the possibility of expropriation.

—DAN USHER (1977)_
1. Introduction

A tax holiday may signal a country’s genuine commitment to long term private
sector activity. Potential foreign investors are concerned with both the current tax
rate on foreign capital income and the risk of an adverse future change in government
tax policy. In this paper, I show that a tax holiday may provide foreign investors
with the required confidence in the good faith of the governments of countries in
which they invest. The results may be particularly relevant to a developing country
that is in transition between a regime of substantial government spending and a

regime that favours the free market.

A “tax holiday” refers to a statutory tax rate on capital income that begins at
a low rate, but rises over time. One standard explanation for tax holidays is that
foreign investors incur sunk costs that give the host country government ez post
bargaining power over the foreign owned firm. Once the firm has committed its
capital, the government maximizes tax revenue by raising the future tax rate. The
time consistent solution is for foreign investors to require “up front” compensation
in the form of a low initial tax rate, and for the government, indeed, to raise its

tax rate in the future. This line of reasoning has been explored in several papers
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beginning with Doyle and van Wijnbergen (1984). Bond and Samuelson (1985)
demonstrate that the tax holiday profile emerges as the signalling solution to a
bilateral bargaining game between a single firm with sunk fixed costs and a tax
revenue maximizing government that has private information about the productiv-
ity of the potential investment on its territory. The private information may be
due to the government’s superior knowledge of local infrastructure, for instance.
More recently, King and Welling (1989), and also King, McAfee and Welling (1990)
examine the tax holiday profile in a model with a single firm, but with many gov-
ernments competing for its location. They model the competition as a two-period
second-price auction in which governments bid for the firm subject to non-negative
discounted tax revenue for the game as a whole. The solution has the government
with the highest productivity potential offering the firm a lump sum subsidy in the

first period and a tax in the second.

This paper examines tax holidays and foreign investment in a somewhat dif-
ferent light. Unlike the papers cited above, the capital market is assumed to be
perfectly competitive with infinitely divisible capital, and the government maxi-
mizes a social welfare function that depends on both public and private spending.
In a two-period version of the model, sunk costs are captured with a continuous
and convex capital adjustment cost equation, rather than fixed costs. The use
of these neoclassical assumptions result in three distinct motives for why a host
country government may wish to tax foreign capital income earned on its territory.
The first is that if the host country is large in the world capital market, then its
treatment of foreign investment can alter the world rate of interest. Kemp (1976)
showed that the host can exploit this monopoly power by setting a positive tax rate

on foreign investment earned in its borders. Second, if the marginal social cost of
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public funds from domestic taxation is high, then as a second best solution the host
will want to resort to some taxation of foreign investment income as a means to pay
for public expenditure. This motive may be particularly important in a developing
country, where the government is typically in the difficult position of facing a high
domestic demand for public spending on social services and infrastructure, while
being unable to collect significant tax revenue from residents because of poor tax
collection technology. Third, in the absence of commitment the presence of capital
adjustment costs results in a time inconsistency problem: the host will want to raise
taxes on foreign capital income after the capital has been committed to its territory.
The explanation for tax holidays in this paper makes use of the second and third

motives.

The host country government is assumed to have private information about a
parameter § € {6F 85} of its social welfare function that summarizes its relative
preference for public versus private expenditure. A host characterized by ¥ has a
high preference for public spending, while #~ means that it is more concerned about
the private consumption of its citizens. The marginal cost of obtaining public funds
from domestic taxation is assumed to be prohibitive, so that the government’s only

source of revenue is to tax foreign capital income. !

Foreign investors must infer from the currently observed tax rate on foreign
investment, what rate they are likely to face in the future. On that basis, they
undertake a certain amount of foreign investment, knowing that they will bear
adjustment costs if they change their allocation in the future. Hence, from the

point of view of investors, a “high” type of host (§ = §¥) is bad news. There are

1 This assumption is stronger than necessary, but is made to focus attention on the other

aspects of the model. The results of the paper only require that there cannot be lump sum
domestic taxation.



two periods in the model; the first period is the observable present, and the second

period is the future.

Foreign investment is valuable to a country not only because it generates tax
revenue, but also because it increases private domestic consumption by raising the
productivity of land and labour. A government that values both private and public
spending faces a tradeoff, because with infinitely divisible capital the deadweight
loss from capital income taxation increases exponentially with the tax level. Only a
government that gets extra satisfaction from public spending would tolerate much
deadweight loss; conversely, a low spender cares more about efficiency. When the
host country government’s preferred tradeoff is unknown to potential foreign in-
vestors the hidden information poses an adverse selection problem: a high spender
might tax foreign capital moderately in the early goings to disguise itself as a low
spender, but will greatly raise the tax rate later when capital adjustment costs be-
come significant. However, early tax concessions to potential foreign investors can
sometimes reveal private information about the value of 6. I construct a model in
which signalling with a tax holiday allows a host country government to overcome
its adverse selection problem in a perfectly competitive international capital mar-
ket. The analysis has implications for the time series behavior of taxes and capital
levels. In particular, in a separating equilibrium, not only is the initial tax rate of
a low spender below the tax rate of a pooling equilibrium; the future tax rate may
well be higher. This seems paradoxical, because the purpose of the signal is pre-
cisely to reveal that the government does not have a high propensity for spending
and taxing. However, a tax holiday attracts capital not only because it signals that
the government is a low spender, but also simply because of its financial value to

investors in the first period. Because of strictly convex adjsutment costs, the tax
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holiday’s two-fold boost to investment makes each investor more vulnerable to a

future tax hike. Even a low spender will wish to take advantage of this.

I also extend the two-period model to one of overlapping generations of foreign
investors and a long-lived government. The extension allows for a “tax reform”
stage in which tax holidays are phased out, once their information content has been

successfully communicated.

The model in this paper is an extension of Kemp’s (1976) static model of
foreign investment. Therefore, I begin the analysis with a review of Kemp’s model
to motivate the two-period model that follows. The two-period model is analyzed
for two cases: first, investors know the value of 8; second, investors are uncertain
about 8. The first case shows that the time consistent solution to the two-period
model when there is complete information requires a rising tax profile, regardless
of the value of §. However, for my purposes, a tax holiday is something more
drastic. It is the additional gap between the first and second period tax rates
needed to signal the host’s type, when there is incomplete information. I provide
a diagrammatic interpretation of the results and a simulation of the model with
quadratic functions. The extension to overlapping generations of foreign investors

is then discussed, followed by my conclusions.
2. The Static Model

There are two countries. A capital-rich country contains a continuum of identical
investors each endowed with an equal share of one aggregate unit of divisible capital
(or savings), which can be invested at “home” or in the capital-poor “host” country.
For simplicity, assume the capital-poor country is endowed with zero capital initially.

Both countries use concave production functions to produce the same good. Capital
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owners receive a competitive return on their capital, while rents accrue to the fixed
factors in each country. The home country government is a passive player in not
behaving strategically; the tax rate in the home country is set to zero. In the
host country an ad valorem tax rate applies to capital income earned by foreigners
within its boundaries. A social welfare function represents the host government’s
taste public and private consumption.

