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ABSTRACT

What predictions about behavior in extensive form games can we rig-
orously justify as implied by rationality or mutual or common knowledge
of that rationality? This paper models rational belief revision in extensive
form games and uses numerical methods to examine the implications for
equilibrium predictions. In general, in dynamic strategic choice situations,
the method of belief revision adopted by the players will determine which
of a set of possible equilibria (or non-Nash strategy choices) is selected.
" This intuition has motivated critiques of subgame perfection, including the

argument that the reasoning supporting backward induction is paradoxical.

This paper examines this question with models of the dynamics of
transitions between epistemic states. These models give belief revision
functions which are well-defined for updating on zero probability events
and are equivalent to Bayesian updating where that is defined. Thus the
gap between the standard game model and the intuition driving some of
the critiques of backward induction can be bridged with this approach. It
appears that the class of equilibria that we obtain with this model are nei-
ther implied by, nor imply, Nash equilibrium. The sequential nature of
the definition of individual rationality and the possibility of rational belief
revision yield a model which implies sequential equlibrium when there is
sufficient mutual knowledge of rationality and selects equilibria that sat-
isfy forward induction. But since neither knowledge of the other players’
sequential rationality nor correct beliefs are imposed, non-Nash, but indi-

vidually sequentially rational, outcomes are also supported in equilibrium.

Keywords: rationality in games, belief revision, equilibrium selection.

JEL Classification Numbers: C72, C73, C63.



Coherent Belief Revision and

Equilibrium Selection in Games

I. Introduction

What predictions about behavior in extensive form games can we rig-

orously justify as implied by rationality or mutual or common knowledge

of that rationality?

This paper models rational belief revision in extensive form games
and uses numerical methods to examine the implications for equilibrium
predictions. Reasoning that leads to the subgame perfect equilibrium is
counterfactual reasoning. For example, player I in the centipede game
shown in figure 1 may reason as follows: if I were to move across at my
last information set then my opponent would move down in the subsequent
move, therefore I would be better off moving down at my last information
set. A sequence of such reasoning leads to the conclusion that the subgame
perfect equilibrium in the centipede game has player I moving down at his
first information set. The logical problem is that if player II does get a
chance to move at the second node, there are many possible ways that he

could revise his belief that he will never get a chance to move.

| | | | (s)

Figure 1



But depending on how player II revises his beliefs, his best action may
be to play across. If so, the initial set of propositions describing player I's
beliefs is not consistent with the actual belief revision process of player II.
If player I knows player II’s belief revision process then it may be best for

player I to choose across at the first node.

In general, in dynamic strategic choice situations, the method of belief
revision adopted by the players will determine which of a set of possible
equilibria (or non-Nash strategy choices) is selected. This intuition has
motivated critiques of subgame perfection, including the argument that

the reasoning supporting backward induction is paradoxical.}

This paper examines this question with models of the dynamics of
transitions between epistemic states. An epistemic model gives a static
representation of knowledge and belief. A model of the dynamics must
incorporate a model of how one rationally makes the transition from one
epistemic state (roughly, a state of belief) to another. Epistemic models
are homomorphic to Bayesian models (under certain axioms); that is, for
a given probability ordering over states, there is an epistemic state that
represents the same knowledge and belief, and there is a probability or-
dering (not unique) that is consistent with any epistemic state. Models
of the dynamics of epistemic states yield belief revision functions which
are well-defined for updating on zero probability events and are equivalent
to Bayesian updating where that is defined.? Thus the gap between the
standard game model and the intuition driving some of the critiques of

backward induction can be bridged with this approach.

This approach is similar to that adopted by Aumann and Branden-
berger [1991] who establish epistemic conditions sufficient for Nash equilib-

1 See for example, Bicchieri [1992], Binmore [1987], and Reny [1992].

2 See Gardenfors [1988].



rium in normal form games. There is no need to model belief revision in
normal form games; thus epistemic models are sufficient to analyze knowl-
edge and rationality in this context. The players may use counterfactual
reasoning to reason to equilibrium; but, even if the player is surprised, any
belief revision that occurs is irrelevant to the analysis of the game. In their
paper knowledge is defined as belief with probability one. Therefore the

players can be wrong — they can “know” something that is not true.

Aumann [1993] uses an epistemic model to formulate the conditions
under which, “in perfect information games, common knowledge of ratio-
nality implies backwards induction.” In his formulation epistemic models
are sufficient for the analysis even though he is looking at extensive form
games. The dynamics of belief revision are not required because the play-
ers’ strategies are implemented by agents, one for each information set.
One feature of his model that differs from the Aumann and Brandenberger
model and from the model in this paper is that knowledge is not equated
with probability one belief; by his definition, a player, or agent, cannot
know something that is not true. His main result is not only that com-
mon knowledge of rationality implies backwards induction but also that,
for every game of perfect information, common knowledge of rationality is

possible.