Let X represent the aggregate amount of capital invested in the host country,
so that 1-X remains at home. Let the production functions in the home and host
countries be g(l-X) and let y(X), respectively. The tax rate on foreign capital
income is t and the social welfare function W(C, G) is assumed to be linear; C and

G are private and public consumption. The host’s problem is:

max W(C,G) =C+6G subject to : (1)
Jd1-X)=(1-t)y(X) arbitrage constraint (2)
C=y(X)-Xy'(X) household budget (3)
G =tXy'(X) government budget. (4)

The general solution to the host’s problem is t* = #(W,y,g). With the linear

specification of the welfare function the solution to the host’s problem is:

« _ _{0pses + (6 — Vpaea}
b= (1 — prey) ©®

where iy = X/(1— X) is the ratio of the lending (i.e., home or “foreign”) country’s

foreign investment to its domestic investments, and e = (1 — X) ¢"(1 — X)/g'(1 —
X) is the reciprocal of the elasticity of demand for capital in that country; e; is
the corresponding inverse elasticity for the host (i.e., “domestic”) country; and
pd = X/X is the share of investment in the host country that comes from foreign

investment. ? The optimal tax depends on a weighted average of the values of € - p

2 ftd = 1 only because of the assumption of zero endowment in the host country.
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of the home and host countries. Note that ¢* is non-decreasing in §. Kemp asked
what tax rate the host country should set in order to maximize national income.
When 6 = 1, the social welfare function (1) is equivalent to the definition of national
income. In this case, it is clear from (5) that ¢* is non-negative and depends entirely
on the elasticity of demand for capital in the lending country. Intuitively, the host
country tolerates some deadweight loss of rents on fixed factors in order to take
a share of capital income that would otherwise be fully repatriated to the home
country. I assume a lower bound of § = 1 on the government’s taste for public
spending; such a government sets the same tax rate as a government that seeks to

maximize national income.

When 6 > 1 there is an increased emphasis on government spending in the
welfare function. However, the exponential increase in deadweight loss from dis-
tortionary taxation limits the amount of taxation the government is willing to un-
dertake, even if the linear social welfare places a relatively heavy weight on public

spending,.

Kemp also considers what the optimal tax rate is on repatriated earnings for
a lending country that seeks to maximize its national income. In calculating this
rate he assumes the host country’s tax on foreign capital is zero. Hamada (1966)
and more recently Mintz and Tulkens (1990) examine the Nash equilibria arising
from simultaneous and therefore strategic tax setting behavior by the borrowing
and lending countries. In order to stress the main points of my paper, I will assume
that the lending (i.e., home) country behaves passively; its tax rate on repatriated

earnings is exogenous. To economize on notation the tax is set to zero.



3. Two-Period Model with Complete Information

In this section, I assume that investors know the value of 8 € {6#,6}. There are
two periods. Initially there is a unit of savings from the capital-rich country that
must be allocated between the home and capital-poor foreign country, as in the
previous section. Savings are liquid, so there are no transactions costs associated
with the initial allocation. However, once the investments have been undertaken,
there are costs to adjusting capital subsequently. This type of formulation of the
lifetime of a pool of savings is essentially the same as in van Wijnbergen (1985),
where he examines how the credibility of trade reform can affect the division of

savings between physical capital and liquidity.

The government of the host country imposes a tax on foreign capital income
invested on its territory in each period in order to maximize the welfare of its
citizens. In performing this maximization, the host country government takes for
granted that the economy is in equilibrium and that arbitrage profits are nil on the
international capital market. After observing the tax rate in a given period, each
foreign investor makes a savings (capital) allocation to maximize his return, subject
to his costs of adjusting capital in the second period; as one member of a continuum
of investors, he takes the rates of return in each country and each period as given. It
will be necessary to distinguish between the individual investor’s capital allocation,
denoted with a lower case letter x, and the aggregate allocation, denoted by a
capital letter X. It is the aggregate level X that determines the rates of return, but
the individual investor’s level of x that determines his cost of adjustment. Since
all investors are identical, the market’s investment behavior is characterized by
a representative investor. Of course, in equilibrium, the representative investor’s

investment x must coincide with the aggregate value of X.
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An investor’s initial investment decision has a bearing on his second period
payoff, because there are costs to adjusting the level of capital away from the initial
allocation. The costs of capital adjustment may be thought of as lost output, or
simply as transactions costs paid to a third party, not explicitly modelled. The cost
of adjusting capital is given by a strictly convex function C(|z; —z2|), with C(0) = 0,
C'(0) = 0, C'(6) > 0 for any § # 0, and C"(0) > 0, where the subscript denotes
the period. Each investor has perfect foresight of the second period equilibrium
tax rate, although he perceives no link between his first period investment and the
future tax rate; this just means that the individual investor is too small a player to
influence policy, but the market as a whole predicts the future correctly. Loosely
speaking, if it is known that the host is a high type of spender, then the market
arbitrage condition would be based on an appropriately higher expected future tax
rate, other things being equal. The discount factor is assumed to equal one; this

does not matter for the derivation of the results. Figure 1 summarizes the timing

of events.
FIGURE 1
Sequence of Events
period 1 period 2
/ﬁ’/\%“\ ——
/‘/* \\
Player host investor host investor
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The Host’s Payoff

Substituting the private and public budget constraints, (2) and (3), into the social
welfare function (1) in each period yields W7, the host’s objective function or payoff

for the two-period game. In symbols:

Wi = y(X1) — X1y'(X1) + 66, X1y (X1) + W (6)

Wy = y(X2) — Xay'(X2) + 612 Xay'(X32). (7)

The Representative Investor’s Payoff

The representative investor takes the rates of return on capital as given by the
market and he simply seeks the highest expected return on his portfolio net of
taxes and net of his second period capital adjustment costs, which depend in part
on his initial allocation z;. The second period net capital income is denoted by U,

and the payoff for the entire game is Uy:

Ur=(1-21)g'(1 - X1) + (1 = t1)21y"(X1) + Uz(z2, b2, 1) (8)

Uz = (1-22)g'(1 = X2) + (1 — t2)z29'(X2) — C(|zy — 2. 9)

Equilibrium Concept for the Complete Information Game

The appropriate equilibrium concept for the complete information game is that the
solution must be subgame perfect. Subgame perfection requires that the solution
induced by the strategies of each player for the game as a whole form a Nash

equilibrium starting at each subgame. In the context of the game between the host
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and the investors, an interior solution is obtained by recursively solving the first-
order conditions of each player’s objective function given the history of the game.
Hence, a subgame perfect solution, expressed in the form of closed loop strategies,

is any correspondence
{£,%} = {£1(6), 1(t1,9), 12(8, X1), Z2(t2, 1)}
such that the following conditions hold:
(A) &2 = {z2: argmaz Ug(fz,xl,zz)},
(B)V O, t = {ty: argmaz Wz(tz,Xz,e)},
(C) &1 = {z1: argmaz Uy(t1,21,Ua(22,21,32))},
(D)V O, t1 = {t;: argmaz W1(t1,X1,9, WZ({LXZ;O))},
(E)Vz: € &1, X1 = 1 (ie, Xl) andVzo, € 2, X2 = z (ie, Xz)

Note that at the start of the second period the first period tax rate is inconsequential;
what matters to the host and investors is the level of capital carried into period two.
Of course, recursively substituting the optimal capital and tax allocations would
yield an equivalent open loop expression for the equilibrium, where the best reply

mappings would depend on 8 alone. Denote this equivalent solution as:

{t*, 27} = {#1(6),%1(6),3(6), z3(6)}.

The conditions A and B define the Nash equilibrium in the second period sub-

game, while conditions C and D define the Nash equilibrium for the game as a whole.
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Condition E requires the solution to be consistent with capital market clearing. For
ease of notation the investor’s payoff is written without the aggregate level of capital
X in its arguments; this should not lead to confusion, as long as it is understood
that the equality between x and X is only imposed after the representative investor
has optimized. To simplify the presentation of the main ideas of the paper, I will
make assumptions to ensure that the first order approach yields a unique optimum,
when there is an interior solution. While the investor’s problem is always concave,
it is well known (see, for example, Wildasin (1989)) that social welfare functions are
generically nonlinear in tax rates, which may lead to nonconcavities in the host’s
payoff. Moreover, it is unclear how players in the real world focus on a particular
equilibrium when there are multiple solutions arising from nonconcavities in the
host’s payoff functions. In Appendix B, I provide more general conditions that
are sufficient for uniqueness. The remainder of the paper uses the first-order ap-
proach. The correspondences {t;(6), #1(t1),%2(8, X1), #2(t2, 1)} may therefore be
interpreted as functions, and {t},z7,t3,z3%} is the reduced form of the equilibrium

for a given value of 6. It will be shown in this section that ¢t > ¢} and =3 < z].

Assumptions

Assumption 1. The production functions of the host and home countries are con-
cave and the cost function is strictly convex. The third and higher order derivatives

of these functions are equal to zero.
Assumption 2. At least one of the production functions is strictly concave.

Assumption 3. In each period, y'(X) + Xy"(X) > 0.

12



Without assumption 2 the solution is trivial: the tax rate would equal zero for
all . The non-negativity assumption on y' + Xy", which ensures that the host’s
indifference curves slope downward, is equivalent to assuming that the demand for
capital in the host country is relatively inelastic. Heller and Kauffman (1963) have
argued that this is a reasonable assumption for developing countries. 3 The rest of
the paper maintains the assumptions 1 to 3. In order to derive the subgame perfect
solution the model must be solved recursively. I therefore begin the analysis with
the investor’s second period capital allocation decision z,, which is conditional on

his first period choice z; and the tax rate t,.

The Investors’ Second Period Reaction Function

At the beginning of the second period, the host reveals the second period tax rate ¢,
on foreign capital income. Each investor then decides on the proportion of capital
z2 that he will maintain in the host country, in order to maximize his capital income
given by (9). The first order condition for (9) defines the investor’s optimal strategy

9.

g'(1 = X3) + {sgn(z1 — 22)}C'(z1 — F2) + (1 —t3) y' X2 = 0. (10)

Substituting the equilibrium conditions X; = z; and X, = z; into (10) leads

to (11), which is the second period capital market arbitrage constraint. *

9'(1-X3)—C'(X1 — X2) = (1 —t2)y'(X2) arbitrage constraint. (11)

“..it would seem unlikely that investor responses would be highly sensitive to small in-
creases in return rates, and an elasticity as great as unity would be an optimistic assump-
tion....” (p.160) The authors attribute the low elasticity to risk factors and inadequate finan-

cial resources in less developed countries.

In equilibrium it must be the case that X; > X3, as shown later in proposition 2. Hence, I
omit the ‘sgn’ term for clarity.
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This means that the net rates of return are the same in both countries; (11) is a
generalization of equation (4). Equation (11) implicitly defines a function that can
be interpreted as the supply of capital to the host country in the second period for
any choice of t; given X;:

Xy = Xa(ta, X1). (12)
Note from differentiating (11) that the supply is decreasing in t5:

X, _ y'(X2)
dt2 lx,

T g"(1—-X3) - C"( X1 — X2) + (1 —t2)y"(X2) < 0. (13)

It will prove useful later to note the curvature of (12).

Lemma 1. The supply of capital (12) is strictly concave in the tax rate t,.

Proof. See the appendix.

The Host’s Second Period Optimal Taz Rate

At the beginning of the second period, the host anticipates the market’s supply
of capital response (12), when she chooses t; to maximize Wy (tz, X(t2,X1),6).
Although the host’s indifference curves between X; and t; slope downward, their
convexity property is ambiguous over the tax range t; < 1/26. To simplify the
analysis, I add the following assumption, noting that it is satisfied by the simulation

model presented later.
Assumption 4. W, is strictly quasi-concave.

The implication of this assumption is that the host’s indifference curves over Xs, t;

are strictly convex. If an interior solution exists, it is given uniquely by the tangency
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between the host’s indifference curve map and the supply of capital curve (12). °

The first order condition for the host’s second period optimization problem is:

dw,
ditz | .

dX,

I
—dt2| +0X5y'(X2) 0

B (19)

Substituting (13) into (14), if an interior solution exists, it is implicitly given by:

= [X2y" (X2) + btz (X2) + 6t2 X5y (X))

. _ 8X2[C" —g"] 4+ (1 — 6)Xpy"
t2 = oy’ .

(15)

Note that for large values of X; and 6@ the solution provided by the first order
condition may lie above the admissible set in which case the optimal tax rate is

=1

Using the second period arbitrage condition (11), equation (15) can be re-
arranged into an expression that is analogous to the optimal tax expression dis-
cussed in the section on the static model with one exception. The reciprocal of
the elasticity of demand for capital in the home country (i.e., “foreign”) must

now be modified to include the effects of the adjustment costs. Letting é; =
(1—5(2) (9"(1—5(2)—0"()(1—)?2))
(9 1-X2)-C'(X1-X2))

b

_ {O[J.féf + (9 - l)uded} ) (16)

t5 =
’ 0(1 — prés)

Note that t; is strictly positive. The unique best reply ¢; that solves (16) for any

given X; and 6 is denoted by the function:
ty = t2(X1,6). 17)

The relationship between adjustment costs and ¢ is the following.

5 What I call the supply curve is also the capital market’s offer curve, reaction function for
given tax rate; that is why it is combined with an indifference curve map.
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Proposition 1. For any value of 6 the higher are C' and C", the higher is the

optimal second period tax rate (within admissible values).

Proof. The proof follows from inspection of (16). |

Second Period Nash Equilibrium

If an interior solution for the level of the capital stock X, exists it can be found
by substituting ; into XQ({z,Xl). The Nash equilibrium for the second period

subgame, given X; and 6, is then:
{{Z(Xl ’ 0)7 X2 ({2, Xy )}, or equiva'lently {t;(xl ’ 0), X;(Xl ’ 6)}

Define the host’s and representative investor’s optimal value functions for the second
period continuation game, W3 (X1, 6) and Uj(z1, 8), by substituting the equilibrium
values into the respective payoff functions and noting that z; = X; and z, = X5.
The comparative statics of the second period equilibrium are given in the next

lemma.