In this paper, I consider models of extensive form games in which the
players take their own actions and are not irrevocably tied to any decision
they may make before the beginning of the game. Also, as in Aumann and
Brandenberger [1991] I define knowledge as probability one belief. A player
can “know” something that is not true. Therefore, a crucial component of
the model is a description of how a player can “rationally” or “coherently”
move from one epistemic state to another when some evidence has been

obtained that contradicts something that is known in the first instance.

I incorporate a model of belief revision developed by Gardenfors.® Be-

3 The belief revision model and its connection with other models of knowledge are explored
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lief revision is a transition from one epistemic state to another. Think
of representing an epistemic state by a list of all the propositions a person
knows to be true in that state; this set of propositions is the person’s “belief
state”. In this framework the set of propositions representing the player’s
knowledge is both complete and consistent. That is, all logical implications
of the set of propositions are included; and, the set cannot contain both
a proposition and its negation. A belief revision function defines a transi-
tion from one belief state to another when new information is aquired. In
this paper the emphasis is on the instances in which the new information

contradicts some proposition in the initial belief state.

The representation of players’ knowledge or beliefs with belief states
is isomorphic to a representation in epistemic logic. In fact Gardenfors
proves that belief revision functions and axioms on belief revision can be
taken as the primitives and standard epistemic models generated from that
base. Briefly, let K represent belief with probability one. To say that a
proposition a is in person ¢’s belief state is equivalent to saying that K;a is
true. It is true of belief states that for every proposition a, exactly one of
the following is true:

a is accepted in i’s belief state (Kja is true)
a is rejected (K; — a is true, and —a is accepted)

a is undetermined (—K; — a is true, i.e. a is possible)

Attention is restricted to epistemic logics in which (Kp — p) is not an
axiom; a person can believe that p is true with probability one and actually
be wrong. Axioms on positive and negative introspection do hold; that is,

(Ka — KKa) is a thesis and (—Ka — K — Ka) is a thesis.*

in Gardenfors [1988].

4 The system is obtained by removing the axiom of necessity from the system S5. The
properties are very similar to S5 except in the relation between truth values of proposi-
tions with and without epistemic operators. See Hughes and Cresswell [1968] for analysis

of these systems.



To illustrate, return to the centipede game example where the belief
state for player II might include propositions such as: I am rational; my
opponent 13 rational; I prefer the higher of any two payoffs; and so on.
A logical implication of one possible consistent set of propositions is that
player I will move down at the first node. In this case, from completeness
we know that player II's belief state includes the proposition: Player I
moves down at node 1. Then suppose player II is called on to move at the
second node. When he adds the sentence stating that play has reached this
node his set of propositions is no longer consistent. In order to maintain
consistency, some of the sentences that were previously held to be true must
be discarded. And it may be necessary to add other sentences to obtain

completeness.

There are a number of ways to remove sentences, or contract the set,
and add new ones, or expand the set. Gardenfors gives some criteria for
rational belief revision such as “the contraction should be minimal”. He
also proposes that sentences be removed in reverse order of their “epistemic
value”. An ordering of epistemic value is context dependent; in games, one
natural ordering would give higher epistemic value to sentences that are
associated with higher expected game payoffs. Another plausible ordering
would assign higher epistemic value to sentences that have greater predic-

tive value. However, these two orderings may not be compatible.

Bicchieri [1992] shows in several examples that different belief revision
functions based on different orderings of epistemic value may be associ-
ated with predictions of different equilibrium refinements. However, it is
extremely cumbersome to carry out this analysis except for the simplest

examples.

I use numerical methods to examine the implications of various belief
revision functions on equilibrium predictions. The formal model serves as
a base in which to systematically determine, for classes of games, which

specific conditions on knowledge, rationality, and belief revision functions



are linked with (logically imply) various equilibrium notions. Stalnaker
[1992] presents a model of normal form games in which this program can
be carried out. The approach I use is a natural extension for extensive form

games.

There are two reasons that it is advantageous to use belief states to
represent the epistemic conditions. First, the model of belief revision that
Gardenfors develops is most naturally applied with belief states; a belief
revision function is defined on belief states. Second, questions about logical
implications of an epistemic state can be answered most efficiently with

numerical methods when the belief state representation is used.