Lemma 2. For any 6 we have the following:

(£) 0 < dt3/dXy; (1) 0 < dX3/dX, < 1;

(ii1) d*t3/dXE < 0; (v) dX2*/dX2 =0; (v) dW}/dX; > 0.
Proof. See the appendix.

It is also useful to note that the the slope of the host’s second period indifference
curves are steeper the larger is 6; that is, a government that places a high valua-

tion on public spending requires relatively more capital inflow as compensation for

16



reducing her tax rate. This so-called “single-crossing” property for W is given by:

6W2/6t2 )/ X 2 I Il
-0 00 = < 0. 18
(awz/ax2 (—Xay" +0tz(y + Xay"))? 18

Corner Solution

If the solution ¢t ¢ [—1,1]or X5 ¢ [0, 1], then the equilibrium is on the boundary of
the action spaces. A corner solution may arise when the marginal cost of adjustment
is so large that the first order revenue gains from further taxation, weighted by the
relative value of public spending in the welfare function, exceed the lost rents from
capital flight even at 100 percent taxation. Investors prefer to simply “abandon”
some capital in the second period rather than bear the transactions costs from
repatriating the whole stock of foreign capital. From equation (11), a 100 percent

second period tax rate implies that
—g'(l — Xz) + C'(X] - Xz) >0,

and, therefore, that the residual amount of capital in left in the host country if

capital is taxed at 100 percent is:

X, = Maz {0, X; — C'"'(¢'(1 — X2))}. (19)

The Investors’ First Period Reaction Function

In the first period the representative investor observes ¢; and anticipates the second
period Nash equilibrium, when choosing his capital allocation to maximize his cap-

ital income over both periods. The investor’s first order condition for maximizing
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(8) is:

ah _ —¢'1-X1)+ (1 —t1)y'(X1) +

dU}(zy,0) dzt  dU$(z1,6)
+ =
d:cl

dz3 dz, dz,

0. (20)

Applying the envelope theorem and the equilibrium conditions X; = z; and X, =

zo we obtain the first period arbitrage condition:
d1-X1)=(1-t1)y'(X1) - C'(X1 — X5(X1,6))  arbitrage constraint. (21)

Implicit in (21) is the first period supply of capital to the host country as a function
of both ¢; and the expected second period equilibrium, which depends on 6. Denote
this as: ©

X; = Xi(t1,0). (22)

Totally differentiating (21) with respect to t; shows that the supply is decreasing

in the tax rate:

dX, y'(X1)

= <
dt, "1 -X1))+ (1 —t1)y"(X1) — C"(X1 — X3)[1 — dX3/dX,]

0. (23)

Lemma 3. The first period supply of capital to the host country X; (t1,0) is stricly
concave.

Proof. See the appendix.

In making their first period capital decision, investors realize that the second pe-
riod equilibrium tax rate that they will face depends on the host’s taste for public
spending. This is reflected in the fact that the first period supply of capital to the

host country decreases in the value of 8 for a given ?;.

Lemma 4. Xm/dé?lt1 < 0.

6 It is easy to show that (21) has a unique fixed point for X given any ¢, 6.
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Proof. See the appendix.

The Host’s First Period Optimal Taz Rate

The host anticipates the investor’s best-reply function before choosing her first
period tax rate on foreign capital income. An optimal first period action for the

host is given by the correspondence #; () defined by

t1(6) = {t1: argmaz Wi(t1, X1(t1),6), W (t5(X1(t1),6), X5 (X1 (t1),6)) }. (24)

The host’s first period indifference curve over the space of z1,t; is obtained by

totally differentiating W;. The first order condition for the problem is:
dWl = [—le”(X1)+6t1 (yl(Xl)-l-.X]y”(.Xl))]dX] +0X1 y'(X1 )dtl +dW2* = 0, (25)

dWy = (0Wy [0X3)(dX2/dX1)dX, + (OW [t2)(dt2/d X1 )d X, . (26)
Combining these expressions, the slope of the indifference curves are:

Xm _ _9X1 y’(-Xl) <
dty  —X1y"(X1)+ 60t (v'(X1) + X1 y"(X1)) + AW /dX,

0. (27)

To establish that the host’s payoff function is strictly quasi-concave the host’s first
period indifference curves must be strictly convex, which requires that the deriva-
tive of (27) be positive. The sign of one term in the derivative of (27), ';ZTV?—, is
ambiguous; furthermore, the term increases in absolute value with increases in C",
until the second period tax rate reaches its upper bound. The following lemma pro-
vides information on the convexity property of the host’s first period indifference

curves.
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Lemma 5. There exists a critical value ¢, such that for C"'(1) < € the host’s first
period indifference curves are strictly convex over the region t; > 1/26.

Proof. See the appendix.

A similar restriction on C" generally ensures that the first period indifference
curves obey the single-crossing property; that is, they become steeper (downward)

the higher is the value of 6:

PYELWELN
e [oxy "’“69‘”‘1} < 0. (28)

Intuitively, a higher value for § means that the government places a large weight
on public spending and therefore requires more X; to compensate for a marginal

decline in ¢;.

Lemma 6. There exists a critical value ¢, such that for C"(1) < € the host’s
indifference curves obey the single-crossing property (28).

Proof. See the appendix.

On the basis of lemmas 6 and 7, I impose the following assumption, noting that it

is satisfied by the illustration model given in section 4.

Assumption 5. The host’s first period indifference curves are strictly convex and

obey the single-crossing property.

Using assumption 5 and substituting (23) into (27), the unique optimal first period

tax rate is characterized the following expression, which bears comparison with (15):

tt={6X1(C" - (1 - 932) — ¢") + (1 - O)X1y" — 9%2} (29)
0y'.
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Equilibrium in the Complete Information Game

The first period equilibrium occurs at the point of tangency between a host’s in-
difference curve and the capital supply curve. This is depicted in Figure 2. It will
prove useful later to denote the optimal first period tax rate for a low (high) type

of host as tI or ¢, as the case may be.

FIGURE 2

Equilibrium in the First Period

0

The main result of the complete information game is summarized as a propo-

sition.

Proposition 2. A unique subgame perfect equilibrium to the complete information
version of the game exists, and is characterized by a tax profile that increases over
time and a capital allocation in the host country that is decreasing: t7 < t; and
X5 < Xt.

Proof. See the appendix.
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The intuition for the proposition is evident from a comparison of the market’s re-
sponse to a tax increase in each of the periods, as given by equations (23) and (13).
Convert these differentials into first and second period market elasticities and evalu-
ate them at the same point. Then it is clear that the presence of the term dX5 /dX;
in the denominator of (23) makes the first period supply elasticity of capital in the
host country more elastic than in the second period. The result ¢} < t} accords
with optimal taxation theory, which says that the least elastic goods should face the
highest tax. The tax profile indicated in proposition 2 is similar to the sunk cost
explanation for tax holidays found in the literature. For my purposes a tax holiday
is something more drastic: it is a first period tax concession beyond the implication
of proposition 2 to signal the host government’s commitment to the private sector,
when information about its social welfare function is incomplete. Before proceding
to the case incomplete information version of the two-period model, I present a

numerical illustration of the properties indicated in the propositions 1 and 2.

4. An Illustration

In this section I provide the results of a simulation of a version of the model in which
the production and adjustment cost functions are quadratic; and the production

functions are identical in each country. That is, for 7 = 1,2:
y(X,) = X, — .5X?2

91-X)=(1-X,)-.51-X,)%
The cost of capital adjustment is given by

C = c(|lz1 — z2|)?,

where c is a positive constant. Note that with these assumptions on the production

functions the expressions for the marginal product of capital in the home and host
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countries are X, and 1 — X, repsectively. Since X, € [0, 1] the marginal products
are also bounded between 0 and 1. The assumption that y' + Xy" > 0, is satisfied
in equilibrium, but is not globally necessary for uniqueness in this example. The
next figure gives comparative static results for a range of values for 6 from 1 to 9
and for ¢ from .01 to 3. Each line segment in the figure corresponds to one value
for c, given in brackets, while each black square in a line segment corresponds to a
value of . The equilibrium pair {¢},t3} always lies below the 45° line, showing that
t3 > t]. In every case, movements in the north-east direction correspond to higher
values of 6; the point {t},t3} rapidly converges to a limit, as # increases. Note that

for high values of c there is a corner solution for ¢3.

FIGURE 3

Equilibrium Tax Rates for Different 6 and c

Black squares correspond to © (higher @s are in N-E direction)
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5. The Two-Period Model with Incomplete Information

Suppose now that investors are unsure of which of the two potential types of host
they face. When there is incomplete information about the host’s propensity for
public spending the investors must infer what tax rate to expect in the second period
on the basis of prior information and the host’s first period tax rate. The host’s
optimal strategy then depends on a comparison between selecting a first period tax
rate that leads investors to infer her type, or choosing a tax rate that leads investors
to believe she is the other type. Other things equal, all types of hosts prefer higher
tax rates and higher capital 1evels. Therefore, the adverse selection of one type of
host masquerading as the other type only works in one direction: both high and
low types would like investors to believe they are low spenders. I have described
the sequence of economic events as taking place in two periods, where the periods
correspond to the life cycle of a pool of savings cum capital. A formal description of
the incomplete information game requires a more precise characterization of periods
into sub-periods, or “stages.” Formally, this is a so-called “multi-stage” game with
observed actions and incomplete information. The extensive form of the game is

summarized below. 7

The Game Structure
S.0 Nature chooses a value for § € {6%,6F}.

The stage S.0 establishes the source of asymmetric information in the model.

S.1 The host observes 8 and chooses a tax rate t; € [—1,1].

S.2 Each investor revises his beliefs about the value of 8

The game is analogous to a principal and agent problem, where the capital market plays the
role of principal, and the host is the agent.
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using Bayes’ rule and chooses a level of investment z; € [0,1]

as a function of his beliefs and t;.

S.3 The host chooses a tax rate t; € [—1,1]

as a function of 6 and z;.

S.4 Each investor chooses an allocation

T, € [0,1] as a function of ¢ and z;.

End of the game.

If chronological time is represented by “periods,” period one corresponds to stages
S.1 and S.2, and the second period to stages S.3 and S.4. Note that there can be no
gains for the host from concealing her type at S.3, since this is her last move and
the investor’s payoff does not depend directly on 6. For all intents and purposes,
then, the second period subgame is one of complete information. Therefore, the
investor’s belief revision at S.4 is trivial and is omitted from the description of
the game. The informed player moves before the uninformed, so this is a signalling

game. A solution to this game is defined by a Perfect Bayesian Equilibrium (PBE). 8

Definition of Perfect Bayesian Equilibrium

Roughly speaking, a perfect Bayesian equilibrium in pure strategies is a strategy
profile for each player where no one can gain by a unilateral defection given their
beliefs at each information set. A player’s strategy profile specifies his action at each
of his information sets as a function of the history of the game up to that point.

Using a similar notation as in section 3, let £, 7 =, 1,2 be a correspondence from the

8 APBEis equivalent to a sequential equilibrium for this simple game.
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history of the game at each period (measured at the beginning of the stage where
the host chooses her tax rate) to the interval of admissible tax rates. Similarly,
let £, 7 = 1,2 map from the investor’s beliefs and the history of the game at
each period (measured at the beginning of the stage where the investors make their
allocation decisions) to the interval [0,1]. Also, let po denote the common knowledge
prior probability that the representative investor assigns to a low spending type of
host and p;(¢1) the updated beliefs (posterior distribution) that the host is a low
type after investors observe ¢;. Since there are only two types of host in this model,
the posterior belief that the host is a high type is 1 — p1(¢1). A PBE for this game

consists of a strategy profile for the host
t = {:1(6),%2(6, X1)}
and a strategy profile for the representative investor
& ={%1(t1),Z2(¢2,21)}
and posterior beliefs p;(¢1) such that these conditions hold:
(A)V 8, T = {t: argmaz Wy(t,X,06)},

(B)Z = {z: argmaz Eg,, Ui(t,z,X)},°

®  Note that in comparison to the complete information game, the investor’s expected payoff

and period one best reply mapping are modified as follows:

EU,; =g’(1 —Xl)(]. - III]) + (1 —'tl)y'(.Xl).'L'l
+p1(t1) Uz (21,6%) + (1 — p1(t1)) Uz (21,67 ;

&1 = {z1: argmaz EUy(t1,21,X1,p1(6]t1))} N {X1 = 21}
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(C)Vz € %, X3 = z; and X2 = z; (ie, X, and Xz),

(D) pi(t1) = po Prob(t: € #1(8%))/{po Prob(t: € #1(6%))
+(1 — po) Prob(t; € #1(67))},
if the denominator is greater than zero; p;(¢1) is any probability

distribution on {6%,6F} if the denominator equals zero.

Conditions (A) and (B) are the conditions for perfectness. (A) says that the
host maximizes her welfare given the representative investor’s choice of capital al-
locations, which by condition (B) must be optimal given the market rates of return
and posterior beliefs about 8. (C) Says that in equilibrium the aggregate behavior
of the continnum of identical investors is consistent with that of the representative
investor. Finally, (D) corresponds to the application of Bayes’ rule. If #; is not part
of the host’s optimal strategy for some type, observing ¢ is a zero-probability event.
Any posterior beliefs p;(t1) are then admissible, so any action z; that is a best re-
sponse for some beliefs can be played. Note that a characterization of the investor’s
best-reply mapping Z depends on his posterior beliefs, which cannot be determined
independently from the host’s strategy. That is, beliefs must be consistent with the
Nash equilibrium for the game.