Hooker [1988] describes a quantitative method for logical inference; I
use that method to analyze the implication for behavior in games of different
assumptions on beliefs and belief revision. An inference problem in propo-
sitional logic can be written as an integer programming problem. Both the
inference problem in propositional calculus and integer programming prob-
lems are known to be NP-complete. So one may reasonably ask whether it
is sensible to solve the inference problem in its integer programming repre-
sentation instead of directly. But in practice, many integer programming
problems are relatively easy to solve; and the generalized covering models
of the inference problems are among this class.® The evidence from ap-
plications and from experiments indicates that the integer programming

representation is easier to solve than the inference problem directly.

These quantitative methods are used to carry out a systematic numer-
ical analysis of the question: which predictions about behavior in extensive
form games are logically implied by the various sets of propositions repre-

senting the players’ knowledge, beliefs and rationality?

The model is introduced in the next section while the third section

5 See Hooker [1988] for a thorough analysis of this approach to logical inference.



presents examples which illustrate some of the implications for equilibrium

play. I conclude with a brief discussion of these preliminary results.



I1. Model.

Assume we are given an extensive form game, I', with perfect recall
and no moves by nature.® Such an extensive form game consists of a finite
tree, a set of players, a partition of non-terminal nodes into information
sets for the players, a labelling of arcs according to the action taken, and

payoffs for each player for each terminal node.
Representation of I'.

The first step in the analysis is to represent the game in propositional
logic. To do so, we associate a unique atomic proposition with each arc in
the game tree. A typical proposition will be ax. The set of these is denoted
A. These are the only atomic propositions. From these, we can generate
all the other propositions necessary to describe the game and rational play
in the game. Since there is a one-to—one relationship between arcs and
these atomic propositions, I will often use “the arc ar” to mean the arc
corresponding to atomic proposition ar. Note that a node is completely
described by the set of arcs emanating from it. So we will typically identify

nodes with the appropriate set of atomic propositions.

Let T = {I,...,1I,} be a partition of A such that I; is the set of arcs
controlled by a player :. A finer partition, J, partitions each element of
7 so that each event is a set of arcs emanating from a given information
set. Let A;; be a typical set of arcs emanating from one information set
of player ;. When there are R nodes in an information set, we denote the

1

different nodes as 4;;,. .., Aﬁ. When there is little danger of confusion we

will refer to nodes generically as A.

Given any set A of atomic propositions representing arcs, let C(A)

6 This is for simplicity of exposition. An extension to the case which allows for moves by

nature is feasible, though perhaps not straightforward.



denote the proposition that exactly one ax € A is true. Then for each
node A, the proposition “C(A)” must hold; that is, a player chooses one
and only one action at a node. Whenever A and A’ are nodes in the same
information set for player i, we know that the set of actions at each node
must be the same by the definition of an information set. It follows that
there is a one-to—one relationship between A and A'. Therefore we can write
A = {a1,...,ak} and A’ = {d},...,a}} where a; and a} are associated
with arcs labelled by the same action. In order to respect the information
structure of the game, we require “a; if and only if a},” for £ =1,..., K.
We refer to these as the choice conditions on the game. Choice conditions

for player : refer to the C'(A) for those nodes A where player : moves.

The dynamic structure of the game is described by the use of an
operator, P, on atomic propositions where Pa is interpreted as “the ac-
tion labelling arc a is played.” For a set of arcs A = {aj,...,ax} let
PA = {Pay,...,Pak}. Each node A is reached by a unique path from
the initial node, Ao, by the definition of the tree. Let P(A) denote the
conjunction of Pa over the set of a in the path leading to A. The dynamic
structure is defined by a set of propositions of the form, “C(PA) if and
only if P(A),” for all nodes A. We take P(Ao) to always be true; that is,

the initial node is always reached.

A strategy for player i is a' C I; such that the choice conditions for
player ¢ hold. Let a be a strategy profile for all players and let a~* denote
the strategies of all players except i. Let A' be the set of possible strategies
for player i. Define A and A~ analogously. Strategies are related to the
dynamic structure of the game in the following way. Given any strategy
profile, a, there is a unique terminal node z which is reached. Let P(z2)
denote the proposition that the actions leading to z are played. Then we

require “a — P(z).”

Beliefs about strategies are not necessarily correct. We denote player

i’s beliefs about other players’ strategies by b=* € A~%. A player i can have



different beliefs about strategies at different information sets; these will be
determined by the belief revision functions for player . At any information
set, there will be some b~* consistent with reaching that point in the game.
For an information set A;; = {4j;,... ,Af;} let P(Aij) be the disjunction
over r of P(A];). In other words, this is the statement that information set
A;j is reached. Let aj- be the set of actions by player ¢ that is consistent
with reaching information set A;;. Then the set of feasible beliefs at that
information set, denoted B;i C A% is the set b~ such that “b~* and aj«
imply P(A;;).” A’ will denote player i’s set of continuation strategies from

information set A;;.

Note that b™* denotes the strategy profile that player ; knows is the
true one — where knowledge is belief with probability one. That is, the
strategy profile b is in 4’s belief set but may not correspond to the ob-
jectively correct strategy profile, a~*. In particular, when we write aj this
means that the player controlling that arc intends to take that action; when
we write by this means that another player believes the first intends to take

action ag.
Representation of rationality.

Rationality is defined sequentially for each player. Let z be a typical

terminal node and denote the set of terminal nodes Z.

The game I' includes a payoff function for each player, u; : Z — R.
Let u;(a) be the u;(z) for the terminal node z such that a — P(z).

Definition of rationality. Let R; denote the proposition that, at each in-

formation set 4;;, for all b~% € Bj_i, b~* implies that player i’s choice aj
satisfies ui(aj-,b‘i) > ui(a;-,b_i) for all a; € A;

10



ITI1. Examples

The first example is of the four node centipede game introduced earlier
in the paper under assumptions that yield the familiar result — player I
moves down at the first node, there are no unanticipated events, thus there
is no need to revise beliefs. The second example is of the same game but
with fewer restrictions on the players’ knowledge — one player knows the
other’s belief revision function and early play of across is supported. The
third example deals with an imperfect information game and illustrates
that, with rationality mutually known, the equilibrium is sequential (and

the non-sequential Nash equilibrium is ruled out).
Ezample 1.

The game in the familiar extensive form representation is reproduced

in figure 2. Labels a; on the arcs represent the atomic propositions.

I as II as I ag II ag

| | | | (3)

| a1 | as | as | ar

() () (2)

Figure 2

I = {al,az,as,ae}

Iz = {a3,a4,a7,a8}

A = {a1,az}
A2 = {as, a6}
A21 = {a3,a4}
A2z = {a7,as}

11



Al=A'

Al =A?
A; = {as,a6}
Ag = {ar,as}

C(An) = (al \% a2) A —-(a1 A a2)
C(Alz) = (a,5 \% as) A ——(a5 A as)
C(Agl) = (a3 \ a4) A —(a3 A a4)

C(Azz) == (a7 \% as) A —(a7 A as)

C(PAmn)
C(PAgl) lff Pa2
C(PAlz) iff (Paz A Pa4)

C(PA22) lff (Pa2 A Pa4 A PaG)

The propositions above completely describe the game I'. Next we
construct propositions describing, for each player, his rationality and beliefs
about the other player’s rationality (but not beliefs about the other player’s
strategy). These propositions added to those describing I' comprise the
belief base. The belief base is just sufficient to generate the belief set; the
belief set is the belief base plus its logical implications. We will denote the
belief bases by B;.

Note that common belief (or knowledge) of rationality will itself pre-
clude or imply certain beliefs about players’ strategies. Once the belief
base is specified, we first check which beliefs are consistent with each indi-
vidual player’s belief base. Then, we determine which beliefs are mutually
consistent. Finally, we determine which paths P(a) implied by the beliefs

are mutually consistent. By this I mean that information sets at which a

12



belief revision process is necessary will not be reached given the implied
paths. The propositions on rationality are given below, by information set,
where R;(Aij) is the conjunction of propositions defining :’s rationality at
information set A;; and R; = AjR;(A;j).

Rl(Au) =((b3, b7) — al)/\
((b3, bs) — al)/\
((b4,b7) i d az)/\

((b4,b8) — a2)

Ry1(A12) =((bs, b7) — as)A

((b4’ bs) - aﬁ)

Rz(Azl) =((b2,b5) g a3)/\

((b2,b6) — a4)

R3(Az2) = ((b2,b6) — a7)
Ry = R1(A11) A R1(Ay2)

Ry = Ry(A21) A Ry(A22)

These propositions represent rationality of the two players in this game.
A belief base for player I must include the propositions describing I and R;
and similarly for player II. In this example, it is assumed that rationality
is commonly known and that rationality of both players is true; there are
no surprises. Therefore the players’ belief bases are identical; both include

the propositions on I', R; and R;.

Now we want to determine which equilibria are implied by these B,
and B;. Let the proposed equilibrium strategy profile be denoted a*. In

this example, the process is quite simple. Because we assume that the

13



rationality and the game are commonly known (and true), we can work
with the one, common, belief base. The procedure is as follows: put the
belief base in conjunctive normal form; translate the belief base into a set
of constraints for an integer programming problem; minimize a* subject to
the constraints; if the minimized value of a* is 1 then implication follows,

otherwise not.