There are two types of equilibria. A separating equilibrium, if it exists, is a PBE
in which the different types of hosts have strategies that lead them to undertake
different actions in the first period. Investors can therefore infer the host’s type
from her choice of ¢;. The continuation game beginning at S.2 (where each investor

chooses his first period capital level z;) is then one of complete information and
p1(0 = 0L|t1) =1or0.
A pooling equilibrium is a PBE in which different types of hosts would select
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the same action in the first period. Hence, no new information is revealed by the
host’s first period tax rate and the posterior probability that the host’s type is low

remains the same as the prior:

P1 = po-

Separating equilibrium

An equilibrium is separating if the first period tax rate t; selected by the low type
differs from that of the high type. A high type may wish to disguise herself as a
low type in order to draw in more investment than would be the case if investors
knew the truth. The disguise consists of mimicking the first period tax rate that
a low type would choose. Given certain prior beliefs held by investors it might be
in the interest of a low type to set an exceptionally low tax rate in the first period
in order to make it clear that she is in fact low. This strategy succeeds if a high
type cannot bring herself to forgo so much public expenditure in the initial period,
even if mimicking a low type’s behavior would result in a large capital inflow that
is vulnerable to high taxation in the second period. On the other hand, separation
may fail to be an equilibrium if the low type host is required to make too steep a
concession in the first period: she may prefer to maintain a higher ¢; and put up with
the losses in investment from the investors’ uncertainty over her type. Separation

may fail if the 7 and 6% are close together.

A separating equilibrium in pure strategies, if it exists, can be constructed in a
two step procedure. First, propose a strategy combination for the investor and the
host that generate posterior beliefs that are degenerate. Second, verify that each

player’s proposed strategy is in fact a best reponse to the other’s strategy given

28



these beliefs. I carry out these steps below.
Investor’s strategy at S.2 and host’s strategy at S.1.

Some additional notation will facilitate the description of strategies. Let zf(¢;)
be the first period best response of the representative investor to the tax rate ¢;
given that he believes the host to be a low type, and assuming the capital market
is in equilibrium. In a similar way define zf(¢;). Also, recall that z}(z;,0) =
#2(t2,71). Finally, recall from the complete information equilibrium that ¢} denotes
the optimal first period tax rate for a high type if her type is common knowledge

at the beginning of the game. Now consider the following pair of strategies: 1°

INVESTOR: “If ¢ < 5, I play {zL(¢}), z5(=F,6")};

otherwise, I play {zH (¢! > t5),z3(=f,6")}.”

HOST: “If § = 6L, I play t; < t¢ and t3(Xy,8%);

otherwise, I play {t,t3(X;,6%)}.”

As a consequence of the host’s proposed strategy the posterior beliefs of in-
vestors are degenerate: either p; equals one or zero, depending on the observed
t1. Consequently, the first order condition for the investor’s expected payoff can be

written simply as:

vy

duy
Tl = =g = X + (1=t () + TEGEE ) =0, forty <t

et (30)
—¢(1=X) + 1 -y () + F2(ar',07) =0, fort] > 1.

The first order conditions together with the equilibrium requirement that X; equals

z¥ or 2}, as the case may be, define the market’s first period supply of capital to

10 Only these strategies are considered; other possibilities seem implausible for this game.
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the host country in the incomplete information game:

Xi(tr) = {e1(8h), 27 (87)}- (31)

The host chooses between selecting a first period tax rate ¢} less than or equal to
the critical value ¢ and thereby securing a capital level zF(¢,), or a tax rate greater
than the critical level and obtaining the lower capital level zf (¢). For the critical
value t{ to be the cut off level for a potential separating equilibrium, two self-
selection constraints have to hold: the high spending type of host must prefer the
outcome with {t{ > ¢, X (t{)}, while the low type must prefer {t| < t5, X£(¢})}.

In symbols, the self-selection constraints for the low and high types are:

3t} < tf, such that V] > ¢:

Wa{ty, X1 (1), Wy (85(X1 (1)), 67), X5 (X{ (t),6),6%),6"} >

Wi {t], X1 (8]), W (t5(X{ (47), 6%), X5 (X1 (#)),6"), 6"), 6" }; )
and
3t > tf, such that V#; < #:
Wilt], X1 (8), Wi (G (X1, 67), X3 (Xa (21, 67),67), 6} > 59

Wa{ty, X1 (1), W5 (85(X1 (41), 67), X5 (X (t1),67),6%), 6% }.

In order to characterize separating equilibria, it is useful to define sets of tax
rates based on the incentive compatibility conditions. For a given value of ¢ such
that ¢; < t{ and ¢} > ¢, let T{(t{) be the set of ¢] such that a low type (weakly)
prefers to choose ¢t} and have investors believe she is a low type, rather than choose

any t{ > t{ and be believed to be a high. That is,

Ti(t) = {t1 <7 Wi, X{'(81),6%) 2 Wi, X7 (#),6%)}.  (34)
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Similarly, construct the set T}'(t) to be all t{ > t§ such that a high type (weakly)
prefers to choose | and have the market believe she is a high over any ¢t} < ¢{ and
be mistaken as a low type. The next proposition gives a necessary condition for a

separating equilibrium.

Proposition 3. A tax rate t{ supports a separating equilibrium only if the sets

Ti(t§) and T7'(¢$) are non-empty.

Proof. Using the strategy pair given above for a given t{, each type of principal
would prefer an element of T] or T, as the case may be. Hence, the types of host

are separated and the investor’s beliefs are consistent with the outcome. |

For a separating value t{ a low type picks her best element in 7] and a high picks the
best in T}'. It is obvious that a t§ that supports a separating equilibrium must be a
tax rate less than the full information optimal tax rate for a high type. Hence, the
set T4'(t$) must contain the first best full information choice for the high, ¢¥. This

leads immediately to the following characterization of a separating equilibrium.

Proposition 4. In a separating equilibrium a high type chooses t = tf. A low

type chooses the element in Tj(t{) that maximizes W1 (2}, XL (¢}),6%).
Proof. The proof of the proposition follows from the preceding discussion.

A separating equilibrium does not exist if the tax rate required to identify a low
spender falls below the set of admissible values, leaving T} empty for any ¢{ for which
T{' is non-empty. On the other hand, there can be uncountably many separating
equilibria. Before refining the potential equilibria by placing restrictions on out-of-

equilibrium beliefs, let us look at a special case of a separating equilibrium.
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Natural Separation

In a separating equilibrium for a given t§ the set Tj(¢{) does not generally contain
the low’s optimal tax rate for the full information game tf. When it does contain
t! the separating equilibrium is called “natural.” In such a case the low type host
does not make a tax “concession.” The adverse selection imposed on a low by a high
type is of no consequence, because the low host can identify herself coincidentally
by simply choosing her first best tax rate. A high type must place a rather heavy
weight on public spending for a natural separating equilibrium to occur. Note that if

the marginal costs of capital adjustment were zero separation would arise naturally.

Refining the Set of Separating Equilibria

When there are many potential separating equilibria, we can reduce the set to a
unique equilibrium by placing a natural restriction on out-of-equilibrium beliefs.
The restriction I impose derives from Cho and Kreps (1987) and is used by Vick-
ers (1986) among others. The restriction begins by assuming, quite reasonably, that
the host takes it for granted that the market response to any first period tax rate
is sequentially rational. Suppose that there exists a t{ that supports a separating
equilibrium; suppose, also, that another separating equilibrium exists based this
time on t§', where t{' > t$. In the original equilibrium with ¢§ the representative
investor’s strategy calls for a response of z(t) to any t{ > |, leaving the low type
worse of than if she were to choose t] < t§. Suppose, nonetheless, that investors
observe a tax rate " € TV (t$), such that " = t; € TJ(t{'). By construction a
high type could never do better by choosing ! = t| € Ti(¢{') than by choosing

ti € T{"(t§") and be known to be high. Recall that proposition 4 ensures that
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tH € T" in any separating equilibrium. Therefore, it would not be sequentially
rational for investors to carry out their original strategy after observing £} > ¢§. In
fact, the investor should attach zero probability to the event of a high type choosing
a tax rate in T (t§) for all ¢{ that support a separating equilibrium. Given these
new beliefs the low type host can choose among any the sets T} ($) that are part of
a separating equilibrium. That is, the refinement eliminates all weakly dominated

strategies in the set

ut;Tl’ (%5).

Note that a natural separation requires t/ € UT|. The refinement allows a sharper

characterization of a separating equilibrium.

Proposition 5. In a separating equilibrium with the refinement introduced above

the optimal action for a low spending principal is ¢{*(67):

t3*(8%) = ¢ if t{ € UT|; otherwise, t{*(8) = sup {UeTj(#5)}. (35)

Proof. The welfare function W; is quasi-concave in t; (over the range t; > 1/(20)).
Hence, at a tax rate less than the full information optimum for a low type ¢J, the
welfare function is increases monotonically provided beliefs remain fixed, which is

the case for any ¢; < t§,Vt{. Hence,

th <tl = wy),6") < wa@tk,6f). W

A method for solving for the unique separating tax rate t{*(6) is the following.
Calculate the value of the social welfare function for a high host when it is common

knowledge she is a high. Then find the tax rate when she is believed to be low that
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leaves her indifferent between the resulting utility level and the level calculated pre-
viously. Verify that a low host’s incentive compatibility constraint is not violated at
the tax rate found in the previous step. Figure 4 illustrates a separating equilibrium
in terms of indifference curves and the first period arbitrage constraint. Figure 5

illustrates the relationship between the different tax rates characterized above.

FIGURE 4

Separating Equilibrium

4
FIGURE 5

Relative Positioning of Tax Rates
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Pooling Equilibrium

When the tax policy of a host country government does not signal its type (and in
the absence of any further political information) it is perhaps natural for foreign
investors to attach subjective probabilities over spending types that correspond to
the proportions of high and low spenders in the general population of capital-poor
countries; I construct pooling equilibria based on such “passive beliefs.” A pooling
equilibrium in the first period can only arise if both the high and low spending
types select the same first period tax rate, which I denote t{. A pooling equilibrium
requires that p;(8[t]) = po; the capital market must be in equilibrium based on
expectations of the second period tax rate; and out-of-equilibrium beliefs must be
such that neither spending type has an incentive to deviate from the pooling tax
rate. The investor’s first period problem is to maximize U; with beliefs given by
p1 = po. This maximization generates an equilibrium foreign investment level of

X = X, (t7) in the first period and an ez ante expected second period equilibrium:
{pot3(X2, 67)+(1—po) £5(X2, 07 )], [po-X3(X, 87)+(1—po)-X3 (X2, 67)] ). (36)
For ease of notation I denote this ez ante second period equilibrium as

{t5(6), X3(6)},
for a given prior distribution of . Of course, when the second period actually occurs
the host’s type becomes known: 6 = 6% or . Let us therefore also indicate the ez
post realization of the second period equilibrium as:
{t3(X7,6%), X5 (X},6%)}, fori=L,H.

To facilitate the characterization of pooling equilibria, I follow Vicker’s (1986) anal-
ysis in defining the following sets. Let 7;~ (resp. 7;') be the lowest (resp. highest)

level of ¢; such that a type-i host is indifferent between

35



(a) choosing t; = 7;~ (resp. ;1) and have investors base

their second period expectations on their prior that a low type

occurs with probability equal to pp—that is they

expect t, = t5(8); and

(b) choosing the best tax rate given that investors believe that the host

is a high type, so that X; = XH(¢;), Vt;. In this

case the expected second period tax rate is t3(X{(t1), 6°).

Let T = [T, 7;] 0 [T;,T7). The next proposition characterizes pooling

equilibria.

Proposition 6. If {t], X7(#})} is a pooling equilibrium, then t§ € 7. !

Proof. See the appendix.

The resolution of the adverse selection problem by signalling has time series

implications for the tax and investment profiles; this is given as a proposition.

Proposition 7. Compare the first and second period tax rates set by a low spender
in a separating equilibrium with the corresponding rates in a pooling equilibrium,
where in the second period it is revealed that § = #-. Then, not only is the first
period tax rate lower in a signalling equilibrium than in a pooling equilibrium; the

second period tax rate will be higher. That is,

t3* <t and t5(XE@#2*,00) > t3(XP,60). (37)

Proof. In a separating equilibrium with 6 = 8 the level of first period investment

X; is higher than in a pooling equilibrium for two reasons. First, with separation

u Nothing rules out the possibility of uncountably many pooling equilibria, although a strong

refinement on out-of-equilibrium beliefs may be used to break all pooling equilibria, following
Kreps (1990).
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investors know the host is a low type in the first period, which encourages investment

because t5(8%,X1) < [po - t3(X1,6%) + (1 — po) - t3(X1,6)], VXi1. Second, the
tax concession required for signalling is itself a financial inducement for investment.
That is, X;(8%,t) > X1(6%,?). Since it was established in lemma 2 that the second
period tax rate is an increasing function of first period investment, the signalling

equilibrium produces a higher second period tax rate than the pooling equilibrium

for an ez post low type of host. |

In fact, it may be the case that the separating equilibrium produces a higher
second period tax rate than even a high type would set in a pooling equilibrium, as a
resut of the tax holiday stimulus to investment. What this analysis suggests is that
investors cannot simply infer from a tax hike subsequent to their initial investment
that their view about the host government’s spending type were incorrect; even a
low type host government will want to raise capital income taxes to profit from
an investment “boom” resulting from a tax holiday. If there were more than two
periods, then after the first period investment boom and the resultant tax increase,
the rate on foreign capital income can be expected to settle to a lower level— the
level corresponding to a low type’s optimal rate when its SWF is common knowl-
edge. However, before considering the case of overlapping generations, I present the

example of a simulation model that meets the assumptions of the paper.