The equilibrium implied by these belief bases is a* = (a1, as,as,ar)

which is the backward induction solution.
Ezample 2.

The second example is of the same basic game. Rationality is mutually
known; that is, each player has full belief in the rationality of the other
player. Now, however, player II has a belief revision function — he knows
how he would revise his beliefs if he were to be surprised by having a chance

to move at Aj;. Assume player I knows player II’s belief revision function,

denoted C.

Bl = {F,R],RQ,F CB2,R1 C Bz,C}

B; = {F,Rz,Rl,F C Bi,R; C Bl}

Note that a; is inconsistent with I' A Ry A R; (from example 1).

Let C be the function which, upon observing Pas, removes (R C B;)

from B2 and adds the propositions a; and Pa; — as.

The procedure for determining the equilibrium implied by the belief
bases in this example is analogous to that of the first example except that
there are now two distinct belief bases. We check for implication within
each belief base in the same way. Then there is an additional check that the

implied (a!,b~!) and (a%,b~?) are consistent along the actual play path.
14



Informally, note that given C, Ry(A21) — a4. Given that player I
knows Ry and C, Ri(A11) — a2 and Ry(Aj12) — as. Then a! = (a3,as),
b~! = (b4, br), a® = (as,ar), and b=2 = (b, bs). Beliefs are inconsistent
and player II is surprised by I's play of as instead of ag, but neither player

is faced with the necessity of revising beliefs. Observed play is (a2, a4, as).
Ezample 3.

This game in this example is illustrated in figure 3. The a; labels on

the arcs represent the atomic propositions.

e (3)

Figure 3.

15



I, = {a1,a2,a3}

I = {ay, a5, a3, a3}

An = {a1, 03,03}

Az = {a}, a5, 0f, a5}

Ay = {a}, a5}

A3 = {ai,ag}
C(A11) =(a1 Vaz Vasz)A

— (a1 Aag) A —(a1 Aaz) A —(az A a3)

C(Az1) =((ag V a5) A —(ag A ag))A
((af v a3) A —(af A af))A
(ay iff a2) A (a3 iff a?)
C(PAn)

C(PAzl) iff (Paz \% Pa3)

These propositions describe the game, I'. Next, as before, we construct
propositions describing each player’s rationality according to the definition

given in section II above.

R1 = (b4 — a2) A (b5 — 0,1)

Rg = (b2 — a4) A (b3 e a4)

Assume that rationality is mutually known. As in the previous exam-

ples, let I" denote the set of propositions describing the game.

16



Bl = {F1R17R2,(F - B2)}

BZ = {F,R2,R1,(I-‘ - Bl)}

The procedure here is analogous to that used to generate the previous
two examples. The only equilibrium under our definition of rationality and
with mutual knowledge of the rationality is a* = (a2, a4). Notice there are
two Nash equilibria but the Nash equilibrium that is not sequential is ruled
out in this model. Also note that this result goes through even without R;

in Bz.
Ezample 4.

The fourth game is illustrated in figure 4. Again, the a; labels on the

arcs represent the atomic propositions.

G

Figure 4.

The propositions which represent the game are the same as for exam-

ple 3. However, because of the payoff differences to player 2, the rationality
17



conditions are different. The propositions describing each player’s rational-

ity are again constructed according to the definition in section II.

Rl = (b4 — 0,2) A (b5 e a1)

R2 = (bg — a4) A (b3 — a5)

Again assume that rationality is mutually known and let I" denote the

set of propositions describing the game.
By = {I' Ry, Ry,(I" C B2)}
B2 = {F,R27Rl’([‘ - Bl)}

The only equilibrium implied by these belief bases is a* = (az,a4). In
this example, there are two sequential Nash equilibria, (a2, a4) and (a1, as),
but only the first of these satisfies the forward induction criteria. This
model rules out the sequential equilibrium that does not satisfy forward

induction.
IV. Concluding remarks.

The examples presented here are quite simple so that the method can
be clearly illustrated. Using these numerical methods, one can derive im-
plications for more complicated games and larger classes of games. From
other results currently being analyzed, it appears that the class of equi-
libria that we obtain with this model are neither implied by, nor imply,
Nash equilibrium. The sequential nature of the definition of individual ra-
tionality and the possibility of rational belief revision yield a model which
implies sequential equilibrium when there is sufficient mutual knowledge of
rationality and selects equilibria that satisfy forward induction. But since
neither knowledge of the other players’ sequential rationality nor correct
beliefs are imposed, non-Nash, but individually sequentially rational, out-

comes are also supported in equilibrium.

18
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