6. An Illustration of the Signalling and Pooling Equilibria

Tables 1 to 4 correspond to the separating and pooling equilibria of the incomplete
information version of the illustration model introduced in section 4. In this set

of simulations I assume that c¢=.75, 8% = 4 and 6 = 1. I set po = 0.5 and I
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assume that investors believe that the host is a high type if she deviates from the
pooling level of the tax rate. In the second period of a pooling equilibrium the true
value of 6 is revealed, although investors were, of course, unaware of the value of
at the time of their first period actions. I assume that in the pooling equilibrium
6 = 6L, ez post. Note how the second period tax rate in the signalling equilibrium
exceeds the second period rate of the pooling model, when ez post the host’s type
is low. Furthermore, note that the equilibrium tax rates are in the region of strict

quasi-concavity of the host’s welfare function; that is, ¢, > 1/(26).
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TABLE 1 COMPLETE INFORMATION 6=4

TABLE 2 COMPLETE INFORMATION 6=1

TABLE 3 SIGNALLING

TABLE 4 POOLING p=.5

period taz foreign capital
1 t1=.5353 X1=.2324
2 t2=.7203 X2=.2237
period taz foreign capital
1 t1=.4078 X;=.2847
2 t2=.6462 X2=.2697
period taz foreign capital
1 t1=.2422 X1=.3320
2 12=.7804 X2=.2776
period taz foreign capital
1 t1=.4125 X;=.2778
2 t2=.6424 X2=.2493




7. Finite Overlapping Generations

The analysis in the previous section has led to a characterization of the tax
treatment of a representative foreign investor’s savings or capital over the two period
lifetime of the asset, when there is an adverse selection problem. Let us now suppose
that there are overlapping generations of foreign investors, each with an identical
pool of savings to be invested either at home or abroad, as in the previous sections.
In this case, the tax holiday solution will change from one generation of investors
to the next. In particular, after a tax holiday has been used to signal a host
country government’s type the need for tax concessions as a signal disappears and
the tax profile faced by the next generation of investors is less steep. However,
with no discounting, one may wonder whether it is in the interest of a low type
host to make a large tax concession immediately in order to separate types in
the first period, or to do so gradually with a moderate tax holiday for the first
genera,tioh of investors and an even more moderate one for the next. To examine
this question, suppose there are only two generations of foreign investors. Hence, in
period two, at the same time that the first generation investors are adjusting their
capital allocation subject to adjustment costs, the second generation investors make
their initial decision about where to place their savings. In the third period, the
second generation adjusts its allocation subject to adjustment costs. That is the
final period of the game. Assume that the host first announces the second period
tax rate applicable to the first generation, and then announces the first period tax
rate applicable to the second generation. A solution requires a host to choose an
optimal sequence of taxes {t}l}(O),tél}(ﬁ),tfz}(e),tz{,2}(0)}, where the superscript
denotes the generation of the investor to which the particular tax applies, and the

subscript plays the same role as in section 4, while § denotes the host’s type. Note
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that t;l} precedes t}z} chronologically. Suppose, for a moment, that a low type
host were to use the same strategy against the first generation of investors as the
strategy worked out in section 5 (where there was only one generation of investors).
That is, til}(GL) = #¢". Then, a high type host who wishes to mimic a low type in
order to induce more investment in the first period must also choose this té,x rate.
Furthermore, in the second period the high type must again mimic the low type even
though she would prefer to choose tgl} = t3(X1,6"); but, to do otherwise would
reveal her type before any benefits from mimicking are realized. Now, suppose the
initial tax rate set by a low type for the second generation of investors coincides
with the optimal tax profile for the complete information model from section 3.
That is, t}2}(0L) = tf. Again, a high type must also choose this rate in order to
continue mimicking the low; that is the only way to justify her earlier tax revenue
loss relative to her preferred choice. Finally, in the last period of the game the high
type can reveal herself and choose a high tax rate: t;z} = t3(XE,6%).

The alternative to mimicking the low type’s strategy would be for the high type
host to choose her best tax rate profile, given that investors could infer her type.
Therefore, compare the payoffs for a high type under the alternative strategies
of mimicking, and revealing herself, where WM denotes the payoff across both
generations from mimicking, and W® the payoff from revealing her type.

Wae = Wi (7 45X (8], 6), 0,07 + Wa (¢, 13X (25,67, 67), 6)

Wr = Wi (¢, t5(X1 (¢, 67),0M),65) + Wy (t, t5( X1 (¢, 67), 67),67).
Notice that the first term in Wjy is strictly lower than the first term in Wg, since
this was precisely the choice of payoffs that led to separation in the one-generation
version of the game in section 5. However, the second term in the expression for
Wis exceeds the second term in Wg, unless there exists a natural separation for the

one-generation game. That is, mimicking a low type host in dealing with the first
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generation of investors may eventually pay off, if the second generation of investors
is convinced by earlier play that they are dealing with a low type. If Wy > Whp,
then separation fails unless a low type is prepared to either deepen the initial tax
holiday by setting t%l} < tf' , or to grant a tax holiday to the second generation of
investors in addition to the first generation, so that t?} < tf. However, note that
if the latter strategy is pursued by the low type, the tax holiday need not be as
extreme as it was for the first generation of investors, under any reasonable beliefs,
because the first term of Wy, is strictly less than the first term in Wg. The above

discussion is summarized as a proposition.

Proposition 8. Any separating equilibrium for the two-generations version of the

game has the following property:
ti1}(o%) < i) (6")
t§1}(6%) > 47} (6.
The inequality is strict unless there is a natural separating equilibrium in the

one-generation version of the game; i.e., if and only if t“{‘ =tf.
Proof. The proof follows from the discussion above.

Note that an application of the intuitive criterion would result in an equilibrium
where a low type of host separates in the first period of the first generation, if
possible, rather than doing so gradually over two generations. The reason for this
is as the first period tax rate is reduced below tf the high type’s welfare decreases
more rapidly than the low type’s, as a result of the single-crossing property of the
first period indifference curves. Therefore, a “very low” first period tax rate for
the first generation is the least costly way for a low type to discourage a high type

from mimicking her behavior. Hence, second generation investors should infer that
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only a low type could gain by setting an exceptionally low first period tax rate
on the first generation of investors. Such an equilibrium sharpens the conclusion
that the tax profile becomes less steep across successive generations of investors.
This provides an explanation for why many developing countries reform their tax

system by eliminating investment incentives after a number of years of generous tax

holidays. 12
8. Conclusion

“Shy like a deer,” is the piquant description of international capital recently given
by the German economics minister regarding foreign investment in developing coun-
tries. 13 Today there are many developing countries that appear newly converted
to free market economics; whereas in the recent past they may have engaged
in heavy handed-government intervention, countries such as Vietnam and India,
among many, now appeal for direct foreign investment and proclaim a political and
economic climate that is favourable to business. Potential foreign investors un-
doubtedly look for evidence of “the permanence of the arrangement” before sinking
their capital in a host country. In this paper, I constructed a model to show how
a tax holiday may signal a host country government’s commitment to the private
economy relative to government spending. By setting a low tax rate on foreign cap-
ital income and thereby foregoing public expenditure a low-spending government
may resolve a credibility problem when it announces its pro-market reforms. In
a separating equilibrium the tax holiday stimulates foreign investment as a result

of both the direct financial incentive of a low tax rate, and the indirect effect of

12 1n 1984, Indonesia eliminated the use of tax holidays. One stated view was that the tax

holidays were of “dubious value,” and were the mistake of previous policy-makers. However,
an interpretation based on section 7 would say that the tax holidays were removed only after
they had successfully signalled the government’s pro-market orientation.

13 The Globe and Mail, February 7, 1992.

43



establishing credibility about the government’s low-spending type. Paradoxically,
the increase in investment encourages a higher second period tax rate as even a
relatively low-spending government attempts to exploit the convex costs of capital
adjustment. However, when there is a second generation of investors, the tax rate
eventually drifts back downward “justifying” the foreign investors’ confidence in the
permanence of the arrangement. The analysis provides a new interpretation of the
tax holiday phenomenon in developing countries and suggests that the time series

behavior of tax policy and foreign investment may not be straightforward.
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